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decision-making under uncertainty [3–12]. It is seen as a
potential remedy for the optimizer’s curse and ensuing over-
fitting issues. DRO is concerned with finding the decision
function that minimizes the worst-case expected loss by op-
timizing over an ambiguity (uncertainty) set of probability
distributions.

The uncertainty sets in DRO can be constructed in dif-
ferent ways. One approach involves moment-based uncer-
tainty sets, which comprise distributions that satisfy specific
moment constraints [13]. However, sets that involve distri-
butions sharing some low-order moments often fail to con-
verge as the number of training samples approaches infin-
ity [14]. To address this, another strategy is to construct a ball
of distributions centered at the empirical distribution of the
training sample using a discrepancy metric. This approach
drives the radius to shrink to zero as the number of training
samples increases. Various discrepancy metrics, such as the
Kullback-Leibler divergence [6, 7], Maximum Mean discrep-
ancy (MMD) [9, 10], and Wasserstein distance [11, 12], have
been proposed for constructing such ambiguity sets.

In this paper, we consider DRO for the problem of Un-
supervised Domain Adaptation (UDA). In UDA, one is given
labeled data from a source domain and unlabeled data from
a target domain. The UDA problem involves adapting the
source domain decision function to this unlabeled target do-
main. This has been approached in various ways under differ-
ent assumptions [15–22] within the realm of DA. However,
these DA methods usually exhibit poor performance when
tested on perturbed target data. In the DRO setup for DA, we
aim to make this adaptation robust to perturbations around the
target domain at test time.

However, extending the classical DRO approach with an
ambiguity set centered around the empirical source distribu-
tion to include the target domain may result in an overly con-
servative (overly regularized) decision function if the target
distribution deviates significantly from the source1 [11]. This
over-conservatism occurs because the resulting uncertainty
set is too large, encompassing too many distributions that the

1This is typically the case in domain adaption.

ABSTRACT
Distributionally Robust Optimization (DRO) mitigates the ef-
fect of distributional uncertainty in supervised learning by op-
timizing over an uncertainty ball of distributions, typically 
centered around the empirical distribution of the training sam-
ple. In this paper, we consider DRO for the problem of Un-
supervised Domain Adaptation (UDA). In classical UDA, the 
goal is to adapt a model trained on a labeled source domain to 
a new, unlabeled target domain. Modifying classical DRO to 
UDA settings by enlarging the uncertainty radius around the 
source to include the target can lead to excessive regulariza-
tion. To mitigate this, we propose to utilize Optimal Transport 
(OT) to transport the source domain to a vicinity of the target 
and construct the DRO problem around the transported sam-
ples, thereby ensuring a small uncertainty radius in DRO with 
high likelihood of including the true target. Our numerical ex-
periments validate the superiority of our method over existing 
robust approaches.

Index Terms— Domain Adaptation, Optimal Transport, 
Distributional Robustness, Classification.

1. INTRODUCTION

Supervised machine learning approaches aim to estimate de-
cision variables that minimize the population risk within some 
hypothesis space. Unfortunately, they often display poor out-
of-sample performance given that the risk function is typi-
cally only accessible through a limited training sample, lead-
ing to an approximation of the population risk via its em-
pirical average. Moreover, the training sample may not ad-
equately represent the true underlying distribution, for exam-
ple, the training data may be biased [1]. As a result, the true 
population risk may be underestimated, and in turn the de-
cision variable may not generalize well on unseen samples. 
This phenomenon is referred to as the optimizer’s curse [2,3]. 

Distributionally Robust Optimization (DRO) has emerged 
as a framework to address challenges in optimization and
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decision function must be robust against.
In this paper, we introduce a distributionally robust ap-

proach to effectively transfer knowledge from the source to
the target domain, which ensures good generalization perfor-
mance on unseen data from the target domain. We summarize
our main contributions below.
Main contributions: As a methodological contribution, we
introduce a novel distributionally robust approach for UDA
termed Distributionally Robust Domain Adaptation via Op-
timal Transport (DRDA-OT). This approach aims to learn a
robust and generalizable decision variable for the target do-
main through data transportation and optimization within an
uncertainty set of distributions constructed around the trans-
ported data. As an empirical contribution, we provide evi-
dence demonstrating the generalization and robustness of our
decision variable on both synthetic and real-world datasets.

Our approach consists of two key stages. First, we em-
ploy Optimal Transport (OT) [23,24] techniques to estimate a
mapping from the source to the target domain, effectively re-
ducing the distributional mismatch while enabling the trans-
fer of labeling information. Second, we utilize the transported
data to derive a robust decision variable by optimizing within
an uncertainty set of distributions defined with respect to the
Wasserstein distance around the transported data. This allows
us to construct an uncertainty set with a smaller radius than
the one centered at the empirical source distribution.

1.1. Relevant Work

Previous studies have explored the application of DRO across
diverse domains to enable knowledge transfer [25–27]. This
line of work largely focuses on optimizing within an uncer-
tainty set of conditional distributions, under some moment
constraints. On the other hand, our approach focuses on opti-
mizing within a set of joint distributions that maintain a cer-
tain distance from the empirical distribution of the transported
data. In a recent study [28], a distributionally robust frame-
work for UDA was proposed, leveraging the Joint Maximum
Mean Discrepancy (JMMD) method [29]. Specifically, the
authors introduce perturbations to the source data using an
adversary defined with respect to a Wasserstein ball of distri-
butions centered at the source data. More closely related is
the work by [30], which proposes a DRO approach to DA.
This method optimizes within an uncertainty set of distribu-
tions centered at a weighted empirical distribution. However,
this approach has certain limitations. First, it relies on an im-
portance weighting approach to determine the weighted cen-
ter, assuming a common support between both domains, a re-
quirement we do not impose in our method. Second, it as-
sumes that the loss function is an element of the reproducing
kernel Hilbert space (RKHS), which may be restrictive for
many real-world applications. In contrast, our approach is
applicable to any loss function and works for both regression
and classification settings.

The rest of the paper is organized as follows. In Section 2,
we review some preliminary background information. In Sec-
tion 3, we introduce our approach, dubbed DRDA-OT. Section
4 presents numerical experiments on both synthetic and real
data. We conclude in Section 5.

2. BACKGROUND

2.1. Notation

Let X ⊆ Rd and Y ⊆ R be the feature and label spaces,
respectively. We define P to be the set of all probability mea-
sures defined on Z = X × Y . For any domain, e.g., X , we
use P(X ) to denote the set of probability measures on X .

Let ζ = (x, y) ∈ Z denote the pair of data and label, re-
spectively. We use P̂m(.) = 1

m

∑m
j=1 δζj (.) to represent the

empirical distribution on the sample {ζj}mj=1, where δ is the
Dirac measure. We denote the marginal probability distribu-
tion on X by µ. The loss function associated with the decision
variable θ is denoted by l(θ).

2.2. Unsupervised Domain Adaptation

Given i.i.d. m labeled source domain samples Ds = {ζ(s)i =

(x
(s)
i , y

(s)
i )}mi=1 and n unlabeled target domain samples Dt =

{x(t)
i }ni=1 drawn form the source distribution Ps and target

distribution Pt, respectively, where Ps,Pt ∈ P(Z), the un-
supervised domain adaptation (UDA) problem seeks to es-
timate θ such that the expected risk (loss) EPt [l(θ)] on the
target domain is minimized for a given loss function l.

2.3. Optimal Transport

Let µs, µt be two distributions with finite second moments.
Given a metric c : X ×X → R+ and p ≥ 1, Monge’s formu-
lation of the Optimal Transport (OT) problem is [31]

T0 := argmin
T :T#µs=µt

E[c(x(s), T (x(s)))p] , (1)

where the notation T#µs = µt means that, if x(s) ∼ µs, then
T (x(s)) ∼ µt. The solution T0 is called an OT map. In gen-
eral, a solution may not exist. A sufficient condition for ex-
istence of an optimal map is that µs be absolutely continuous
(a.c.) with respect to the Lebesgue measure [23]. A relaxed
version of Monge’s OT problem is given by the Kantorovich
formulation [32]

γ0 = arg inf
γ∈Π(µs,µt)

Eγ [c(x(s), x(t))p] , (2)

where Π(µs, µt) is the set of probability measures on X ×
X with marginals µs and µt. The solution γ0 is called the
optimal coupling. The associated optimal value

Wp(µs, µt) = inf
γ∈Π(µs,µt)

Eγ [c(x(s), x(t))p]1/p , (3)
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is referred to in the literature as the Wasserstein-p distance
with respect to c [23], with the typical choice for c being the
Euclidean distance.

2.4. Distributionally Robust Optimization (DRO)

For some ε > 0, let Ω = {Q ∈ P(Z)|d(Q,P0) ≤ ε} be
an uncertainty set that is defined with respect to a discrepancy
measure d. The set Ω includes all probability distributions
that are ε-distant from the center distribution P0, which is
typically chosen to be the empirical distribution P̂n supported
on {ζi}ni=1

i.i.d.∼ P. Formally, the (DRO) problem is defined
as

inf
θ

sup
Q∈Ω

EQ[l(θ)] . (4)

A main challenge in DRO is selecting ε such that Ω con-
tains the true distribution P with high probability, thus pro-
viding a high-probability upper bound on the true risk [11].
In other words, for any fixed model θ, we need to ensure that
EP[l(θ)] ≤ supQ∈Ω EQ[l(θ)] with high confidence. This is
achieved by guaranteeing that P ∈ Ω with high probability.

3. DISTRIBUTIONALLY ROBUST UDA VIA
OPTIMAL TRANSPORT

Given a labeled source domain sample {ζ(s)i =

(x
(s)
i , y

(s)
i )}mi=1 and unlabeled target domain sample

{x(t)
i }ni=1, drawn i.i.d. from source and target distributions

Ps and Pt, respectively, we seek to learn a robust deci-
sion variable θ that minimizes the target domain risk and
generalizes well on unseen target domain samples.

Since the target domain samples are unlabeled, it is not
feasible to directly apply the DRO formulation (4) with re-
spect to the target domain samples, as minimizing the worst-
case risk requires labeled samples. An alternative approach
is to construct the ambiguity set in the DRO formulation (4)
around the empirical source domain distribution. However,
this can pose a significant challenge when aiming for solu-
tions that generalize effectively to the target domain. Specif-
ically, ensuring that Pt ∈ Ω with high confidence may result
in a large ambiguity set, particularly if Pt is substantially dif-
ferent from Ps. Consequently, this could lead to an overly
regularized decision function θ.

To address this issue and ensure favorable out-of-sample
performance on the target domain, we propose constructing
an alternative uncertainty set. This set is designed to enable
generalization to unseen samples from the true Pt with a po-
tentially much smaller radius, thereby ensuring a moderately
regularized model.

We leverage the labeled source domain samples to trans-
fer knowledge, specifically the label information, to the tar-
get domain. Our approach assumes the existence of a trans-
formation T that maps the source data to the target domain
while preserving the labeling information across domains, as

expressed by Ps(y|x(s)) = Pt(y|T (x(s))) [21]. Follow-
ing [21], we also make the assumption that T corresponds
to an OT map (assuming that both source and target measures
are a.c.) with respect to the squared Euclidean cost. As we
shall see, this assumption enables the transfer of information
across domains.

Given the data samples from the source and the target do-
mains we can estimate T at the source samples in two steps,
similar to [21]. First, we utilize the Kantorovich relaxation
(2) to estimate the optimal coupling γ. Given the data in the
source and target domains, {x(s)

i }mi=1 and {x(t)
i }ni=1, respec-

tively, we estimate the optimal coupling as

γ̂m,n = argmin
γ∈Π(µ̂

(s)
m ,µ̂

(t)
n )

Eγ [∥x(s) − x(t)∥22] (5)

where µ̂(s)
m and µ̂

(t)
n denote the empirical marginal source and

target domain distributions, respectively, based on the given
samples. Second, we utilize barycentric projection [33] to
estimate T . Given the estimated coupling, γ̂m,n, denote the
estimate of the transformation by Tγ̂m,n , which is defined as
the conditional mean of x(t) given x(s) under γ̂m,n,

z̃i = Tγ̂m,n(x
(s)
i ) = m

∑
j

γ̂m,n(i, j)x
(t)
j . (6)

Since we have assumed that Ps(y|x(s)) = Pt(y|T (x(s))),
we can transfer the source domain’s labels to the transported
data z̃i, resulting in the transported labeled data {ζ∗i }mi=1 =
{z̃i, ysi }mi=1.

We denote by P̃
(t)
m the empirical transported distribu-

tion supported on {ζ∗i }mi=1. We use P̃
(t)
m as a center for

the desired ambiguity set, which we define with respect to a
Wasserstein-p distance. Consequently, we can readily define
our DRDA-OT program as

inf
θ

sup
Q∈Ω

EQ[l(θ)] , (7)

where
Ω = {Q ∈ P(Z)|Wp(Q, P̃(t)

m ) ≤ ε}

is the ambiguity set. Since Ω contains all joint distributions
over the feature and label space, we define the cost func-
tion as c(ζ, ζ ′) = ∥x − x′∥ + κ

2L(y, y
′), where L is some

metric measuring label discrepancy. A description of our
DRDA-OT approach is provided in Algorithm 1.

A key aspect in DRDA-OT is to select the radius ε large
enough such that Pt ∈ Ω with high confidence. This ensures
that EPt [l(θ)] ≤ supQ∈Ω EQ[l(θ)] holds with high probabil-
ity, similar to what is shown in [34] for the DRO problem.

4. NUMERICAL EXPERIMENTS

In this section, we consider the special case of logistic regres-
sion to evaluate the performance of DRDA-OT.
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Algorithm 1 DRDA-OT
Input: Labeled source domain data {x(s)

i , y
(s)
i }mi=1, unlabeled tar-

get domain data {x(t)
i }ni=1. Uncertainty set radius = ε

Output: Decision variable θ.

1: Obtain the optimal empirical coupling γ̂m,n between the features
of the source and target data by solving (5).

2: Use the barycentric projection defined in (6) to find the trans-
ported source features {z̃i}mi=1.

3: Construct the new transported labeled data set {ζ∗i }mi=1 =

{z̃i, y(s)
i }mi=1.

4: Find the optimal θ by solving the DRDA-OT in (7) by optimiz-
ing over a set of distributions centered at the empirical transported
distribution P̃

(t)
m .

4.1. Logistic Regression

In this scenario, we consider the logloss function , i.e., l(θ) =
lθ(x, y) = log(1 + exp(−y⟨θ, x⟩)), where x ∈ Rd and
y ∈ {+1,−1}. By leveraging the strong duality result in
[34] for robust logistic regression (without DA), we can show
that the DRDA-OT formulation (7) associated with the logloss
function, the cost function c(ζ, ζ ′) = ∥x − x′∥ + κ

2 |y − y′|,
and an ambiguity set defined with respect to Wassertein-1 dis-
tance, admits the following tractable reformulation

inf
θ

sup
Q∈Ω

EQ[l(θ)] =


min
θ,λ,si

λε+ 1
m

m∑
i=1

si

s.t. lθ(z̃i, yi) ≤ si, ∀i ≤ m

lθ(z̃i, yi)− λκ ≤ si, ∀i ≤ m

∥θ∥∗ ≤ λ.
(8)

Here, ∥ · ∥∗ represents the dual norm of ∥ · ∥.

4.2. DRDA-OT for Logistic Regression

Out-of-sample Performance: In this experiment, we
examine the out-of-sample guarantees provided by the
DRDA-OT formulation (7) with respect to the target domain
distribution. We use a similar example as in [34]. We assume
that the features of the source x(s) ∈ R10 follow a multi-
variate normal distribution and the conditional distribution of
y(s) is modeled as Ps(y

(s)|x(s)) = 1
1+exp(−y(s)⟨θ0,x(s)⟩) , with

θ0 = (10, . . . , 0). The target domain samples are generated
by rotating each two consecutive features of the source do-
main samples independently by δ degrees, i.e., we rotate the
features {(1, 2), (3, 4), . . . , (9, 10)}. Specifically, we use the
rotational matrix R(δ) =

(
cos(δ) − sin(δ)
sin(δ) cos(δ)

)
, and choose δ = 45

degrees.
Our experimental analysis involves 100 runs. In each run,

we generate 50 samples from the source and target domains
for training, and 104 from the target distribution for testing (to
obtain a reliable estimate of the true target domain risk). For

each run, we utilize the training data to estimate the decision
variable θ, and then evaluate it using the test data. Specifi-
cally, we record the average number of runs for which the test
risk is smaller than or equal to the worst-case training risk,
and the Accuracy (Acc) averaged over these runs. We com-
pare the solutions obtained from DRDA-OT (7) with those
from source DRO (4) (centered at the empirical source dis-
tribution). Fig. 1a and 1b show the fraction β of runs where
the target risk is smaller than or equal to the worst case train-
ing risk, and the Acc of the test data as a function of the radius
ε. As shown, our DRDA-OT approach requires a significantly
smaller radius than source DRO, which underscores the su-
periority of our approach in generalizing to unseen samples
from the target domain while avoiding unduly conservatism.
Moreover, it can be observed that Acc improves significantly
when using the transported data.

(a) (b)

Fig. 1: a) Fraction of runs where the test risk is smaller than the
worst case risk as a function of the radius. b) Accuracy (Acc) as a
function of the radius.

Effect of Sample Size: In this part, we study the effect of
the source and target domain sample sizes on the radius of
the ambiguity set in our DRDA-OT formulation (7). Using
the same data as in the first experiment, we generate samples
of varying sizes, {25, 50, 75, 100}, from the source and target
domains, and solve for the decision variable. Our experiment
consists of 100 runs, and we test our approach on 104 target
domain samples. Fig. 2 illustrates the fraction β of runs for
which the target risk is upper bounded by the worst-case risk
as a function of the radius ε, averaged over all runs. As ex-
pected, for β > 0.9 (high confidence), the radius decreases as
the sample size increases.
Robustness to Attacks: We test the robustness of the solu-
tion of our DRDA-OT formulation against PGD attacks [35].
For evaluation, we use the well-known digit datasets [36,37],
specifically considering the adaptation scenario USPS →
MNIST. We focus on binary classification of two different
digits, sampling 100 samples from each domain to construct
the transported data and solve for DRDA-OT. We evaluate our
solution on an independent dataset from the target domain,
perturbing the test images using a PGD attack with different
L2-norm attack levels. We compare the DRDA-OT solution
with source DRO, Empirical Risk Minimization (ERM) with-
out adaptation (using the source data for training), and ERM
with adaptation (using the transported data for training). Fig.
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Fig. 2: Fraction of runs where the test risk is smaller than the worst-
case risk as a function of the radius for different sample sizes for the
DRDA-OT.

Fig. 3: Misclassification error as a function of the PGD attack level
for different classification approaches.

3 shows the misclassification error of DRDA-OT, DRO, ERM
(without adaptation), and ERM (with adaptation) as a func-
tion of the attack level, averaged over 10 runs. It is evident
that the DRDA-OT solution achieves the dual objective of be-
ing robust to attacks in the target domain and achieving the
lowest misclassification error, indicating the success of our
DA approach.

5. CONCLUSION

Current methods for domain adaptation often fail to produce
decision models that remain robust to disturbances and ex-
hibit strong generalization capabilities when confronted with
unseen data from the target domain. To address this chal-
lenge, we developed a robust approach to domain adapta-
tion called Distributionally Robust Domain Adaptation via
Optimal Transport (DRDA-OT). Our formulation accounts
for both domain shift and uncertainty in the target domain.
We utilized optimal transport and barycentric projection to
construct the transported data, subsequently transferring the
source domain labels. We then constructed an uncertainty
set of distributions centered at the empirical distribution of

the transported data with respect to the Wasserstein dis-
tance. This approach ensures that the uncertainty set is large
enough to include the target distribution with high confidence,
thereby guaranteeing that the target risk is upper bounded by
the worst-case risk, but without being overly conservative.
Our numerical experiments demonstrated the out-of-sample
performance of our approach. DRDA-OT required a much
smaller radius to achieve generalization on the target domain
compared to other methods. Additionally, we showed the ro-
bustness of our approach to PGD attacks in comparison to
ERM and standard DRO approaches.
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