
Analysis of Causal and Non-Causal Convolution Networks for Time

Series Classification

Uday Singh Saini∗

usain001@ucr.edu

Zhongfang Zhuang†

zzhuang@visa.com

Chin-Chia Michael Yeh†

miyeh@visa.com

Wei Zhang†

wzhan@visa.com

Evangelos E. Papalexakis∗

epapalex@cs.ucr.edu

Abstract

Applications of neural networks like MLPs and ResNets

in temporal data mining has led to improvements on the

problem of time series classification. Recently, a new

class of networks called Temporal Convolution Networks

(TCNs) have been proposed for various time series tasks.

Instead of time invariant convolutions they use temporally

causal convolutions, this makes them more constrained than

ResNets but surprisingly good at generalization. This

raises an important question: How does a network with

causal convolution solve these tasks when compared to a

network with acausal convolutions? As the first attempt at

answering these questions, we analyze different architectures

through a lens of representational subspace similarity. We

demonstrate that the evolution of input representations in

the layers of TCNs is markedly different from ResNets and

MLPs. We find that acausal networks are prone to form

groupings of similar layers and TCNs on the other hand

learn representations that are much more diverse throughout

the network. Next, we study the convergence properties

of internal layers across different architecture families and

discover that the behaviour of layers inside Acausal network

is more homogeneous when compared to TCNs. Our

extensive empirical studies offer new insights into internal

mechanisms of convolution networks in the domain of time

series analysis and may assist practitioners gaining deeper

understanding of each network.

Keywords: time series classification, model represen-
tation analysis, subspace clustering, transparent AI.

1 Introduction

The Time Series Analysis domain [28, 9, 1] is a growing
and challenging arena of machine learning. With ap-
plications and data sources originating from diverse do-
mains such as healthcare, cyber-security, weather fore-
casting and climate analysis, tackling the time series
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classification problem can potentially impact in many
areas of engineering and science [6]. Traditionally, this
problem has been tackled by a wide array of Non Deep-
Learning algorithms [14, 16, 4, 26, 2].Recently, mul-
tilayer perceptrons (MLP) [28, 10, 12] and ResNets
[13, 28, 10] have been adapted for the problem of time
series classification[28]. Both, MLP and ResNets[28] are
agnostic to the temporal nature of the underlying data.
To circumvent these issues, [3] propose a causal convo-
lution operation, where each convolution filter operates
on a given time step and its antecedents. Using this
setup, they capture long range dependencies in a se-
quence and demonstrate competitive behaviour on se-
quential datasets, their approach is also referred to as
Temporal Convolution Networks or TCNs.
In this study we utilize tools from subspace clustering
literature[17] and conducted an investigative analysis
into the hidden representations of neural networks along
the lines of [15, 25, 23]. Such an analysis of feed-forward
neural networks is absent in the domain of Time Series
Classification and could aid in the development of ar-
chitectures tailored for this domain.
The chief goal of this study is to analyze how a TCN
differs from a ResNet or an MLP, both of with employ
Acausal Operations as opposed to a TCN. Do Acausal
Convolutions learn similar inductive priors to Causal
Convolutions? If not, then how do Acausal and Causal
Convolutions affect the internal behaviour of their re-
spective networks? Via the medium of this study we ex-
plore such issues and motivate Least Squares Regression
Subspace Clustering (LSRSC)[17] as a tool to analyze
the representations inside the layers of a network. We
then combine LSRSC with Centered Kernel Alignment
(CKA)[5] along the lines of Linear-CKA[15, 19, 23, 21]
and SSC-CKA [25] and in Section 4 we offer comparisons
between LSRSC-CKA and related works like Linear-
CKA and SSC-CKA.Our main contributions are as fol-
lows:

• Our investigations reveal major differences between
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the internal representations of MLPs, ResNets and
TCNs. More specifically we observe that the less
restrictive the inductive prior of an architecture,
the more prominent the block-structure[15, 19, 21]
in the network’s internal representation structure.

• Upon performing a direct comparison of TCNs with
ResNets we observe that only the initial layers
of the 2 architectures share any similarities, and
their respective representations quickly diverge as
a function of depth. This phenomena is not so
extreme when comparing networks within the same
architecture family.

• Finally we demonstrate that the rate at which
different layers converge to their final representa-
tions across different architectures is distinct. More
specifically we observe that while for Acausal archi-
tectures the shallower layers are among the first to
converge and the final layers among the last, layers
of TCNs are generally a bit more dynamic in their
convergence orders.

2 Background and Experimental Goals

The goal in this study is to analyze the behaviour of
neural network architectures with different inductive
priors for the task of time series classification. To this
effect, parallel to the lines of SSC-CKA[25] we motivate
an amalgamation of LSRSC[17] with CKA[5], hence-
forth referred to as LSRSC-CKA. Next, we lay down
preliminary background and outline the algorithmic
setup used to analyze neural network architectures.

2.1 Least Squares Regression Subspace Clus-

tering: Given a Matrix X = [x1, . . . ,xN ] where
X ∈ Rd×N , the goal of LSRSC[17] is to learn a set
of Affinity Coefficients, denoted by C ∈ RN×N . The
aim here is to help reconstruct each data point as a
Linear Combination of other data points.The authors
of LSRSC[17] motivate the following LSR problem ac-
counting for Noise as described in Equation 2.1, which
they then solve via the steps described in Equation 2.2.
A good solution to Equation 2.1 will focus on reducing
the relative error as defined in Equation 2.3.

(2.1) min
C
||X −XC||2F + λ||C||2F s.t. diag(C) = 0

(2.2)
C∗ = −D(diag(D))−1s.t. diag(C∗) = 0

D = (XTX + λI)−1

(2.3) Relative Error =
||X −XC||F
||X||F

2.2 Centered Kernel Alignment: Given 2 pair-
wise similarity matrices over N examples, namely,

C1 ∈ RN×N and C2 ∈ RN×N , Centered Kernel
Alignment[5, 15, 20, 23, 21] as defined in Equation 2.4 is
an isotropic invariant similarity metric over 2 matrices.

(2.4) CKA(C1, C2) =
HSIC(C1, C2)

√

HSIC(C1, C1)HSIC(C2, C2)

Where Hilbert-Schmidt Independence Criterion
(HSIC)[11] is a statistical test to determine the inde-
pendence of 2 sets of variables, in this case C1 and C2

from Equation 2.4. HSIC measures the similarity of 2
matrices by computing a scaled dot product between
the vectorized representations of centered similarity
matrices as shown in Equation 2.5.

(2.5) HSIC(C1, C2) =
vec(HC1H) · vec(HC2H)

(N − 1)2

Here H = I − 1
N
11T is a centering matrix.

Algorithm 1: Layer-wise LSRSC Computa-
tion
Data: Layer-wise Neural Activation Matrices:

[X1, . . . , Xl]
Result: List of Layer-wise Affinity Matrices:

C = [CX1
, . . . , CXl

]
1 initialization: C = [];
2 for i← 1 to l do

3 For Xi, Compute Ci based on Equation 2.2;

4 Compute - CXi
= |Ci| + |Ci|

T ;
5 C.append(CXi

);

6 end

Algorithm 2: All-pairs CKA Computation

Data: Layer-wise Affinity Matrices: C =
[CX1

, . . . , CXl
]

Result: All-pairs similarity: S ∈ Rl×l.
1 initialization: S = 0;
2 for i, j in permutations(l, 2) do
3 Sij = CKA(CXi

,CXj
) - Equation 2.4;

4 end

2.3 Algorithmic Pipeline: Now we describe how
we combine LSRSC and CKA and utilize it for the
task of analyzing neural network architectures. Let
Xi ∈ Rdi×N and Xj ∈ Rdj×N be 2 matrices that rep-
resent the latent representations of N examples given
by any 2 layers of a Neural Network, namely - layer i

and j. Given a layer’s activations we then proceed to
compute the corresponding pairwise subspace affinity
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