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ABSTRACT

Heterogeneous domain adaptation (HDA) addresses the chal-
lenge of domain adaptation in scenarios where the source and
target domains exhibit distinct types of features. While nu-
merous studies have considered the HDA problem and demon-
strated efficacy in transferring knowledge across diverse fea-
ture types, existing methods are predominantly tailored for
1-D feature vectors, leaving the handling of high-order fea-
tures largely under-explored. In this paper, we address a new
problem, namely, heterogeneous tensor domain adaptation
(HTDA), where features from either the source or target do-
mains are tensors with different sizes or orders. Our approach
involves a multilinear principal component analysis (MPCA)
based tensor projection method which projects heterogeneous
features onto a shared latent tensor space. Additionally, we
leverage a probabilistic class-wise distribution alignment to
align feature distributions in the tensor space, followed by
label propagation from both the source data and labeled target
data to unlabeled target data through graph regularization. Our
experimental results on multiple domain adaptation datasets
demonstrate the superior performance of our proposed tensor-
based method in comparison to existing vector-based HDA
methods.

Index Terms— Domain adaptation, heterogeneous do-
main adaptation, tensor decomposition

1. INTRODUCTION

The increase in data volume poses a significant challenge when
training classifiers on new datasets, primarily due to the ex-
tensive labeling requirements. However, directly applying an
existing classifier trained on one dataset (source) to classify a
different dataset (target) is generally ineffective in achieving
the desired classification p erformance. This is attributed to
‘domain shift’, wherein the source and target data exhibit dif-
ferent distributions [1]. This spurred considerable interest in
domain adaptation (DA) techniques, which aim to mitigate the

This work was supported by NSF under Award CCF-2106339 and DARPA
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domain discrepancy and enhance the accurate classification
of target domain data by leveraging knowledge transfer from
a source domain. To date, numerous methodologies for DA
have been proposed [2, 3, 4, 5, 6].

In addition to the domain shift problem, several challeng-
ing issues need to be addressed in DA. One such challenge
arises when the source and target domains exhibit disparities in
feature types and dimensions, leading to a more intricate prob-
lem known as heterogeneous domain adaptation (HDA) [7].
This is distinct from homogeneous DA, where features share
identical dimensions. Numerous HDA algorithms developed
in recent years have demonstrated their effectiveness in trans-
ferring knowledge across features with different dimensions
[8,9, 10, 11, 12, 6].

However, a less explored challenge is the tensor domain
adaptation (TDA) problem, where features are represented as
high-order tensors. Most existing DA methods are specifi-
cally designed for 1-D feature vectors. Nevertheless, several
studies have highlighted the necessity of considering the in-
trinsic structure of tensor features rather than solely relying on
vectorized features [13, 14, 15, 16].

In this paper, we focus on a novel problem called het-
erogeneous tensor domain adaptation (HTDA), where tensor
features in both the source and target domains may vary in
size and order. Our approach involves three main components,
namely, MPCA-based tensor projection, tensor class-wise dis-
tribution alignment, and tensor correlation-based label propa-
gation. Further, we develop a novel algorithm for solving the
HTDA problem by leveraging the tensor structure, and conduct
an extensive evaluation of our proposed method on multiple
domain adaptation datasets. To the best of our knowledge,
this work represents the first attempt to tackle the challenge of
heterogeneous tensor domain adaptation.

2. PRELIMINARIES AND BACKGROUND

In this paper, uppercase script letters, e.g., X, are used to
denote tensors. Boldface letters, e.g., X, to represent matrices.
An N-th order tensor is defined as X € RT1**I~ where I;
denotes the size of the i-th way of the tensor. The Frobenius
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norm of tensor X is defined as || X|| p = \/Zil...m | X, in

where X;, ;. denotes the (i1,42,...,iy)-th entry of X

2.1. HTDA: Problem statement

In the HTDA problem, we assume that the source data con-
sists of Ng K-dimensional tensors X ; € R™1 X X™MK 4 —
1,..., Ng, and the data in the target domain consists of N
L-dimensional tensors X} ; € R™>>X"L 4 = 1 . . Np.
The parameters {m;}/~, and {n;}%_, are the dimensions of
the ¢-th order of the source data and the j-th order of the tar-
get data, respectively. In heterogeneous cases, K, L and the
tensor sizes may not be equal. Further, we define the source
input tensor Xg € R™1X--xmxxNs and target input tensor
Xr € R X xnuxNt by gtacking X ; and X} j, respectively.
We follow the common HDA setting and assume that a
limited set of labeled data in the target domain is available.
The source and target domains share the same set of class
labels, and the number of classes is C. Let Yg € {0, 1}Vsx¢
represent the source label matrix using one-hot encoding. In
this matrix, (Ys);. = 1 if the i-th source data point belongs to
the c-th class. For the target domain, the label matrix for the
labeled target data is denoted as Y, € {0, 1}V£*¢ where
Ny, is the number of labeled target data. The objective of the
HTDA problem is to accurately classify the unlabeled target
data based on the information from Xg, X7, Yg and Y.

2.2. Tucker decomposition

Tucker decomposition [17] decomposes an input tensor X €
R % xIN into a small core tensor G € R71 % XJIN and a set
of orthonormal factor matrices {A (™) € RI»*/»1N_ such
that the original tensor can be approximated as

X=0x1 AW xy - xyAD) = [G;AD ... AT (1)

where the operator X,,,n = 1,..., N, isdefined as (X X, A)(n)
= AX(y). The matrix X,,) of size I;, x [[;_,, I; denotes the
mode-n unfolding matrix defined by

‘)C;',ligwi]\]a

(X(n))z'nn~~-in_1in+1---m =

with é1dg,...,ixy = i1+(i2—1)ll+- . '+(iN—1) Ly - Iy.
To simply the notation, we use A := {A™ }N_, to represent
the set of orthonormal factor matrices, thus (1) can be simpli-

fied to X = [G; A].

3. PROPOSED APPROACH AND ALGORITHM

In this section, we detail each component of the heterogeneous
tensor domain adaptation (HTDA) approach. We first present
the solution for the scenario where tensors from both the source
and target domains share the same order D,i.e., K = L = D,
albeit having different dimensions within these orders. The
handling of tensors with distinct orders will be addressed in
Section 3.5.

3.1. MPCA-based tensor projection

Our approach in this work leverages Tucker decomposition
to project both the source and target tensor data into a com-
mon latent tensor space. Specifically, for a source tensor
X, € R™>XmD and a set of orthonormal factor matrices
P = {P®}D_  where P(*) ¢ RP»*™* and p;, represents
the k-th dimension of the latent tensor space, we perform a
projection [Xs; P]. This projection transforms X from its
original source feature space in R"*1 *--*™DP to a latent tensor
space in RP1*--XPD A gimilar projection can be performed on
the target domain data X; € R™ *"*"D with a set of orthonor-
mal factor matrices Q := {Q(k)}kD:p where Q(¥) € RPk 7k,
This results in the projection of the source and target tensors
to a common latent tensor space in RP1%--XPD

Such a tensor projection, however, falls short of capturing
sufficient information from the original tensors and imposes
limited constraints on the factor matrices P and Q. Inspired by
[18, 12], we introduce an additional constraint through MPCA.
Specifically, the projection [X;; P] can be further projected
back to the source domain tensor space using [[Xs; P]; P '],
where PT := {(P®*))T}D_ . Therefore, we can gauge the re-
construction error in terms of X as || X, — [[Xs; PJ; PT]]H2F
By measuring the reconstruction error on both the source and

target domains, we formulate the optimization problem of P
and Q based on X5 and X1 as
. 2 2

175113 A ||Xs—[[[[Xs;73ﬂ;'PT]] ||F+/\2HXT_ MXT;Q]];QT]] HF
subjectto PHPHET =1 QWQWT =1, k=1,...,D

@)
where A; and \; are free parameters. We should remark that
the above MPCA-based tensor projection method is different
from the existing works [13, 14] where the latent tensor space
is constructed by a set of common factor matrices.

3.2. MMD and class-wise distribution alignment

After projecting heterogeneous tensor features to a common
tensor space, we are ready to perform class-wise distribution
alignment. Rather than applying the widely used maximum
mean discrepancy (MMD) [19, 20], we leverage the insights
from the probabilistic class-wise distribution alignment ap-
proach proposed by [21] to enhance the distribution alignment
process within our HTDA approach. In particular, the align-
ment is performed by optimizing the following problem:

C 1 Ng 1 N ?
%1132 ~ Z[[X;Z-;P]] ~ e Z(FT)jc[[Xt,j; 9]
=1 S =1 j=1 F
3

F7 € [0,1]V¥7%% is a soft label matrix for the target domain
where each element (Frr)jc,j = 1,...,Np,e = 1,...,C,
represents the probability of the j-th target data point belong-
ing to the c-th class. X7 = 1,..., Ng, denotes a source
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tensor belonging to the c-th class. N§ and N are the numbers
of source and target data in class c, respectively, where N7, is

estimated as N$ = Z;V:Tl (Fr) je
3.3. Tensor correlation-based label propagation

We augment our approach by introducing a graph regular-
izer to propagate the labels from the source data and labeled
target data to unlabeled target data. Specifically, we utilize
the projected tensors in the latent tensor space of both the
source and target domains to construct a neighborhood simi-
larity graph, denoted as W € R(Ns+N1)x(Ns+N1) incorpo-
rating the tensor correlation and k-nearest neighbors (KNN).
Tensor correlation is employed to measure the similarity be-
tween two projected tensors. For two D-th order tensors,
X1, Xp € RP1*XPD the tensor correlation is defined by [22]

(X1, X2)

Corr (&1, ) = V(X X0) /(X Xo)

where the inner pl’OdllCt(.X'l7 XQ) = Z(Xl)iliz...iD(X2)i1i2...iD .

Note that Corr (X7, X3) € [—1, 1] and the closer the two sub-
tensors are, the larger the value is. Hence, the similarity Wi,
between X and Xs can be defined as W12 = Corr (X7, As).
After obtaining the similarity matrix W, we can propagate
the source and labeled target data to unlabeled target data by

Ns+Nr Ns+Nr

. 2
min Z Z Wi |1 — £l (4)
i=1 j=1
where ; is the i-th row of F= [Y ], FJ.] '€ R(Ns+Nr)xC,

3.4. Algorithm and optimization

By incorporating the tensor projection, class-wise distribu-
tion alignment, and label propagation, we formulate the final
optimization problem as follows:

omin A s — [ PEP || del | e~ [12:Q0: Q71

2

C 1 Ng 1 Nt
+> w2 DX Pl— 2 D (Fr)jel X5 Q1
N§ 4 NE 4
c=1 S =1 T j=1 F
Ns+Nr Ns+Nr )
+y DY Wyl £
i=1 j=1
st, POPET —1 QWQWT =1, k=1,...,D
Fr=Y;,, Fr>0 Frlc=1p,
5)

where F, is the soft label matrix corresponding to labeled tar-
get data, v is a free parameter. Next, we develop an alternating
minimization method to solve the problem defined in (5).

1) Optimization of Fr: By defining Zg = [Xs;P] and
Zp = [Xr; QJ, we can unfold the projected tensors along the

(D + 1)-th dimension, leading to the following subproblem:

Fr =arg I{?HTH |Zs(ps+1)FsDs — ZT(D+1)FTDTH2F

+ Y tr (F;LTTFT + 2Y:9FLSTFT) (6)

st, ¥, =Y, Fr >0, Frlg= 1NT

where Dg and Dy are C' x C diagonal matrices with c-th
diagonal entries N§ and Nf, respectively. The Laplacian
matrix L = [Lgg, Lg7; Lrs, Lrr] is definedasL = D—'W,
where D is a diagonal matrix with diagonal entries as the
column sums of W. Therefore, F'- can be obtained as [23, 21]

Fr — Proj. <FT . \/[[GT}_ + [Gs]+ +Hp ) @

Gr]" +[Gs]” + Hy
where operation [-]* sets all negative entries to 0,

Ggs = Z;(DH) (Zs(p+1)FsDs) Dr
Gr = Z;(D—O—l) (ZT(D+1)FTDT) Dr
Hw =~yDrrFr

Hp =7 (WrrFr + Wi, Ys)

®)

and Proj. is a proximal operator that projects the argument

onto the set C, where each row sumsupto 1 and F;, =Y.
2) Optimization of P and Q: According to (1) we have

[[Xs: P): P =Xs x1(POTPD) sy (PPITPD)),

For further computation, it can be reformulated as a multiplica-
tion form ([[Xs; P[; PT]) () =P PH® X g()O 2k, where

O;ék :(P(D)TP(D)) ®R..® (P(k+1)TP(/€+1))
@ PHEUTPE-) g o @LTPWL),

By fixing Q and P | j # k, we can solve P(*) using

2 C 1
min A HX ~POTPMX 0 H > Pk —
I AL || s (k) S(k) Ok F+c:1 N

2

Ng Nt
. 1
Y (XS )P — QW NE > (Fr)je(Xe i) i) Qur
i=1 T j=1 P
s.t., PEPET — 1,
)

We rewrite the above minimization as

2
min Ay [Xsgy PO TPO X4y 0
P (k) F (10)
n ’P(k)G - VH2 st POPET _
F

where G and V are formed by concatenating the matrices
N N
Nz it (X)) (P and g 30570 (Fr) e (X 5) k) Qe
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Algorithm 1 HTDA algorithm

Input: Xs, X1, Ys and Y, parameter {pk},?:p A1, A2, Y,
€, KNN parameter k, maximum iteration number M.

1: Reshape the source/target tensor to the same order D.

2: Initialize Fp, factor matrices P and Q, set J° = 0, ¢ = 1.
3: repeat

4:  Compute similarity matrix W using KNN.

5:  Update Fr, {P®}D_ {QM}P_ using (7) and (11).
6:  Compute loss J? using (5) and e = (J! — Ji=1)2,

7 t=t+1

8: untilt = M ore < e.
Output: Fp.

¢ = 1,...,C along the columns, respectively. Further, the
problem above can be simplified as

min

2 2
k k
] A RN LG ST

(11)
s.t, POPET — 1

where A = (PP @ ... @ Pd) g PE-D g . @ PM)T,
(11) can be efficiently solved using the algorithm described in
[24]. Further, Q(k) can be solved in the same way.

3.5. Tensor data with different orders

In this section, we describe our approach to handling HTDA
in scenarios where tensors from the source and target domains
have different orders. In many cases, multi-dimensional fea-
tures exhibit various types of dimensions, such as ‘spatial’,
‘temporal’, and ‘channel’. When dealing with tensor features
of different orders, a straightforward strategy is to align cor-
responding types. For instance, if the source features are 1-D
vector features with size m, while the target features are 3-D
features extracted from neural networks with size nq X ng X ns
(where ny and ns represent ‘spatial’ dimensions and ng repre-
sents the ‘channel’ dimension), we can treat the vector feature
as having only the ‘channel’ dimension and reshape it into a
3-D feature with size 1 x 1 x my. This allows the application
of the proposed algorithms to tensors of different orders. The
feasibility of this strategy will be verified in the experimental
results section. Finally, Algorithm 1 outlines the procedure.

4. EXPERIMENTAL RESULTS

We conduct several experiments to evaluate the performance
of the proposed algorithm. We compare the performance with
existing vector-based HDA algorithms, including CDLS [10],
SHFA [8], TNT [9] and ICDM [12]. SVM is used as the
baseline method. We also compare with a vector-based version
of our algorithm (i.e., the inputs are vectorized features), which
we term HDA with label propagation (HDA-LP).

We evaluate the performance on three popular DA datasets,
namely Office-Caltech, Office31, and ImageCLEF. The eval-

Table 1. Datasets and features used in the experiments

Dataset Domain Features
Amazon(A)
Caltech(C) SURF (800 x 1)
Office-Caltech  hoTRD)  VGGI6 (6x6x512)
Webcam(W)
Amazon(A)
Decaf6 (4096 x 1)
Office31 DSLR(D)
Webcam(W) VGG16 (6 x6x512)
Bing(B) SIFT (1024 x 1)
ImageCLEF ImageNet(T) VGG16 (6 x6x512)
Pascal(P) ResNet50 (7 x 7 x 2048)

uation involves five distinct types of features: SURF, SIFT,
Decaf6, VGG16, and ResNet50. Table 1 provides information
about the datasets and features used in each dataset. Specif-
ically, the VGG16 feature is obtained by performing aver-
age pooling on the output of the ‘conv5_block3’ layer of the
VGG16 network. The ResNet50 feature is extracted from the
‘block5_conv3’ layer of the ResNet50 network. For VGG16,
the input images are resized to 256 x 256, while for ResNet50,
the input images are resized to 224 x 224. For the algorithms
that can only deal with vector-based features, we vectorize
the tensor into a long vector as the feature representation. It
is worth noting that the CDLS algorithm runs out of memory
when the source feature is VGG16 and ResNet50; therefore,
we only report its results for the Office3! dataset.

For the proposed HTDA algorithm, we set the parameters
as: pr, = min{my,ng, 30} fork =1,..., D, A\; = Ay = 0.1,
~v=5x10%k =10, M = 20 and e = 1 x 10~°. The average
classification accuracy is computed over 20 Monte Carlo runs,
with different selections of source and labeled target data. The
numbers { N$}<_; of source points from the different classes
are set to the same value (denoted N§) for all classes. In each
run, we randomly choose N§ source data per class to construct
the source input tensor Xg and N7 target data per class as
labeled target data to construct Y. All experiments were
conducted using MATLAB R2023b on a desktop PC with a
2.5-GHz processor and 32GB of RAM.

We compare the adaptation performance on tensor-based
target features for different numbers of labeled target data. For
all experiments, the number of source data per class N§ is set
to 20. For the Office-Caltech dataset, the number of labeled
target data per class N is varied from 0.5 to 3. Here, N} =
0.5 means that half of the classes have no labeled target data,
while the remaining half have one labeled target data point per
class. For the Office31 and ImageCLEF datasets, Ny is setto 1
and 3. Fig. 1 depicts the average classification accuracy versus
N7 on Office-Caltech: SURF—VGG16, while the average
accuracy on the Office31: Decaf6—VGG16 and ImageCLEF':
VGG16—ResNet50 is shown in Table 2 and Table 3. As can
be seen, the proposed HTDA consistently outperforms other
methods in terms of adaptation performance across all tasks.

Furthermore, we explore the adaptation performance when
transitioning from tensor-based source features to vector-based
target features. Fig. 2 illustrates the performance across six
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Table 2. Average classification accuracy (%) for different N§ on the Office31 Dataset: Decaf6—VGG16.

Methods A—D D—A A—W W—A D—W W—D
Ni=1 N;=3 Ni=1 N;=3 Nji=1 N;=3 Nji=1 N;=3 N;=1 N;i=3 Nji=1 N;=3
SVM 31.82 5633 28.14 43.67 2723 5509 28.18 4405 26.10 5387 3156 57.30
CDLS 7193 80.71 54.83 6596 68.52 82.77 5455 6599 70.86 85.17 7221 84.43
TNT 63.19 7649 4996 63.82 6192 7849 4939 6296 66.71 80.14 6623  81.31
SHFA 64.69 77.80 46.37 62.06 58.47 76.15 46.69 62.07 61.06 78.57 6450 80.21
ICDM 5225 6879 43.07 5642 48.66 69.09 4396 5649 4776 69.09 49.19 68.86
HDA-LP 5480 68.50 51.21 6329 56.64 69.14 5249 64.14 60.37 7220 57.77 70.83
HTDA 7315 8247 58.02 68.04 73.82 8339 56.07 67.63 79.74 8575 7846 84.82

Table 3. Average classification accuracy (%) under different N§ on ImageCLEF Dataset: VGG16—ResNet50.

Methods 1P P—1 B—1 1B B—P P—B
Nf=1 Nf=3 Ni=1 Nf=3 Nj=1 Nj=3 Ni=I Nf=3 Nj=1 Nf=3 Ni=l N{=3
SVM 2287 3856 3158 4968 2648 53.09 1566 2455 2293 3731 1724 2542
TNT 4888 6219 7105 7987 6707 8028 2845 4361 4442 5644 3107 4317
SHFA 4590 5638 5112 6895 5182 6776 2728 39.80 4061 5251 2677 3550
ICDM 3772 50.18 5546 7321 5024 7099 2597 3698 3791 4899 27.04 33.94
HDA-LP 5490 6426 7291 8399 69.80 8277 2947 4648 4738 6035 3352 45.27
HTDA 6252 6897 8252 8595 7781 8415 3980 4927 35818 6398 3811 48.03

accuracy

accuracy

accuracy

accuracy

N N Ny
SHFA —6—ICDM —-A—HDALP

[——svM ——cpLs ——TNT HTDA|

Fig. 1. Average classification accuracy versus Ni on Office-
Caltech: SURF—VGGI6.

80

I svm
I TNT

60 [TISHFA
I (CDM
IHDA-LP
[T HTDA

Accuracy
S
o

A—C

C—A D—W W— D I-P P— 1

Fig. 2. Average classification accuracy under vector-based tar-
get features. Columns 1-2: Office-Caltech: VGG16—SUREF;
columns 3-4: Office31: VGG16—Decaf6; columns 5-6: Im-
ageCLEF: ResNet50—SIFT.

domain tasks. It is evident that HTDA achieves compara-
ble results with TNT and SHFA in most tasks. The findings
demonstrate that our algorithm is particularly effective in im-
proving performance when the target domain involves tensor
data. Nevertheless, our algorithm provides a versatile solution,
effective for both tensor and vector-based target features.

5. CONCLUSION

In this work, we investigated a novel domain adaptation
challenge termed heterogeneous tensor domain adaptation
(HTDA), where the features in both source and target domains
are high-order tensors with distinct sizes and orders. We intro-
duced a new HTDA solution that encompasses MPCA-based
tensor projection, tensor class-wise distribution alignment,
and tensor correlation-based label propagation. Additionally,
we developed an algorithm tailored to the HTDA problem.
Experimental findings demonstrate the superior performance
of our proposed method compared to existing vector-based
HDA algorithms when dealing with tensor features.
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