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Abstract

Applications of neural networks like MLPs and ResNets
in temporal data mining has led to improvements on the
problem of time series classification. Recently, a new
class of networks called Temporal Convolution Networks
(TCNs) have been proposed for various time series tasks.
Instead of time invariant convolutions they use temporally
causal convolutions, this makes them more constrained than
This
How does a network with

ResNets but surprisingly good at generalization.
raises an important question:
causal convolution solve these tasks when compared to a
network with acausal convolutions? As the first attempt at
answering these questions, we analyze different architectures
through a lens of representational subspace similarity. We
demonstrate that the evolution of input representations in
the layers of TCNs is markedly different from ResNets and
MLPs.
groupings of similar layers and TCNs on the other hand

We find that acausal networks are prone to form

learn representations that are much more diverse throughout
the network. Next, we study the convergence properties
of internal layers across different architecture families and
discover that the behaviour of layers inside Acausal network
Our

extensive empirical studies offer new insights into internal

is more homogeneous when compared to TCNs.

mechanisms of convolution networks in the domain of time
series analysis and may assist practitioners gaining deeper
understanding of each network.

Keywords: time series classification, model represen-
tation analysis, subspace clustering, transparent Al

1 Introduction

The Time Series Analysis domain [28, 9, 1] is a growing
and challenging arena of machine learning. With ap-
plications and data sources originating from diverse do-
mains such as healthcare, cyber-security, weather fore-
casting and climate analysis, tackling the time series
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classification problem can potentially impact in many
areas of engineering and science [6]. Traditionally, this
problem has been tackled by a wide array of Non Deep-
Learning algorithms [14, 16, 4, 26, 2].Recently, mul-
tilayer perceptrons (MLP) [28, 10, 12] and ResNets
[13, 28, 10] have been adapted for the problem of time
series classification[28]. Both, MLP and ResNets[28] are
agnostic to the temporal nature of the underlying data.
To circumvent these issues, [3] propose a causal convo-
lution operation, where each convolution filter operates
on a given time step and its antecedents. Using this
setup, they capture long range dependencies in a se-
quence and demonstrate competitive behaviour on se-
quential datasets, their approach is also referred to as
Temporal Convolution Networks or TCNs.
In this study we utilize tools from subspace clustering
literature[17] and conducted an investigative analysis
into the hidden representations of neural networks along
the lines of [15, 25, 23]. Such an analysis of feed-forward
neural networks is absent in the domain of Time Series
Classification and could aid in the development of ar-
chitectures tailored for this domain.
The chief goal of this study is to analyze how a TCN
differs from a ResNet or an MLP, both of with employ
Acausal Operations as opposed to a TCN. Do Acausal
Convolutions learn similar inductive priors to Causal
Convolutions? If not, then how do Acausal and Causal
Convolutions affect the internal behaviour of their re-
spective networks? Via the medium of this study we ex-
plore such issues and motivate Least Squares Regression
Subspace Clustering (LSRSC)[17] as a tool to analyze
the representations inside the layers of a network. We
then combine LSRSC with Centered Kernel Alignment
(CKA)[5] along the lines of Linear-CKA[15, 19, 23, 21]
and SSC-CKA [25] and in Section 4 we offer comparisons
between LSRSC-CKA and related works like Linear-
CKA and SSC-CKA.Our main contributions are as fol-
lows:

e QOur investigations reveal major differences between
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the internal representations of MLPs, ResNets and
TCNs. More specifically we observe that the less
restrictive the inductive prior of an architecture,
the more prominent the block-structure[15, 19, 21]
in the network’s internal representation structure.

e Upon performing a direct comparison of TCNs with
ResNets we observe that only the initial layers
of the 2 architectures share any similarities, and
their respective representations quickly diverge as
a function of depth. This phenomena is not so
extreme when comparing networks within the same
architecture family.

e Finally we demonstrate that the rate at which
different layers converge to their final representa-
tions across different architectures is distinct. More
specifically we observe that while for Acausal archi-
tectures the shallower layers are among the first to
converge and the final layers among the last, layers
of TCNs are generally a bit more dynamic in their
convergence orders.

2 Background and Experimental Goals

The goal in this study is to analyze the behaviour of
neural network architectures with different inductive
priors for the task of time series classification. To this
effect, parallel to the lines of SSC-CKA[25] we motivate
an amalgamation of LSRSC[17] with CKA[5], hence-
forth referred to as LSRSC-CKA. Next, we lay down
preliminary background and outline the algorithmic
setup used to analyze neural network architectures.

2.1 Least Squares Regression Subspace Clus-
tering:  Given a Matrix X = [x31,...,xy]| where
X € RN the goal of LSRSC[17] is to learn a set
of Affinity Coefficients, denoted by C € RV*N. The
aim here is to help reconstruct each data point as a
Linear Combination of other data points.The authors
of LSRSCJ[17] motivate the following LSR problem ac-
counting for Noise as described in Equation 2.1, which
they then solve via the steps described in Equation 2.2.
A good solution to Equation 2.1 will focus on reducing
the relative error as defined in Equation 2.3.

(2.1) mcin||X — XCl|% + MN|Cl|% st. diag(C) =0

(2.2) C* = —D(diag(D)) " 's.t. diag(C*) =0
' D=(XTX+ )t
(2.3) Relative Error = IIX = XCllr
1Xlr

2.2 Centered Kernel Alignment: Given 2 pair-
wise similarity matrices over N examples, namely,

C; € RN and Cy € RM*N Centered Kernel
Alignment[5, 15, 20, 23, 21] as defined in Equation 2.4 is
an isotropic invariant similarity metric over 2 matrices.

HSIC(CY, Cs)
/HSIC(Cy, C1)HSIC(Cy, Ca)

(2.4) CKA(Cy,Cs) =

Where  Hilbert-Schmidt  Independence  Criterion
(HSIC)[11] is a statistical test to determine the inde-
pendence of 2 sets of variables, in this case C; and Cy
from Equation 2.4. HSIC measures the similarity of 2
matrices by computing a scaled dot product between
the vectorized representations of centered similarity
matrices as shown in Equation 2.5.

vec(HC1 H) - vec(HC2H)

(25) N1y

HSIC(Cy, Cy) =

Here H =1 — %llT is a centering matrix.

Algorithm 1: Layer-wise LSRSC Computa-
tion
Data: Layer-wise Neural Activation Matrices:

(X1, ..., Xi]
Result: List of Layer-wise Affinity Matrices:
C=[Cx,...,Cx]
1 initialization: C = [|;
2 for i< 1toldo
3 For X;, Compute C; based on Equation 2.2;
4 | Compute - Cx, = |Ci| + |Ci|T;
5 C.append(Cy;);
6 end

Algorithm 2: All-pairs CKA Computation
Data: Layer-wise Affinity Matrices: C =
[CX17 SR CX}]
Result: All-pairs similarity: S € R,
1 initialization: S = 0;
2 for i,j in permutations(l, 2) do
s | Sij = CKA(Cx,,Cx,) - Equation 2.4;
4 end '

2.3 Algorithmic Pipeline: Now we describe how
we combine LSRSC and CKA and utilize it for the
task of analyzing neural network architectures. Let
X; € R%*N and X; € R%*N be 2 matrices that rep-
resent the latent representations of N examples given
by any 2 layers of a Neural Network, namely - layer ¢
and j. Given a layer’s activations we then proceed to
compute the corresponding pairwise subspace affinity
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Figure 1: LSRSC-CKA Heatmap. Networks from Left to Right : TCN 24-Layer, ResNet 24-Layer and MLP 15-Layer.
Dataset - FordA, Dataset size - 1320 Examples x 500 Time steps per example. Inductive Priors from Left to Right - Causal
Convolution (TCN), Acausal Convolution (ResNet) and Fully Connected (MLP).

matrix C'x; for that X; based on Equation 2.2 as de-
scribed in LSRSCI17] and summarized in algorithm 1.
Having obtained a list of layer-wise affinity matrices
Cx; we then proceed to compute similarities between
all pairs, denoted by S, of a network’s [ layers, as
outlined in algorithm 2. The results of this process to
learn a layer-wise similarity matrix for a network can
be seen for different networks, for instance in Figure 1
of Section 3 for TCN, ResNet and MLP respectively.

3 Experiments for network
analysis

inductive prior

Temporal Convolution Networks (TCNs) utilize a fun-
damentally different class of operations than ResNets
and MLPs and yet achieve similar performance to these
networks [3]. In this section we use LSRSC-CKA to
analyze the behaviour of Temporal Convolution Net-
works by comparing them with other acausal networks
used for time series classification. We demonstrate that
the presence of a task appropriate inductive prior in
the form of causal convolution helps TCNs avoid com-
mon architectural pathologies like the aforementioned
Block-Structure often associated with overparameter-
ized neural networks[15, 19, 25]. We compare TCNs
with ResNets and demonstrate that networks with the
different inductive priors behave differently and vice
versa. Further, we demonstrate that Internal layers
of TCNs behave differently from Acausal Networks in
terms of their learning trajectories, which is a conse-
quence of how information propagates within these ar-
chitectures.

3.1 Analyzing the effects of various Inductive
Priors To begin our investigation on the effects of var-

ious inductive priors on a network’s internal representa-
tion structure we train different networks on the Ford A
dataset from UCR Time Series Repository[6]. We train
TCNs, ResNets and MLP as shown in Figure 1a - Fig-
ure 1c, respectively. We find that Acausal networks like
ResNets and MLPs tend to have a higher prevalence
of Block-Structure endemic to overparameterized mod-
els [15, 19, 25] in their pairwise layer similarity map.In
particular, the deeper layers of an MLP start becoming
similar to each other and additional layers don’t learn
new representations. We further reinforce these findings
in Section 3.3, where we show the same behaviour with
increasing network depth. This problem is alleviated to
an extent in ResNets where a deeper layer is increas-
ingly dissimilar to a shallower layer, thereby indicating
that each new layer is building upon the representations
of the previous layer.

Focusing on TCNs in Figure la we observe a sparse
structure towards the deeper layers where those ad-
ditional layers tend to learn representations that are
unique, this is courtesy of dilated temporal convolution
used in TCNs where each such convolution filter looks
at a unique causal sub-sequence of the input. This oper-
ation is markedly different from the other 2 where each
convolutional filter of a ResNet is locally invariant in
its causality and the non-linear transform of the MLP
assumes all possible interactions in the entire sequence,
which makes it particularly prone to overfitting. The
performance gains as a result of different inductive pri-
ors are also self evident as the TCN and ResNet have
accuracies of 95.45% and 93.56% respectively, while the
MLP saturates at 74.54%.

3.2 Examining the effects of an Inductive Prior
over different datasets Next, to consolidate our find-
ings in Section 3.1 on the role of various inductive priors.
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We perform an additional set of experiments, this time
on datasets like FordB - Size : 405,000 Cumulative Time
Steps, InsectWingbeatSound - Size : 506,880 Cumula-
tive Time Steps, and Large Kitchen Appliances - Size
: 270,000 Cumulative Time Steps, from the UCR Time
Series Repository[6] as shown in Figure 2. In doing so,
we reaffirm the same phenomena, i.e. a much sparser
block structure for TCNs as shown in Figure 2a - Fig-
ure 2c and the Fish-Tailed Block Structure for ResNets
Figure 2e - Figure 2g. We omit MLPs due to their lack of
competitive results for reasons described earlier. These
recurrences highlight the consistency with which differ-
ent network architecture families will behave due to fac-
tors inherent to their architectures . In Figure 2c and
Figure 2g we also observe that the same architecture
for smaller datasets also contains a background block
structure just by the virtue of having more parameters
relative to the data, a phenomena we which also touch
upon later in Section 4.

3.3 Effects of Network depth over different in-
ductive priors To consolidate our findings in Sec-
tion 3.1 next we evaluate and demonstrate the be-
haviour of each network family with varying network
depth. Given an architecture, scaling network depth
has been shown to cause deeper layers of a network
to be very similar to each other [15, 19, 25, 21, 23].

This phenomena is also called the Block-Structure and
a sign of network over-parameterization with respect to
the data[l19] and can be a sign of a few data points
having large representations in the activation space of
those layers[21]. In our analysis we find that MLPs and
ResNets, Figure 3 and Figure 4 respectively, evolve some
form of a dominant Block-Structure when compared to
TCNs in Figure 5. The experiments shown were con-
ducted on the FordA dataset[6]. To further elaborate,
we begin by analyzing 10 and 15 layer Multi-layer Per-
ceptrons. We observe that as we go deeper the block
diagonal structure becomes more prominent and the fi-
nal few internal layers of the network become increas-
ingly similar to each other. This shows that adding
extra learning capacity in a network doesn’t necessarily
the network learn newer representations and translate
into improved performance as shown in Figure 3. Simi-
lar observations were also made for Image Classification
in [15, 25]. Progressing the analysis to ResNets in Fig-
ure 4 we observe a block-structure which is distinct from
MLPs but still indicates long range similarities between
a layer and its ancestors. Though MLPs and ResNets
are both acausal networks in nature, ResNets, having
fewer parameters than MLPs don’t tend to suffer from
poor generalization that MLPs do. This is indicated
both in consistent generalization performance and sim-
ilar layerwise similarity patterns across network depths
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in Figure 4. In stark contrast to MLPs and ResNets,
the architecture of TCNs learns representations that are
much more distinct throughout the depth of the net-
work and also achieve good generalization performance,
as shown in Figure 5.
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Layer. Accuracy - 76.28 % Layer. Accuracy - 74.54 %
Figure 3: LSRSC-CKA Heatmap, Networks - MLPs with
width - 50 , Dataset - FordA, Evaluation Dataset size - 1320
Examples x 500 Time steps per example, Inductive Prior -
Fully Connected.
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Figure 4: LSRSC-CKA Heatmap, Networks - ResNets ,
Dataset - FordA, Evaluation Dataset size - 1320 Examples
x 500 Time steps per example, Inductive Prior - Acausal
Convolution
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(a) LSRSC-CKA: TCN - 12 (b) LSRSC-CKA: TCN - 18
Layers. Accuracy - 95.15 % Layers. Accuracy - 95.45 %
Figure 5: LSRSC-CKA Heatmap, Networks - TCN |,
Dataset - FordA, Evaluation Dataset size - 1320 Examples
x 500 Time steps per example , Inductive Prior - Causal
Convolution

3.4 Comparing different neural networks archi-
tectures In algorithm 2 we described the procedure

to compare the layers of the same network with each
other. However LSRSC-CKA just like Linear-CKA can
also compare any 2 layers coming from different archi-
tectures. This is because, as described in Section 2,
LSRSC helps us distill any Activation matrix over N
examples into an affinity matrix over those examples,
thus enabling comparisons between 2 affinity matrices
over the same set of inputs. Earlier in Section 3.1 we
compared TCNs and ResNets as 2 separate entities. In
this section, along the lines of Linear-CKA[24, 21] we
utilize LSRSC-CKA’s ability to compare 2 different ar-
chitectures directly and present the results in Figure 6
for FordA dataset. In Figure 6a and Figure 6e, We first
perform this comparison between a TCN and a ResNet,
which is the central subject of focus in our study. On
the vertical axis are the layers of a TCN and the hor-
izontal axis is spanned by the layers of a ResNet. We
observe that only the very earliest layers of both the
networks share any significant similarity by the virtue
of being close to the input, and as depth increases their
representations start to diverge. This gradual diversion
of similarity points to the fact that as the layers of the
respective networks get deeper, the subspaces learnt to
represent input instances become different. This aug-
ments our findings in Section 3.1 where in Figure 1
we first demonstrated architectural differences between
TCNs and ResNets. Next we compare networks within
the same architectural family, first is a comparison be-
tween 2 TCNs with 4 and 8 Causal Blocks (12L and
24L) in Figure 6¢. On the vertical axis are the layers for
the larger TCN (24L) and the horizontal axis represents
the smaller TCN(12L). We observe that the top half of
TCN-24L shares alternating and intermittent similarity
with some layers of TCN-12L, but as we go deeper in
the network, this similarity fades away. This observa-
tion can also be reaffirmed for another set of TCNs in
Figure 6g. Finally, we conduct a similar comparison
between 2 ResNets with 6 and 10 Convolution Blocks,
results of which are presented in Figure 6d. We observe
the 2 ResNets learn very similar representations along
their depths to a much higher degree when compared to
two TCNs, like in Figure 6¢. The only architectural dif-
ference between TCNs and ResNets is the use of dilated
causal convolutions in TCNs. The presence of such con-
volutions ensures that each convolution block of a TCN
parses its input as a unique causal sub-sequence, as op-
posed to time invariant convolutions in ResNets where
each input and output of each block share a higher de-
gree of temporal proximity with no regard to learning
temporally plausible correlations.

3.5 Intra-Layerwise analysis of networks with
epochs Next, Along the lines of SSC-CKA [25],
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Figure 6: Pairwise Network Analysis with LSRSC-CKA. Dataset - FordA. For each comparison plot the first network is
represented by the vertical axis and the second network is represented on the horizontal axis. Networks within the same
genre of operations display a higher similarity to each other than otherwise.
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Figure 7: Intra-Layerwise LSRSC-CKA dynamics. Evaluation Dataset : Row 1 - FordA, Row 2 - FordB

PWCCA [18], we evaluate the behaviour epoch-wise of
each layer with respect to its final epoch. The goal of
this experiment to understand the training dynamics of
all the layers of a network to get a better understand-
ing of how the representations at each layer evolve as
the training progresses and to observe any differences

across different architectures. To conduct this analy-
sis we compute the Affinity Coefficients based on algo-
rithm 1 for every layer at all epochs. Then we compute
the LSRSC-CKA similarity between a layer’s Affinity
Coefficients at every epoch with its Affinity Coefficients
after the final epoch. Results for those experiments are
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presented in Figure 7 for the FordA dataset. For each
architecture we observe that shallower layers converge
earlier than deeper layers, this phenomena was also
observed in SSC-CKA[25], SVCCA[22], PWCCA][18].
However, we also notice that unlike ResNets in Fig-
ure 7b and MLPs in Figure 7c where this depth-wise
convergence phenomena is self evident, Layers of TCNs
do not strictly adhere to this phenomena. Instead in
a TCN, Figure 7a, the layer convergence is fairly out
of order, which indicates that earlier stages of a TCN
continually evolve to learn newer representations at a
much higher rate than ResNets and MLPs. As a final
note we would also like to draw parallels between block
structures and layer-wise convergence patterns, this is
particular well demonstrated by looking at MLPs where
deeper layers which constitute a block structure, shown
in Figure 1c also are very similar in their convergence
properties, as shown in Figure Tc.

We now use utilize this setup to show some interest-
ing differences between LSRSC-CKA and Linear-CKA
in terms of their ability to resolve between different lay-
ers of the network. In Figure 8a and Figure 8b we take
a TCN trained on the FordA dataset and compare the
LSRSC-CKA and the Linear-CKA[15, 20, 23, 21] re-
spectively. We observe that while LSRSC-CKA and
Linear-CKA both offer similar insights to a network’s
training dynamics. Linear-CKA is less adept at dis-
tinguishing between the dynamics of various layers.
This is because Linear-CKA mostly influenced by the
similarity between dominant principal components|7],[8]
and LSRSC-CKA is approximately a scaled version of
Linear-CKA with a more compressed singular value dis-
tribution [27]. This phenomena is further alluded to in
Section 4 where we compare LSRSC-CKA with SSC-
CKA[25] and Linear-CKA[15, 20, 23, 21].

4 Comparisons with Related works

In this section we layout relevant works in the area of
representation similarity based neural network analysis
and compare our work with them. Priors works like
Linear-CKA[15, 19, 24] and SSC-CKAJ25] have been
used to analyse the internal representational structure
of various neural networks for the task of image clas-
sification. Our work inherits ideas from the literature
of subspace clustering to improve upon Linear-CKA by
incorporating higher order information than just pair-
wise dot products.Next, We compare LSRSC-CKA with
Linear-CKA and SSC-CKA. To do so, We use a TCN
with 8 Convolution Blocks and demonstrate the corre-
sponding LSRSC-CKA, SSC-CKA and Linear-CKA on
FordA and InsectWingbeatSound Dataset in Figure 9.
Comparing LSRSC-CKA, Figure 9a and Figure 9d, with
SSC-CKA, Figure 9b and Figure 9e, we observe that
both approaches offer very similar layer-wise resolution
and analytical insights, but since LSRSC-CKA can be
solved analytically, it is orders of magnitude faster than
SSC-CKA while being practically as useful as Linear-
CKA as demonstrated in Table 1. Elaborating further,

Runtime of all analyzed methods in Seconds
Method vs Dataset LSRSC- | SSC- | Linear-
CKA CKA | CKA
FordA 22s 3782s| 1s
InsectWingbeatSound | 48s 288s | 1.6s

Table 1: Runtime experiments for LSRSC-CKA, SSC-CKA
and Linear-CKA. Architecture - Temporal Convolution Net-
work. Dataset - FordA and InsectWingbeatSound

the reason for a lower order of magnitude difference
between LSRSC-CKA and SSC-CKA on InsectWing-
beatSound dataset is because SSC-CKA converges to a
sub-optimal solution and stagnates with a relative error,
Equation 2.3, higher than 0.2. Whereas the relative er-
ror in case of LSRSC-CKA was always below 0.01.

Next we compare LSRSC-CKA, Figure 9a and Fig-
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(a) LSRSC-CKA (b) SSC-CKA (¢) Linear-CKA

Figure 9: Comparison between LSRSC-CKA, SSC-CKA and Linear-CKA. Network - TCN : 24 Layers.

(d) LSRSC-CKA (e) SSC-CKA (f) Linear-CKA

Figure 9a-

Figure 9c¢ contain the results for FordA and Figure 9d-Figure 9f for IWB
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Dataset - FordB. We Also observe that corresponding Linear-CKA analysis offers a lower resolution of layer wise similarity.

ure 9d, with Linear-CKA, Figure 9¢ and Figure 9f. A
notable phenomena that we observe when comparing
the two is the lower resolution of Linear-CKA in dis-
cerning layers within a block-diagonal structure. While
both methods capture the presence of block structures,
the resolution at which they do so are very different.

Continuing the analysis on FordB dataset, we com-
pare LSRSC-CKA with Linear-CKA in terms of their
ability to resolve between different layers of the network,
the results of which are presented in Figure 10. When
comparing LSRSC-CKA, Figure 10a and Figure 10c,
with Linear-CKA, Figure 10b and Figure 10d, we again
observe that while both algorithms capture the macro
block-diagonal structures, Linear-CKA has a poorer res-
olution in terms of distinguishing different layers within
from each other. This is true both for Temporal Con-
volution Networks and ResNets, as shown in Figure 10.
This lack of resolution by Linear-CKA is detrimental
to its application in sparse data domains, as it tends
to converge to a macro block-diagonal associated with
generally over-parameterized networks even when there
might be unique micro-structures along the block diag-
onal that maybe architecture specific, as captured by
LSRSC-CKA and SSC-CKA.

5 Conclusions

With works like [28] having laid the ground for the
application of deep learning methods for time series
analysis. This has opened the door for creating in-
teresting network architectures like TCN([3] tailored for
problems in time series mining. Such a development

poses an interesting question - Do networks like TCNs
work the same way as ResNets? In thus study we
answer this question by relying on subspace cluster-
ing and representation similarity techniques. We uti-
lize many datasets from UCR Time Series Archive[6]
and show that Causal Convolutions helps TCNs learn
newer representations with the addition of layers. The
effect of these leads to TCNs not prominently exhibit-
ing the block-structure[15, 19, 25] in its layer-wise sim-
ilarity plots. We also investigate the behaviour of in-
ternal layers of each of these networks by comparing
them through different stages of training. We observe
that for Acausal Networks, shallower layers of the net-
work convergence much faster to their final state than
the deeper ones, this behaviour has also been observed
in Deep Networks for Image Classification [25, 22, 18].
However Temporal Convolution Networks don’t strictly
exhibit such a depth dependent convergence phenom-
ena. Instead even some shallower layers keep learning
newer representations with epochs. Our study is among
the first empirical works to analyze neural networks in
the domain of time series classification and offers a con-
venient tool to better understand the effects of different
Inductive Priors on Networks in time series data.
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