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When biological populations expand into new territory, the evolutionary outcomes can
be strongly influenced by genetic drift, the random fluctuations in allele frequencies.
Meanwhile, spatial variability in the environment can also significantly influence
the competition between subpopulations vying for space. Little is known about the
interplay of these intrinsic and extrinsic sources of noise in population dynamics:
When does environmental heterogeneity dominate over genetic drift or vice versa, and
what distinguishes their population genetics signatures? Here, in the context of neutral
evolution, we examine the interplay between a population’s intrinsic, demographic
noise and an extrinsic, quenched random noise provided by a heterogeneous
environment. Using a multispecies Eden model, we simulate a population expanding
over a landscape with random variations in local growth rates and measure how this
variability affects genealogical tree structure, and thus genetic diversity. We find that,
for strong heterogeneity, the genetic makeup of the expansion front is to a great extent
predetermined by the set of fastest paths through the environment. The landscape-
dependent statistics of these optimal paths then supersede those of the population’s
intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the
statistics for coalescence of genealogical lineages, derived from those deterministic
paths, strongly resemble the statistics emerging from demographic noise alone in
uniform landscapes. This cautions interpretations of coalescence statistics and raises
new challenges for inferring past population dynamics.

population genetics | range expansion | heterogeneous environment | neutral evolution

Populations across many scales show evolutionary footprints of past range shifts. To
properly interpret these footprints, it is important to understand how they originated.
Range shifts are now understood to be common to many population histories (1), from
small-scale bacterial colonies (2, 3) and cancerous tissues (4-6) to large-scale species
invasion in foreign biomes (7, 8) and human migration (9—12); they thus play an
important role in connecting evolution and ecology (13, 14).

Large, well-mixed populations are insensitive to intrinsic, random genetic fluctuations,
i.e., genetic drift. In contrast, during range expansions, “luck” plays a significant role
in providing rare mutations an opportunity to rise to high frequency and appreciably
contribute to the expanding population (15-18). This increased influence of genetic drift
arises because evolutionary competition becomes restricted to small effective population
sizes at the boundaries between isogenic groups. As a result, local genetic diversity
decreases rapidly with increasing expansion distance (19-22).

In the absence of long-range dispersal, genetic diversity at a traveling population front
can be characterized by the motion of boundaries separating regions of similar genetic
makeup, as well as by branching genealogical lineage trees caused by repeated founder
effects (23). When viewed backward-in-time, genetic dynamics are characterized by the
intersections and coalescences of the population’s lineages, traced from the population
front back to the location of the initial populations. Along the way, pairs of related lineages
sampled from the front eventually coalesce in a most recent common ancestor. The time
since this coalescence event is then proportional to the number of accumulated (neutral)
mutations expected to distinguish the genomes of the two sampled organisms, providing
an important measure of genetic diversity (24, 25) and coupling the nonequilibrium
statistics of propagating fronts to population genetics.

Little is known about how environmental heterogeneity interacts with this decay of
genetic diversity and shapes the evolutionary outcome. Such an interplay has potential
ecological and evolutionary consequences, e.g., the emergence of antibiotic resistance
(26) and altered species invasion dynamics (27, 28). Some progress has been made in
understanding statistics of relatedness across the landscape in bounded environments
(29), for single obstacles to the expansion (30), and for environments with curved
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surfaces (31). In particular, individual obstacles, which suppress
growth locally, act similarly to bumps in surface topography
by focusing the expansion front inward to a cusp (30, 31).
Landscapes of randomly placed obstacles create pinning sites
for the population front and increase the importance of chance
relative to selective fitness in determining the genetic makeup of
the expansion (32).

However, it remains poorly understood how a heterogeneous
growth landscape influences the genetic structure of expanding
populations. To study this interplay, we examine the effects of
environmental heterogeneity on a minimal model of population
growth, a multispecies variant of the Eden model (33), in which
the front of the range expansion is a propagating, roughening in-
terface in the Kardar-Parisi-Zhang (KPZ) universality class (34).
Motivated by experiments on bacterial and yeast colonies grown
on agar plates with limited nutrients (16, 19, 21, 35, 36), the
evolutionary dynamics of this model in uniform environments
has been extensively studied, including phenomena such as fitness
collapse (37, 38), fixation (39), gene surfing (21, 40), and lineage
coalescence (32, 41).

In this work, we couple the Eden model’s range expansion
to a landscape of hotspots where the population expands faster
locally. The effects of hotspots, both individually and in randomly
placed collections, on the population dynamics have recently
been characterized by employing an analogy of light rays passing
through a medium of regions with locally decreased index of
refraction (42). We demonstrate that for strong heterogeneity,
despite appearing stochastic, the population’s lineage structure
is dominated by geometrically determined paths of least travel
time, and these paths predict which initial subpopulations will
dominate the late stages of the expansion. Strikingly, we find
that strong environmental noise can produce statistics in the
population’s genetic composition that mimic scaling due to
demographic noise on uniform landscapes, despite making the
genetic outcomes nearly deterministic.

Model

Our simulated population is arranged on a hexagonal grid, with
each filled grid site containing a deme (well-mixed subpopula-
tion) that can grow or expand into neighboring sites (Fig. 14).
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In the context of a continuous population, this corresponds to the
regime where growth to local carrying capacity occurs faster than
migration. For this reason, the genetic character of each deme
is assumed to be uniquely determined by the first individual to
arrive. We consider reproduction of demes to occur only at the
population boundary, i.e., no replacement of an occupied deme is
possible, leading to a population composition that is “frozen” in
time. In this scenario, we can use a single identifier to characterize
the local genetic composition, which we represent with a distinct
color (Fig. 14).

Our initial condition consists of a single, filled edge of L
sites on our hexagonal grid (Fig. 14). We choose each initially
occupied site to be identified with one of L colors with all demes
sharing equal intrinsic fitness (neutral evolution). We employ
asynchronous reproduction rules known to reproduce the scaling
(discussed in more detail later) of domain boundary fluctuations
(19) and lineage lateral motion (21) often seen in microbial
experiments, as well as many classes of systems with kinetically
roughed fronts (43).

These reproduction rules consist of 1) identifying the popu-
lation front by all demes near an empty grid site, 2) randomly
selecting one deme at the population front according to an imple-
mentation of the Gillespie algorithm (44, 45), and 3) randomly
selecting one neighboring grid site with uniform probability to
establish a new deme of the same color as the replicating deme.
For neutral evolution in uniform environments, this amounts to
selecting individual demes at the front with equal probability and
copying their color to a random adjacent empty site, ¢.f Eden
model (33), type C (46). Because color is inherited at replication,
this process leads to single-colored regions, each occupied by
descendants of one individual from the original population
(Fig. 1A4). By tracking replications, we can also visualize the
ancestral relationships between sites. Here, we focus on the
ancestral history of individuals at the front, which are represented
by lineages that coalesce when viewed backward in time (white
lines in Fig. 14).

Environmental heterogeneity in our system takes the form
of a fixed distribution of disk-shaped “hotspots,” which are
regions of increased local reproduction rate (Fig. 1). Thus,
for heterogeneous environments, step (2) is modified first by
assigning to each grid site (7, j) a reproduction rate,

Fig. 1. lllustration of Eden model for a range expansion on a heterogeneous landscape of hotspots with a linear initial condition (white-outlined hexagon
markers), and with each color representing a distinct ancestral deme. Gray sites make up the hotspots, regions of increased reproduction rate. (A) Simulation
snapshot showing lineages (white lines) at the scale of the lattice and for intensity / = 8. Black dots indicate the population front. (B) Simulation snapshot
showing the effect of a single hotspot on the lineages (black lines) and population front, using intensity / = 10. Parabolic approximation to the sector boundaries
induced by the hotspot is shown in gray (Eq. 2; see S/ Appendix, Eq. 1 for full expression).
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if (4,7) in a hotspot,

(ij) = {”’ )

79 otherwise,

where 7y, 79 are the reproduction rates inside and outside of a
hotspot, respectively. We implement a version of the Gillespie
algorithm (44) to update the simulation time and select the next
deme to reproduce; see Materials and Methods. A single disk-
shaped hotspot leads to an expanding population bulge (Fig. 15),
as characterized in ref. 42. Our structured environment takes
the form of a “landscape” of hotspots with Poisson-distributed
centers. The hotspots include all lattice sites centered within
a distance R of any hotspot center, and with overlap allowed
between neighboring hotspots. This gives rise to three system
parameters: the hotspot radius R, the area fraction ¢ of hotspots,
and the ratio of replication rates ;/7y. The latter parameter can
be recast as the hotspot intensity, I = (7,/r)) — 1. Because the
replication rate is proportional to front speed, hotspot intensity
can be rewritten as I = (v;/v9) — 1. Here, vj, and vy are the
front speed within and outside the hotspots, respectively, when
measured on spatial scales sufficiently large that an effective front
speed is meaningful.

Simulations are performed on a hexagonal grid with periodic
boundaries along the width direction, and beginning with initial
populations of L = 2,000 demes. For each value of hotspot
intensity and hotspot area fraction, we conducted 100 simulation
runs with distinct random seeds over each of 20 different
landscapes. Populations are grown only to a height of /2 demes
to reduce finite size effects in genetic measures by preventing
lineages from self-interacting. Specifically, viewed forward in
time, replicating demes which happen to establish new demes
consistently in one direction will have descendent demes that have
been displaced at most a distance equal to half the system width.
Viewed backward-in-time, then, lineages constructed by tracing
these replication events backward from demes at the population
front toward a founding ancestor do not have enough time to
wrap through the periodic boundaries onto themselves.

Results

Effect of a Single-Hotspot on Genetic Diversity. Expansion of
the population on the lattice leads to a loss of genetic diversity,
which can be seen in the decrease in the number of distinct
colors with increasing height, Fig. 14. Occasionally a deme of a
particular color will be surrounded by demes of other colors,
preventing it from establishing new descendants; two sector
boundaries then merge into one. Since a merger of boundaries
disconnects a genetic sector from the front and thus coincides
with the termination of that sector’s lineages, sector coarsening
is strongly coupled to lineage structure. That is, a decrease in
the number of genetic sectors also corresponds to a decrease
in the number of founder-population ancestors that “survive,”
i.e., that remain present as distinct roots of lineage trees (white
lines in Fig. 14, gray lines in Fig. 2) traced backward from the
population front. This has been studied extensively in uniform
environments, where, for front-roughening dynamics in the KPZ
universality class, the number of surviving sectors decreases with
mean expansion distance 4 as 7, ~ h~2/3(47) and lineages
coalesce in reverse-time 7 such that the number of distinct
lineages scales as ~172/3 (21).

Fig. 1B shows a range expansion at a scale much larger than
the lattice spacing with a single hotspot at the center of the
landscape with hotspot intensity / = 10. The outward-biased
motion of sector boundaries induced by the hotspot corresponds
to descendants of demes at the population front that enter the

PNAS 2024 Vol. 121 No. 34 e2411487121

hotspot being directed to the hotspot periphery. This also leads
to a rapid reduction in the number of sectors in the vicinity of
the hotspot, meaning that those unlucky few lineages that pass
near the hotspot without entering it will very likely be cut off
by the sectors influenced by the hotspot. An animation of this
effect is provided in S/ Appendix, Movie S1. The resulting sector
boundary in Fig. 1B (gray curve) is well described by a parabola
whose coefficient for the quadratic term is given by

a=(1+1)/(4IR). 2]

The parabola with this coefficient emerges as the set of
intersection points of the unperturbed population front and
a circular population front originating at the hotspot center,
which have been found to heuristically describe front propagation
outside hotspots (42). The detailed form for the parabolic sector
boundary including the position of the vertex and relation
between front shape and sector boundary is given in S/ Appendix.

For lineages, the hotspot acts like a diverging lens (viewed
from Bottom to Top, Fig. 1B). This is in contrast to obstacles
and topographic bumps where lineages are guided around the
environmental feature analogously to the focusing of light by a
converging lens (30, 31). For topographic bumps it was shown
that average lineage trajectories are well predicted by analytically
calculated geodesic paths (31), i.e., the paths of least time. In
this work, we therefore expect fastest paths through a landscape
of many hotspots to provide useful predictions for trajectories of
surviving lineages. We investigate this hypothesis in detail below,
in Least time principle and lineage structure and Meandering of
lineages and of fastest paths.

Many-Hotspot Effects on Diversity. While a single hotspot has a
qualitatively simple geometrical effect on front geometry, sector
coarsening, and shape of lineages, the situation is complicated
in the presence of many hotspots. It is known that the shape
of the advancing population front remains well described by
geometric optics calculations for paths of least time (42). Here,
we investigate the consequences that landscapes of many hotspots
have on the population’s genetic diversity.

474
V)

Fig. 2. lllustration of a range expansion from a linear initial population of
2,000 demes wide grown to 1,000 demes tall showing sector coarsening
(colors) and lineage structure (light gray trails), (A) without hotspots, and (B)
with hotspots (dark gray disks) at an area fraction ¢ = 0.09, radius R = 20,
and intensity / = 8.
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Example simulations for a range expansion through a uniform

landscape (¢ = 0), and a landscape with hotspot area fraction
¢ = 0.09, hotspot size R = 20, and intensity / = 8 are
shown in Fig. 2 A and B respectively. We have provided an
animation for a range expansion in a heterogeneous landscape in
SI Appendix, Movie S2. Comparing these two figures shows that
landscapes of many hotspots qualitatively hasten genetic sector
coarsening, resulting in a corresponding drop in the number of
surviving lineages, and leading to greater lateral meandering in
both lineages and sector boundaries.
Sector coarsening. To study the decay in the number 7, of genetic
sectors, we measure how the average sector width /; ~ 1/, grows
as a function of the average front height (expansion distance) 4
(Fig. 3). In the absence of hotspots, there is experimental (19) and
numerical (47) evidence of a scaling relation /, ~ A%, with 4 being
expansion distance from initial population and approximate KPZ
scaling exponent of @ ~ 2/3. In agreement with this expectation,
we find that uniform landscapes (/ = 0 in Fig. 34, data with
black markers (¢ = 0) in Fig. 3B) exhibit KPZ scaling / ~ 4%,
a = 2/3 for all heights beyond some initial height on the order
of 10 demes.

We explore how / changes with two parameters describing
the many-hotspot landscape: hotspot intensity / (Fig. 34) and
hotspot area fraction ¢ (Fig. 3B). Tuning / from 0 to 1 results
in a transient regime at heights # 2 100 which deviates from
the uniform-landscape case, and where sector size grows faster
than ~ 4?/3. After this transient regime, at high 4, sector growth
returns to the KPZ scaling @ = 2/3, but with a prefactor that
is greater for larger hotspot intensities (Fig. 34). We see similar
behavior when varying ¢, with the return to the KPZ regime at
high /4 occurring slightly faster for higher area fractions (Fig. 3B).

For landscapes of many hotspots, previous work characterized
front propagation by an effective front speed, approximating
the heterogeneous landscape as a uniform, effective medium
(42). This effective front speed increases with both hotspot
intensity / (Fig. 3 A, Top-Left Inser) and area fraction ¢
(SI Appendix, Fig. S4). In this light, it is tempting to view the
return to KPZ scaling at large / as signaling a regime where sector
dynamics are well described by an effective medium picture at
expansion distances larger than some crossover length. As we

102| @

10°

will see below, the large-scale dynamics is not truly that of
an effective medium because the wandering of lineages in this
regime is dominated by the geometry of the environment, not
by demographic noise. Nonetheless, we can better understand
the transient behavior and the return to KPZ scaling at large
expansion distance by defining a length scale for the typical
hotspot center-to-center distance, A = 1/,/p, where p is the
hotspot number density, i.e., the number of hotspots per unit
area. For a random distribution of disks permitted to overlap,
this length is related to the hotspot area fraction ¢ and radius R
through (48, 49)

A R)—i— _TR (3]
PO= TV Tha-a

Empirically, we find that the crossover length is well described
by the typical outer-edge-to-outer edge distance A = 4 + 2R
of two nearby hotspots (illustrated in Fig. 3 A, Bortom-Right
Inset). Values for A calculated using Eq. 3 are shown in Fig. 3 B,
Bottom-Right Inset for corresponding values of ¢p. Those A values
provide fairly good approximations for the crossover length.
Indeed, rescaling the sector size by the hotspot separation length
scale, /;/A, and the expansion distance to /5., with A, being the
height at which the sector size reaches A, collapses the late-time
sector size data, with the transition now occurring at (1, 1) on
the rescaled axes for all ¢ (Fig. 3 B, Top-Left Inset). This reveals
that sector size growth returns to KPZ scaling at sufficiently large
sector sizes, relative to the environmental length scale A.
Environmentally pinned lineages. As described above, at suffi-
ciently large expansion distances, genetic sector coarsening in
many-hotspot landscapes scales similarly to that on uniform
landscapes. Since the sector dynamics and lineage structure
are related, it would be reasonable to expect similar stochastic
behavior for lineages. Indeed, individual simulations, such as
Fig. 2B, may at first scem to indicate that growth through a
landscape of hotspots produces lineage trees similar to those
in uniform environments, although with sector coarsening
accelerated by hotspots (87 Appendix, Movie S2).

However, at close inspection, comparison of simulation runs
from different initial random seeds but within the same landscape

0.05 020 0.35 0.50
.

0
0.1 0.2 0.3 0.4 0.5

¢

1 021) 1 025

h

Fig. 3. Log-log plot of the (A) average genetic lateral sector size /s plotted against expansion distance h at varying hotspot intensity / and fixed area fraction
¢ = 0.1, (B) sector growth for varying hotspot area fraction ¢ at fixed intensity / = 8; black markers indicate a uniform landscape (¢ = 0). Top-Left Insets show
(A) population front mean speed dependence on hotspot intensity, (B) rescaled sector size versus rescaled height h/h¢ (defined in the main text) for ¢ > 0. The
hotspot radius is fixed at R = 10. Bottom-Right Insets show (A) schematic of hotspot typical outer-edge-to-outer-edge distance A, (B) dependence of this distance

on hotspot area fraction, A(¢).
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and initial condition reveals a qualitatively distinct feature of
range expansions in landscapes with quenched random noise:
When the hotspot intensity is sufficiently large, a large proportion
of the lineages follow certain highly traversed paths through a
given landscape, traveling through a small, consistent subset of
the hotspots. We dub this phenomenon lineage pinning. This
effect is seen by averaging the lineage spatial positions over many
simulations so that each lattice site records a probability of being
visited by a surviving lineage. Fig. 44 shows such a lineage
site-visitation probability map for a uniform environment,
with darker colors indicating more commonly visited positions.
The observed texture arises from a finite ensemble of 1,200
simulations; for an infinite ensemble in a uniform environment,
all positions at a given height would be visited equally, by
symmetry. In a heterogeneous landscape, a very different pattern
emerges in Fig. 4B, where the presence of hotspots induces a
clear structure of frequently traversed lineage positions passing
through a subset of the hotspots.

With the front at the end of the simulation consisting of L
demes by construction, the average lineage tree pattern in Fig. 48
indicates that there is a funneling of lineages to a reduced number
of paths through the landscape, ultimately terminating on a finite
subset of ancestral demes (located at height zero). This suggests
that structured environments induce favorable paths for lineages
and thus impart a deterministic component to the evolutionary
dynamics: the pattern of hotspots biases the genetic composition
of the expansion front in favor of certain ancestral demes. In the
forward-time view, this also implies deterministic contributions
to genetic sector survival and dynamics of sector boundaries. The
onset of lineage pinning with increasing hotspot intensity 7 is
demonstrated in ST Appendix, Movie S3, which shows the lineage
visitation probability as 7 is varied while the hotspot landscape
is otherwise held fixed. As 7 is increased, paths of high visitation
probability emerge and become narrower as they accumulate
more of the total probability.

A characteristic of lineage pinning is that, as hotspot intensity
is increased on a given landscape, the lineage site-visitation
probability distribution “condenses” gradually onto a few paths
(81 Appendix, Movie S3). These most probable lineage paths tend
to remain stable in position while increasing in probability as /
increases. This means that survival probability of the progeny
of the ancestral demes becomes concentrated in a landscape-
defined subset of ancestral demes as the hotspot intensity
increases.

Lineage pinning accelerates the decay of genetic diversity, as
seen in a reduction in the number of surviving lineages, i.e.,
ancestral demes contributing to the front’s genetic makeup: As
one summary statistic from these simulation ensembles, Fig. 5

A Lineage Visitation Probability B
0 0.003

Lineage Visitation Probability
0 0.183

°

Fig. 4. Lineage site-visitation probability map generated from an ensemble
of 1,200 simulations with (A) no hotspots and (B) a fixed landscape of hotspots
with an intensity / = 3, size R = 10, and area fraction ¢ = 0.09.
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Fig. 5. Normalized number of surviving lineages after a range expansion as
a function of hotspot intensity, /, for fixed radius R = 10 with each data point
generated from 20 different landscapes each with 100 simulation runs. The
Inset shows a possible scaling collapse with pinning parameter A=1/31/(/+1).
Error bars represent SDs.

displays the mean number of surviving lineages (number of
lineage tree roots), normalized by the corresponding number
in the absence of hotspots, as a function of hotspot intensity.
Values are smaller than 1, indicating that lineage pinning by the
environment reduces the number of distinct roots exhibited by a
given lineage tree.

The ¢ dependence of this accelerated decay of surviving

lineages can be approximately collapsed by plotting the normal-
ized number of surviving lineages against A='/31/(I + 1) with
A = A+ 2R and 4 related to ¢ and R through Eq. 3. The /
dependence for this collapse is motivated by Eq. 2 and the power
of A is found empirically, as shown in Fig. 5, Insez. This rescaling
collapse holds only for densities less than 0.5, presumably due
to the hotspot separation length scale rapidly approaching the
hotspot diameter near ¢ ~ 0.55.
Least time principle and lineage structure. The geometry of
an advancing population front in a landscape of hotspots
can be approximated as a wavefront whose dynamics can be
determined using an analogy to light rays propagating through
a heterogeneous medium, with hotspots effectively behaving as
diverging lenses (42). Building on this analogy, we demonstrate
here that geometrically determined paths of least travel time
through a landscape of hotspots predict much of the observed
genetic structure of pinned lineages, including which founding
ancestors will have surviving descendants.

Pinned lineages sequentially visit a set of favored hotspots
as they traverse the landscape. To focus on the trade-offs that
generate these favored paths, we ignore the stochastic wandering
of lineages in the regions between hotspots. Instead, motivated by
known connections between optimal paths in random media and
Eden model lineages (50-53), we approximate each lineage as a
contiguous sequence of line segments that connects an individual
at the population front with the ancestors at # = 0 by passing
through the centers of hotspots visited by the lineage. Each
segment adds to the travel time by an amount proportional
to its length, reduced by the time saved in going through a

https://doi.org/10.1073/pnas.2411487121
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Fig. 6. Environmental pinning at the end of range expansions starting from a line of occupied sites. (A and B) lineage site-visitation frequency maps at hotspot
area fraction ¢ = 0.1 and hotspot size R = 10 with (A) hotspot intensity / = 1 and (B) / = 10 for the same landscape. Hotspots are indicated in gray. Ancestor
survival probabilities as functions of lateral position are shown beneath. Continuous red lines indicate all paths whose net travel times are within 6% of the
fastest path for each individual at the front. (C) Overlap fraction between lineages and fastest paths (M, blue markers) as well as between fastest path terminal
positions and surviving ancestors (K, red markers), obtained from averaging k over 20 landscapes and 100 independent runs per landscape. Error bars represent
SE. The horizontal (red) line indicates the lower bound estimate for M in the presence of “no-influence” hotspots as described in the main text. (D) Ancestor
survival probabilities as a function of ancestor position for the hotspot landscape of (A and B) at a sequence of hotspot intensities.

hotspot compared to the background environment. Under this
approximation, the lineage of an individual at the front is the
sequence of line segments that connects the individual to one of
the ancestors at the bottom edge of the range, while minimizing
the total travel time. These sequences, which we term the “fastest
paths”, are computed using the Floyd—Warshall algorithm (54);
see ST Appendix for details. Atlow hotspot intensities, fastest paths
run vertically down from population-front source to ancestor to
minimize the Euclidean distance traversed (S/ Appendix, Fig S2).
At high hotspot intensities, the reduction in travel time obtained
by passing through hotspots induces paths to wander laterally
to visit more hotspots. The fastest paths through a particular
landscape result from a trade-off between minimizing the distance
traversed and maximizing the number of hotspots visited.

Fig. 6 Aand B show fastest paths (red continuous lines) overlaid
with lineage site-visitation maps for hotspot intensities / = 1 and
I = 10, respectively. Near 4 = 0, any pinned lineage becomes
diffuse in the region below the earliest encountered hotspot,
reflecting a narrow range of ancestors that all have roughly equal
likelihood of reaching that hotspot first. To reflect this degeneracy
when comparing the fastest path model to the Eden lineages, we
identify, for each individual node at the front, the set of optimal
paths connecting that node to the row of ancestral nodesat # = 0.
From this set, we collect all paths whose net travel times lie within
6% of the smallest travel time and include them in the ensemble
of fastest paths. As a result, each frontier individual contributes
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multiple fastest paths to the ensemble, but these paths almost
always differ only in the last step from the lowest hotspot to the
h = 0 population (except for rare instances of nearly degenerate
optimal paths through the landscape which are unlikely for well-
separated hotspots). This results in the emergence of triangular
regions at the base of the fastest paths. Below these site-visitation
maps, we also show survival probabilities for ancestral demes as
one-dimensional heatmaps indicating the probability that a given
site has offspring at the front at the end of the simulation. Pinning
of lineages to hotspots is visible at both 7 values. However, lineage
probability distributions are much more concentrated near fastest
paths for / = 10, which we describe as a “strong” pinning
regime, compared to “weak” pinning at / = 1. Fig. 6D shows
the transition from weak pinning to strong pinning.

To quantify the degree to which fastest paths predict lineage
structure and surviving ancestors, we examine how commonly
fastest paths coincide with lineages with regard to visited hotspots
and with regard to lineage root positions. First, we assess to what
extent the subset of hotspots through which lineages most often
pass, as seen in Figs. 2 and 4, are a result of chance or arise due to
fastest paths passing through them. To that end, we calculate the
overlap fraction of visited hotspots m(G, S) := |G N S|/|GU S|,
where G and S are the subset of hotspots visited by lineages and
fastest paths in an individual simulation, respectively, and | - |
represents the number of elements in a set. M = (m) denotes the
ensemble mean, obtained by averaging over 20 landscapes each
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with 100 independent simulations. Thus, M = 1 when fastest
paths and lineages pass through the same subset of hotspots.
A lower bound for M is the null expectation at / = 0 for
the coincidental overlap of lineages with “hotspots” that exert
no influence. We calculate this lower bound for all intensities
by randomly generating 20 additional different distributions of
hotspots with identical size and area fraction and computing M
from these no-influence “hotspots” (red line in Fig. 6C).

Shown in Fig. 6C is M versus hotspot intensity /, with
uncertainty bars calculated as SE. As expected, for low intensities
there is little overlap between the fastest paths and the full
lineages, which are dominated by demographic noise at the level
of individual lattice sites. However, above a threshold intensity
(I & 2 for these parameters), 75% of the hotspots visited by
lineages are correctly predicted by fastest paths, even though
the latter was computed without incorporating the lattice of
demes that contribute to the stochastic meandering of lineages
in the Eden model simulations. The effect of saturation at high
intensities is explained by the fact that the travel times depend
on intensities via the quantity 7/(7 + 1) when hotspots are well
separated (8] Appendix).

Upon comparing lineages to fastest paths in Fig. 6B, we observe
that the lattice-level wandering causes lineages to make excursions
to hotspots near a dominant pinned path, but lineages often
return to the dominant path and can be traced back to one of
the founding ancestors with high survival probability. As a result,
we expect that the agreement of founding ancestors between
lineages and fastest paths will be even higher than the overlap
of hotspots. For a given landscape and simulation instance, we
define £ as the fraction of lineages which lie within a triangular
region around the base of fastest paths as described above. The
ensemble average of 4, averaged over 20 landscapes each with 100
independent simulations, provides the ancestor overlap statistic,
K = (k). Shown in Fig. 6C is K versus hotspot intensity /
at fixed hotspot area fraction and hotspot size, averaged across
20 landscapes. At / = 0, fastest paths become shortest paths
and hence every position (x, 0) is visited, resulting in K = 1.
We observe that K increases with /, approaching 90% in the
strong pinning regime. These results show that deterministic
fastest paths computed using only the hotspot positions and
intensities can predict most of the surviving ancestry, without
needing details of short-distance stochastic effects.

Meandering of lineages and of fastest paths. In Sector coarsening,
we showed that the loss of diversity in the presence of hotspots
was controlled by an exponent a ~ 2/3, consistent with prior

A
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expectations for uniform landscapes where the coarsening was
governed by KPZ statistics. The statistics of sector coarsening
are closely related to the lateral meandering of lineages through
the landscape, as lineages coalesce whenever they intersect and
each remain inside one sector (21, 41). Thus, with increasing
expansion distance 4, growth of lateral mean-squared lineage
displacement as (MSD) ~ 4** corresponds to sector size growth
with scaling 4 ~ vMSD ~ A% The estimate a ~ 2/3 from
Fig. 3 therefore predicts that the lateral MSD of lineages grows
superdiffusively; i.e., faster-than-linearly with expansion distance.
In this section, we examine how environmental heterogeneity
influences this lineage meandering in order to gain insight into
the accelerated loss of genetic diversity.

Fig. 74 shows the forward-in-time lateral MSD of lineages
versus expansion distance 4 for a range of intensities at an
intermediate hotspot density. At expansion distances that are
large compared to the lattice size yet small compared to the typical
hotspot separation 4, lineages have encountered few hotspots and
the meandering is identical to that on a uniform landscape, which
approaches the KPZ expectation MSD ~ 4** with @ = 2/3.
As lineages encounter more hotspots at larger 4, the transverse
wandering is enhanced relative to the uniform landscape with a
stronger enhancement for higher hotspot intensities (Fig. 74),
consistent with our observation of enhanced sector coarsening
induced by hotspots. In the strong pinning regime, / > 1,
the lateral MSD growth again approaches superdiffusive growth,
consistent with the KPZ wandering exponent a = 2/3.
Interestingly, the deterministic lineage trajectories dictated by
strong pinning to a structured landscape are thus governed by
a wandering exponent similar to that of demographic-noise-
dominated lineages in a uniform landscape, even though the
sources of the underlying stochasticity are very different. Our
model of strongly pinned lineages as fastest paths through the
hotspot landscape suggests a potential explanation for this fact:
the fastest paths can be mapped to the contours of a directed
polymer in a random medium (DPRM) at zero temperature,
as we show in SI Appendix, and related to the Brownian
polymer model in a Poisson point random potential(55). A
wide range of DPRM models with different random potentials
have been shown to belong to the KPZ universality class (56);
therefore, we hypothesize that the fastest path model described
and characterized above also belongs to the same universality
class. In ST Appendix, we provide additional numerical evidence
that the fastest paths exhibit lateral wandering characterized by
an exponent @ = 2/3 over a range of hotspot densities.

104 =
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Fig. 7.

h

Lateral mean-squared displacement (MSD) of lineages as a function of vertical expansion distance h at (A) various / and fixed ¢ = 0.1 and R = 10, and

(B) fixed I = 8 at various ¢. Reference lines show power-law scaling MSD ~ h2¢ corresponding to KPZ superdiffusive wandering (slope 2« = 4/3). Reference
curve for uniform landscape is highlighted in black in (B). Inset in (B) shows the MSD at the maximum height h = 103. The vertical brown line indicates ¢ =0.3.
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In Fig. 7B, we report the behavior of the lateral fluctuations

of lineages at high hotspot intensity over a range of hotspot area
fractions. We find that the wandering for large 4 is consistent with
a = 2/3 over a wide range of hotspot area fractions. The size of
the fluctuations at large / increases with area fraction up to around
¢ = 0.3, and then decreases (Fig. 7 B, Inset). This nonmonotonic
dependence of lineage meandering on ¢ is understandable in light
of the fact that ¢ = 1 represents a uniform landscape, identical to
¢ = 0 except for a faster front propagation speed. More broadly,
when the hotspotarea fraction is increased beyond the percolation
threshold for overlapping disks (here, hotspots) at ¢ ~ 0.68
(48), lineages can traverse the range without leaving hotspots, so
the environment becomes a medium of increased reproduction
rate punctuated by “cold spots” of lower reproduction rate. We
note, however, that the greatest lineage wandering occurs not at
¢ ~ 0.68 but, mysteriously, at the much smaller area fraction of
0.3. As ¢ increases above 0.3, the lineage-pinning effect of the
environment is diminished, and lineage wandering weakens as
it returns to being driven by demographic noise rather than by
hops between hotspots.
Lineage coalescence rate and common ancestry. One important
measure of the biological consequences of environmental lineage
pinning is provided by the expected time 77 since common
ancestry of two sampled organisms in a population. In population
genetics, 73 is proportional to the expected number of pairwise
nucleotide site differences between two sampled genomes, as-
suming a constant rate of neutral mutations (57). With lineages
viewed as random motion through the environment, features
of genetic structure are illuminated by the coalescence rate
J (7| Axp) representing the probability per unit time that lineages
ending at two sites separated by lateral distance Axp on the
population front have a most recent common ancestor born at
reverse-time 7.

A mapping of lineage motion to the theory of random walks
has resulted in estimations for the asymptotic power laws in
range expansions in uniform environments (41): It was found
that / depends on 7 only through the combination Axy/7¢ with
KPZ exponent ¢ = 2/3. (Here and throughout, lengths are
implicitly scaled by deme size and by the inverse of the intrinsic

3/2
reproduction rate 7, ') In particular, in the regime 7/Axy’” >
1, which represents coalescence events in which lineages located
nearby at the front can be traced back to a distant common
ancestor, has a form

102 107" 10° 10’ 102
3R
7/ Axy

1 T
T Ax) ¢ —75 | —5 ] [4]
2 \ &
with a numerically determined exponent y = —1.64 = 0.05 for

uniform landscapes (41).

Following ref. 41, we calculate / for all lineage pairs with
separation Axg at the front less than Axg may, which is kept
much smaller than the system width L to avoid finite size effects.
(As expected, we find that when Axg may is less than the hotspot
diameter 2R, the coalescence rate /(7 | Axp) reproduces the results
in ref. 41. For this reason, we set Axg nax = 300 hereafter so that
2R < Axp,max <K L;other Axg max values in this regime produced
similar results.) With the choice Axgmax = 300, we find that
the coalescence rate J(r|Axp) takes on additional variation,
compared to the smooth variation at ¢ = O m the regime
7/Ax; 32« (Fig. 84). Even so, the T/Axo > 1 regime
retains its power-law form with similar exponent y measured
for various hotspot area fractions, albeit with a shift in the
distribution.

As we have found that the strongly pinned lineages wander, at
large length scales, similarly to superdiffusive lineages in uniform
landscapes, their linear coalescence dynamics ought to resemble
the uniform landscape case with some time-rescaling g,

Y
pr
=) 5]

]( | ) :
T Axo X
Axg /2 AXO

We estimate f and y as a function of ¢ via a linear fit with

slope ¥ in the 7/ Axg/ P> regime of the log-log plot. The
constant of proportionality, ¢, omitted from Eq. 5 is assumed to
be independent of ¢ and appears in the intercept of the fit as
log(cp”), with ¢ then calculated in the absence of hotspots. The
Inset of Fig. 8B shows the y (gray circles) and 1 (red triangles)
obtained in this way. We find that y is approximately constant
as ¢ varies, consistent with the value found in ref. 41 without
hotspots. Moreover, replotting J(7|Axp) with time rescaled
by factor f collapses the data onto the uniform-environment
distribution (Fig. 8B). Interestingly, we find the time rescaling
P to be inversely proportional to the typical hotspot separation
length scale 4 given by Eq. 3 (blue curve in Fig. 8, Inser) since
after normalization ~!(¢) obtained through fitting are well
described by A(¢, R).

-A¢,R)

0.3

ﬁ_l
0.2

[ ]

Fig. 8. Log-log plot of the scaled lineage coalescence rate, Axg/zj(r | Axq), for reverse-time r and final-time separation Axg, at/ = 3, R = 10, and for various ¢,

plotted against (A )T/AX3/ and (B) with ﬂr/AX3/2

The datasets for each ¢ include a range of Axg values as described in the main text. The horizontal colorbar

indicates hotspot area fractlon forthe correspondmg coalescence curves. The Inset shows y (circles) and g~ (triangles) calculated from a linear fit of log(Axg / /)

versus log(pr/Ax3/2) for o/axg/?
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> 1. Also shown is the typical hotspot separation length scale A(¢, R) (blue curve) scaled to the maximum value of g~ 1.
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Fig. 9. Mean common ancestry time T,, normalized by that of the uniform
landscape T, o, versus hotspot area fraction ¢ at different hotspot intensities
/€1[0,0.1,0.2,0.3,04,0.50.6,0.7,0.8,0.9,1,24,6,8].

For our finite-time simulation, given that two sampled
organisms at the population front at time fyax have a common
ancestor in the expansion history, the expected time 75 since
their common ancestry is calculated from the first moment of

] as
Jom= - J(t | Axo)dz

(A =
2(80) Jim 7 (2 | Axp)dr

(6]

We calculate 75 from Eq. 6, averaged over the entire final-time
population front and normalized to the same measure calculated
in the uniform landscape, 75. Fig. 9 shows 75/75 plotted
against ¢ for several hotspot intensities /. Notably, 75/73
exhibits 2 nonmonotonic dependence on hotspot area fraction
¢. At low ¢ below ¢ = 0.3, adding more hotspots shifts
lineage coalescences toward more recent common ancestors, on
average, and 7, declines. However, for ¢ values greater than
¢ = 0.55, Tp/ T1,p increases roughly linearly with ¢. The trend
of decreasing 75/ 77,9 with increasing hotspot intensity / appears
to saturate: reductions in normalized mean common ancestry
times are similar for / = 6 and 7 = 8 over all ¢ values.

The measure 72/ 75, is equal to 1 not only at ¢ = 0 (by
definition) but also at ¢¢ = 1 because the landscape is then
characterized by a uniformly increased replication rate and front
propagation speed. A possible explanation for the transition in
T,/ T5,0 between the low ¢ and high ¢ behavior is the duality
in which, at high ¢, nonhotspot areas stop percolating and
begin to behave as isolated growth obstacles (regions of decreased
replication rate) which lineages now tend to avoid. This return to
statistical behavior of uniform landscapes is also evidenced by the
lateral fluctuations of lineages, which reach a maximal value and
then decrease with increasing ¢ above a critical value ¢ ~ 0.3
(Fig. 7, Inset).

Conclusion

We have found that an environmental pinning effect on the
lineages arises in structured landscapes of hotspots, which we can
understand as superdiffusive random walks that are biased toward
certain optimal paths. Using the Floyd-Warshall algorithm and
viewing hotspots as geometric lenses of relative index of refraction
vo/vp = (I+1)71, we found that such optimal paths correspond

PNAS 2024 Vol. 121 No. 34 e2411487121

to fastest paths that light would take in the analogous system.
For large hotspot intensity 7, these fastest paths predict much
of the lineage motion, including the survival probability of
ancestral lineages. In such systems with strong environmental
or landscape-induced noise, measures of sector coarsening reflect
the intrinsic, demographic noise at short timescales and cross-over
to a different KPZ-like regime determined by the environment
at large timescales. A nonmonotonic behavior was observed in
the mean time 73 since common ancestry for pairs of demes
at the front as hotspot area fraction ¢ was varied, indicating
that 0.3 < ¢ < 0.6 produces fronts with the least genetic
diversity.

A key manifestation of the competition between demographic
and environmental noise is highlighted by our comparison of
simulated lineage positions and calculated fastest paths. Viewed
geometrically, there is an optimal path trade-off that arises from
the tendency of demographic noise to favor fluctuations around
shortest-distance paths (Fig. 24) while environmental noise pulls
lineages into excursions through a consistent subset of hotspots
that increase the travel distance but decrease the travel time
(Fig. 6 A and B). At low hotspot intensity, demographic noise
dominates and pulls lineages into shortest paths, resulting in
many lineage tracks located away from fastest paths, as well as
low overlap between hotspots visited by lineages and fastest paths
in Fig. 6A. At the other extreme, high-intensity hotspots cause
lineages to follow fastest paths with high probability (Fig. 6B).
In this strong pinning regime, lineage meandering is dictated
almost entirely by that of the fastest paths (Fig. 6B8) At sufficiently
large expansion distances, the lineages exhibit the superdiffusive
wandering exponent of the KPZ class, similar to lineages in
uniform environments.

What does this mean for the genetic structure? Individual sim-
ulation snapshots may give the impression that growth through a
landscape of hotspots produces similarly random lineage trees to
those in uniform environments. However, we have found that a
structured environment of high-intensity hotspots pins lineages
to fastest paths, giving a strong deterministic component to the
genetic structure of the range expansion for a given environment.
This lineage pinning is associated with an accelerated loss of
genetic diversity. Furthermore, sites (or more generally individ-
uals) found near one of the environmentally determined optimal
paths have the highest likelihood of influencing future genetic
composition through surviving descendants. Our results suggest
that, for nonneutral evolution, random hotspot landscapes may
increase the importance of chance relative to selection, as was
seen for individual obstacles (30) and in landscapes of obstacles
(32). Future studies could examine whether beneficial mutations
are more frequently lost from the expansion when they happen
to originate away from a fastest path.

In summary, KPZ statistics seen in uniform landscapes can
also arise in structured environments, coming from demographic
noise or from environmental quenched random noise. In the
absence of environmental heterogeneity, demographic noise
alone determines the outcome of neutral evolution. Low-intensity
hotspots give rise to fastest paths through the landscape but are
too weak to outcompete lineage superdiffusive motion caused by
demographic noise. More intense hotspots impart a sufficiently
high boost in reproduction rate to portions of the population
front entering a hotspot that they consistently outcompete the
population remaining outside of a hotspot, producing lineages
bound close to the subset of hotspots defining a landscape’s fastest
paths. In this lineage-pinning regime, the genetic structure of the
range expansion becomes predictable, to a large degree, from
the geometry of the hotspot distribution. In other words, the
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quenched noise of the environment replaces demographic noise
as the main determinant of evolutionary dynamics.

Materials and Methods

Gillespie Algorithm. We introduce environmental heterogeneity into the Eden
model through a space-dependent growth rate, Eq. 1. Reproduction occurs
through an implementation of the Gillespie algorithm: for a population front
consisting of n, demes in hotspots and ny demes outside of hotspots, the
probability of selecting a particular deme inside of a hotspot as the next
site to reproduce is P, = r,/Q with Q = npry, + ngrg being the sum of
reproduction rates of demes at the front. After replication, time is updated
according to the Gillespie algorithm by 6t = —log(n)/Q, with # being a
uniform pseudorandom number in the range [0, 1] (44).

Determination of Optimal Paths. Fastest paths are computed using the
Floyd-Warshall algorithm implemented in the Python SciPy package (58).
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