l‘)

Check for
updates

A Survey of Software Implementations
for the Number Theoretic Transform

Ahmet Can Mert!, Ferhat Yaman?, Emre Karabulut?, Erding Oztﬁrk3,
Erkay Savas®, and Aydin Aysu?(®

! Graz University of Technology, Graz, Austria
2 North Carolina State University, Raleigh, NC, USA
aaysu@ncsu.edu
3 Sabanci University, Istanbul, Turkey

Abstract. This survey summarizes the software implementation knowl-
edge of the Number Theoretic Transform (NTT)—a major subroutine of
lattice-based cryptosystems. The NTT is a special type of Fast Fourier
Transform defined over finite fields, and as such, NTT enables faster
polynomial multiplication. There have been over a decade of imple-
mentations of NTT following different design methods (e.g., CPU vs.
GPU), aiming different optimization goals (e.g., memory-footprint vs.
high-throughput), and proposing different styles of optimizations at dif-
ferent abstraction levels (e.g., arithmetic vs. assembly). At the same time,
there are several techniques for evaluating and mitigating implementa-
tion attacks on NTT. Yet there is no quick guideline to help new devel-
opers/practitioners or future researchers given the continuing industry
and academic efforts on NTT implementations. Our goal in this paper
is to provide an overview of a decade of work. To that end, we survey
NTT software implementations and categorize them based on their tar-
get platforms, optimization goals, and implementation security enhance-
ments. We furthermore provide an executive summary of the key ideas
proposed in related works. We hope this paper to be a designer pit stop
into the NT'T world and help them navigate to their destination.

Keywords: Number Theoretic Transform - Lattice-Based
Cryptography - Software Implementations

1 Introduction

Lattice-based cryptography is a relatively new and versatile tool that allows for-
mulating public-key encryption schemes [40,47], key-exchange protocols [8,19],
key encapsulation mechanisms [20,36], homomorphic encryption systems [23,24,
38], attribute-based encryption [22], digital signatures [5,43,46], and hash func-
tions [15,60], among others. Efficient lattice-based encryption systems typically
work with polynomials. For example, 5 out of 7 finalists that remained in the
Round-3 of NIST’s post-quantum cryptography competition use lattice-based
cryptography, and all of those candidates work with polynomials. Also, three out

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Silvano et al. (Eds.): SAMOS 2023, LNCS 14385, pp. 328-344, 2023.
https://doi.org/10.1007/978-3-031-46077-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46077-7_22&domain=pdf
https://doi.org/10.1007/978-3-031-46077-7_22

A Survey of Software Implementations for the Number Theoretic Transform 329

80 T T T T T T T T T T

Number of Papers Published

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Publication Year

Fig. 1. The number of papers containing “Number Theoretic Transform” and “software
implementation” in manuscript. The number grows steadily since 2004.

of four algorithms selected for standardization in 2022 are lattice-based. These
cryptosystems need to multiply polynomials, and thus polynomial multiplication
is a fundamental computing unit.

The Number Theoretic Transform (NTT) enables faster polynomial multi-
plication. NTT is essentially a discrete Fourier Transform used in lattice cryp-
tography to operate on finite fields with polynomials. Therefore, just like how
the Fast Fourier Transform (FFT) converts convolutions in the time domain to
point-wise multiplications in the frequency domain, reducing the computational
complexity from O(n?) to O(n -logn), the NTT can transform the schoolbook
polynomial multiplication in one domain to coefficient-wise multiplications in
another domain, achieving the same complexity reduction. Thus, the impor-
tance of NTT for lattice cryptography (and cryptography in general) is similar
to the importance of FFT for signal-processing applications.

Along with the lattice cryptosystems using polynomials, the first paper on
NTT implementations for lattice-based cryptography appeared about a decade
ago [41]. Since then, NTT designs have covered hardware implementations
[10,41,72], software implementations [4,6,7,11,14,16-18,21,28,29,31,33,41,
42,44,56,57,59,61-64,67,71,73,75,80,81,84,90,95,96], hardware/software co-
designs [30,51], and architecture extensions [51]. NTT solutions with each design
method further cover an immense range—e.g., a software design has an exten-
sive selection to target from 8-bit microcontrollers for resource-starved IoT nodes
to Graphics Processing Units (GPUs) for server-side applications. A number of
design goals and heuristics have, likewise, been adopted. In addition to the classi-
cal design goals such as area-cost, memory footprint, throughput, latency, power,

330 A. C. Mert et al.

energy, flexibility, and the combinations thereof, cryptosystem implementations
have the extra dimension of security [79]. Typical design extensions for imple-
mentation security include protections against side-channel and fault attacks
[7,71,75,77,80].

Figurel quantifies our claims for software implementations of NTT. The
figure shows the Google Scholar count of papers that contain the key-
words “Number Theoretic Transform” and “software implementation” in the
manuscript across the years from 2004 to 2022. The number has steadily grown
from zero papers in 2004 to 72 papers in 2022. It is highly likely that this number
will continue to grow further given the increasing number and use of lattice-based
cryptography in a range of applications.

Given the richness of NTT implementations’ corpus, our goal in this survey
is to guide the newcomers and be the nexus between them and the prior works.
We aim to achieve this for software implementers. An ideal reader of our paper
is an engineer/researcher/educator who is new to this field and who wants to
apply NTT for a target application with certain specifications or who wants to
expand on the prior research. We argue that a good way to achieve this goal is to
survey existing work and provide relevant pointers along with a useful summary.
To that end, we identified 42 publications, classified based on the implemen-
tation aspects, provide an executive summary of key ideas, and organize this
information, succinctly, in a table. Using such a table, interested readers can
indeed analyze relevant works and quickly identify what has been done or what
can be applied to meet their goals.

Our survey is unique in its focus and systematization, and it presents up-to-
date information. Prior works, by contrast, either surveyed lattice theory rather
than implementations [70] or have a broader scope covering different compute
units or aspects in lattice-based cryptography [48,49,65,68]. The closest work to
ours is by Valencia et al. [87], which describes NTT’s design space exploration
by surveying 10 relevant papers available at the time.

The rest of this article is organized as follows. Section2 provides a for-
mal background on the NTT. Section 3 describes our categorization method.
Section 4 respectively present the prior work on software implementations, and
Sect. 5 concludes the paper.

2 Preliminaries

This section describes the basics of the Number Theoretic Transform and why
it is useful for lattice-based cryptographic systems.

2.1 Lattice-Based Cryptography

Hard lattice problems are studied for a very long time; however, their appear-
ance in the field of cryptography was made by Ajtai’s work, which is based on
the short integer solution (SIS) problem [1]. Another lattice problem, learning
with error (LWE), by Regev was proposed in 2005 [76]. These two problems and

A Survey of Software Implementations for the Number Theoretic Transform 331

their variants, ring-LWE (R-LWE) and ring-SIS (R-SIS), are the most impor-
tant lattice problems in the field of cryptography. Lattice-based cryptography
is favorable since it is conjectured to be secure against the attacks by quantum
computers and the majority of the candidates in the Round-3 of NIST’s post-
quantum cryptography competition is lattice-based cryptographic schemes [3].
It also forms the mathematical basis for fully homomorphic encryption [38].

2.2 The Number Theoretic Transform

NTT-based polynomial multiplication is one of the most efficient and widely-used
methods for polynomial multiplication in lattice-based cryptography. NTT and
INTT operations can convert schoolbook polynomial multiplication operation
into coeflicient-wise multiplication operation [41]. The NTT is defined as DFT
using integer-valued numbers over the ring Z,. Therefore, any DFT algorithm
can be adapted to be used as an NTT algorithm. The NTT operation transforms
a vector (or a polynomial) a with n elements into another vector (or polynomial)
a with n elements as defined in Eq. 1. The NTT operation working on an n-
element vector is called n-point (pt) NTT.

n—1
diZZaj-w” (mod ¢q) for i =0,1,...,n — 1. (1)
=0

The NTT operation uses a constant called n*" root of unity, w € Z,, which
is also defined as primitive root or twiddle factor. For the existence of NTT
operation, twiddle factor should satisfy the conditions w™ = 1 (mod ¢) and
w®#1 (mod q) Vi < n, where ¢ =1 (mod n).

Inverse of NTT (INTT) operation can also be performed using almost the
same formula with NTT operation as shown in Eq. 2. INTT operation uses
the modular inverse of twiddle factor in Z,, w™' (mod ¢), and the resulting
coefficients of INTT operation are multiplied with n=! (mod ¢) in Z,.

171—1 L .
ai:ﬁzoajwu 7 (mod q) fori=0,1,...,n— 1. (2)
=

Applying NTT and INTT operations as shown in Eq. 1 and Eq. 2 still yields
high computational complexity. Therefore, efficient NTT algorithms use divide-
and-conquer approach where each operation is divided into half-sized operations
recursively. There are mainly two approaches based on the way division is per-
formed: Decimation-in-time (DIT) and Decimation-in-frequency (DIF). The first
approach uses Cooley-Tukey (CT) butterfly while the latter requires Gentleman-
Sande (GS) butterfly [27]. The CT butterfly takes a, b and w as inputs and
generates a —b-w (mod ¢) and a+b-w (mod ¢) as outputs. Similarly, the GS
butterfly calculates a +b (mod ¢) and (a — b) - w (mod q) as outputs. The DIF
and DIT NTT algorithms can be adapted to work with different input and out-
put polynomial ordering. For example, DIF NTT operation can take an input

332 A. C. Mert et al.

with naturally ordered coefficients and outputs the resulting polynomial with
bit-reversed ordered coefficients (i.e. coefficient at index 1 = 0015 actually cor-
responds to the coefficient at index 4 = 100, for an 8-pt NTT). Similarly, it can
be tweaked to take input polynomials with bit-reversed ordered coefficients and
produce the output with naturally ordered coefficients [27]. These variations can
eliminate redundant bit-reverse operations during the computations.

When the polynomial multiplication operation is performed over the polyno-
mial ring Z[z],/¢(z), a polynomial reduction operation by ¢(x) is also required
after the multiplication. When the polynomial ¢(z) has the form of =™ + 1,
negative wrapped convolution (NWC) technique can be utilized to eliminate the
polynomial reduction operation and reduce computational complexity. However,
this technique requires input and output polynomials to be multiplied with the
powers of 2nt" root of unity, ¢, which are referred as pre-processing and post-
processing operations, respectively. The constant ¢ should satisfy the conditions
¥?" =1 (mod q) and ¥* # 1 (mod q) Vi < 2n, where ¢ = 1 (mod 2n) [72]. The
polynomial multiplication operation over the ring Z[z],/(z™ 4+ 1) with NWC is
shown in Eq. 3, where ® represents coefficient-wise multiplication. It should be
noted that the multiplication with n=! (mod ¢q) after INTT can be merged with
post-processing operation [73].

¢ = INTT(NTT(a®’, ..., " D)ONTT(bO [, ..., " V])ol", ... ,w’(n_(l);
3

3 Categorization Method

This section describes the rationale behind our categorization strategy. We chose
to represent the related works in four primary dimensions: target application,
target platform, implementation security, and optimization target.

— Target application denotes if the NTT is used in a standalone fashion or if it
is used as a component in a higher-level protocol. Such protocols include post-
quantum cryptosystems (PQC), Digital Signatures (DS), Fully Homomorphic
Encryption (FHE), and large integer multiplication, among others.

— Target platform indicates the desired execution environment. Indeed, software
is used in various domains from edge devices to the cloud and everything
in between. These devices include micro-controllers (uc) for the resource-
constrained edge/IoT, central processing units (CPU) for general-purpose
computing, and GPUs for efficient acceleration. Field Programmable Gate
Arrays (FPGAs) are also becoming ever more popular due to their flexible
acceleration nature at low energy — these devices can be used to configure a
soft processor and execute software.

— Implementation security (shorthand, imp. sec.) refers to whether or not side-
channel attacks or fault injection attacks were taken into account in the imple-
mentation and if there is some sort of defense deployed. This is done in a
binary fashion, where v'and X, respectively, marks if there is a defense or not.
Obviously, such defenses will increase the area-delay overheads.

A Survey of Software Implementations for the Number Theoretic Transform 333

— Optimization target corresponds to the pursued metric of the software devel-
opers. Based on our review, the common options for optimization are speed
(clock cycle count or number of operations per second), area (memory foot-
print), security (minimizing overheads of defense), energy (amount of effort
required per operation), or their combination.

We also sort the papers in our categorization in the order they appear in the
literature based on the year alone.

4 Software Implementation Summary

Table1, 2, 3 show our overview based on the categorization described above.
Each table shows the software for a different class of devices including CPU,
embedded, and GPUs, respectively. We hope this table helps future adopters.
For example, someone who is interested in the NTT implementations for micro-
controllers with implementation security countermeasures and latency optimiza-
tion can refer to our table and read the related papers listed. We next describe
the key contribution of these papers in the rest of the section.

CPU Implementations. The first implementation of NTT in software is
described by Gottert et al. [41]. The paper shows a baseline implementation
on a conventional CPU without much emphasis on NTT optimizations. NTT is
first optimized in software by utilizing SIMD operations, pre-calculating NTT
constants, and memory access concatenations for Intel CPUs [44]—this approach
was further advanced shortly after [33].

Another interesting strategy is to grow the size of the coefficients and reduce
the number of reductions as well as multiplications within those reductions. This
implementation has been carried out with a portable C implementation and a
high-speed implementation using assembly with AVX2 [59].

A notable option is to use Preprocess-then-NTT [95], which improves a criti-
cal NTT limitation of setting 2n|q — 1 and allows using smaller modulus ¢. Note
that this is useful for sketching new algorithms as standardized algorithms will
come with pre-set ¢ and n values. The approach was later extended by removing
some redundant computations and reducing the value of ¢ [96].

To our best knowledge, the first side-channel-aware implementation of NTT
focused on a constant-time modular reduction approach [80]. This constant-
time modular reduction was further accelerated with a modified version of the
Montgomery algorithm and vectorized assembly optimizations [81].

Other optimizations include utilizing Radix-4 along with earlier vectorization
techniques [63]. Likewise, Tan et al. combined earlier techniques for a low-latency
CPU implementation, which include (i) nega-cyclic convolution with pre- and
post-processing, (ii) CT-based butterfly structure to merge pre-processing and
NTT operations, and extra bit-reversal removal [84].

Alkim et al. optimized the NTT for both memory footprint and latency [6].
The optimizations involve a hybrid (NTT + Karatsuba) polynomial multipli-
cation, which takes a CRT map of NTT operation and then applies Karatsuba

334 A. C. Mert et al.

Table 1. Literature Survey of CPU-based NTT Implementations

Work | Target Application | Implementation Security | Optimization Target
[41] |PQC X Latency

[44] | PQC X Latency

[33] | PQC X Latency

[11] |PQC X Latency

[59] | Standalone Impl. | X Latency

[80] | Standalone Impl. |V Security

[63] | Standalone Impl. | X Latency

[81] | PQC v Latency

[95] | PQC X Key size

[84] |PQC X Latency

[61] | PQC X Latency

[6] PQC X Latency-Area
[28] |PQC X Latency

[96] | PQC X Efficiency
[64] | Standalone Impl. | X Verification
[16] HE X Latency

algorithm for small polynomial multiplication. Chung et al. pursued an intrigu-
ing approach where NTT was retrofitted on NTT-unfriendly rings by applying
the Good’s trick [28]. The paper shows significant improvement over earlier work
and implementation on CPU as well as on an ARM-Cortex-M4.

Verification is an important aspect yet not as thoroughly analyzed. A notable
exception to this is achieved in the context of detecting overflows in NTT by using
a static loop unrolling with a specialized abstract interpretation method [64].

Finally, an optimized NTT was used in the context of HE [16]. This work
presents an Intel AVX-512C++ library for polynomial arithmetic including
NTT. The NTT/INTT implementations follow radix-2 CT and GS FFT imple-
mentations, respectively. One 512-bit vector executes 8 butterfly operations.

Microcontroller Implementations. There is significant research on realizing
NTT on embedded microcontrollers given their use in edge/IoT applications.
The 32-bit Arm Cortex-M4 has been a popular target platform. NTT perfor-
mance can be optimized by increasing memory usage and storing pre-computed
twiddle factors, rather than generating them on-the-fly [67]. This work also
offers the first two iterations of the DIT radix-2 NTT algorithm. The NTT is
also implemented by using nega-cyclic convolution in addition to storing pre-
computed w values in memory [17]. Later on, negative-wrapped NTT along
with computational optimizations from an earlier hardware implementation was
ported to ARM Cortex-M4 [29]. Another optimization was performed by using
signed Montgomery reductions to reduce required instructions (from four to

A Survey of Software Implementations for the Number Theoretic Transform 335

three cycles), merging two NTT stages to reduce load and store instructions,
and unrolling NTT loops [21]. These optimizations were even pushed further
by a 2-cycle modular reduction for Montgomery arithmetic, optimized small-
degree polynomial multiplications with lazy reduction and early termination,
more aggressive layer merging in the NTT to further save load/store operations,
and pre-compute vs. on-the-fly trade-offs [4]. An adaptation of the Good’s trick
to cover NTT-unfriendly parameters and related comparison with other opti-
mizations was later shown on Cortex-M4 [7].

NTT was also optimized for 8-bit Atmel microcontrollers [73]. The optimiza-
tions include removing the bit-reversal operations, using the subtract-and-shift
algorithm for modular reduction with assembly optimizations, and optimizing
the first and last stages of NTT.

Another work has implemented NTT software on ARM7TDMI and
ATmega64 without much emphasis on optimization but to provide compara-
tive analysis and execution suitability on Java cards including energy costs [18].
A similar approach was also taken for the use and energy costs of NTT in the
context of Identity Based Encryption (IBE) on a RISC-V-based microcontroller
without much emphasis again on NTT optimizations [14]. Other implementa-
tions include vectorization for ARM-NEON architecture [11,56], which was fur-
ther assembly-optimized in subsequent works [57].

Table 2. Literature Survey of Microcontroller-based NTT Implementations

Work | Target Application Implementation Security | Optimization Target
[17] | Authentication protocol | X Area

[67] | PQC X Latency

[18] |PQC X Latency-Area
[73] |PQC X Latency

[57] | PQC X Latency-Area
[29] |PQC X Latency

[56] |PQC X Latency

[71] | PQC v Security

[21] | PQC X Latency

28] |PQC X Latency

[4] PQC X Latency

[7] PQC v Latency-Area
[14] |PQC, IBE, TLS v Energy

[90] |Standalone Impl. X Area

[75] | Standalone Impl v Security

Side-channel analysis of software has also received increasing attention, which
includes demonstrating single-trace leakages of NTT [71,74], simple power analy-
sis leakage of inverse NTT [91]. Subsequently, shuffling and masking defenses are

336 A. C. Mert et al.

proposed to protect the NTT against power, EM, and timing side-channels [75],
while other two prior works [7,14] aim to avoid only timing-side-channels.

GPU Implementations. GPUs are another venue for software implementa-
tions, which enable the efficient realization of more complex lattice-based pro-
tocols, as shown in Table3. For example, the NVIDIA CUDA Fast Fourier
Transform (cuFFT) library accelerates NTT by parallelizing iterative NTT algo-
rithm [2]. Larger NTTs, which are especially useful in FHE, attribute-based
encryption [31], lattice-based hash function [86], or large-integer multiplica-
tion [26], are also accelerated by GPUs, even with using a multi-GPU system [88].
The GPUs are also widely used accelerator platforms for PQC applications.
Since polynomial multiplication is a well-known bottleneck in PQC applica-
tions, GPU is employed to accelerate NTT with different optimization tech-
niques [2,12,37,45,53-55,82,94]. Prior works further gave performance evalua-
tions to inform the algorithm developers on efficient parameters [2,12].

GPU parallelized the NTT for-loops with avoiding warp divergence that slows
performance [53,55]. The subsequent work [45] accelerated multiple PQC algo-
rithms (FrodoKEM, NewHope, and Kyber) by executing NTT operations with
multi-threading. Interestingly, a NewHope GPU acceleration [37] differed from
the prior work [45] by avoiding frequently using high-cost interthread memories
and instead performing register shuffling to share intermediate data. Combining
the first two levels of NTT is another proposed method to improve performance
by reducing memory read/write operations [54]. Zhao et al. [94] eliminated warp
divergence by efficiently executing butterfly operations in an NTT stage. Shen
et al. [82] applied radix-8 NTT/INTT and performed an efficient 3-level process-
ing which uses shared memory for fast data exchange between NTT stages.

The implementation of large integers and polynomials on GPUs can be chal-
lenging due to their size. The Chinese remainder theorem (CRT) and NTT tech-
niques address this problem as proposed in cuHE [32]. cuHE works with 32-bit
GPU kernel arithmetic operations and represents large integers with integers
smaller than 32-bit. Additionally, cuHE parallelizes NTT execution while lever-
aging the GPUs’ shared memory architecture. However, cuHE faces two practical
issues in their NTT kernels: shared memory conflicts and thread divergence. To
address shared memory conflicts, Chang et al. [25] and Goey et al. [39] proposed
implementations that store pre-computed twiddle factors in registers. They also
utilized warp shuffle instructions that enable storing twiddle factors within a lim-
ited register memory space. A subsequent study [13] proposed another solution
to address shared memory conflicts while eliminating thread divergence. The
proposed solution stores a 64-bit integer into 2 x 32-bit integer arrays to elim-
inate memory conflicts. Additionally, thread divergence is resolved by storing
pre-computing the twiddle factors in constant memory.

In a later study, Wang et al. [88] built a parallel NTT architecture by employ-
ing small integers rather than larger ones. Additionally, the presented solution
enhances the performance of Fully Homomorphic Encryption (FHE) by post-
poning the implementation of modular reduction to later stages in the encryp-
tion and re-encryption processes. This approach enabled the execution of each

A Survey of Software Implementations for the Number Theoretic Transform 337

Table 3. Literature Survey of GPU-based NTT Implementations

Target Application Work

Post-quantum cryptography | [2,12,37,45,53-55,82,94]

Homomorphic encryption 19,32,34,39,50,52,58,69,83,85,88,89,92,97]
Zero-knowledge proof [66]

Hash function [86]

Attribute-based encryption | [31]

Proxy Re-encryption [78]

Integer multiplication [25,26]

Standalone implementation | [13,35]

HE operation in the NTT domain. Kim et al. [52] provided a comprehensive
evaluation by considering batch size, utilization of GPU threads with register-
based high radix implementations, and the use of shared memory during NTT
operations. The solution also included a novel on-the-fly twiddle computation
method, which reduces memory size without introducing latency by avoiding
the need to store all the pre-computed twiddle factors. Ozerk et al. [69] pro-
posed a hybrid approach to optimize the different levels of NTTs. The authors
aimed to reduce the dependencies between for-loops in the kernels. Specifically,
the solution applied small radix NTTs on a single kernel with inline dedicated
functions, while larger radix NTTs used multiple kernels and took advantage of
shared memory.

The prior work [31] presented a negative-wrapped NTT implementation on
GPU that is employed in the Key-Policy Attribute-Based Encryption (KP-ABE)
scheme. Their method followed [32] and utilized a special 64-bit prime that
enables efficient twiddle factor multiplication during NTT operation by con-
verting multiplications into left shift operations. The offered method also par-
allelized NTT by using 4-step NTT which divides a large NTT operation into
smaller NTTs [93]. Specifically, the authors divided large NTTs into 64-pt NTT
operations to be performed on separate threads in GPU while reducing thread
communication overhead. Similarly, [35] used iterative Cooley-Tukey FFT which
decomposes a large FFT to multiple smaller FFTs and utilizes tensor cores that
can perform small FFTs efficiently.

NTT also found application in Proxy Re-Encryption (PRE) with GPUs [78],
where it is utilized to accelerate NTT operations by employing the CRT rep-
resentation of large integers. The authors utilized shared memory for dynamic
polynomial operations and avoided race conditions by utilizing block-level and
stream-level synchronizations.

The NTT is also utilized in large integer multiplication with GPUs [25,26].
Chang et al. [26] divided large integers into multiple words and applied the
NTT to each word to perform multiplication. They split the 4096-point NTT
operation into sixty-four 64-point NTTs (64 x 64-point NTTs), which are later

338 A. C. Mert et al.

divided into multiple 8 x 8-point NTTs. This approach enabled computing the
divided NTTs independently by storing twiddle factors in registers. However, the
presented solution needs to store twiddle factors of top-level NTT operations in
the global memory.

Zero-knowledge proof (ZKP) constructions involve computationally expen-
sive polynomial evaluations such as significantly large-degree NTTs. Recently,
hardware and software-based accelerators for NTT are proposed to speed up
these expensive computations [66,93]. [66] proposed a parallel NTT implemen-
tation on NVIDIA 1080/2080 Ti GPUs for a polynomial-size of 220.

5 Conclusion

NTT has been a key computational component of next-generation cryptosys-
tems. As such, many techniques have been proposed to implement it in soft-
ware, and even more, will appear in the near future. This paper provided a
quick guide into the NTT world. Our paper intends to be the first stop for
anyone who is interested in getting into the software implementation of NTT.
A future extension of this work could be to cover other implementation styles
including hardware implementations of NTT, in which there are plenty more
papers to be analyzed.

Acknowledgments. This paper is supported in part by NSF award no CCF 2146881.
Erkay Savag is supported by the European Union’s Horizon Europe research and inno-
vation programme under grant agreement No: 101079319.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99-108
(1996)

2. Akleylek, S., Dagdelen, O, Yiice Tok, Z.: On the efficiency of polynomial multipli-
cation for lattice-based cryptography on GPUs using CUDA. In: Pasalic, E., Knud-
sen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 155-168. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29172-7_10

3. Alagic, G., et al.: Status report on the second round of the NIST post-quantum
cryptography standardization process. US Department of Commerce, NIST (2020)

4. Alkim, E.; Alper Bilgin, Y., Cenk, M., Gérard, F.: Cortex-M4 optimizations for
R, M LWE schemes. IACR Trans. Cryptographic Hardw. Embed. Syst. 2020(3),
336-357 (2020)

5. Alkim, E., Barreto, P.S.L.M., Bindel, N., Kramer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qTESLA. Cryptology ePrint Archive,
Report 2019/085 (2019)

6. Alkim, E., Bilgin, Y.A., Cenk, M.: Compact and simple RLWE based key encap-
sulation mechanism. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019.
LNCS, vol. 11774, pp. 237-256. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30530-7_12

https://doi.org/10.1007/978-3-319-29172-7_10
https://doi.org/10.1007/978-3-030-30530-7_12
https://doi.org/10.1007/978-3-030-30530-7_12

A Survey of Software Implementations for the Number Theoretic Transform 339

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Alkim, E., et al.: Polynomial multiplication in NTRU prime: comparison of opti-
mization strategies on cortex-m4. IACR Trans. Cryptographic Hardw. Embed.
Syst. 2021(1), 217-238 (2020)

Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: Post-quantum key exchange—
a new hope. In: 25th USENIX, pp. 327-343 (2016)

Alves, P.G.M., Ortiz, J.N., Aranha, D.F.: Performance of hierarchical transforms in
homomorphic encryption: a case study on logistic regression inference. Cryptology
ePrint Archive (2022)

Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient FPGA imple-
mentations of lattice-based cryptography. In: 2013 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 81-86 (2013). https://doi.
org/10.1109/HST.2013.6581570

Azarderakhsh, R., Liu, Z., Seo, H., Kim, H.: Neon PQCryto: fast and parallel ring-
LWE encryption on arm neon architecture. Cryptology ePrint Archive, Report
2015/1081 (2015). https://eprint.iacr.org/2015/1081

Badawi, A.A., Veeravalli, B., Aung, K.M.M., Hamadicharef, B.: Accelerating subset
sum and lattice based public-key cryptosystems with multi-core CPUs and GPUs.
J. Parallel Distrib. Comput. 119, 179-190 (2018)

Badawi, A.A., Veeravalli, B., Mi Aung, K.M.: Faster number theoretic transform
on graphics processors for ring learning with errors based cryptography. In: 2018
IEEE International Conference on Service Operations and Logistics, and Informat-
ics (SOLI), pp. 26-31 (2018). https://doi.org/10.1109/SOLI.2018.8476725
Banerjee, U., Chandrakasan, A.P.: Efficient post-quantum TLS handshakes using
identity-based key exchange from lattices. In: 2020 IEEE International Conference
on Communications (ICC), ICC 2020, pp. 1-6 (2020)

Bentahar, K., Silverman, J., Saarinen, M.J.O., Smart, N.: Lash (2006)

Boemer, F., Kim, S., Seifu, G., de Souza, F.D., Gopal, V.: Intel HEXL: accelerating
homomorphic encryption with Intel AVX512-IFMA52. Cryptology ePrint Archive,
Report 2021/420 (2021). https://eprint.iacr.org/2021/420

Boorghany, A., Jalili, R.: Implementation and comparison of lattice-based identifi-
cation protocols on smart cards and microcontrollers. Cryptology ePrint Archive,
Report 2014/078 (2014). https://eprint.iacr.org/2014/078

Boorghany, A., Sarmadi, S.B., Jalili, R.: On constrained implementation of lattice-
based cryptographic primitives and schemes on smart cards. ACM Trans. Embed.
Comput. Syst. 14(3) (2015)

Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1006-1018 (2016)

Bos, J., et al.: Crystals-Kyber: a CCA-secure module-lattice-based KEM. In: 2018
IEEE EuroS&P, pp. 353-367. IEEE (2018)

Botros, L., Kannwischer, M.J., Schwabe, P.: Memory-efficient high-speed imple-
mentation of Kyber on Cortex-M4. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2019. LNCS, vol. 11627, pp. 209-228. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-23696-0-11

Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122-142. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2_8

Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011)

Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. Cryptol-
ogy ePrint Archive, Report 2013/541 (2013). https://eprint.iacr.org/2013/541

https://doi.org/10.1109/HST.2013.6581570
https://doi.org/10.1109/HST.2013.6581570
https://eprint.iacr.org/2015/1081
https://doi.org/10.1109/SOLI.2018.8476725
https://eprint.iacr.org/2021/420
https://eprint.iacr.org/2014/078
https://doi.org/10.1007/978-3-030-23696-0_11
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.1007/978-3-642-36594-2_8
https://eprint.iacr.org/2013/541

340

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

A. C. Mert et al.

Chang, B.C., Goi, B.M., Phan, R.C.W., Lee, W.K.: Accelerating multiple precision
multiplication in GPU with Kepler architecture. In: 2016 IEEE 18th International
Conference on High Performance Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE 2nd International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), pp. 844-851 (2016)

Chang, B.C., Goi, B.M., Phan, R.C.W., Lee, W.K.: Multiplying very large inte-
ger in GPU with pascal architecture. In: 2018 IEEE Symposium on Computer
Applications Industrial Electronics (ISCAIE), pp. 401-405 (2018)

Chu, E., George, A.: Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. CRC Press (1999)

Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J., Yang, B.Y.:
NTT multiplication for NTT-unfriendly rings. Cryptology ePrint Archive, Report
2020/1397 (2020). https://eprint.iacr.org/2020,/1397

de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 339-344 (2015)

Cousins, D.B., Rohloff, K., Sumorok, D.: Designing an FPGA-accelerated homo-
morphic encryption co-processor. IEEE Trans. Emerg. Top. Comput. 5(2), 193-206
(2017). https://doi.org/10.1109/ TETC.2016.2619669

Dai, W., et al.: Implementation and evaluation of a lattice-based key-policy ABE
scheme. IEEE Trans. Inf. Forensics Secur. 13(5), 1169-1184 (2018)

Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169—
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7_11

Du, C., Bai, G., Chen, H.: Towards efficient implementation of lattice-based public-
key encryption on modern CPUs. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol.
1, pp. 1230-1236 (2015). https://doi.org/10.1109/Trustcom.2015.510
Duong-Ngoc, P., Pham, T.X., Lee, H., Nguyen, T.T.: Flexible GPU-based imple-
mentation of number theoretic transform for homomorphic encryption. In: 2022
19th International SoC Design Conference (ISOCC), pp. 259-260 (2022)

Durrani, S., et al.: Accelerating Fourier and number theoretic transforms using
tensor cores and warp shuffles. In: 2021 30th International Conference on Parallel
Architectures and Compilation Techniques, pp. 345-355. IEEE (2021)

D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR,
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282-305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16

Gao, Y., Xu, J., Wang, H.: CulNH: efficient GPU implementations of post-quantum
KEM NewHope. IEEE Trans. Parallel Distrib. Syst. 33(3), 551-568 (2021)
Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford, CA,
USA (2009). aAI3382729

Goey, J.Z., Lee, W.K., Goi, B.M., Yap, W.S.: Accelerating number theoretic trans-
form in GPU platform for fully homomorphic encryption. J. Supercomput. 77,
1455-1474 (2021)

Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112-131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231
Gottert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512-529. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_30

https://eprint.iacr.org/2020/1397
https://doi.org/10.1109/TETC.2016.2619669
https://doi.org/10.1007/978-3-319-29172-7_11
https://doi.org/10.1109/Trustcom.2015.510
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/978-3-642-33027-8_30

A Survey of Software Implementations for the Number Theoretic Transform 341

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Greconici, D.O.C., Kannwischer, M.J., Sprenkels, D.: Compact Dilithium imple-
mentations on Cortex-M3 and Cortex-M4. TACR Trans. Cryptographic Hardw.
Embed. Syst. 2021(1), 1-24 (2020)

Glineysu, T., Lyubashevsky, V., Péppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530-547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8_31

Giineysu, T., Oder, T., Poppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67-82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-
9.5

Gupta, N., Jati, A., Chauhan, A.K., Chattopadhyay, A.: PQC acceleration using
GPUs: FrodoKEM, NewHope, and Kyber. IEEE Trans. Parallel Distrib. Syst.
32(3), 575-586 (2021)

Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122-140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X_9

Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267-288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

Howe, J., Prest, T., Apon, D.: SoK: How (not) to design and implement post-
quantum cryptography. Cryptology ePrint Archive, Report 2021/462 (2021)
Imran, M., Pagliarini, S.: An experimental study of building blocks of lattice-based
nist post-quantum cryptographic algorithms. Electronics 9(11) (2020)

Jung, W.: Over 100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with GPUs. IACR Trans. Cryptographic Hardw.
Embed. Syst. 114-148 (2021)

Karabulut, E., Aysu, A.: RANTT: a RISC-V architecture extension for the
number theoretic transform. In: 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL), pp. 26-32 (2020). https://doi.org/
10.1109/FPL50879.2020.00016

Kim, S., Jung, W., Park, J., Ahn, J.H.: Accelerating number theoretic transforma-
tions for bootstrappable homomorphic encryption on GPUs. In: 2020 IEEE Inter-
national Symposium on Workload Characterization, pp. 264-275. IEEE (2020)
Lee, W.-K., Akleylek, S., Yap, W.-S., Goi, B.-M.: Accelerating number theoretic
transform in GPU platform for qTESLA scheme. In: Heng, S.-H., Lopez, J. (eds.)
ISPEC 2019. LNCS, vol. 11879, pp. 41-55. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34339-2_3

Lee, W.K., Hwang, S.O.: High throughput implementation of post-quantum key
encapsulation and decapsulation on GPU for internet of things applications. IEEE
Trans. Serv. Comput. 15(6), 3275-3288 (2021)

Lee, W.-K., et al.: Parallel implementation of Nussbaumer algorithm and number
theoretic transform on a GPU platform: application to qTESLA. J. Supercomput.
77, 3289-3314 (2021)

Liu, Z., Azarderakhsh, R., Kim, H., Seo, H.: Efficient implementation of ring-LWE
encryption on high-end IoT platform. In: Hancke, G.P., Markantonakis, K. (eds.)
RFIDSec 2016. LNCS, vol. 10155, pp. 76-90. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62024-4_6

https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1109/FPL50879.2020.00016
https://doi.org/10.1109/FPL50879.2020.00016
https://doi.org/10.1007/978-3-030-34339-2_3
https://doi.org/10.1007/978-3-030-34339-2_3
https://doi.org/10.1007/978-3-319-62024-4_6
https://doi.org/10.1007/978-3-319-62024-4_6

342

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

2.

A. C. Mert et al.

Liu, Z., Seo, H., Sinha Roy, S., Grofischadl, J., Kim, H., Verbauwhede, I.: Efficient
ring-LWE encryption on 8-bit AVR processors. In: Giineysu, T., Handschuh, H.
(eds.) CHES 2015. LNCS, vol. 9293, pp. 663—-682. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4_33

Livesay, N., et al.: Accelerating finite field arithmetic for homomorphic encryption
on GPUs. In: IEEE Micro, pp. 1-9 (2023)

Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124-139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0_8

Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54-72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_4
Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. TACR Trans.
Cryptographic Hardw. Embed. Syst. 2019(3), 180-201 (2019)

Mert, A.C., Karabulut, E., Ozturk, E., Savas, E., Aysu, A.: An extensive study of
flexible design methods for the number theoretic transform. IEEE Trans. Comput.
71, 2829-2843 (2020). https://doi.org/10.1109/TC.2020.3017930

Mohsen, A.W., Sobh, M.A., Bahaa-Eldin, A.M.: Performance analysis of num-
ber theoretic transform for lattice-based cryptography. In: 2018 13th International
Conference on Computer Engineering and Systems (ICCES), pp. 442-447 (2018)
Navas, J.A., Dutertre, B., Mason, I.A.: Verification of an optimized NTT algo-
rithm. In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.)
NSV/VSTTE -2020. LNCS, vol. 12549, pp. 144-160. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63618-0_9

Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.: Post-
quantum lattice-based cryptography implementations: a survey. ACM Comput.
Surv. 51(6) (2019)

Ni, N., Zhu, Y.: Enabling zero knowledge proof by accelerating zk-SNARK kernels
on GPU. J. Parallel Distrib. Comput. 173, 20-31 (2023)

Oder, T., Péppelmann, T., Giineysu, T.: Beyond ECDSA and RSA: lattice-based
digital signatures on constrained devices. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1-6 (2014)

O’Sullivan, E., Regazzoni, F.: Special session paper: efficient arithmetic for lattice-
based cryptography. In: 2017 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pp. 1-3 (2017)

Ozerk, O., Elgezen, C., Mert, A.C., Oztiirk, E., Savag, E.: Efficient number the-
oretic transform implementation on GPU for homomorphic encryption. J. Super-
comput. 78(2), 28402872 (2022)

Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report
2015/939 (2015). https://eprint.iacr.org/2015/939

Pessl, P., Primas, R.: More practical single-trace attacks on the number theoretic
transform. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 130-149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7_7

Poppelmann, T., Giineysu, T.: Towards efficient arithmetic for lattice-based cryp-
tography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LATIN-
CRYPT 2012. LNCS, vol. 7533, pp. 139-158. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33481-8_8

https://doi.org/10.1007/978-3-662-48324-4_33
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1109/TC.2020.3017930
https://doi.org/10.1007/978-3-030-63618-0_9
https://eprint.iacr.org/2015/939
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-642-33481-8_8
https://doi.org/10.1007/978-3-642-33481-8_8

A Survey of Software Implementations for the Number Theoretic Transform 343

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Poéppelmann, T., Oder, T., Giineysu, T.: High-performance ideal lattice-based
cryptography on 8-bit ATxmega microcontrollers. In: Lauter, K., Rodriguez-
Henriquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346-365. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_19

Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 513-533. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4_25

Ravi, P., Poussier, R., Bhasin, S., Chattopadhyay, A.: On configurable SCA coun-
termeasures against single trace attacks for the NTT - a performance evaluation
study over Kyber and Dilithium on the arm Cortex-M4. Cryptology ePrint Archive,
Report 2020/1038 (2020). https://eprint.iacr.org/2020,/1038

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 1-40 (2009)

Reparaz, O., Roy, S.S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE
implementation. Cryptology ePrint Archive, Report 2015/724 (2015)

Sahu, G., Rohloff, K.: Accelerating lattice based proxy re-encryption schemes on
GPUs. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol.
12579, pp. 613-632. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
65411-5_30

Schaumont, P., Aysu, A.: Three design dimensions of secure embedded systems.
In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol.
8204, pp. 1-20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
41224-0-1

Scott, M.: A note on the implementation of the number theoretic transform. Cryp-
tology ePrint Archive, Report 2017/727 (2017)

Seiler, G.: Faster AVX2 optimized NTT multiplication for ring-LWE lattice cryp-
tography. Cryptology ePrint Archive, Report 2018/039 (2018)

Shen, S., Yang, H., Dai, W., Liu, Z., Zhao, Y.: High-throughput GPU implemen-
tation of Dilithium post-quantum digital signature (2022)

Shivdikar, K., et al.: Accelerating polynomial multiplication for homomorphic
encryption on GPUs (2022)

Tan, T.N., Lee, H.: High-secure fingerprint authentication system using ring-LWE
cryptography. IEEE Access 7, 23379-23387 (2019) B

Tiirkoglu, E.R., Ozcan, A., Ayduman, C., Mert, A.C., Oztiirk, E., Savag, E.: An
accelerated GPU library for homomorphic encryption operations of BF'V scheme.
In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1155-1159 (2022). https://doi.org/10.1109/ISCAS48785.2022.9937503

Ulu, M.E., Cenk, M.: A parallel GPU implementation of SWIFFTX. In: Slamanig,
D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol. 11989, pp.
202-217. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43120-4_16
Valencia, F., Khalid, A., O’Sullivan, E., Regazzoni, F.: The design space of the
number theoretic transform: a survey. In: 2017 International Conference on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp.
273-277 (2017). https://doi.org/10.1109/SAMOS.2017.8344640

Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Exploring the feasibility of fully
homomorphic encryption. IEEE Trans. Comput. 64(3), 698-706 (2015). https://
doi.org/10.1109/TC.2013.154

Wang, Z., Li, P., Li, Z., Cao, J., Wang, X., Meng, D.: HE-Booster: an efficient
polynomial arithmetic acceleration on GPUs for fully homomorphic encryption.
IEEE Trans. Parallel Distrib. Syst. 34(4), 1067-1081 (2023)

https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://eprint.iacr.org/2020/1038
https://doi.org/10.1007/978-3-030-65411-5_30
https://doi.org/10.1007/978-3-030-65411-5_30
https://doi.org/10.1007/978-3-642-41224-0_1
https://doi.org/10.1007/978-3-642-41224-0_1
https://doi.org/10.1109/ISCAS48785.2022.9937503
https://doi.org/10.1007/978-3-030-43120-4_16
https://doi.org/10.1109/SAMOS.2017.8344640
https://doi.org/10.1109/TC.2013.154
https://doi.org/10.1109/TC.2013.154

344

90.

91.

92.

93.

94.

95.

96.

97.

A. C. Mert et al.

Xu, J., Wang, Y., Liu, J., Wang, X.: A general-purpose number theoretic transform
algorithm for compact RLWE cryptoprocessors. In: 2020 IEEE 14th International
Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 1-5
(2020). https://doi.org/10.1109/ASID50160.2020.9271722

Xu, Z., Pemberton, O., Roy, S.S., Oswald, D.: Magnifying side-channel leakage
of lattice-based cryptosystems with chosen ciphertexts: the case study of Kyber.
Cryptology ePrint Archive, Report 2020/912 (2020)

Zhai, Y., et al.: Accelerating encrypted computing on Intel GPUs. In: 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 705—
716. IEEE (2022)

Zhang, Y., et al.: PipeZK: accelerating zero-knowledge proof with a pipelined archi-
tecture. In: 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pp. 416-428. IEEE (2021)

Zhao, X., Wang, B., Zhao, Z., Qu, Q., Wang, L.: Highly efficient parallel design of
Dilithium on GPUs (2022)

Zhou, S., et al.: Preprocess-then-NTT technique and its applications to KYBER
and NEWHOPE. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol.
11449, pp. 117-137. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
14234-6_7

Zhu, Y., Liu, Z., Pan, Y.: When NTT meets Karatsuba: preprocess-then-NTT
technique revisited. Cryptology ePrint Archive, Report 2019/1079 (2019)

Ozcan, A., Ayduman, C., Tiirkoglu, E.R., Savas, E.: Homomorphic encryption on
GPU. IEEE Access 1 (2023). https://doi.org/10.1109/ACCESS.2023.3265583

https://doi.org/10.1109/ASID50160.2020.9271722
https://doi.org/10.1007/978-3-030-14234-6_7
https://doi.org/10.1007/978-3-030-14234-6_7
https://doi.org/10.1109/ACCESS.2023.3265583

	A Survey of Software Implementations for the Number Theoretic Transform
	1 Introduction
	2 Preliminaries
	2.1 Lattice-Based Cryptography
	2.2 The Number Theoretic Transform

	3 Categorization Method
	4 Software Implementation Summary
	5 Conclusion
	References

