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ABSTRACT A common type of cytoskeletal morphology involves multiple microtubules converging with their minus ends at
the microtubule organizing center (MTOC). The cargo-motor complex will experience ballistic transport when bound to micro-
tubules or diffusive transport when unbound. This machinery allows for sequestering and subsequent dispersal of dynein-
transported cargo. The general principles governing dynamics, efficiency, and tunability of such transport in the MTOC vicinity
are not fully understood. To address this, we develop a one-dimensional model that includes advective transport toward an
attractor (such as the MTOC) and diffusive transport that allows particles to reach absorbing boundaries (such as cellular
membranes). We calculated the mean first passage time (MFPT) for cargo to reach the boundaries as a measure of the effec-
tiveness of sequestering (large MFPT) and diffusive dispersal (low MFPT). We show that the MFPT experiences a dramatic
growth, transitioning from a low to high MFPT regime (dispersal to sequestering) over a window of cargo on-/off-rates that
is close to in vivo values. Furthermore, increasing either the on-rate (attachment) or off-rate (detachment) can result in optimal
dispersal when the attractor is placed asymmetrically. Finally, we also describe a regime of rare events where theMFPT scales
exponentially with motor velocity and the escape location becomes exponentially sensitive to the attractor positioning. Our
results suggest that structures such as the MTOC allow for the sensitive control of the spatial and temporal features of trans-
port and corresponding function under physiological conditions.
WHY IT MATTERS We develop a one-dimensional, two-layer model to study the dynamics, efficiency, and tunability of
intracellular transport in the vicinity of converging microtubule morphologies. Our work draws attention to the idea of an
optimal parameter regime for tunability of cell transport properties, allowing cells to achieve large changes in the
functionality—such as the transport time or exit location preference—by changing regulatory parameters, such as the
cargo to microtubule on-/off-rate or the position of the microtubule convergence. We find that in vivo values correspond
to parameters that maximize the sensitivity—possibly ensuring easy tunability of cell function with relatively small
adjustments of transport parameters or organelle positioning.
INTRODUCTION

The transport of material within eukaryotic cells is a
critically important physiological process that cannot
be achieved by passive diffusion alone. In these cells,
cargo, including vesicles and organelles, is dragged
along by a variety of molecular motors that utilize en-
ergy from ATP hydrolysis to power their directed step-
ping motion along cytoskeletal protein filaments with
a well-defined polarity (1). Motors from different fam-
ilies such as kinesins and myosins step along
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different filaments (microtubules (MTs) and actin
respectively), and others such as dynein move along
the same MT filaments as kinesins but in the oppo-
site direction. Transport at the cellular scale is there-
fore a complex process that involves phases of
multiple motors effecting directed transport along
cytoskeletal filament networks interspersed with pas-
sive diffusion of the cargo (2, 3). This process is
essential for the transport of a variety of cargos be-
tween specific locations and organelles within the
cell. Examples include the transport of cargo in cilia
(4), between the plasma membrane and Golgi appa-
ratus (5), (6), between endoplasmic reticulum and
Golgi (7), (3), transport of viruses toward replication
sites (8), (9), and the transport of many other vesicles
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FIGURE 1 (a) A model of a cell in which microtubules have a
strong central organization, with minus ends at the centrosome. A
dark circle represents an organelle. Dynein motors are shown mov-
ing on microtubules. (b) One-dimensional morphology found in den-
trites. Here, the ends of the same polarity from different
microtubules can face each other. This schematic is based on
(20). Created with BioRender.com.
and organelles for various functional purposes (see
review (3)) (10).

Much like the design of road networks affects traffic
flow, the morphologies of the cytoskeletal networks in
cells have been shown to have a significant effect on
intracellular transport (11–14). This is particularly
important as even a single type of cytoskeletal fila-
ment, such as MTs, exhibits a wide diversity of
morphologies within different cell types to enable
different functions (15). In some situations, such as
in melanophores, MTs have a strongly ordered (in
this case radial) organization (16). In others, the
orientation or polarity of MT morphology can be
broadly distributed. In pancreatic b-cells, for example,
MTs are arranged with both an orientational and
polarity disorder (17), although there is an average
polarity. On the other hand, MTs in neuronal dendrites
are essentially aligned with the long direction of
the dendrite, but their polarity is not uniform (18), re-
sulting in junctions of plus or minus ends along the
dendrite.
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A common structural feature that governs these MT
morphologies is the microtubule organizing center
(MTOC) that is responsible for growing MTs and local-
izing and stabilizing their minus ends, leading to mul-
tiple MTs converging with their minus ends at the
MTOC (15). Dynein-driven transport along MTs will
move cargo to the vicinity of MTOC, whereas kinesin
mediated transport moves cargo away from it. These
ballistic phases are interspersed with isotropic diffu-
sion for unbound cargo-motor complexes.

The spatial and temporal positioning of the MTOC
therefore allows for transport of some typesof cargo to-
wardandother typesof cargoaway fromspecificorgan-
elles that can act as MTOCs as well as locations within
the cell in the vicinity of the MTOC. The centrosome is
an organelle that often serves as an MTOC especially
during mitosis, and it is typically positioned in the prox-
imity of the nucleus (Fig. 1 a). Centrosomes can there-
fore enable radial transport in both directions such as
kinesin-mediated secretory vesicle transport and the
dynein-mediated transport of endocytic vesicles and
even some viruses toward the nuclear envelope (8,9).
However, in many differentiated cells, other noncentro-
somal locations and organelles can also serve as
MTOCs (19). This is important for generating nonradial
morphologies that can provide specific structural sup-
port or transport directionality. For example, epithelial
cells in many species have apically located MTOCs
that generate an apical-basal orientation of MTs (19),
whereas Golgi and mitochondria have also been re-
ported to perform asMTOCs inmany cell types (5,6,19).

It is also possible to switch between different
modes of transport of the same cargo with the same
MT morphology by changing motor types or kinetics.
For example, in melanophores (16,21), a perinuclear
MTOC produces a radial MT structure with minus
ends in toward the nucleus and plus ends out toward
the membrane. Cells achieve color change by aggre-
gating and sequestering pigment containing melano-
somes near the nucleus via ballistic dynein-mediated
transport. Upon hormonal stimulation, they can switch
to a superdiffusive dispersal phase powered by a com-
bination of kinesin and actin.

In some cases, rather than aggregation or dispersal,
cargo needs to traverse regions with convergent MT
morphologies. Such cases occur in dendritic pro-
cesses of neuronal cells that have been shown to
have regions of alternating polarity of MTs (18)
(Fig. 1 b). Directed transport of dynein (kinesin) car-
rying cargo at a junction of multiple minus ends (mul-
tiple plus ends) will have to overcome what is
essentially a trap to maintain observed unidirectional
transport toward or away from the main cell body (18).

Finally, the location of MTOCs can also be tuned
over time to accommodate different cellular functions
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FIGURE 2 One-dimensional model with dimensionless parame-
ters.
such as sequestering and dispersal of cargo. An
example occurs in lymphocytes that enable cytotox-
icity by secreting the contents of lysosomes (lytic
granules) at the immunological synapse to kill the
target cell. Here, dynein-dependent sequestering of
the lytic granules at the MTOC occurs rapidly, followed
by the gradual movement of the MTOC toward the syn-
apse with subsequent secretion (22,23).

In all these cases, it is important to understand the
dynamics of the transport and its sensitivity to biolog-
ical parameters in order to understand functional effi-
ciency and robustness. In particular, given the wide
variety of functional contexts in which the converging
MT geometry facilitates transport, it is critical to un-
derstand the general principles governing dynamics,
efficiency, and tunability of such transport in the
MTOC vicinity.

To address this gap, we develop a simple one-
dimensional model that includes advective transport
toward an attractor (such as the MTOC) and diffusive
transport that allows particles to reach absorbing
boundaries (such as cellular membranes). This can
be viewed as a two-layer model consisting of an
advective layer (AL) endowed with an attractor, a diffu-
sive layer (DL), and absorbing boundaries along the
perimeter of the domain (see Fig. 2). The number of in-
dependent control parameters in this problem can be
reduced to four. These are the rates of attachment
to and detachment from MTs, advective velocity, and
the placement of the attractor within the domain. We
take the residence time, or more precisely, the mean
first passage time (MFPT), for cargo to reach the
boundaries as a measure of the effectiveness of
sequestering or directed transport (large MFPT) and
diffusive dispersal (low MFPT). In other words, given
an initial location of the cargo within the domain
(determined by the placement of the source of cargo,
e.g., an organelle), this quantity tells the average
time to reach either of the absorbing boundaries (i.e.,
escape the domain, e.g., the cell) or a specific bound-
ary (in one dimension, left or right). Another relevant
quantity is the probability of escape through one or
the other boundary.
Using this model, we were able to make a series of
physiologically relevant predictions—on which we
report here.

Symmetric, or nearly symmetric, attractor positions
(centrosomal MTOCs near the nuclei for example) can
give rise to a significant increase in the value of
MFPT—thus switching from disperal to trapping—
within a certain range of dimensionless on-/off-rates.
Concurrently with this rise of MFPT, the probability
to escape purely diffusively goes to zero in the same
range of (dimensionless) on-/off-rates. This means
that for larger on-/off-rates, any cargo particle will
have to experience at least one episode of motion on
MTs. Interestingly, biophysical parameters in cells
correspond to this range of dimensionless on-/off-
rates, suggesting that cells can access the full range
of MFPT regimes (from dispersal to trapping).

Second, when the attractor is positioned asymmet-
rically (off-center) in the domain, representing noncen-
trosomal MTOCs for example, we predict the existence
of optimal on- or off-rates that minimize the MFPT.
This suggests that rates could be tuned in cells to
achieve fast, targeted delivery of cargo that needs to
be gathered first, such as the case of lytic granules
in lymphocytes discussed above. It is to be noted
that a similar optimization has been predicted in the
study of diffusion with stochastic reset (24), (25).
Indeed, attachment to the MT, followed by a rapid
transport to the attractor, followed by detachment
from the MT back to diffusion in the cytoplasm is
effectively a reset.

When the on-/off-rate is much larger than all other
rates in the problem, the model reduces to an effec-
tively one-layer system. Here, we demonstrate that
even a slight asymmetry in the position of the attrac-
tor can lead to a very strong amplification of the
preferred exit end. This provides an example of sensi-
tivity to small parameter changes—in this case asym-
metric of the attractor placement—an effect that can
be exploited by cells with noncentrosomal MTOCs or
by dynamically repositioning MTOCs to select a
preferred location for cargo to be targeted to.

It is to be noted that cellular transport typically takes
place in two and three dimensions, whereas our math-
ematical analysis is based on a one-dimensional
model. This approximation allows us to solve the prob-
lem analytically and shed light on qualitative features
of the problem. Additionally, there are scenarios that
are genuinely one-dimensional such as in neuronal den-
drites that we discussed above. Dendrites are much
larger in length than they are in diameter (26), and
MTs are typically aligned along the long axis of a
dendrite. Thus, transport in dendrites is effectively a
one-dimensional process. Moreover, as discussed
above, dendritic MTs have regions of alternating
Biophysical Reports 4, 100171, September 11, 2024 3



polarity of MTs (18), resulting in advection toward a
central junction, a setting that matches our one-dimen-
sional model. Although the main goal of this paper is to
theoretically identify ranges of parameters correspond-
ing to different functional regimes such as aggregation
and dispersal and the sensitivity to parameters in these
regimes, specific examples of cell types operating in
each parameter regime will also be discussed.
MATERIALS AND METHODS

Model

We consider the minimal model in a one-dimensional domain of
length L. It contains an AL that represents motion along MTs and
a DL that represents diffusion in the cytoplasm. We assume that
attachment to and detachment from MTs are Poisson processes,
endowed with rates a and b, respectively. This means, for example,
that a motor spends on average a time 1=b advecting after attaching
to an MT. While advecting on the AL, particles move with a uniform
velocity toward an attracting fixed point (or attractor) located at
some coordinate x ¼ X0 between x ¼ 0 and x ¼ L (see Fig. 2).
The region of length L serves as a domain of attraction for the attrac-
tor at x ¼ X0. For example, in linear geometries like dendrites, two
successive regions with alternating polarity of MTs (junctions of
plus ends or minus ends facing each other) would be a domain of
attraction for the intervening junction, whereas for radial geometries,
the entire cell can serve as a domain of attraction for dynein-trans-
ported cargo to the centrosome. We wish to compute the time evo-
lution of the cargo density within the domain of attraction, which
allows us to calculate other related quantities such as currents,
the MFPT, and likelihood of exit at each end.

Letting rðxÞ and qðxÞ be probability densities of particles in the AL
and DL, respectively, the dynamics are given by

vr

vt
¼ � v

vx
ðvðxÞrÞ þ aq � br (1)

vq v2q
vt
¼ � aqþ brþ D

vx2
(2)

on 0% x% L. The velocity field is given by�

vðxÞ ¼ þv0 . x < X0

� v0 . x > X0
(3)

The parameters are the attachment and detachment rates a and b,
the diffusion coefficient D, the advective velocity on MTs v0, and the
location of the attractor X0. There are absorbing boundary condi-
tions at x ¼ 0 and x ¼ L, i.e., rð0Þ ¼ qð0Þ ¼ 0 and rðLÞ ¼
qðLÞ ¼ 0, corresponding to a permanent exit from the domain. Alto-
gether, there are six physical parameters.

We switch to dimensionless variables by rescaling the lengths by
L and times by L2=D. Thus, x0 ¼ x=L and t0 ¼ tD=L2. The resulting
equations are

vr

vt0
¼ � v

vx0
ðv0ðx0ÞrÞ þ aq � br (4)

vq v2q
vt0
¼ � aqþ brþ

vx02
(5)
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on 0 < x0 <1, with rð0Þ ¼ qð0Þ ¼ 0 and rð1Þ ¼ qð1Þ ¼ 0, the velocity
field

v0ðx0Þ ¼
� þv . x0 < X
� v . x0 > X

;

where X ¼ X0=L, v ¼ v0L
D , a ¼ aL2

D (on-rate), and b ¼ bL2
D (off-rate).

From now on, x; t; and v will refer to the dimensionless variables.

The model is depicted schematically in Fig. 2.

Range of parameters

Here, we review the values of parameters from the literature. The
order of magnitude of both the on-rate a and off-rate b are
expected to be of the order of 1 per second. For example, (11)
cites b ¼ 1 s�1, whereas (27) reports b ¼ 1 s�1 for kinesin-1
and 0.25 s�1 for cytoplasmic dynein. Off-rates also depend on
ATP concentration (28). The calculation of on-rates of cargo is
nuanced, as it involves the number of motors that are attached
to cargo, their diffusion coefficient on the cargo, and the proximity
of a motor to the MT. These issues are discussed in (28) and ref-
erences therein; see also (29). The source (27) reports a ¼ 5 s�1

for kinesin-1 and 1.5 s�1 for cytoplasmic dynein. The work (30)
report kinesin on-rates 4:752:4 s�1, measured experimentally,
and they cite another experimental measurement of kinesin
average off-rates to be 0.42 s�1 in the absence of cargo. Overall,
the order of magnitude of 1 s�1 is a reasonable estimate for both
the on- and off-rates. MT lengths typically fall in the range of
1 � 10 mm (11). This is consistent with in vivo studies (31) and
predictions of theoretical models (32). However, the length of
advective path may be much larger. For example, in neurons, a
cargo that needs to be delivered from the soma to synapses on
the ends of axons will travel a length of the order of a meter
(3). The velocity of molecular motors on MTs is on the order of
1 mm=s (3), (11), (27), although this quantity also has a degree
of variability (33), (34). Diffusion coefficient of vesicular organ-
elles in the cytoplasm fall in the range 10�3 � 10�1 mm2=s (3).
Similar values of parameters are reported in the theoretical paper
by Smith and Simmons (35). It deserves to be mentioned that
most of these parameters come from in vitro studies. Indeed, ob-
taining parameters in vivo is a notoriously difficult task. Having
said this, our results do not depend on exact values of real param-
eter values. Rather, our goal is to predict what (in vivo) parameter
regions correspond to different behaviors (for example, seques-
tering of cargo versus easy dispersal of cargo).

Given these physical parameters, our dimensionless parameters
a and b will take on values in the range ½10;105�, and parameter v
will take on values in the range ½10;104�. There are four timescales
in the problem: 1=a, 1=b, the advective timescale 1=v, and the
diffusive timescale (which is of order 1 in dimensionless units).
Different special cases or behavioral regimes emerge when one
of these timescales differs significantly from the others. The limit
that is particularly amenable to analysis is one in which 1=a and
1=b are both much smaller than the advective time (which is of or-
der 1=v in dimensionless units) and diffusive time (which is of
order 1 in dimensionless units). We will formally call it the
a; b/N limit.
Analytical approach in the one-layer limit

A very important special case is a ¼ b. As a ¼ b/N, the model
reduces to an effective one-layer model:

vP
vt

¼ � v

vx

�
vðxÞPðxÞ � vP

vx

�
; (6)



where Pðx; tÞ is the probability density (i.e., P describes both q and r,
which become identical). A general solution will be written as an ei-
genfunction expansion:

Pðx; tÞ ¼
X
n

cnpnðxÞesnt; (7)

where pnðxÞ and sn are nth eigenfunction and eigenvalue, which
satisfy Opn ¼ snpn , with the operator O given by
O ¼ � v

vx

�
vðxÞ � v

vx

�
; (8)

with �

vðxÞ ¼ þv . x < X

� v . x > X
(9)

and a constant v. Thus, the one-layer model contains two parame-
ters: dimensionless advective velocity v and dimensionless position

of the attractor X, which can take on values between 0 and 1.

The computation of eigenvalues sn and eigenfunctions pnðxÞ of
the operator O, as well as the computation of the eigenfunctions
qnðxÞ of the adjoint operator Oy , is given in Supporting Material B.

Starting from the initial condition Pðx; t ¼ 0Þ ¼ dðx � x0Þ, the
probability density will be given by

Pðx; t; x0Þ ¼
X
n

q�nðx0ÞpnðxÞR 1
0 q�nðx0Þpnðx0Þ dx0

esnt (10)

The MFPT can be extracted from this probability density, but P
contains more information than just the MFPT.

To calculate the MFPT tðx0Þ, we notice that the magnitude of the
current through the boundary is given by f ðtÞ ¼ ��vP

vx

��
bdry in dimen-

sionless units. Then f ðtÞdt gives the fraction of initial particles
that cross the boundary in the time interval ½t; tþdt� ¼ probability
of crossing that boundary in ½t; tþdt�, since the initial condition is
normalized to 1. So, p ¼ RN

0 f ðtÞ dt gives the probability of ever leav-
ing through that boundary, f ðtÞdtp gives the probability that particles

that leave through that boundary do so in ½t; tþdt�, and finally t ¼RN
0 t f ðtÞp dt is the average time to leave through that boundary, i.e.,

MFPT conditioned on that particular boundary. In this problem, there
are two boundaries, with tl and tr denoting MFPT to exit through the
left and the right boundary, respectively. We expect tl/ 0 as x0/ 0
and tr/0 as x0/1. Finally, MFPT in general—without conditioning
on a specific boundary—is the weighted average of the two: t ¼
tlpl þ trpr , which matches predictions using other methods (36).
We note in passing that in situations in which the ratio a= b is fixed

at a values1 (for example, a ¼ 2b), two-layer predictions in the a/
N limit don't reduce to the one-layer model; by controlling the ratio
of a=b, we control the relative importance of advection versus diffu-
sion, but such a control knob is not present in Eq. (6). We found, how-
ever, that the a/N limit of the two-layer model with a fixed ratio a= b
is approximately captured by the one-layer theory with a velocity
suppressed by a factor a=b; see Supporting Material H.
Analytical approach in the general case

To analyze the full two-layer model, we again seek a general solution
(to Eqs. (4) and (5)) via an eigenfunction expansion of the form�

rðx; tÞ
qðx; tÞ

�
¼

X
n

cn

�
RnðxÞ
QnðxÞ

�
e� snt (11)
(we found it convenient to factor out the negative sign from s

here), where
�

Rn

Qn

�
and sn are the nth (vector) eigenfunction and

eigenvalue, which satisfy O
�

Rn

Qn

�
¼ sn

�
Rn

Qn

�
, with the operator

O now given by

O ¼

0
BBB@

v

vx
vðxÞ þ b � a

� b a � v2

vx2

1
CCCA (12)

and vðxÞ given by Eq. (9). The full model contains four parameters:
dimensionless advective velocity v, dimensionless rates a and b,

and dimensionless position of the attractor X, which can take on
values between 0 and 1. The computation of eigenvalues and eigen-
functions is provided in Supporting Material A.

Remarkably, there are only a finite number of eigenfunctions and
eigenvalues. In other words, the eigenset is not complete. As a ¼
b/N, this number goes to infinity, whereas the lower-lying eigen-
values and eigenfunctions approach those of the one-layer model.
The completeness is not guaranteed, since the operator O is not Her-
mitian. Thus, an expansion such as in Eq. (11) is of limited use and
cannot be used to fit a solution for an arbitrary initial condition—
including a point-like d function initial condition. This also implies
that we cannot compute escape currents andMFPT from such initial
conditions. The distribution exists, but it cannot be found using the
methods used here.

However, we can always compute the ground-state eigenvalue, s1.
Then, the time 1=s1—although not a true MFPT—is an estimate of a
characteristic time for escape. This estimation should becomemore
accurate as escape events become rare (MFPT [ than all other
timescales)—for example, when v is sufficiently large. In the rare
event regime, the gap between s1 and s2 is much larger than the
gap between all other eigenvalues. Therefore, higher eigenmodes
contribute little to the probability current in the rare event limit.
Moreover, although this calculation does not give IC dependence,
MFPT loses this dependence as escape events become rare, since
the system will, with overwhelming probability, first visit the attrac-
tor following the initial location before escaping through boundaries.
We found that in practice the estimation 1=s1 agrees with MFPT
computed in simulations quite well over a wide range of parameters.
So, when it comes to the general a and b cases, we will state 1=s1 as
analytical estimates of MFPT.
Monte Carlo simulation method

We considered a simple one-dimensional computational model to
simulate the transport process in a domain of length L with attractor
formed by oppositely oriented MTs. Our computational model in-
volves two layers, an AL where the particle undergoes active trans-
port and a DL where it does a one-dimensional random walk. We
consider one particle at a time. To begin, we initialize the particle
at position x ¼ x0 within the domain x˛ ½0; L ¼ 1� either in the DL
or in AL as required. We consider that the particle can switch from
DL to AL with a rate a and from AL to DL with a rate b. When a particle
switches to DL, a time td is drawn from the exponential distribution
e� at , and the particle is allowed to diffuse for n ¼ td=Dt number of
steps. Dt is the time step in the simulation. In each step, the position
is updated as

xðtþDtÞ ¼ xðtÞ þ rDx; (13)
where r is drawn from the set f�1; 0;1g with the probability p ¼
1=3. Dx is the step size that is chosen such that the diffusion
Biophysical Reports 4, 100171, September 11, 2024 5



FIGURE 3 A sample trajectory generated by
the Monte Carlo simulation. Diffusive motion
is indicated with an orange line, and advective
motion with a magenta line. Gray colored lines
indicate more sample trajectories. Here, X ¼
0:5. Cartoon created with BioRender.com.
constant of the particle D ¼ pDx2

Dt is 1. Right after finishing a diffusive
portion of a simulation run, the particle switches from DL to AL. In
the AL, the particle stays for a time ta drawn from e� bt , i.e., n ¼
ta=Dt number of steps. The position of the particle in the AL is up-
dated as

xðtþDtÞ ¼ xðtÞ þ vðxÞDt; (14)

where vðxÞ is the advective velocity given by Eq. (9). These alterna-
tive portions of a simulation run in DLs and ALs are continued until

the particle reaches one of the boundaries (x ¼ 0 or x ¼ 1) or until
maximum simulation time, Tmax is reached. We then repeat with N
particles to get enough statistics to calculate the overall MFPT,
probabilities and MFPTs to exit out of specific boundaries, and other
quantities.

Trajectories

To get the trajectories, we record the data of the x position and the
layer in which particle is located at regular time intervals during each
simulation run.

An example of trajectories is shown in Fig. 3.

Computation of net MFPT

To compute the netMFPT for a given parameter set, we performsimu-
lation runs until the particle exits out of one of the boundaries (x ¼ 0
or x ¼ 1) or until t ¼ Tmax . We record the timeof exit for each run and
then compute the mean and standard error of the mean for all N runs.
Standard error ofmean is computed as the standard deviation divided
by the square root of sample size (scipy.stats.sem).

Computation of conditional MFPT and escape probability

To compute the MFPT for exit specifically through the left (or the
right) boundary, we record the time as well as the boundary through
which the particle exits. Then, we filter out only those simulation
runs where a particle exited out of the left (or right) boundary.
Then, we compute the mean and standard error of the mean for
those runs. We compute the escape probability through left (or right)
boundary as the fraction of runs that exited out of the left (or right)
boundary.

Statistics of visits to the AL

We measure the fraction of simulation runs in which a particle that
started on the DL ended up making at least one visit to the AL. In
each simulation run, we also compute the number of visits to the
AL before exiting. To do this, we update a counter every time the par-
6 Biophysical Reports 4, 100171, September 11, 2024
ticle switches from the DL to the AL. We then compute the average
over N runs.
RESULTS AND DISCUSSION

Variation of the on-/off-rate can change escape
times by orders of magnitude

This problem has many parameters, so we present
important special cases first in order to make sense
of the results. To do that, we start with the symmetric
case, X ¼ 1=2, and we set the particles' initial place-
ment also in the middle, i.e., x0 ¼ 1=2 (this is the initial
condition). We will also let a ¼ b for now. Although
the on- and off-rates are generally not identical, they
are typically of the same order of magnitude. Unequal
on- and off-rates will be discussed next. We will use
the term “switching rate” to refer to on- or off-rates
in the a ¼ b situation, and we denote both rates by
the letter s that stands for switching rate.

Panels (a) and (b) of Fig. 4 display the MFPT as a
function of s at different advective speeds v on a log-
arithmic scale; panel (a) is for initial placement on the
AL (MT), whereas panel (b) is for initial placement on
the DL (cytoplasm). The MFPT is in dimensionless
time units. Dimensionless switching time of 1 (so, s
is also 1) means the timescale for switching between
layers is the same as the timescale to diffuse over the
domain length. To convert to time in seconds, we
multiply by L2=D expressed in physical units. For
example, for L ¼ 1 mm and ¼ 10� 2 mm2=s, the MFPT
of 10 dimensionless time units corresponds to 103

seconds. To help understand the physics of the pro-
cess, we also plot, in panel (c), the fraction of times
that particles initially placed on the DL visit the AL,
as well as the number of times they do so in panel
(d) (also when starting on DL).

We call the reader's attention to panel (a) of Fig. 4
—the plot of MFPT versus s for AL initial condition.

http://BioRender.com


FIGURE 4 Symmetric case: X ¼ 0:5, where the initial location of
particles is also at x0 ¼ 0:5. (a) MFPT versus s with initial condition
(IC) on the AL. (b) MFPT versus swith IC on the DL. Dots and crosses
are simulation results; solid curves are analytical estimations of
MFPT given by 1=s1. The MFPT is in dimensionless time units. To
convert to time in seconds, we multiply by L2=D expressed in phys-
ical units. The last two points (a ¼ 105 and 106) required a smaller

dt ¼ 10� 6

3 ; dt ¼ 10� 4

3 was sufficient for the rest. Therefore, we used
N ¼ 103 for the last two points to optimize simulation time and
N ¼ 104 for the rest. Error bars for MFPT represent the standard er-
ror of mean. (c) Fraction of simulation runs that visit the AL at least
once after starting in the DL. The dashed line is a fit of the form

0:079a. Here, N ¼ 104 and dt ¼ 10� 4

3 . (d) Average number of visits

for particles starting in the DL. Here, N ¼ 103, dt ¼ 10� 4

3 (circles),

and 10�6

3 (diamonds). The x axis is the same in all four plots; the plots
are aligned. The shading guides the eye to the crossover region.
The plus symbols are simulation results. In simula-
tions, the MFPT in this region will be limited by the
simulation time; this is manifested in the saturation
at MFPT ¼ 500, since this was the simulation time.
For simulation time <1=s, particles with initial condi-
tion in the AL will never enter the DL and therefore
will not escape. The solid curves are 1=s1 from the
theoretical calculation, as explained in the section
Analytical approach in the general case. Panel
(a) displays an excellent match between theory and
simulation. The MFPT for particles placed initially on
the AL is limited by the time to transition to the DL
at low s, which is why MFPT behaves as 1=s in this
low s tail.

For s above z10, MFPT becomes insensitive to the
initial layer (AL or DL), as can be seen by the identical
simulation results in panels (a) and (b) in this range of
s (the theory curves are identical in both panels). Thus,
we now switch to discussing panel (b), and phenome-
nology for sT10 will be covered in that discussion.

For s below a value of z10, there is a horizontal
plateau in panel (b). As s increases, the probability of
visiting the AL also increases. Although the fraction
of particles visiting the AL grows as fs, the time to
remain in the AL (the longest timescale in this range
of s) decreases as f1=s, resulting in the plateau of
MFPT versus s. Because the probability (or fraction)
of visits to the AL is less than 1 (for particles starting
in the DL), a particle has a chance to escape purely
diffusively for s in this plateau region. The value of
the MFPT in this plateau is discussed in Supporting
Material E.

The probability of visiting the AL (for particles start-
ing in the DL) eventually reaches 1 at larger s (see
panel (c)). For these s values, particles are certain to
visit the AL at least once; the probability of a purely
diffusive escape is now zero. This happens when the
diffusive time is comparable to the average switching
time (¼ 1=s) and corresponds to sz10, since the
diffusive time is close to 0.1. For any s greater than
this, each particle experiences intermittent advection,
punctuated by periods of diffusion. In other words, on
a typical run from an initial location to one of the
boundaries, a particle's trajectory will include multiple
episodes of advection and diffusion after each other.
A cargo-motor complex diffuses in the cytoplasm, at-
taches to the MT, advects for some time, detaches
back into the cytoplasm, diffuses, then attaches again,
and so on. The number of such attachment events
grows with s, as demonstrated in panel (d). As a result,
the role of advection that brings particles back into the
interior grows with s. As the propensity of particles to
be thrown back into the interior grows, so does
MFPT—for v >1.

The situation for s >10 is different if v < 1. A typical
time spent in each layer is 0.1 or less. Thus, the dis-
tance advected over this time period is less than 0.1
if v < 1. In other words, the advective distance be-
comes less than the diffusive distance, so advection
does not disturb the position of the particle while it
spends time in the AL before switching back to the
Biophysical Reports 4, 100171, September 11, 2024 7



DL. For this reason, MFPT is not affected by the
increasing switching rate, and it does not rise if v < 1.

Going back to the v >1 case, at sufficiently large
switching rate, the second plateau is reached. Here
the switching between the layers is so rapid that
there's an effectively one-layer regime. This regime
will be studied in Section one-layer limit. Interestingly,
it is in this one-layer regime, where the dependence of
MFPT on velocity is most pronounced, and this depen-
dence scales exponentially in v. In contrast, velocity
has essentially no effect on the MFPT for s < 10.

Because the region of s over which MFPT rises (if
v > 1) connects two plateau regimes, we will call it
the “crossover region”; i.e., it's a region in which the
behavior crosses over from the one dominated by
diffusion to the one where diffusion and advection
play equal roles. This crossover region is broad—it
can be several decades wide—and is marked by a
drastic growth of the MFPT, especially at larger v.
We indicate it in Fig. 4 by a shaded band. The location
of the crossover—defined, for example, by the point of
inflection—scales like v4, as explained in Supporting
Material H.

We comment in passing on the slight bump in the
MFPT seen in Fig. 4 b—from the value of z 0:1 to z
0:2 at sz10�2. As suggested by the plot of the frac-
tion of visits to the AL, at this switching rate, the frac-
tion of simulation runs (out of N) that visited the AL
becomes nonzero; below this crossover, the AL is
not visited by any of N simulations, and the MFPT is
a purely diffusive time ¼ 0:125 (or 12.5 s using
the example parameters of L ¼ 1 mm and ¼ 10� 2

mm2=s). The absence of visits to the AL below a certain
s is an artifact of the finite N. Despite a decreasing
probability of visiting the AL with smaller s, increasing
N would cause some simulations to reach the AL for s
below 10�2, and this bump in the MFPT would be
pushed to smaller s. With an infinite number of simu-
lations, the plateau with MFPT z0:2 would extend
down to arbitrarily small s.

The story conveyed by Fig. 4 can be summarized as
follows. Cargo that are produced close enough to MTs
that they have a high likelihood of binding to one can
be considered as starting in the AL. For such cargo,
the MFPT shows an interesting nonmonotonic
behavior. The values of MFPT at low switching rates
are limited by the time to switch to DL. As the swi-
tching rate increases, the MFPT drops in proportion
to 1=s as cargo can access the DL more and are able
to escape quicker. However, when the switching rate
becomes large enough that diffusive and switching
times are comparable, more than one visit to both
layers becomes likely, and we enter the intermittent
regime where the MFPT increases and then saturates.
For cargo initially produced off MTs, on the other hand,
8 Biophysical Reports 4, 100171, September 11, 2024
escape time (or MFPT) will be diffusive until the
average switching time becomes comparable to the
diffusive time. For switching times less than that,
advection becomes significant, and the impact of
advection increases with decreasing switching time,
leading to an increase in MFPT. It eventually plateaus,
or reaches a maximal value, as the cargo-motor com-
plex experiences advection and diffusion equally.
Here, the switching between AL and DL is so rapid
that it is well-described by an effective one-layer
model. In this regime, the MFPT depends most sensi-
tively on v, and this dependence is exponential.

Supporting Material C displays examples of particle
trajectories for a broad range of s that cover all of the
behavioral regimes shown in Fig. 4. These figures
demonstrate the change in the character of trajec-
tories—from the types that contain advective periods
long enough to arrive to the attractor at low s, to inter-
mittent behavior in the crossover region, to very rapid
switching between layers for s beyond the crossover—
when the model is effectively in the one-layer regime.

So far, we presented results with a ¼ b. If asb,
but the ratio a=b is fixed (for example, b ¼ 0:5a or
b ¼ 2a), the shapes of the MFPT curves will be qual-
itatively the same. As one would expect, if b=a < 1 (for
example, b ¼ 0:5a), the MFPT would be larger than if
a ¼ b—since particles spendmore time in the AL, sup-
pressing escape. Conversely, if b=a >1 (for example,
b ¼ 2a), MFPT is smaller than if a ¼ b—since parti-
cles spend more time in the DL, promoting escape.
Quantitative connections to intracellular transport

We first make the general observation that the cross-
over (where MFPT increases dramatically) takes place
between s ¼ 10 and s ¼ 104. Remarkably, this is the
general range of these parameters found in cells; see
“range of parameters” in the materials and methods
section. This suggests that cells are able to exploit
the full dynamical range of behaviors. Indeed, the
crossover region is where a change in parameter
(the on-/off-rate) gives rise to the largest change in
the outcome (MFPT)—especially at larger values of
v. Thus, cells can exploit the entire range of transport
modalities, from trapping to dispersal, for a single
cargo by regulating the parameter values or simulta-
neously exploiting different modalities for different
cargos with different intrinsic parameters.

We now relate our theoretical predictions quantita-
tively to the specific biological example of transport
in the quasi-one-dimensional geometries of axons
and dendrites. To do so, we first estimate the actual
values of our model parameters for this system. Veloc-
ities of 0:6 � 2 mm=s for 30- to 40-nm-sized vesicles
were reported (37) in axons of C. elegans. Similar



FIGURE 5 Simulation results for asymmetric case: X ¼ 0:85. In
this particular case, x0 ¼ 0:7, but such dips are also present at other
x0. The initial condition is on the DL. Errors bars represent the stan-
dard error of mean.
speeds have been reported for motor-driven transport
of mitochondria—a much larger organelle—in axons
and dendrites (38), (39) as well as for the motor-driven
velocities of peroxisome vesicles in dendrites of hip-
pocampal neurons (40). Thus, the advective velocities
of motors on MTs in axons and dendrites can be taken
to be of the order of 1 mm=s. On- and off-rates on the
order of 0.1 s�1 have been estimated and reported
(41),(35), (42) for different axonal and dendritic cargo.
Cytoplasmic diffusion coefficients for small vesicles
in neurons have been reported to be in the range of
0.025 mm2=s to z0:06 mm2=s depending on crowding
conditions (43).

Based on these literature values, we will use the
value 1 mm=s for advective speed, 0:1 � 1 s�1 for
on- and off-rates, 0:01 � 1 mm2=s for diffusion coeffi-
cient, and 1 � 10 mm as a range of MT lengths that we
reported in the “range of parameters” section. This
gives the following range of dimensionless parame-
ters: 1 < v < 103, 10�1 < s < 104. Note that this range of
s covers the crossover region—where MFPT increases
dramatically by many orders of magnitude. Although
the range of s alone is too wide to call this behavior
“sensitive dependence of MFPT upon a change in s,”
including an additional freedom in adjusting dimen-
sionless advective velocity justifies this term, because
MFPT scales exponentially with v in the second pla-
teau (see “one-layer limit” section). Consider, for exa-
mple, s ¼ 300 and v ¼ 20, which according to our
1=s1 theory gives tz3:1 (if D ¼ 0:1 mm2=s and L ¼
5 mm, then dimensionless v ¼ 20 corresponds to
a physical velocity of 0.4 mm=s and s ¼ 300 cor-
responds to switching rate of 1.2 s�1—all very real-
istic; then t ¼ 3:1 corresponds to z13 minutes).
Increasing s by a factor of 2 (for example, by
increasing the on and off-rate by this factor) gives
tz7:6. However, if we now also increase v by a factor
of 2, we get tz34. On the other hand, s ¼ 300 and
v ¼ 40 would have given tz6:7 Thus, realistic
changes of multiple parameters together, which could
happen for different cargos carried by different motors
on the same filaments, resulted in an overall increase
of MFTP by an order of magnitude.

Our findings suggest that the occurrence of neigh-
boring MTs that face each other with the opposite po-
larity can have a strong effect on slowing down
transport of cargo down the length of dendrites—and
the propensity for this changes most rapidly in the
crossover region.
Asymmetric attractor placement results in an
optimal on-/off-rate that minimizes the MFPT

We now consider the effect of asymmetric attractor
placement; i.e., the attractor is closer to one end of
the domain (exit) than the other. We found that placing
the attractor asymmetrically can give rise to a counter-
intuitive decrease in MFPT with increasing switching
rate; see 1 < s < 102 in Fig. 5 (the rise in MFPT at
sz10�2 is due to the finite N effect described above).
This effect is only seen at larger v (contrast the behav-
iors of v ¼ 0:1;1 versus v ¼ 10; 20). The decrease
happens over a range of 1=s that is comparable to
the advective time, � 1=v. For example, for v ¼ 20,
the timescale to travel advectively to the attractor is
� 0:05, whereas the decrease is seen for s between
1 and 100, which corresponds to the timescale be-
tween 1 and 0.01.

We can explain this dip as follows. At sufficiently
large switching rate (z1 in Fig. 5), the escape through
the end far from the attractor becomes unlikely, and
most of the particles exit through the close end,
lowering the MFPT.

Further increase of s causes all escape events to be
rare, and particles congregate around the attractor for
a long time, leading to another increase in the MFPT
(we see that at sz102 in Fig. 5). Additional discussion
to support this explanation can be found in Supporting
Material G.

Fig. 6 shows an example of the dip phenomenon
due to only the parameter a varied at fixed b. The
dips in Fig. 6 happen again for asymmetric attractor
placement, because increasing a causes particles to
return back to the attractor, thus minimizing the
chance for them to wander too far while diffusively
exploring the long part of the domain. On the other
hand, increasing a even further tends to keep the par-
ticles in the AL and therefore prevents them from
escaping (particles cannot move in the direction of
Biophysical Reports 4, 100171, September 11, 2024 9
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FIGURE 6 tðaÞ at fixed b ¼ 169. (a) X ¼ 0:5, and (b) X ¼ 1= 26.
v ¼ 13 for both. Lines, theory; dots, simulation. Red dots, IC on the
diffusive layer; blue dots, IC on the advective layer. The numbers for
the two types of initial conditions are not identical, but the difference
is almost invisible. The theory prediction is 1=s1, the inverse of the
ground state eigenvalue, which is an approximation of the exact
MFPT. The IC in the simulation was at x0 ¼ 0:5. The simulation
time was 1000, which is the reason for flattening of the simulation
data at large a in (a).

a

b

FIGURE 7 tðbÞ at fixed a ¼ 169. (a) X ¼ 0:5, and (b) X ¼ 1=26.
v ¼ 13 for both. Lines, theory; dots, simulation. Red dots, IC on
the diffusive layer; blue dots, IC on the advective layer. The theory
prediction is 1=s1; the inverse of the ground state eigenvalue, which
is an approximation of the exact MFPT. The IC in the simulation was
at x0 ¼ 0:5. We again see saturation of simulation results at low b
at the simulation time (here, 1000 time units).
the ends when they are in the AL due to the advective
flow being directed toward the attractor).

These dips are somewhat counterintuitive—an over-
all escape time is lowered by increasing the tendency
to go toward the attractor inside the domain—as long
as the attractor is placed asymmetrically. A similar
phenomenon has been reported in connection to the
problem of MFPT with a reset (24), (25), (44). Here,
in addition to diffusion, a particle experiences a reset
back to some location, and resets form a Poisson pro-
cess, endowed with a reset rate r. The authors found
there exists an optimal rate, r�; which minimizes the
MFPT out of the semiinfinite domain. We note, howev-
er, that these studies return the particle back to the
reset location once it has hit the absorbing end of
the semiinfinite domain, thereby conserving the prob-
ability. This is different from our problem, in which
the total probability inside the domain decreases
with time, because once particles have reached one
of the two absorbing ends, they are not returned
back into the domain.

This difference aside, the problem that we are
analyzing can be viewed as a version of a reset prob-
lem, although the time to reset is not instantaneous.
Moreover, the reset location is not necessarily the
location of the attractor x ¼ X, since a particle has
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a chance to return to the DL before reaching the
attractor.

The limit of infinite vwould correspond to the instan-
taneous reset to the attractor, and the limit b/0
would cause the resetting to take particles back to
x ¼ X, i.e., approximating the standard reset problem
(although, again, without returning of particles that
have reached either of the domain ends).

The dip phenomenon is also observed when b is var-
ied at fixed a; see Fig. 7. At low b, MFPT is dominated
by the waiting time 1=b to return from the attractor to
the DL. A large b asymptote (for b[ a) is the regime
of purely diffusive motion; the particles are forced
into the DL. Evidently, having some acccess to the
AL leads to a lowering of MFPT because it allows
more material to congregate close to one end.

It is interesting to ask what effect increasing the
advective velocity would have. The intuition—sup-
ported by the physics of the one-layer model—is that
higher v should lead to either an increase of the
MFPT or the disappearance of the dip, because with
sufficiently large velocity, the density will be more
and more localized near the attractor; so, even though
the attractor is closer to one end than the other, it is no
longer close to this end in comparison to the width of
the density distribution. However, analytical calcula-
tions in fact predict the decrease in the value of 1=s1
at a fixed a with increasing v; see Fig. 8.



FIGURE 8 Top to bottom: v ¼ 20 (black), 40 (blue), 60 (purple), and
80 (red). Here, X ¼ 1=26, and b ¼ 169.

FIGURE 9 Top to bottom: X ¼ 3=26 (red), 2=26 (blue), and 1=26
(black). Here, v ¼ 20, and b ¼ 169.
Fig. 9S (in Supporting Material F) sheds light on the
reason for this counterintuitive prediction. Although
the density profile in both layers does become more
localized with larger velocity (as expected), the part
of the profile between the attractor and the close
end is not affected; the decrease in the spread is
due to the other side of the profile. Therefore, as veloc-
ity is increased, more and more material is localized
near the close end, whereas the chance of escaping
through this end does not diminish—resulting in the
overall decrease of escape time.

We also study the effect of varying X in Fig. 9. Here
the results conform to the intuitive expectation that a
decrease in asymmetry will lead to a decrease in the
magnitude of the dip (with no dip at all in a completely
symmetric geometry). An attractor placed much
closer to the left end than the right one prevents parti-
cles from wandering too far to the right (by increasing
a, and thus the reset rate), causing the particles to
congregate closer to the left end in the more asym-
metric situation, thus leading to a lower MFPT.

The existence of such an optimum in escape times
as a function of on-/off-rates that is additionally
tunable by velocity is an interesting feature that cells
could potentially exploit. Firstly, they can achieve
faster than diffusion export using a naturally occurring
MTOC stabilized MT geometry and dynein motors that
walk toward the MTOC. Secondly, this export can be
spatially directed to a location close to the MTOC
(which is not possible with motors that walk away
from the MTOC). Such directed export using an
MTOC and dynein-transported cargo occurs in the
export of lytic granules from immune cells (22,23).
Lytic granules aggregate at the MTOC, which is posi-
tioned near the immunological synapse, directing the
export of toxic granules to the target cell. In fact, in
this case, cells exploit both aggregation due to sym-
metric MTOC positioning as well as more effective
dispersal due to asymmetric positioning that acceler-
ates site-directed export by moving the MTOC close
to the synapse.
One-layer limit

Dynamics of probability density

In our discussion of Fig. 4, we mentioned that for suf-
ficiently large rate of switching between layers, the
system reduces to an effectively one-layer model.
Remarkably, it is in this one-layer regime where the
dependence on velocity is most pronounced. In the
purely diffusive escape, advection is not felt, and vari-
ation of v has no effect. As the probability to reach the
AL is increased, the effectiveness of the advection
grows. The system experiences advection for part of
the time, and variation of v will have some effect; we
see this in the crossover region. In the one-layer limit
(at sufficiently large s), the system experiences advec-
tion continuously, and MFPT is most sensitive to var-
iations of v; we see this in the second plateau region.
For sufficiently large v, escape is a rare event, and
MFPT scales exponentially with v.

The one-layer situation is similar to activated dy-
namics of a particle in a potential energy well (45).
The random kicking by stochastic forces (which are
represented by diffusion in the equation for the evolu-
tion of probability) has a tendency to kick the particle
out of the well, whereas the force from the well pulls
the system back toward the attractor. A competition
between these two effects will give rise to an exponen-
tial dependence of MFPT. Here, we examine this pro-
cess in detail.

The analytical approach in the one-layer limit is out-
lined in the materials and methods section, with de-
tails in Supporting Material B. These predictions are
verified by simulations (see Supporting Material D).
Here, we present results of analytical calculations.

We show in Fig. 10 several snapshots in the evolu-
tion of the probability density profiles for a specific
Biophysical Reports 4, 100171, September 11, 2024 11



FIGURE 10 X ¼ 0:85, and x0 ¼ 0:35. The distributions are shown
for t ¼ 1:3� 10�5 (black), t ¼ 1:3� 10�4 (blue), t ¼ 1:3� 10�3

(purple), t ¼ 1:3� 10�2 (orange), and t ¼ 1:3� 10�1 (red). Top,
v ¼ 1; middle, v ¼ 20; bottom, v ¼ 60. For v ¼ 1, the distribu-
tions never reach an asymptotic form that is centered on x0 ¼ X.
For v ¼ 60, the profiles at t ¼ 1:3� 10�2 and at t ¼ 1:3� 10�1

are almost the same.
placement of the attractor and specific initial condi-
tion, for three values of the advective velocity.
Following a d-function initial condition, there is a quick
diffusive spread. Although this spread is happening,
the center of the distribution is also advected toward
the attractor.

At v ¼ 20; we begin to see the emergence of a
large-time asymptotic profile centered on the attrac-
tor; the distribution reaches a stationary limiting
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form. For example, for v ¼ 20, the width stops
evolving at tz0:06, and the cusp-shaped profile is es-
tablished in the vicinity of the attractor. As this
limiting profile develops, the diffusive spread of the
density profile is followed by a contraction, as parti-
cles congregate around the attractor and sx decre-
ases. After the limiting form has been established,
the probability to remain in the domain continues to
decrease (the area under the curve will continue to
decrease) as particles exit, although the shape of the
profile remains stationary. For v ¼ 20, the cusp profile
at the time shown contains visibly less area under it
than at earlier times; some of it was lost before this
profile formed (and the profile itself continues to
lose area at a noticeable rate at future times over
similar timescales). However, in the case of v ¼ 60;
there's hardly any area loss before the formation of
the limiting profile (and the profile itself will not
show any noticeable area loss at future times over
similar timescales). In the v ¼ 1 case, the particles
escape before any profile centered on the attractor
has time to establish; the profile evolution is similar
to the evolution in the absence of any advection. For
example, the average position of particles reaches
1=2 in the v ¼ 1 case. On the other hand, at v ¼ 20
and v ¼ 60, the center of the distribution reaches
the attractor at x ¼ X.

All in all, the picture is this: the attractor captures
some particles and pulls them into its vicinity at larger
v, whereas at lower v, most of the particles escape
before this happens. The decay rate also decreases;
as v grows ever larger, the large-time limiting profile
localized around the attractor will decay ever slower,
its rate of decay decreasing exponentially with v
(this is for sufficiently large v; i.e., it is an asymptotic
scaling). In this large v regime, the profile that de-
velops after an initial rapid relaxation may be called
quasistationary—as it decays on a timescale much
larger than all other timescales in the problem. This
is the regime of rare events, and we now discuss the
scaling of MFPT and escape probabilities in this
limiting regime.

Scaling of MFPT in the rare event limit

In this regime, various functions of x0—such as the
escape probability and escape time—develop charac-
teristic distinctions between a boundary layer and
interior regions. This is shown in Fig. 11. As v in-
creases, the MFPT to exit increases, and eventually,
this time becomes much larger than all the other char-
acteristic timescales of the problem. In this large v
regime, escape becomes a rare event. Starting from
an initial condition x0, a particle will, with over-
whelming probability, drift toward the attractor and
fluctuate around it for a time that scales exponentially
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FIGURE 11 Escape probability andMFPT through both ends versus the location x0 of the IC. The attractor is located at X ¼ 0:51. (a) v ¼ 5,
(b) v ¼ 10, (c) v ¼ 20, and (d) v ¼ 40. The aberrations at the edge are numerical artifacts.
with v. Therefore, the initial condition will be forgotten
long before it exits the domain. This effect is mani-
fested in Fig. 11 by distinct plateaus that show the
absence of dependence on x0. We show the compari-
son between such analytical predictions and simula-
tion results of the one-layer regime in Supporting
Material D.

The velocity field is minus the derivative of the
following potential: UðxÞ ¼ vðX � xÞ for 0 < x < X
and UðxÞ ¼ vðx � XÞ for X < x <1. Thus, the effective
activation barrier to escape from the attractor to the
left end of the domain is DUl ¼ vX, whereas the effec-
tive barrier to escape to the right end is DUr ¼ vð1 �
XÞ. On the timescale much smaller than the MFPT, the
probability current through the left end will be jl �
e�DUl , and the current through the right end will be
jr � e�DUr (we're only focusing on factors that are
exponential in v, hence the �). The net current is
j � e� vX þ e� vð1�XÞ. Therefore, the net MFPT is
t � ðe� vX þ e� vð1�XÞÞ�1. However, due to the expo-
nential scaling with v, only one of these terms will be
dominant. For 0:5 < X < 1; it will be t � evð1�XÞ; and
for 0 < X < 0:5, t � evX . In both cases, we get the expo-
nential scaling of the MFPT seen in the right-hand
panel of Fig. 11.

One comment regarding MFPT results is in order.
We notice that the overall MFPT t in Fig. 11 is about
two times smaller than the a ¼ b/N limit in Fig. 4
(see v ¼ 10 and v ¼ 20 graphs). Although a small dif-
ference is due to slightly different X (0.51 in Fig. 11
versus 0.5 in Fig. 4), the main reason for this differ-
ence is that in the two-layer problem, the advection
and diffusion take turns, whereas they take place
simultaneously in the two-layer model. Thus, all
Biophysical Reports 4, 100171, September 11, 2024 13
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FIGURE 12 Difference in escape probability Dp vs. parameters. (a)
Dp versus v. Top (blue), X ¼ 0:55; bottom (orange), X ¼ 0:51. Dots,
full theory; solid curves, Eq. (15). (b) Dp vs. X, given by Eq. (15). Top
(orange), v ¼ 20; bottom (blue), v ¼ 10.
timescales are slowed down by exactly a factor of 2 in
the two-layer model versus its truly one-layer equiva-
lent. In other words, to make the proper comparison,
we must multiply the one-layer MFPT by 2 to match
the a ¼ b/N limit of the two-layer model.

Small asymmetry leads to a large bias in the exit location

One prominent feature of Fig. 11 is the amplification in
the asymmetry in results (for example pl and
pr—probabilities to escape through the left and right
ends, respectively) due to a small asymmetry in the
placement of the attractor. Note that pr ¼ ae�DUr

and pl ¼ ae�DUl , where a is some constant. We can
find this constant from the fact that pr þ pl ¼ 1 (a par-
ticle definitely exists through one of the two ends
eventually). Thus, a ¼ ðe�DUr þ e�DUl Þ�1, altogether
giving

Dphpr � pl ¼ tanh½ðX � 1=2Þv � (15)

We overlay this prediction on top of Dp obtained
from the analytic results (depicted in Fig. 11) in
Fig. 12 a.

Note that whereas there's a growing difference be-
tween pl and pr due to asymmetry, MFPTs to escape
through each end are the same in the plateau region.
The ts in the middle column of Fig. 11 are MFPTs
conditioned on the exit location. Thus, a system is
14 Biophysical Reports 4, 100171, September 11, 2024
much more likely to escape from the closer end
when v is sufficiently large, but those few systems
that do manage to escape from the further end will
escape in essentially the same amount of time.

It is interesting to consider that cells could poten-
tially exploit the exponential sensitivity of exit location
to attractor placement in this regime of parameters.
Thus, cells with noncentrosomal MTOCs that are
located off-center could guarantee export to the
closest adsorbing boundary (either cellular or organ-
elle membrane), albeit at the expense of a very long
transport time. Centrosomal MTOCs that are close to
being symmetrically positioned sit at a critical point.
Slight relocations toward an adsorbing boundary
could also create a dominant preference for cargos
to end up at some defined region of the cell periphery
or organelle in that direction.
DISCUSSION

In this article, we looked at a one-dimensional model
of intracellular transport via a combination of advec-
tion on MTs and diffusion in the cytoplasm. This
one-dimensional model was primarily motivated by a
scenario involving an attractor in the interior of the
cell—for example, the MTOC. There are, however, other
situations where attractors may arise. Consider the b
cell example from the introduction. Here, motors trans-
port insulin granules along MTs. Due to orientational
disorder (46), several MTs can meet with ends of the
same polarity facing each other, forming an aster-
like morphological trap (or attractor) for motors that
would all congregate at this junction (11). It is mean-
ingful to talk about the domain of attraction of such
a trap in the following sense. A molecular motor that
attaches to an MT anywhere within this domain will
be taken toward the attractor, whereas a motor that at-
taches to an MT outside of the domain has a chance
to follow an MT that leads away from a trap. When
placed inside such a domain—where advective motion
along MTs tends to only attract particles—they can
nevertheless escape the domain of attraction of the
attractor by desorbing from MTs and diffusing within
the cytoplasm until they end up outside of the domain.
Naturally, a question about the time to be stuck in the
vicinity of the attractor arises—along with the ques-
tion of how formation of such traps affects the func-
tioning of the cell and the overall transport of insulin
granules across it.

Using our one-dimensional model, we calculated the
escape probability for cargo through each end of the
domain, the MFPT to escape the domain through
each end, and the overall escape probability and
MFPT as a function of the following: the initial location
of the cargo (site of production in the cell), the location



of the attractor (MTOC) toward which the advective
motion is directed, the advective velocity v, and the
cargo on-/off-rates.

We made several predictions. When the attractor is
placed symmetrically, there is a crossover in switching
rates s causing the MFPT to change from t � 0:1
(diffusive timescale) to t that grows exponentially in
v. The range of s over which this crossover happens
is wide—several orders of magnitude—but it corre-
sponds to switching rates actually found in cells.
This served as our first example of tunability that al-
lows cells to achieve large changes in the functionality
by changing regulatory parameters or even simulta-
neously exploiting different transport modalities (trap-
ping or dispersal) for different cargos with different
intrinsic parameters being transported on the same
cytoskeletal architecture.

For s significantly below the crossover, a particle
that was released into the DL has a chance to escape
the domain purely diffusively without ever visiting the
AL. For s at the low end of the crossover region, the
probability of this goes to zero; every particle will be
advected toward the attractor for at least some of
the time. For s above the high end of the crossover re-
gion, the transport enters an effective one-layer regime
and exhibits rare event physics.

Asymmetric placement of the attractor gives rise to
an interesting phenomenon of an optimal switching
rate or an optimal on- or off-rate individually. Thus,
we found that it is possible to minimize the residence
time in the domain by increasing the on- or off-rate,
because that will lower the diffusive spread and bring
particles close to one end of the domain. It is inter-
esting to speculate whether the parameter rates for
cargos that need to be dispersed (while simulta-
neously sequestering other cargo) could be tuned to
this optimal regime and whether it is, in fact, being ex-
ploited by cells like the immune cells to export lytic
granules.

We discussed the effective one-layer regime that re-
sults at sufficiently large on-/off-rate. We also dis-
cussed the rare event physics that happens at large
dimensionless advective velocities. In such a rare
event regime, a portion of particles will be localized
in the vicinity of the attractor for a time exponentially
long in v. We provide an explicit form of this exponen-
tial dependence v.

The idea of exponential sensitivity and phenomena
such as strong amplification of the preferred exit end
due to a slight asymmetry is tantalizing. Extrapolating
this finding to two dimensions suggests that in com-
plex, crowded environments that allow for multiple
trap-like morphologies (for example, asters), the distri-
bution of cargo around the cell will be nonhomoge-
neous. This remains to be verified in the future, by
extending our model to two dimensions. It is also
interesting to speculate whether cells could benefit
functionally from guaranteeing high specificity of
export location at the expense of long transport times,
in which case the exponential sensitivity we have
shown could be very useful.

Our analysis is one-dimensional. Throughout the
article, we used dendrites as an example in which
such analysis would be applicable. Yet, the majority
of converging MT morphologies take place in two
and three dimensions. Such work is underway. In the
meantime, we cautiously anticipate that the following
aspects of our one-dimensional findings would trans-
late to higher dimensions. First, consider the cross-
over in Fig. 4 in which MFPT can experience a
dramatic growth by many orders of magnitude. This
happens when cargos are prevented from a purely
diffusive escape; the crossover begins where the prob-
ability of visiting the AL becomes 1. With sufficiently
large on-rates, this this is guaranteed to happen, and
if v is greater than 1, we witness the MFPT increase.
In two dimensions with radial MT morphologies, tak-
ing the on-rate arbitrarily large will not prevent some
of the particles from escaping diffusively. Therefore,
we expect that a dramatic rise in MFPT will only
happen with initial conditions sufficiently close to
the convergence point. The more MTs there are, the
larger is this region of initial conditions that will result
in the strong increase of MFPT. A similar comment
can be made concerning the rare event behavior. For
initial conditions not in this region that guarantee a
high chance of hitting MTs (i.e., close to the conver-
gence point), a majority of cargos will escape the
cell (or the domain of attraction of the convergence
point) by purely diffusive mechanism. The remaining
particles will be trapped at the MTOC for a time that
scales exponentially in v.

We also expect the reasoning for the optimal off-
rate seen in Fig. 7 to remain in two dimensions. Forc-
ing cargo off of MTs will result in purely diffusive
times, but allowing particles to remain on MTs will
result in a greater accumulation at the MTOC—which
if placed asymmetrically will lower the overall MFPT.

Our work contributes a new perspective from a
purely mathematical perspective as well. The mod-
eling approach that we use involving two density vari-
ables—one governed by advection and the other by
diffusion—is not new. For example, this framework
has been employed by (35) or by (47). However,
neither paper is concerned with the questions that
we pose—the effectiveness of MTOCs in trapping
cargo. Neither work is framed as a problem of escape,
calculation of MFPTs, escape probabilities, or trapping
probabilities. The work by (47) concerns the situation
of constant v—a situation that allows traveling waves.
Biophysical Reports 4, 100171, September 11, 2024 15



The authors discuss these traveling wave solutions.
On the other hand, (35) is interested in unidirectional
and bidirectional transport in axons and dendrites.
The authors do study spread (or dispersion) of parti-
cles throughout the domain, and they also calculate
currents. However, they are not interested in the ques-
tion of MFPTs; that is, their advective field doesn't
have an attractor, and they also use different boundary
conditions. On the other hand, when we use our model
in the context of a dendrite, the domain of length L is
not the whole dendrite but only the length of two
MTs that face each other with opposite polarity.
Here the MFPT is a measure of the residence time in
the trap created by this local MT arrangement. The re-
view by Bressloff (48) also mentions models of similar
type. Here, they describe a particle in three possible
states; it can advect to the right, to the left, or it can
diffuse. This is described by three coupled equa-
tions—two advective and one diffusive. Our work is
complementary to other prior theoretical models of
transport that involve a combination of diffusion and
advection along MTs—for example, (49) and (50).
However, here too, neither of these sources are
focusing on questions of residence time or the role
of asymmetry.

Interesting extensions to our work could include
studying models with reflecting-reflecting or absor-
bing-reflecting boundary conditions or models in
which the source is on one end and the target is on
the other. Such models would be better suited for
transport of cargo in cilia (4), transport between the
plasma membrane and Golgi apparatus (5), (6), or be-
tween endoplasmic reticulum and Golgi (7), (3), trans-
port of viruses toward replication sites (8), (9), and
other intracellular transport situations (3), (10).
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