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1 | INTRODUCTION

Given integers ¢ > s > 2, the Erdés-Rogers function f,(n) is the maximum integer m such that
every n-vertex K,-free graph has a K -free induced subgraph with m vertices. These quantities in
the case t = s + 1 were studied by Erdds and Rogers [10] more than sixty years ago while address-
ing a question of Hajnal, and are generalizations of the classical Ramsey numbers r(s, t). The study
of f,,(n)for t > s+ 1 has received considerable attention in the recent literature [7, 8, 13, 14, 16,
25, 26], but there is no pair (s, t) with t > s + 1 > 4 for which it is known that f ,(n) = neto@) for
some a = afs, t).

In this paper we focus on the classical case f,,(n). The determination of f,;(n) is
almost equivalent to determining the triangle-complete graph Ramsey numbers, since
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r(3, f,3(n)) < n <r@3, f3(n) + 1). These quantities r(3,t) are known to within a constant
factor [1, 4, 5, 11, 15, 23], and from this one deduces [ ;(n) has order of magnitude /nlogn as
n — oo. As observed by Dudek and the first author, the arguments for lower bounds for f 3(n)
generalize to f ¢, 1(n) for s > 3 as follows. Shearer [24] showed that any n-vertex Ky, ; -free graph
of maximum degree d has an independent set of size Q(nlogd/dloglogd) as d — oo, and the
neighborhood of a vertex of degree d is a K-free induced subgraph. Therefore for all s > 3,

nlogd >}_Q y/nlogn
dloglogd v/loglogn .

In a breakthrough paper, building on earlier works of Dudek and Radl, Wolfovitz [28] proved
14+0(1)

f3a(n) = 0( \/n(log n)120), thereby showing f 34(n) = NG . Soon after, Dudek, Retter, Rodl
[7] improved this to f3,(n) = O(+/n (logn)*?) and showed more generally that f ss1(n) =
O(ﬁ (log n)“sz). Warnke [27] asked whether there exists a constant ¢ > 0 such that for all s > 3,
one has fy.,(n) < ﬁ(log n)¢. In this short paper, we answer this question and significantly
improve the aforementioned bounds on the Erdés-Rogers functions f ., (n) as follows:

Fossa(n) > max {d, Q( )

Theorem 1. For each fixed s > 3, there exists a constant ¢, > 0 such that

fesn(M) < cgV/n logn. )

We did not expend too much effort in optimizing the constant ¢, in Theorem 1; from the proof
one may obtain ¢, < 2!%%, which incidentally shows f; ¢, (n) = n!/2+°() for s = o(log n). Dudek,
Retter and Rodl [7] asked whether for s > 3, f ¢,1(n)/ f;_; ((n) is unbounded as n — oco. This
would not be the case for s > 4 if our upper bound is tight up to a constant factor. We tentatively
make the following conjecture:

Conjecture 1. For all fixed s > 3, asn — oo,
fs,s+1(n) = \/Z(log n)l_o(l)_

This would be in contrast to f,;(n), which has order of magnitude y/nlogn as n — co. The
key barrier in proving lower bounds on say C),(n) is showing that in a K, -free graph one can typi-
cally find induced triangle-free subgraphs with substantially more vertices than the independence
number of the graph. In particular, a result of Shearer [24] shows every n-vertex K,-free graph of
maximum degree d has an independent set of size Q(n logd/d loglogd) asd — oo, so we propose
the following:

Conjecture 2. There exist § > 0 and d,, such that if G is an n-vertex K,-free graph of maximum
degree d > d,;, then G contains a triangle-free induced subgraph H with

n (logd)'+¢

V()| > ==

Conjecture 2 would imply f5,(n) = Q( \/n(log n)1/2+/2), We note that the graph constructed
in this paper shows that § cannot be larger than 1/3 (see the concluding remarks for more details).
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584 | MUBAYI and VERSTRAETE

The proof of Theorem 1 uses the framework of Wolfovitz [28] and Dudek, Retter, R6dl [7], but
requires substantial new ideas, including the construction of Mattheus and the second author [18]
based on Hermitian unitals. It also requires some additional technical steps in the probabilistic
analysis to obtain more careful control of dependencies in order to use the local lemma (see Sec-
tion 4.3). We remark that we avoid the use of the method of containers as in [14, 18], which tends
to incur the loss of further logarithmic factors.

Notation. For a graph G, we write V(G) for the vertex sct of G and E(G) for the edge sct of G. For
a sct X C V(G), let G[X] denote the subgraph of G induced by X, namely the graph with vertex
set X and edge set {fe € E(G) : e C X}.

2 | TOOLS FROM PROBABILITY

We refer to the book by Alon and Spencer [2] for a reference on probabilistic methods in combi-
natorics. We use three standard tools in probabilistic combinatorics; the first is the well-known
Chernoff bound:

Proposition 1 (Chernoff bound). Let Z be a binomial random variable with mean p. Then for any
reale € [0,1],
e2u

Pr(Z > (1 +e)u) < exp <_T> and

2

Pr(Z < (1 —e)u) < exp <_<—:T,u> .

The next proposition is derived in a standard way from Janson’s inequality [2, 12], and we give

a proof in the Appendix. The technical details serve mainly to obtain an explicit constant in the
upper bound in Theorem 1 that is exponential in s. Let y be a coloring of an n-element set Y with

s colors, with color classes Yy, Y, ..., Y. Then the random s-partite graph G, ,(x) samples edges
independently with probability p from the complete multipartite graph with parts Y;,Y,,..., Y.

Proposition 2 (via Janson’s inequality). Let s > 3, n > 2*% and p = (8s/n)*/5, and let x be an
s-coloring of an n-element set whose color classes have size at least n/2s each. Then

Pr(Ky € G, (X)) < exp(=2%"*n). )

We shall finally require the Lovdsz local lemma [2, 9] in the following form. We write A for the
complement of an event A in a probability space.

Proposition 3 (Lovasz local lemma). Let A;, A,, ..., A, be events in some probability space and
suppose that for every i € [n], thereis a setJ; C {1, 2, ..., n}, such that A; is mutually independent of
{A gV {i}}. Suppose there exist real numbers y; € [0, 1) such that for every i € [n],

Pr(A) <v; [Ja -7 (5)

JEJ;
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Then

Pr(ﬁA_l) > ﬁ(l—yi) > 0. (6)
i=1 i=1

3 | HERMITIAN UNITALS, s-FANS AND INTERSECTION GRAPHS

The proof of Theorem 1 appeals to a construction from projective geometry, which was used in
[18] to obtain nearly optimal asymptotic bounds on the Ramsey number r(4, t). We very briefly
describe the geometry here in elementary terms, while further geometric background is given in
Barwick and Ebert [3], Brouwer and van Maldeghem [6] and Piper [22].

3.1 | Hermitian unitals in brief

For a partial linear space H, we let P(H) denote the set of points of H and L(H) denote the set of
lines of H. A unital in the projective plane PG(2, g?) is a set U" of ¢* + 1 points such that every
line of PG(2, ¢2) intersects U" in 1 or q + 1 points — the latter are referred to as secants. A classical
or Hermitian unital H, is a partial linear space described in homogeneous co-ordinates as the
following set of one-dimensional subspaces of [FZZ:

P(Hq) = {<x, y, Z) C IFZZ . xq+1 + yq+1 + Zq+1 — 0}.

Here arithmetic is in the finite field F 2, and (x, y, z) is the one-dimensional subspace of [F;’2 gen-

erated by (x,y,z). Then L(H,) consists of the intersections of secant lines with P(H,), so that
there are g*(q> — q + 1) lines in H, each containing exactly g + 1 points of H,.

3.2 | O’Nan configurations and fans

One of the remarkable features of the Hermitian unital is that it does not contain the so-called
O’Nan configuration, namely the configuration of four lines and six points in the left figure below:

p

O’Nan configuration and s-fan
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586 | MUBAYI and VERSTRAETE

Definition 1 (s-fan). For s > 3, an s-fan is a set of s + 1 intersecting lines such that s of the lines
are concurrent with a point p whereas the remaining line # is not concurrent with that point. The
unique point p contained in s lines is the point of concurrency of the s-fan.

An illustration of an s-fan is shown in the right figure above. The fact that H, does not contain
the figure on the left was first proved by O’Nan [21] (see [18] for a short linear-algebraic proof).
The following lemma is a straightforward consequence.

Lemma 1. Every set of s + 1 > 4 pairwise intersecting lines in H, are either all concurrent with a
point of Hg, or form an s-fan.

Proof. Suppose that S = {71,...,£,,}is a set of pairwise intersecting lines in H,. If no three lines
in S are concurrent, then any four lines in S form an O’Nan configuration. So by relabeling if
necessary, we may assume that #;, Z,, ¢5 all contain the point p. If p is concurrent with exactly
s lines in S, then S forms an s-fan, so p is concurrent with at most s — 1 lines in S. Let # and #’
be two distinct lines in S not concurrent with p. For i = 1,2, 3, let p; be the point that lies in both
¢ and ;. If{p;, p5, ps} N ¢’ =@, then ¢,,¢,, ¢, ¢’ form an O’Nan configuration, since every pair
of these lines has a distinct point of concurrency. So let us assume by symmetry that p; € #’. But
now ¢,, ¢, ¢, ¢’ form an O’Nan configuration, since every pair of these lines has a distinct point
of concurrency. Since there is no O’Nan configuration, we conclude that S forms an s-fan or all
lines in S are concurrent with the same point. O

3.3 | Intersection graphs

The starting point of the proof of Theorem 1 is the following graph:

Definition 2 (Intersection graph). The intersection graph G, of H is defined as follows:
V(Gy) 1= L(Hy) and E(Gy) :={{t, 0"y : ¢ n ' nP(Hy) # 3.

In words, the vertices of Gq are the secants, and two secants are adjacent iff they intersect in a
point on the unital. For each p € P(Hq), let C, be the clique in Gy whose vertex set is

V(Cp) ={f € V(Gq) :pEe’l

Since every two lines intersect in at most one point of the unital, the sets E(C p) overallp € P(Hq)
partition E(G,). We can thus view the graph G, as a union of q® + 1 edge-disjoint cliques C,,one
for each point p € P(H,). Additionally, each vertex of G is contained in exactly g + 1 cliques C,,.
More importantly, by Lemma 1, each (s + 1)-clique in G, is either an s-fan in H, or a set of lines
of H, all concurrent with the same point in P(,). Translated into the language of graphs, we
obtain the following fact:

For each (s + 1) — clique K in Gy, there exists Cp, such

that V(K) C V(Cp) or [V(K)n V(Cp)l =s. (A)
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ON THE ORDER OF THE CLASSICAL ERDSS-ROGERS FUNCTIONS 587

We employ the following definition for convenience:

Definition 3 (Trivial and non-trivial cliques). An (s + 1)-clique K in G, such that V(K) C V(C p)
for some p € P(H,) is a trivial clique, and otherwise it is a non-trivial clique.

4 | RANDOM SAMPLING

The proof of Theorem 1 starts with the intersection graph G,. The outline of the randomized
construction is as follows. This graph has q%(q? — q + 1) vertices, and is a union of g + 1 edge-
disjoint cliques C,, each of size q?, such that each vertex of G, is contained in exactly g + 1 of
those cliques. The first step is to randomly sample these cliques with probability ©((log q)/q) and
remove all edges in non-sampled cliques to obtain a random graph G C G, such that the number
of remaining cliques C), is 0(q?log q), each vertex of G is in @(log q) cliques C p» and the number
of non-trivial cliques K, ; on each edge of G is ©(log q)*. We use the Chernoff bound (Section 4.1)
to prove the existence of G. The next step is to destroy all trivial cliques K, in G by taking a
random s-partition of each clique C,, C G to obtain a graph G, . Finally, the non-trivial (s + 1)-
cliques in G are destroyed by randomly sampling edges of G with probability p = ©((log q)~2/%)
to obtain a random subgraph G,. Using Janson’s inequality (Section 4.3) and the Lovasz local
lemma (Section 5), we show that the graph H with vertex set V(G,) and edge set E(G,)) N E(G,)
is a K, ;-free graph with n = g%(q% — q + 1) vertices such that every set of roughly @(\/ﬁ log n)
vertices induces a graph containing a K (in fact, this K will lie within one of the C ,s).

4.1 | Sampling cliques

For a constant a > 128 and g > alogq, randomly and independently sample cliques C,, with
probability (alogq)/(q + 1). Let P be the random set which indexes the sampled cliques and
G =Gy 45 € G, be the random subgraph consisting of the union of edges in E(C},) over all p € P.
More precisely, V(G) = V(Gq) and E(G) = U pePE(Cp). We use the Chernoff bound, Proposition 1,
to prove the following:

Lemma 2. Lets > 3,a > 128 and q > alog q. Then with positive probability,

(i) a(g*logq)/2 < |P| < 2aq?logg;
(ii) eachvertex of G is contained in at least (alog q)/2 cliques C, with p € P;
(iii) foreverye € E(G), the number of non-trivial K, ; C G containing e is at most k = 4(2a log q)°.

Proof. By the Chernoff bound (Proposition 1) with € = 1/2, the probability that |P| > 2aq? log q or
|P| < (ag?®logq)/2 is at most 2 exp(—(aq?log q)/16) < 1/3, so (i) fails with probability less than
1/3. The number of sampled cliques containing a given vertex of G is at most (alogq)/2 with
probability at most exp(—(alog q)/8) = q~%/8 < g~8. Since |V(G)| < q* < q3/3, the probability
that (ii) fails is less than 1/3.

Claim. 1If more than k non-trivial cliques in G contain some edge, then some vertex of G is
contained in more than r = 2a log q sampled cliques. O
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588 | MUBAYI and VERSTRAETE

If this claim is true, then (iii) happens for a given edge with probability at most
exp(—(alogq)/4) < q~8 by the Chernoff bound (Proposition 1) with ¢ = 1. Since the number of
edges of G isat most (g + 1) - (q; ) < q3/3, the union bound shows (iii) then fails with probability
less than 1/3. We then conclude (i)-(iii) hold simultaneously with positive probability.

To prove the claim, fix an edge {u, v} € E(G) contained in more than k non-trivial cliques in G,
and suppose for a contradiction that no vertex of G is contained in more than r sampled cliques.
Let S, be the set of sampled cliques containing a vertex x. By (A), for each non-trivial clique
K =Ky, € G, containing {u, v}, there exists C, such that |V(K) N V(Cp)l =s. If{u,v} € E(Cp),
let V(K)\V(Cp) = {w}. Each clique in S, \ {C,} intersects each clique in S, \ {C,} in at most one
point, hence the number of points that lie in both a clique of S,, and a clique of S, is at most r2.
Since w must be such a point, the number of choices of w is at most r2. Since |S,,| < r, the number
of ways to select the remaining vertices K is at most (S: 2) .If on the other hand {u, v} & E(Cp), then
there exist at most 2r choices for C}, since |S,, U S, | < 2r. Then there are at most

(20) () ()

choices for the remaining vertices of K. We conclude the number of non-trivial cliques of order
s+ 11in G containing {u, v} is at most

r’. R P <4rf =k.
s—2 s—1

This contradiction proves the claim.

Fix an instance of the graph G satisfying (i)—(iii) in Lemma 2, together with the sct P indexing
the cliques C), in G. For a positive integer b and X C V(G), let

Py =Py, ={p€P:|V(C,)NX]|2> b}
This is the set of p € P whose corresponding clique C,, in G has at least b vertices in X.

Lemma3. Letb > 1, a > 128 and q > alogq. Then for any X C V(G),

z |V(Cp) NnXx|> %(a logq) - |X| — 2abg? logg. 7
DPEPx

Proof. As |P| < 2aq?log q from Lemma 2(i),

Y. IV(C,)nX| < b|P| < 2abg*logq.
PEP\Py

Each vertex in X is in at least (alog q)/2 cliques C,, : p € P by Lemma 2(ii). Therefore

) 1
Ié V(Cp)nX]| = EX HpeP: £ eV(CH > S(alogg)-IX].

Subtracting the first inequality from the second gives the lemma. O
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ON THE ORDER OF THE CLASSICAL ERDSS-ROGERS FUNCTIONS 589

4.2 | Coloring cliques and sampling edges

Let G, C G be obtained from G by taking independently for each p € P a random s-coloring x/,
of V(C,) and removing all edges of G whose ends have the same color. This removes from G all
trivial copies of K, ;, so by (A), for s > 3:

Each clique K¢, € G, is non—trivial. (B)

We now define the random graph G, C G. Let b > 1 and p € [0,1] satisfy b > 2** and p =
(8s/b)?/5, and define G, to be the random graph obtained by sampling edges of G indepen-
dently with probability p. The aim of this sampling is to destroy all non-trivial cliques, while
still preserving cliques K within the C,, in large enough sets of vertices. Unsurprisingly, this
makes strong use of Janson’s inequality for the probability that a random s-partite graph is
K,-free, in the form of Proposition 2. We define H = H; to be the intersection of Gp and G)(’
namely,

V(H):=V(G) and  E(H) := EG,) N E(G,).

Our next task is to consider copies of Ky C H whose vertices are contained in some C,,.

43 | Theevent Ay

In this section, for each set X C V(H), we define an event Ay such that

Ay = H[X] contains a copy of K, (8)

and we find an upper bound on Pr(Ay). For a set X C V(H) and p € Py, fix a family IT,(X) of
rp(X) = LlV(Cp) NX|/b] disjoint subsets of V(Cp) N X of size b each. Then C, is bad if for every
Y € I1,(X), the induced subgraph H[Y] is K-free, and we let Ay , be the event that C), is bad.
Finally, define

Ay = ﬂ Ax p-
DPEPx

We say X is bad if all C}, : p € Px are bad. In other words, Ay is the event that X is bad. If Ay
does not occur, then, as promised in (9), by definition H[X] contains a copy of K. It is critical
here that instead of defining Ay to be the event that no Kj is contained in H[V(Cp,) N X], we
instead partitioned each V(C,) N X into sets of size b and defined the event Ay based on these
partitions. This reduces the dependencies between various events that will be considered later in
a local lemma calculation.

Lemma4. Lets > 3, b > 2* and p € [0,1] satisfy p = (85/b)*/S. Then for any X C V(H),

Pr(Ay) < exp <—$ Y |V(Cp)nX|>. ©)

PEPy
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590 | MUBAYI and VERSTRAETE

Proof. Since the colorings x, are independent over p € Py, the events Ay , are indepen-
dent over p € Pyx. For Y € l'Ip(X), let Ay be the event that H[Y] is K -free. These events
are independent over all Y. By the Chernoff bound (Proposition 1), the probability that x,
assigns some color fewer than b/2s times to vertices of Y is at most exp(—b/8s). Fix a color-
ing y of Y where every color appears at least b/2s times. Then the graph H[Y] is a random
s-partite graph which we denoted in Section 2 by Gy ,(x). By Proposition 2, for any such
coloring y,

Pr(K & Gy ,(X)) < exp(=2*7*b).
As there are at most s? choices of y, the union bound over s-colorings y gives
b b 25s—4
Pr(Ay) < exp <—§> + 5° exp(—2=°7"b).
Since s > 3,2%7*b > 2blogs > 2b and therefore

Pr(Ay) < exp (—%) + exp(—b) < 2exp <—%> < exp (—%) .

Here we used b > 16s. Since I,| = rp(X), we obtain

Pr(Ax) = [] Pr(ax,)

PEPX
= H HPr(AY) < Hexp —L'I’(X) .
16s P
PEPx YEI, PEPy

Recall |V(Cp) NX|>bforp e Py,s0b- rp(X) > |V(Cp) N X|/2, and therefore
Pr(Ay) < H exp <_T = exp s Z |V(Cp)nX| .
PEPx PEPx

This proves the lemma. Ul

5 | PROOF OF THEOREM 1

To prove Theorem 1, for each s > 3 let G = G, ;. defined in Section 4.1, where a = 2% and q is
a prime power satisfying q > alogq. Let H C G denote the random graph defined in Section 4.2,
which is the intersection of the two random graphs G, and G, with parameters

2
b = 2%05+2/5 . 2q10gq and p=<%>s.

For convenience we omit rounding and assume b is an integer. Let K be the family of non-trivial
(s + 1)-cliques K C G, and let By be the event G[K] C G,,. Let X = {X CV(H) : |X]| = 8bq?} and
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ON THE ORDER OF THE CLASSICAL ERDSS-ROGERS FUNCTIONS 591

Ay be the event X is bad, as in Section 4.3. Due to (B),

if noneof theevents By : K € Kor Ay : X € X occur,

then His Ky, , — free and K; C H[X] forall X € X. ©

Specifically, (C) implies every set of 8bq? vertices of H induces a subgraph containing K. This
shows for any prime power q > alogq,

fs,s+1(q2(q2 —-q+ 1)) < 8bq2-

By Bertrand’s postulate, there exists a prime between any positive integer and its double, so letting
q > alog g be a prime between n'/* and 2n!/*, we find for s > 3 and n > 2,

fs,s+1(n) < 8bq2 < S . 24OS+1/S . 2118 . q2 . Iqu
<219 . /nlogn.

It remains to prove (C) holds with positive probability, via the local lemma (Proposition 3).
Dependencies. For the dependencies between the events By : K € KL and Ay : X € X, we
note Ay is determined by the following set of edges of G:

EX) = U U E(G[Y)).
PEPy YEI,

Since |Y| =bforeachY € I, and r = r,(X) = |I1,| = [[V(Cp) nX|/b],

Eol= 3 Y (Z)

PEPy i=1
V(C,) nX|
-y lPTJ(Z) < %b Y vc,)nxl. (10)
pEPy DPEPx

For convenience, let E(K) also denote E(G[K])if K € K. Itisimportant here that since G, samples
edges of G independently with probability p, for any J C K and K € K, we observe

the event By is mutually independent with {Bg, : K' € J}if

U E(K")NEK) = ¢.

K'eJg

By Lemma 2(iii), each edge of G is contained in at most k = 4(2a log q)® cliques K € K. Fixing
any K € K, there are at most

x=<S;1>-k<bk (11)
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592 | MUBAYI and VERSTRAETE

choices of K’ € K such that E(K") n E(K) # . Hence By is mutually independent of any set of
events omitting the events K’ € K’ just described. For a given By, we make no assumptions on
its mutual independence with any subset of the events Ay.

Since each edge of G is in at most k cliques in &, by (12), for each X € X there are at most

Ax =k |ECOI < Sbk- Y [V(C)NnX| (12)

PEPx

=

choices of K € K such that E(K) n E(X) # @, and any set of other events Ay are mutually inde-
pendent with Ay. This is the critical point for which the definition of Ay was carefully chosen:
instead of Ay being the event that no K is contained in the subgraph induced by V(Cp) N X, we
instead partitioned each C,, into sets of size b and defined the event Ay based on these partitions.
We make no assumptions on the independence among the events Ay.

Local lemma inequalities. Let N = |X|. The local lemma (Proposition 3) implies the prob-
ability that (C) holds is positive if there are reals y,d € [0,1) such that for all K € K and all
X edx,

Pr(By) < y(1 =) = &)V and Pr(Ay) < (1 =) (1 =)V,

We claim that these inequalities are satisfied if we select § = 1/(N + 1) and y = 1/64sbk.
S+1
First inequality. We have Pr(By) = p( ) and (1—=6)N >1/e. By (13), A —y)* > 1—xy >
1/2, so itis sufficient to show 2e Pr(By)/y < 1 for the first inequality to hold. Since p = (8s/b)*/,

0= ()"

Since b = 2405k1/s and s > 3,

s+1 128esk(8 s+1

2 Pr(By) = 128esbk-p(2) = 128esk(8s)""
Y bs

_ 128esk(8s) !

N 240s% -

s+1
2es
< 2es - (645‘1 ) < gorl 1.

Here we used 64°~! > 64s and 2es < 8%*! for s > 3. This verifies the first inequality.
Second inequality. For the second inequality, we use 1 — y > exp(—2y), which is valid since
y < 1/2. Recalling (1 = §)N > 1/e, it is enough to show
e - Pr(Ay) < exp(—log(N + 1) — 2yAy). (13)

By Lemma 4,

Pr(Ay) < exp (-% Y |V(Cp)nX|>.

PEPy
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Using [V(G)| = ¢*(¢* —q + 1),

2042 _ 4
log(N + 1) = log [(q @ gqu * 1)> + 1] < log <8§q2> —1<32bg*logq — 1.

For (15), it is enough to show

exp( === 2 IV(C,) NXI ) < exp(=32bg? log g — 2y2y).

32s P X
PEPx

Due to (14), it is enough to show

1 2 1

—_ < - - — V .
exp < o ZX IV(C)) nX|> exp ( 32bg*logq — —— p;)( v(C,) nX|>

Therefore we require

64s

exp (-L > |V<cp)nX|) < exp(—32bq’* log q).
DPEPx

Applying Lemma 3 and using a = 2%, we find

1 1 /1 ,
— X| > — ( =(al X — 1
o 2 VE©)nx| 648(2(61 0gq) - |IX| —2abgq 0gq)
PEPx
= L 1 . 2 _ 2
= (2(alogq) 8bq“ — 2abq logq)
1 2 2
o1s 2abg’logq 32bq”logq

This proves the second inequality.

CONCLUDING REMARKS

* In this paper, we proved f,;(n) = O(\/ﬁ log n) by suitable random sampling of points and
lines from Hermitian unitals. A part of the proof essentially involves the union bound over all
sets X of lines of size 8bg?> — we implicitly assumed in our application of the local lemma in
Section 5 that the events Ay depend on all other such events. We first sampled points ran-
domly from the Hermitian unital with probability of order (logq)/q. If we sampled points
with a lower probability o(log q)/g, then the union bound no longer works: for large q there
are N > exp(bq?log q) sets of size 8bq? to consider — see Section 5 — whereas if all the sets
C,NX : p € Py have size roughly b, then the probability that every C,, is (s — 1)-colored in
a random s-coloring is exp(—o(bg? log q)). It may be possible using randomized greedy algo-
rithms akin to the Rodl semirandom method to circumvent this issue and obtain a bound
of the form f.,(n) = o(y/nlogn), but we did not investigate this technical direction. We
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594 | MUBAYI and VERSTRAETE

conjectured (Conjecture 1) that f.,(n) = \/E(log n)1=°W for all s > 3. Conjecture 2 would
imply f34(n) > \/n(logn)1/2+3/2 for some § > 0.

+ Using (6) and the proof of Theorem 1, the probability that the n-vertex random graph H = H;
is K, ,-free and yet every set of 8bg? vertices induces a copy of K is at least

(1= *I1 = )1l = exp(—0(81X| + 7IK])) = exp(—O(¥|K])).

Now |K| = O(k|E(G)|) = O(kq®log q) from Lemma 2(i) and (iii), and y = O(1/klogq), so
we conclude the above quantity is exp(—0(q®)). The expected number of edges in H is
O(p|E(G)|) = ©(g°(log g)'~%/%). By the Chernoff bound, H has ©(g°(log q)'~%/%) edges with
probability at least

1 — exp(—0(g°(log q)1~%/%)).

We conclude that with positive probability, the n-vertex random graph H is a K ;-free graph
with average degree @(d) where d = ©(q(log )'~*/*) = ©(y/n(log n)'~%/%). Moreover, H has
the property that every vertex subset of size at least

logd 1+(s—2)/s
8bq2 = Q(q2 logq) = Q(%

induces a copy of K. When s = 3, this shows that the value of § in Conjecture 2 cannot be larger
than 1/3. Moreover, H has an independent set (and hence a K;-free induced subgraph) of size
at least Q(nlogd/dloglogd) = Q(y/n(log n)*/>—°M). For s > 4, H contains a K-free induced
subgraph with d = Q(\/ﬁ(log n)'=2/%) vertices. It would be interesting for any s > 3 to exhibit
a K -free induced subgraph of H with \/ﬁ(log n)'—°() vertices, if it exists.

¢ If F is any K-free graph, then we can define [ ((n) to be the largest m such that every n-vertex
K -free graph has an induced F-free subgraph with m vertices. The proof of Theorem 1 gives

frs(n) = 0(y/nlogn).

Indeed, instead of taking a random s-coloring of each sampled clique C), one takes a random
uniform map y : V(Cp) — V(F), and then place all edges between y~'(u) and y~!(v) when-
ever {u, v} € E(F). The analysis is the same as in Theorem 1, apart from a suitable modification
of the implicit constants. It would be interesting to determine for s > 3 whether there exists a
K-free graph F such that

. fF,s(n)
lim

— =
n—oo fs_l’s(n)

In forthcoming work [20], we shall study the quantities fr ((n).

APPENDIX A: PROOF OF PROPOSITION 2

To prove Proposition 2, we require some notation and preliminaries. Recall for s > 3, n > 1,
p €[0,1] and an s-coloring y of an n-element set with color classes Y;,Y5,..., Y, Gn,p()() is
obtained by independently and randomly sampling edges of the complete s-partite graph with
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ON THE ORDER OF THE CLASSICAL ERDSS-ROGERS FUNCTIONS | 595

parts Yy, Y5, ..., Y with probability p. The expected number of K C G, ,(x) is precisely
s N
u(0) = oD [T 1l (AD)
i=1
and the variance is defined by
s
A=Y PO wa[ivyi-n= Y 260G )H|Y|H<|Y -1, (A2)
Sc(s] ieS JES Sc[s] i=1 j&S

where the sum is over sets S with 2 < |S| < s — 1. From Janson’s inequality [2, 12] one obtains for
anyp €[0,1]andn > 1

PIK, & G o) < oxp (=200 (A3)

provided A(x) < u(x).

Proof of Proposition 2. For Proposition 2, y is an s-coloring with color classes Y7, Y5, ..., Y satisfy-
ing |Y;| = n/2sforalli € [s]. The product in (A.1) is minimized when |Y;| = n/2s for all but one
value of i € |s], and the remaining color class has size n — (s — 1)n/2s > n/2. Therefore

HGO > PG)(%>H - %

_ (&)S‘1<£>S‘l.z T
n 28 2 )

So if A(x) < u(x) when p = (8s/n)*/S and n > 240, then Proposition 2 follows from (A.3):
Pr(Ky & G, (X)) < exp (——u(x)) exp(—2%"*n).

It remains to prove A(x) < u(x) when p = (8s/n)%/5 and n > 2%,
By (A.1) and (A.2),

A () —(3h,
(Y;l = 1.
e SCZ[‘;] g

The sum is over subsets S of [s] where 2 < |S| < s — 1. By the incquality of gcometric and
arithmetic means,

s—|S] s—|S|
n
H(IY;|—1)<H|YJ|<< |5|Z| > s<s—IS|> '

JES JES JES

We conclude

s—1 i
A(x) Z‘O()()<s—l) <1>

i=2
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596 | MUBAYI and VERSTRAETE

By definition of p,
s ; (s=D)(s+i—1)
p(z)_(z) = <§) §

n

Therefore

™M

_A(X) v 8s w n \(s\ _ < (8S)S+i_l - s
() <i=2<7> (%) <,> = ; S <l>

We break the sum into two pieces. First, for 2 < i < |s/log(8s)] < s/2,

i—1
(s—Dns >

1
s

-ns > 2%

S
2
since n > 2405 > 2105 Therefore each term in the sum is at most

1 s—I
8S - (8S) log(8s)

N M
S 8es >S_ log(8s) s < 1 > 2 s —s
<= 22K (=) 22 =275
295 <z> h <29s ~\16

Second, for |s/log(8s)] +1<i<s—1,(i—1)/s> 1/2log(8s) and so using n > 24% and s > 3,

i—1 1 20s
(s—ins > n2od » 206 > 12853,

Therefore each term in the sum is at most

) 050070
12853 i)~ \128s3 i) \2s i)

‘We conclude

A()() s—1 1 s—i s s—1 »
u(x) <l§<2—s) <i>+i§2

S
<(1+%) —14+(5—-2)27 < Ve—-1+(s—2)27%.

Evidently (s — 2)27% < 1/8 for s > 3, and therefore

Ve—-1+(s—2)275<0.773... < 1.
We conclude A(x) < u(x), as required. O
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