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domain discrepancy and enhance the accurate classification
of target domain data by leveraging knowledge transfer from
a source domain. To date, numerous methodologies for DA
have been proposed [2, 3, 4, 5, 6].

In addition to the domain shift problem, several challeng-
ing issues need to be addressed in DA. One such challenge
arises when the source and target domains exhibit disparities in
feature types and dimensions, leading to a more intricate prob-
lem known as heterogeneous domain adaptation (HDA) [7].
This is distinct from homogeneous DA, where features share
identical dimensions. Numerous HDA algorithms developed
in recent years have demonstrated their effectiveness in trans-
ferring knowledge across features with different dimensions
[8, 9, 10, 11, 12, 6].

However, a less explored challenge is the tensor domain
adaptation (TDA) problem, where features are represented as
high-order tensors. Most existing DA methods are specifi-
cally designed for 1-D feature vectors. Nevertheless, several
studies have highlighted the necessity of considering the in-
trinsic structure of tensor features rather than solely relying on
vectorized features [13, 14, 15, 16].

In this paper, we focus on a novel problem called het-
erogeneous tensor domain adaptation (HTDA), where tensor
features in both the source and target domains may vary in
size and order. Our approach involves three main components,
namely, MPCA-based tensor projection, tensor class-wise dis-
tribution alignment, and tensor correlation-based label propa-
gation. Further, we develop a novel algorithm for solving the
HTDA problem by leveraging the tensor structure, and conduct
an extensive evaluation of our proposed method on multiple
domain adaptation datasets. To the best of our knowledge,
this work represents the first attempt to tackle the challenge of
heterogeneous tensor domain adaptation.

2. PRELIMINARIES AND BACKGROUND

In this paper, uppercase script letters, e.g., X , are used to
denote tensors. Boldface letters, e.g., X, to represent matrices.
An N -th order tensor is defined as X ∈ RI1×···×IN , where Ii
denotes the size of the i-th way of the tensor. The Frobenius

ABSTRACT
Heterogeneous domain adaptation (HDA) addresses the chal-
lenge of domain adaptation in scenarios where the source and 
target domains exhibit distinct types of features. While nu-
merous studies have considered the HDA problem and demon-
strated efficacy in transferring knowledge across diverse fea-
ture types, existing methods are predominantly tailored for 
1-D feature vectors, leaving the handling of high-order fea-
tures largely under-explored. In this paper, we address a new 
problem, namely, heterogeneous tensor domain adaptation 
(HTDA), where features from either the source or target do-
mains are tensors with different sizes or orders. Our approach 
involves a multilinear principal component analysis (MPCA) 
based tensor projection method which projects heterogeneous 
features onto a shared latent tensor space. Additionally, we 
leverage a probabilistic class-wise distribution alignment to 
align feature distributions in the tensor space, followed by 
label propagation from both the source data and labeled target 
data to unlabeled target data through graph regularization. Our 
experimental results on multiple domain adaptation datasets 
demonstrate the superior performance of our proposed tensor-
based method in comparison to existing vector-based HDA 
methods.

Index Terms— Domain adaptation, heterogeneous do-
main adaptation, tensor decomposition

1. INTRODUCTION

The increase in data volume poses a significant challenge when 
training classifiers on new datasets, primarily due to the ex-
tensive labeling requirements. However, directly applying an 
existing classifier trained on one dataset (source) to classify a 
different dataset (target) is generally ineffective in achieving 
the desired classification p erformance. This is attributed to 
‘domain shift’, wherein the source and target data exhibit dif-
ferent distributions [1]. This spurred considerable interest in 
domain adaptation (DA) techniques, which aim to mitigate the
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norm of tensor X is defined as ∥X∥F =
√∑

i1...iN
|Xi1...iN |2,

where Xi1...iN denotes the (i1, i2, . . . , iN )-th entry of X .

2.1. HTDA: Problem statement

In the HTDA problem, we assume that the source data con-
sists of NS K-dimensional tensors Xs,i ∈ Rm1×...×mK , i =
1, . . . , NS , and the data in the target domain consists of NT

L-dimensional tensors Xt,j ∈ Rn1×...×nL , j = 1, . . . , NT .
The parameters {mi}Ki=1 and {nj}Lj=1 are the dimensions of
the i-th order of the source data and the j-th order of the tar-
get data, respectively. In heterogeneous cases, K, L and the
tensor sizes may not be equal. Further, we define the source
input tensor XS ∈ Rm1×...×mK×NS and target input tensor
XT ∈ Rn1×...×nL×NT by stacking Xs,i and Xt,j , respectively.

We follow the common HDA setting and assume that a
limited set of labeled data in the target domain is available.
The source and target domains share the same set of class
labels, and the number of classes is C. Let YS ∈ {0, 1}NS×C

represent the source label matrix using one-hot encoding. In
this matrix, (YS)ic = 1 if the i-th source data point belongs to
the c-th class. For the target domain, the label matrix for the
labeled target data is denoted as YL ∈ {0, 1}NL×C , where
NL is the number of labeled target data. The objective of the
HTDA problem is to accurately classify the unlabeled target
data based on the information from XS , XT , YS and YL.

2.2. Tucker decomposition

Tucker decomposition [17] decomposes an input tensor X ∈
RI1×···×IN into a small core tensor G ∈ RJ1×···×JN and a set
of orthonormal factor matrices {A(n) ∈ RIn×Jn}Nn=1, such
that the original tensor can be approximated as

X = G×1A
(1)×2 · · ·×N A(N) = JG;A(1), . . . ,A(N)K (1)

where the operator ×n, n = 1, . . . , N , is defined as (X ×n A)(n)
= AX(n). The matrix X(n) of size In ×

∏
j ̸=n Ij denotes the

mode-n unfolding matrix defined by

(X(n))ini1···in−1in+1···iN = Xi1i2···iN ,

with i1i2, . . . , iN = i1+(i2−1)I1+ · · ·+(iN−1) I1I2· · ·IN .
To simply the notation, we use A := {A(n)}Nn=1 to represent
the set of orthonormal factor matrices, thus (1) can be simpli-
fied to X = JG;AK.

3. PROPOSED APPROACH AND ALGORITHM

In this section, we detail each component of the heterogeneous
tensor domain adaptation (HTDA) approach. We first present
the solution for the scenario where tensors from both the source
and target domains share the same order D, i.e., K = L = D,
albeit having different dimensions within these orders. The
handling of tensors with distinct orders will be addressed in
Section 3.5.

3.1. MPCA-based tensor projection

Our approach in this work leverages Tucker decomposition
to project both the source and target tensor data into a com-
mon latent tensor space. Specifically, for a source tensor
Xs ∈ Rm1×···×mD and a set of orthonormal factor matrices
P := {P(k)}Dk=1, where P(k) ∈ Rpk×mk and pk represents
the k-th dimension of the latent tensor space, we perform a
projection JXs;PK. This projection transforms Xs from its
original source feature space in Rm1×...×mD to a latent tensor
space in Rp1×...×pD . A similar projection can be performed on
the target domain data Xt ∈ Rn1×···×nD with a set of orthonor-
mal factor matrices Q := {Q(k)}Dk=1, where Q(k) ∈ Rpk×nk .
This results in the projection of the source and target tensors
to a common latent tensor space in Rp1×...×pD .

Such a tensor projection, however, falls short of capturing
sufficient information from the original tensors and imposes
limited constraints on the factor matrices P and Q. Inspired by
[18, 12], we introduce an additional constraint through MPCA.
Specifically, the projection JXs;PK can be further projected
back to the source domain tensor space using JJXs;PK;P⊤K,
where P⊤ := {(P(k))⊤}Dk=1. Therefore, we can gauge the re-
construction error in terms of Xs as

∥∥Xs − JJXs;PK;P⊤K
∥∥2
F

.
By measuring the reconstruction error on both the source and
target domains, we formulate the optimization problem of P
and Q based on XS and XT as

min
P,Q

λ1

∥∥XS−JJXS ;PK;P⊤K
∥∥2
F
+λ2

∥∥XT −JJXT ;QK;Q⊤K
∥∥2
F

subject to P(k)P(k)⊤ = I, Q(k)Q(k)⊤ = I, k = 1, . . . , D
(2)

where λ1 and λ2 are free parameters. We should remark that
the above MPCA-based tensor projection method is different
from the existing works [13, 14] where the latent tensor space
is constructed by a set of common factor matrices.

3.2. MMD and class-wise distribution alignment

After projecting heterogeneous tensor features to a common
tensor space, we are ready to perform class-wise distribution
alignment. Rather than applying the widely used maximum
mean discrepancy (MMD) [19, 20], we leverage the insights
from the probabilistic class-wise distribution alignment ap-
proach proposed by [21] to enhance the distribution alignment
process within our HTDA approach. In particular, the align-
ment is performed by optimizing the following problem:

min
P,Q

C∑
c=1

∥∥∥∥∥∥ 1

N c
S

Nc
S∑

i=1

JX c
s,i;PK − 1

N c
T

NT∑
j=1

(FT )jcJXt,j ;QK

∥∥∥∥∥∥
2

F
(3)

FT ∈ [0, 1]NT×C is a soft label matrix for the target domain
where each element (FT )jc, j = 1, . . . , NT , c = 1, . . . , C ,
represents the probability of the j-th target data point belong-
ing to the c-th class. X c

s,i, i = 1, . . . , N c
S , denotes a source
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tensor belonging to the c-th class. N c
S and N c

T are the numbers
of source and target data in class c, respectively, where N c

T is
estimated as N c

T =
∑NT

j=1(FT )jc.

3.3. Tensor correlation-based label propagation

We augment our approach by introducing a graph regular-
izer to propagate the labels from the source data and labeled
target data to unlabeled target data. Specifically, we utilize
the projected tensors in the latent tensor space of both the
source and target domains to construct a neighborhood simi-
larity graph, denoted as W ∈ R(NS+NT )×(NS+NT ), incorpo-
rating the tensor correlation and k-nearest neighbors (KNN).
Tensor correlation is employed to measure the similarity be-
tween two projected tensors. For two D-th order tensors,
X1,X2 ∈ Rp1×···×pD , the tensor correlation is defined by [22]

Corr (X1,X2) =
⟨X1,X2⟩√

⟨X1,X1⟩
√
⟨X2,X2⟩

,

where the inner product⟨X1,X2⟩=
∑

(X1)i1i2...iD(X2)i1i2...iD .
Note that Corr (X1,X2) ∈ [−1, 1] and the closer the two sub-
tensors are, the larger the value is. Hence, the similarity W12

between X1 and X2 can be defined as W12 = Corr (X1,X2).
After obtaining the similarity matrix W, we can propagate

the source and labeled target data to unlabeled target data by

min
FT

NS+NT∑
i=1

NS+NT∑
j=1

Wij ∥fi − fj∥22 (4)

where fi is the i-th row of F=
[
Y⊤

S ,F
⊤
T

]⊤∈R(NS+NT )×C .

3.4. Algorithm and optimization

By incorporating the tensor projection, class-wise distribu-
tion alignment, and label propagation, we formulate the final
optimization problem as follows:

min
P,Q,FT

λ1

∥∥XS−JJXS ;PK;P⊤K
∥∥2
F
+λ2

∥∥XT −JJXT ;QK;Q⊤K
∥∥2
F

+
C∑

c=1

∥∥∥∥∥∥ 1

N c
S

Nc
S∑

i=1

JX c
s,i;PK− 1

N c
T

NT∑
j=1

(FT )jcJXt,j ;QK

∥∥∥∥∥∥
2

F

+γ

NS+NT∑
i=1

NS+NT∑
j=1

Wij ∥fi − fj∥22

s.t., P(k)P(k)⊤ = I, Q(k)Q(k)⊤ = I, k = 1, . . . , D

FL = YL, FT ≥ 0, FT1C = 1NT

(5)
where FL is the soft label matrix corresponding to labeled tar-
get data, γ is a free parameter. Next, we develop an alternating
minimization method to solve the problem defined in (5).

1) Optimization of FT : By defining ZS = JXS ;PK and
ZT = JXT ;QK, we can unfold the projected tensors along the

(D + 1)-th dimension, leading to the following subproblem:

FT = argmin
FT

∥∥ZS(D+1)FSDS − ZT (D+1)FTDT

∥∥2
F

+ γ tr
(
F⊤

TLTTFT + 2Y⊤
S LSTFT

)
s.t., FL = YL, FT ≥ 0, FT1C = 1NT

(6)

where DS and DT are C × C diagonal matrices with c-th
diagonal entries N c

S and N c
T , respectively. The Laplacian

matrix L = [LSS ,LST ;LTS ,LTT ] is defined as L = D−W,
where D is a diagonal matrix with diagonal entries as the
column sums of W. Therefore, FT can be obtained as [23, 21]

FT = ProjC

(
FT ⊙

√
[GT ]

−
+ [GS ]

+
+HD

[GT ]
+
+ [GS ]

−
+HW

)
(7)

where operation [·]+ sets all negative entries to 0,

GS = Z⊤
T (D+1)

(
ZS(D+1)FSDS

)
DT

GT = Z⊤
T (D+1)

(
ZT (D+1)FTDT

)
DT

HW = γDTTFT

HD = γ
(
WTTFT +W⊤

STYS

) (8)

and ProjC is a proximal operator that projects the argument
onto the set C, where each row sums up to 1 and FL = YL.

2) Optimization of P and Q: According to (1) we have

JJXS ;PK;P⊤K=XS×1(P
(1)⊤P(1))×2 · · ·×D (P(D)⊤P(D)).

For further computation, it can be reformulated as a multiplica-
tion form (JJXS ;PK;P⊤K)(k)=P(k)⊤P(k)XS(k)O ̸=k, where

O ̸=k =(P(D)⊤P(D))⊗ . . .⊗ (P(k+1)⊤P(k+1))

⊗ (P(k−1)⊤P(k−1))⊗ . . .⊗ (P(1)⊤P(1)).

By fixing Q and P(j), j ̸= k, we can solve P(k) using

min
P(k)

λ1

∥∥∥XS(k)−P(k)⊤P(k)XS(k)O ̸=k

∥∥∥2
F
+

C∑
c=1

∥∥∥∥P(k) 1

N c
S

×
Nc

S∑
i=1

(Xc
s,i)(k)P ̸=k−Q(k) 1

N c
T

NT∑
j=1

(FT )jc(Xt,j)(k)Q ̸=k

∥∥∥∥∥∥
2

F

s.t., P(k)P(k)⊤ = I.
(9)

We rewrite the above minimization as

min
P(k)

λ1

∥∥∥XS(k)−P(k)⊤P(k)XS(k)O ̸=k

∥∥∥2
F

+
∥∥∥P(k)G−V

∥∥∥2
F
, s.t., P(k)P(k)⊤ = I,

(10)

where G and V are formed by concatenating the matrices
1

Nc
S

∑Nc
S

i=1(X
c
s,i)(k)P ̸=k and 1

Nc
T

∑NT

j=1(FT )jc(Xt,j)(k)Q ̸=k,

Authorized licensed use limited to: University of Central Florida. Downloaded on May 20,2025 at 16:42:33 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 HTDA algorithm

Input: XS , XT , YS and YL, parameter {pk}Dk=1, λ1, λ2, γ,
ϵ, KNN parameter k, maximum iteration number M .

1: Reshape the source/target tensor to the same order D.
2: Initialize FT , factor matrices P and Q, set J0 = 0, t = 1.
3: repeat
4: Compute similarity matrix W using KNN.
5: Update FT , {P(k)}Dk=1, {Q(k)}Dk=1 using (7) and (11).
6: Compute loss J t using (5) and e = (J t − J t−1)2.
7: t = t+ 1
8: until t = M or e < ϵ.

Output: FT .

c = 1, . . . , C along the columns, respectively. Further, the
problem above can be simplified as

min
P(k)

∥∥∥P(k)G−V
∥∥∥2
F
− λ1

∥∥∥P(k)XS(k)Λ
∥∥∥2
F

s.t., P(k)P(k)⊤ = I,

(11)

where Λ = (P(D) ⊗ . . .⊗P(k+1) ⊗P(k−1) ⊗ . . .⊗P(1))⊤.
(11) can be efficiently solved using the algorithm described in
[24]. Further, Q(k) can be solved in the same way.

3.5. Tensor data with different orders

In this section, we describe our approach to handling HTDA
in scenarios where tensors from the source and target domains
have different orders. In many cases, multi-dimensional fea-
tures exhibit various types of dimensions, such as ‘spatial’,
‘temporal’, and ‘channel’. When dealing with tensor features
of different orders, a straightforward strategy is to align cor-
responding types. For instance, if the source features are 1-D
vector features with size m1, while the target features are 3-D
features extracted from neural networks with size n1×n2×n3

(where n1 and n2 represent ‘spatial’ dimensions and n3 repre-
sents the ‘channel’ dimension), we can treat the vector feature
as having only the ‘channel’ dimension and reshape it into a
3-D feature with size 1× 1×m1. This allows the application
of the proposed algorithms to tensors of different orders. The
feasibility of this strategy will be verified in the experimental
results section. Finally, Algorithm 1 outlines the procedure.

4. EXPERIMENTAL RESULTS

We conduct several experiments to evaluate the performance
of the proposed algorithm. We compare the performance with
existing vector-based HDA algorithms, including CDLS [10],
SHFA [8], TNT [9] and ICDM [12]. SVM is used as the
baseline method. We also compare with a vector-based version
of our algorithm (i.e., the inputs are vectorized features), which
we term HDA with label propagation (HDA-LP).

We evaluate the performance on three popular DA datasets,
namely Office-Caltech, Office31, and ImageCLEF. The eval-

Table 1. Datasets and features used in the experiments
Dataset Domain Features

Office-Caltech

Amazon(A)
SURF (800×1)

VGG16 (6×6×512)
Caltech(C)
DSLR(D)

Webcam(W)

Office31
Amazon(A) Decaf6 (4096×1)

VGG16 (6×6×512)DSLR(D)
Webcam(W)

ImageCLEF
Bing(B) SIFT (1024×1)

VGG16 (6×6×512)
ResNet50 (7×7×2048)

ImageNet(I)
Pascal(P)

uation involves five distinct types of features: SURF, SIFT,
Decaf6, VGG16, and ResNet50. Table 1 provides information
about the datasets and features used in each dataset. Specif-
ically, the VGG16 feature is obtained by performing aver-
age pooling on the output of the ‘conv5 block3’ layer of the
VGG16 network. The ResNet50 feature is extracted from the
‘block5 conv3’ layer of the ResNet50 network. For VGG16,
the input images are resized to 256× 256, while for ResNet50,
the input images are resized to 224× 224. For the algorithms
that can only deal with vector-based features, we vectorize
the tensor into a long vector as the feature representation. It
is worth noting that the CDLS algorithm runs out of memory
when the source feature is VGG16 and ResNet50; therefore,
we only report its results for the Office31 dataset.

For the proposed HTDA algorithm, we set the parameters
as: pk = min{mk, nk, 30} for k = 1, . . . , D, λ1 = λ2 = 0.1,
γ = 5×104, k = 10, M = 20 and ϵ = 1×10−5. The average
classification accuracy is computed over 20 Monte Carlo runs,
with different selections of source and labeled target data. The
numbers {N c

S}Cc=1 of source points from the different classes
are set to the same value (denoted N c

S) for all classes. In each
run, we randomly choose N c

S source data per class to construct
the source input tensor XS and N c

L target data per class as
labeled target data to construct YL. All experiments were
conducted using MATLAB R2023b on a desktop PC with a
2.5-GHz processor and 32GB of RAM.

We compare the adaptation performance on tensor-based
target features for different numbers of labeled target data. For
all experiments, the number of source data per class N c

S is set
to 20. For the Office-Caltech dataset, the number of labeled
target data per class N c

L is varied from 0.5 to 3. Here, N c
L =

0.5 means that half of the classes have no labeled target data,
while the remaining half have one labeled target data point per
class. For the Office31 and ImageCLEF datasets, N c

L is set to 1
and 3. Fig. 1 depicts the average classification accuracy versus
N c

L on Office-Caltech: SURF→VGG16, while the average
accuracy on the Office31: Decaf6→VGG16 and ImageCLEF:
VGG16→ResNet50 is shown in Table 2 and Table 3. As can
be seen, the proposed HTDA consistently outperforms other
methods in terms of adaptation performance across all tasks.

Furthermore, we explore the adaptation performance when
transitioning from tensor-based source features to vector-based
target features. Fig. 2 illustrates the performance across six
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Table 2. Average classification accuracy (%) for different N c
L on the Office31 Dataset: Decaf6→VGG16.

Methods A→D D→A A→W W→A D→W W→D

Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3

SVM 31.82 56.33 28.14 43.67 27.23 55.09 28.18 44.05 26.10 53.87 31.56 57.30
CDLS 71.93 80.71 54.83 65.96 68.52 82.77 54.55 65.99 70.86 85.17 72.21 84.43
TNT 63.19 76.49 49.96 63.82 61.92 78.49 49.39 62.96 66.71 80.14 66.23 81.31

SHFA 64.69 77.80 46.37 62.06 58.47 76.15 46.69 62.07 61.06 78.57 64.50 80.21
ICDM 52.25 68.79 43.07 56.42 48.66 69.09 43.96 56.49 47.76 69.09 49.19 68.86

HDA-LP 54.80 68.50 51.21 63.29 56.64 69.14 52.49 64.14 60.37 72.20 57.77 70.83
HTDA 73.15 82.47 58.02 68.04 73.82 83.39 56.07 67.63 79.74 85.75 78.46 84.82

Table 3. Average classification accuracy (%) under different N c
L on ImageCLEF Dataset: VGG16→ResNet50.

Methods I→P P→I B→I I→B B→P P→B

Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3 Nc
L=1 Nc

L=3

SVM 22.87 38.56 31.58 49.68 26.48 53.09 15.66 24.55 22.93 37.31 17.24 25.42
TNT 48.88 62.19 71.05 79.87 67.07 80.28 28.45 43.61 44.42 56.44 31.07 43.17

SHFA 45.90 56.38 51.12 68.95 51.82 67.76 27.28 39.80 40.61 52.51 26.77 35.50
ICDM 37.72 50.18 55.46 73.21 50.24 70.99 25.97 36.98 37.91 48.99 27.04 33.94

HDA-LP 54.90 64.26 72.91 83.99 69.80 82.77 29.47 46.48 47.38 60.35 33.52 45.27
HTDA 62.52 68.97 82.52 85.95 77.81 84.15 39.80 49.27 58.18 63.98 38.11 48.03
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Fig. 1. Average classification accuracy versus N c
L on Office-

Caltech: SURF→VGG16.

A  C C  A D  W W  D I  P P  I
0

20

40

60

80

A
cc

ur
ac

y

SVM
TNT
SHFA
ICDM
HDA-LP
HTDA

Fig. 2. Average classification accuracy under vector-based tar-
get features. Columns 1-2: Office-Caltech: VGG16→SURF;
columns 3-4: Office31: VGG16→Decaf6; columns 5-6: Im-
ageCLEF: ResNet50→SIFT.

domain tasks. It is evident that HTDA achieves compara-
ble results with TNT and SHFA in most tasks. The findings
demonstrate that our algorithm is particularly effective in im-
proving performance when the target domain involves tensor
data. Nevertheless, our algorithm provides a versatile solution,
effective for both tensor and vector-based target features.

5. CONCLUSION

In this work, we investigated a novel domain adaptation
challenge termed heterogeneous tensor domain adaptation
(HTDA), where the features in both source and target domains
are high-order tensors with distinct sizes and orders. We intro-
duced a new HTDA solution that encompasses MPCA-based
tensor projection, tensor class-wise distribution alignment,
and tensor correlation-based label propagation. Additionally,
we developed an algorithm tailored to the HTDA problem.
Experimental findings demonstrate the superior performance
of our proposed method compared to existing vector-based
HDA algorithms when dealing with tensor features.
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