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The asymptotics of r(4,1)

By SAM MATTHEUS and JACQUES VERSTRAETE

Abstract

For integers s,t > 2, the Ramsey number r(s,t) denotes the minimum
n such that every n-vertex graph contains a clique of order s or an inde-
pendent set of order ¢. In this paper we prove

3

7"(4,1:) :Q<74) as t — oo,
log™t

which determines (4, t) up to a factor of order log?t, and solves a conjecture

of Erdés.

1. Introduction

Ramsey Theory is an area of mathematics underpinned by the philoso-
phy that in any large enough structure, there exists a relative large uniform
substructure. The area is named after F. P. Ramsey [46], but it has roots
in a variety of branches of mathematics, including logic, set theory, topology,
geometry and number theory. Celebrated results include Schur’s Theorem [49]
leading to Fermat’s Last Theorem modulo primes, Rado’s partition regular-
ity [45], van der Waerden’s Theorem [57] on arithmetic progressions and She-
lah’s Theorem [51], and Bourgain’s Theorem [9] on Euclidean distortion in
metric Ramsey Theory, to mention a few. The area has grown into a corner-
stone of modern combinatorics research, and the central quantities of study
are known as Ramsey Numbers.

The classical expository example is the statement that amongst any six
people, there will be at least three people who all know each other, or at
least three people who all do not know each other. In general, for integers
s,t > 2, the Ramsey number r(s,t) denotes the minimum n such that every
n-vertex graph contains either a clique of order s or an independent set of size ¢,
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and the afore-mentioned example is equivalent to the statement r(3,3) < 6.
The quantities r(s,t) are the cornerstone of Ramsey Theory and have been
studied for many decades; their existence is proved by Ramsey’s Theorem [46]
— see also the book by Graham, Rothschild, Solymosi and Spencer [23]. The
quantities 7(¢,t) are sometimes referred to as diagonal Ramsey Numbers — see
Campos, Griffiths, Morris, Sahasrabudhe [12] for a recent major breakthrough
— whereas r(s,t) for fixed s and ¢t — oo are referred to as off-diagonal Ramsey
numbers. The focus of this paper is on off-diagonal Ramsey numbers.

The original upper bounds on off-diagonal Ramsey numbers were given
by Erdés and Szekeres [20] in 1935. They showed that for all fixed s > 3
and t — oo, we have r(s,t) = O(t*~!). Ajtai, Komlés and Szemerédi [1]
established the first improvement to this upper bound on r(s,t) by analyzing
a randomized greedy algorithm for producing large independent sets. Bohman
and Keevash [7] proved a lower bound by analyzing the random K-free graph
process, improving on earlier results of Spencer [52], [53]. These bounds are
as follows: for s > 3, there exist constants ci(s),ca(s) > 0 such that the
off-diagonal Ramsey numbers satisfy

W o e < el
cals)——— < r(s,t) < cos)—.
(logt) s ~+22 (logt)*~2

Extending ideas of Shearer [50], the upper bound was further improved
by Li, Rousseau and Zang [38], who showed that as t — oo,
ts—l
(logt)*=2"
The only off-diagonal Ramsey numbers r(s,t) for s > 3 whose order of

magnitude is known is (3, t), as it was shown in 1995 by Kim [33] that r(3,¢) =
Q(t?/logt) as t — oo, matching previous upper bounds by Ajtai, Komlés and

(2) r(s,t) < (140(1))

Szemerédi [1] and Shearer [50], and improving earlier bounds of Spencer [52].
The current state of the art is due to Fiz Pontiveros, Griffiths and Morris [21]
and Bohman and Keevash [8], where r(3,t) is determined asymptotically up
to a factor four.

The current best lower bounds for r(4,¢) come from the Ky-free process in
random graphs, studied by Bohman and Keevash [7], improving earlier bounds
of Spencer [53]. With the upper bound (2), the best bounds are, for some
absolute constant a > 0,

2 3
o< @) < (14o(1)—
log?t — ’ - log?t’
The exponent 5/2 has stood for more than forty years; see Spencer [52], [53].
In this paper, we determine 7(4,t) up to a factor of order log*t and show

the exponent is 3:
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THEOREM 1. Ast — oo,

r(4,t):Q< v >

log4 t

This solves a long-standing conjecture of Erdés [13]. The upper bound for
r(5,t) from (1) is 5(t4)7 whereas the lower bound given by (1) has the same
order of magnitude Q(#3) as the lower bound for 7(4,t) in Theorem 1 up to
logarithms, leaving the problem of the asymptotics of r(5,¢) as a tantalizing
open problem.

Theorem 1 also gives almost tight bounds on multicolor Ramsey numbers:
for k > 2, let 7(4;t) denote the minimum n such that every k-coloring of the
edges of K, contains a monochromatic K4 in one of the first kK — 1 colors or a
monochromatic K; in the last color. In particular, ro(4;t) = r(4,t). The upper
bound ry(4;t) = O(t**~!/(logt)?*~2) was proven by He and Wigderson [26],
generalizing the result for r(3;¢) due to Alon and R6dl [3]. Using the approach
of Alon and Raédl [3], we establish a lower bound on 7(4;¢) which is sharp up
to polylogarithmic factors:

THEOREM 2. For each k > 3, ast — oo,

t2k—1

The constructive methods of this paper are inspired by the approaches of
Alon and R6dl [3] and Mubayi and the second author [42], and they may be use-
ful for providing lower bounds on other graph Ramsey numbers, for example cy-
cles versus cliques; see Conlon, Mubayi and the authors [14]. The constructions
in [15], [42], [14] rely on point-line incidence graphs from finite geometry and
random sampling. Our construction for r(4,t) in this paper relies on unitals in
finite geometry, and hence has a substantial non-probabilistic aspect, unlike the
afore-mentioned constructions for 7 (s, ), which rely heavily on random graphs.

1.1. Organization. This paper is organized as follows. In Section 2, for
each prime power ¢, we describe the classical or Hermitian unitals, from which
we obtain a partial linear space with ¢+ 1 points and n = ¢?(¢?> — ¢+ 1) lines,
which we call secants, each containing g + 1 of the points.

In Section 2 we define the graph H, whose vertex set is the set of n secants
to the unital, and where two secants are adjacent if they intersect in a point
of the unital. Thus H, is a union of ¢® + 1 edge-disjoint cliques of order ¢?
with n = ¢?(¢> — ¢ + 1) vertices. The graph H, has the key property (due
to O’Nan [43]) that all K4s have at least three vertices inside the designated
cliques of order ¢>. What remains is to modify H, to remove all these Kys
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while controlling the independence number. The structure of H, is discussed
at length in Section 2.

In Section 3, we construct the random n-vertex Ky-free graph Hg, as a
union of random complete bipartite subgraphs, one from each maximal clique in
H,. This type of “random block construction” was first introduced by Brown
and Ro6dl [11] and was considered by Dudek and Rodl [19], Wolfovitz [58],
Dudek, Retter and Rodl [18], Kostochka, Mubayi and the second author [36],
Conlon [15], Mubayi and the second author [42], and Gowers and Janzer [22].
The main theorem in Section 3 states that if ¢ is large enough, then all sets of
22442 vertices of H, o induce at least 24043 edges in H, 4 With positive probability.
This is proved in Section 3 using the Hoeffding-Azuma inequality. In particular,
we address a remark of Conlon on optimal pseudorandomness of the triangle-
free graphs defined in [15].

Fixing such an instance Gy, we use a theorem of Kohayakawa, Lee, Rodl
and Samotij [35] in Section 4.1 to show that the number of independent sets of
230glog?q] in Gy is at most (q/ log?q)t. This is an alternative but re-
lated approach to the spectral approach of Mubayi and the second author [42]
and Alon and Rédl [3]; see Samotij [47] for a survey on methods for count-
ing independent sets in graphs, and also see Axenovich, Brada¢, Gishboliner,

sizet = |

Mubayi and Weber [4], which has similar ideas. Finally, in Section 4, by ran-
domly sampling vertices of G as in [42] with probability (log?q) /q, we arrive at
a Ky-free graph with at least (¢3 long) /2 vertices and no independent sets of
size t, and this proves 7(4,t) > ct3/log't for some constant ¢ > 0. We did not
expend effort in optimizing the value of ¢; from the proof, ¢ = 2719 will do.

Finally, in Section 5 we use Theorem 1 and the ideas of Alon and Rédl [3],
based on random blowups, to prove Theorem 2.

We use the following graph-theoretic notation. Let G be a graph, and
denote by V(G) and E(G) the vertex set and edge set of G respectively, and
e(G) = |E(G)|. For X C V(G), let G[X] denote the subgraph of G induced
by X, and e(X) = e(G[X]) when the graph G is clear from the context.

2. Unitals and the O’Nan configuration

A unital in the projective plane PG(2, ¢?) is a set U of ¢> + 1 points such
that every line of PG(2,¢?) intersects & in 1 or ¢ + 1 points. Lines will be
referred to as tangents or secants respectively. A classical or Hermitian unital
‘H is a unital described in homogeneous co-ordinates as the following set of
one-dimensional subspaces of Iﬁ‘ggz

H= {<5L’ay,z> - F22 c gt + yq+1 + Latl — 0}

Here arithmetic is in the finite field Fp2, and (z,y, z) is the one-dimensional
subspace of F22 generated by (z,y,z) # 0. The set H is the set of absolute
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points of a unitary polarity; see Barwick and Ebert [6] for a monograph. We
may consider the partial linear space whose points are the points of H, and the
lines are the secants to H. Combinatorially, the lines form a design or Steiner
(g + 1)-tuple system: every pair of points of H is contained in exactly one of
the lines.

One of the remarkable features of this partial linear space is that it does
not contain the so-called O’Nan configuration, namely the configuration of four
lines meeting in six points shown in the figure on the left below [43]:

Figure 1. O’Nan or Pasch configuration

In the combinatorial design theoretic literature, this configuration is also
referred to as the Pasch configuration. Piper [44] conjectured that the Her-
mitian unital is characterized among all such Steiner systems by the absence
of O’Nan configurations. We give a short proof here that H does not contain
these configurations, first proved by O’Nan [43]:

PROPOSITION 1. The Hermitian unital does not contain O’Nan configu-
rations.

Proof. Label the points a, b, c,d, e, f of the O’Nan configuration as shown
in the figure above, where a point a is identified with a chosen generator
(a1,az2,a3) € Fgg\{()}. For a,b € ]F22\{O}, define

o(a,b) = a1b] + axbl + asbl

so that H is precisely the set of (x) such that o(xz,z) = 0. Since {a,b,d},
{a,c,e}, {c,d, f} and {b,e, f} are collinear triples, we may choose generators
for a,b, c,d, e, f satisfying d = a+b, e = a+c and f = a+b+c. For convenience,
write a? = (a{, a3, al). Let A be the matrix whose rows are a,b and ¢, and let
B be the matrix whose columns are a?,b%,c?. Since a, b, ¢ are not collinear, A
is non-singular, and since x — 7 is a field automorphism, the matrix B is also
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non-singular. Therefore
o(a,a) o(a,b) oa,c)
AB = | o(bya) o(b,b) o(b,c)

o(c,a) o(c,b) o(cc)

)

is also non-singular. On the other hand, since o(d,d) = 0, it follows that
o(a,b) = —o(b,a), and similarly using o(e,e) = o(f, f) = 0, we find

o(a,c) =—o(c,a) and o(b,c)=—0c(c,b).
Since o(a,a) = o(b,b) = o(c,¢) = 0, the diagonal of AB is zero. Therefore
det(AB) = o(a,b)o(b,c)o(c,a) + o(a,c)o(c,b)o(b,a) =0,
contradicting that AB is non-singular. O

The bipartite incidence graph of the O’Nan configuration is shown in the
figure below:

Figure 2. The 1-subdivision of K4

In combinatorial terms, this bipartite graph is a 1-subdivision of K, —
the white points in the figure correspond to the lines. The bipartite incidence
graph By of secants L and points H has ¢?(¢? — ¢+ 1) vertices in L and ¢3 + 1
vertices in H. The vertices in L have degree ¢ + 1, and the vertices in H have
degree 2, and consequently e(B,) = ¢?(¢> + 1). A key property is that B,
does not contain a 1-subdivision of K4 with four vertices in L and six vertices
in H, since the O’Nan configuration is absent from the Hermitian unital. The
problem of finding the largest number of edges in a bipartite graph of given
order not containing a fixed bipartite subgraph is known as a Zarankiewicz-type
problem [59]. The bipartite incidence graph By is in this sense a near extremal
bipartite graph not containing a 1-subdivision of K4 with four vertices in P
and six in H. We refer the reader to Janzer [28], [29], Conlon, Janzer and
Lee [16], [17] and Jiang and Qiu [31], [32] for work on the extremal problem
for subdivisions.
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2.1. The graph H,. We construct a graph H, on L = V(H,) in which
{u,v} is an edge if v and v intersect in a point of the unital, and we list
basic properties of H, in this section. The graph H, is in fact a strongly
regular graph; strongly regular graphs are the subject of extensive research
in the literature, and their properties can be found in the recent monograph
of Brouwer and Van Maldeghem [10]. The graph H, is denoted NU3(¢?) in
the literature (see page 81 in Brouwer and Van Maldeghem [10]). We record
the following lemma listing only the basic properties of H, we need. These
properties are all verified by O’Nan [43] using elementary group theory and
finite geometry:

PROPOSITION 2. The graph H, is an n-vertex d-reqular graph with
i) n=q¢(*—q+1)=¢"-@+¢ andd = (¢+1)(¢*-1) =@ +¢* —q—1;
(i) a set C of ¢> + 1 mazimal cliques of order q*, every two sharing ezactly
one vertex,
(iii) each vertex in exactly g+ 1 cliques of C;
(iv) every copy of K4 in H, contains at least three vertices in some clique in C.

Proof. Combining the facts that there are ¢ + 1 lines through a point in
PG(2,4?) and lines intersect in 1 or ¢ + 1 points, one can verify that there are
¢? secants and a unique tangent through any point in H. In particular, there
are ¢° + 1 tangents.

Proof of (i). As there are ¢* + ¢ + 1 lines in PG(2, ¢°), it follows from the
remarks above that the number of secants is n = ¢* +¢*>+ 1 — (¢* +1). Given
a secant ¢, there are ¢ — 1 more secants through every point of # on ¢, which
shows d = (g + 1)(¢® — 1).

Proof of (ii). Observe that the ¢* secants through a fixed point of H form
a maximal clique in H,. We define C to be the set of all such cliques, one
for each point of H. Since there is exactly one secant through two distinct
points of H, it follows that any two distinct cliques in C intersect in exactly
one vertex.

Proof of (iii). As every secant contains g + 1 points of H, it follows that
every vertex is contained in ¢ 4+ 1 cliques in C.

Proof of (iv). This follows from Proposition 1: The lack of an O’Nan con-
figuration implies that every copy of Ky in H, corresponds to four secants, at
least three of which are concurrent in a point of . The three concurrent se-
cants comprise a triangle in the clique in C corresponding to their intersection
point. O

Remark. With a bit more work and using Proposition 1, one can show
that the set C is the set of all mazimum cliques whenever ¢ > 3. For ¢ = 2, one
can construct different cliques of size four by taking three secants concurrent



926 SAM MATTHEUS and JACQUES VERSTRAETE

in a point of A and one more secant intersecting each of the three others in a
point of H. Since we do not need the fact that the cliques in C are maximum,
we will not refer to them as such in the remainder.

Remark. The graph H, also has many other interesting properties. For
instance, it is a strongly regular graph in which adjacent vertices have 2¢ — 2
common neighbors and non-adjacent vertices have (¢+ 1)? common neighbors.
The spectrum of its adjacency matrix is therefore determined by the theory of
strongly regular graphs (see Brouwer and Van Maldeghem [10, §3.1.6]). In this
way, one can find that the non-trivial eigenvalues of the adjacency matrix of
H, are ¢* —q—2 and —q — 1, with multiplicities ¢> and (¢* —q¢—1)(¢* —g+1)
respectively.

It will be convenient throughout the following sections to let m = 224¢.

2.2. Clique structure of Hy. By Proposition 2(ii), H, is a union of maximal
cliques of order ¢? pairwise intersecting in at most one vertex. The goal of this
section is to prove the following lemma, which says in words that although
many edges of H,[X] may lie in cliques of large size relative to |X| — as many
as (q; ) in a single clique — in all instances of sets X of size m, many edges lie
in cliques of linear size in ¢q. The point is to show concentration of the number
of edges in X once each clique is replaced by a random complete bipartite

graph. Fix a set X C V(H,), and let
Tx ={XNnC|CelC,|XNnC|>2},

where C is the set of cliques from Proposition 2(ii).

LEMMA 1. Let X C V(H,) with |X| = m = 24¢>. Then either the num-
ber of edges of Hy[X| contained in cliques in Tx of order at most v/2m/logn
is at least

m

(3) 61q

or the number of edges of Hy[X] in cliques in Tx of order between v/2m/logn
and \/2m is at least

(4)

2

gm?/?
16log?n’
It is convenient to introduce some further notation and terminology to
prove this lemma. We consider a partition of 7 = Tx into three sets SLUM UL
of small, medium and large cliques, respectively, where if | X| = k,

S={T eT:2<|V(T)| < V2k/logn},
M={T €T :V2k/logn < |V(T)| < V2k},
L={TeT:V2k<|V(T) <}
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For a set U C T, it is convenient to define

vU) =Y V(D) and  e) =Y (V).
Teu TeS

In words, e(Uf) is the number of edges in cliques in U, and Lemma 1 claims
if |X| = m, then e(S) > m?/64q or e(M) > qm??/161log?n. We use the
following key lemma:

LEMMA 2. For any set X C V(H,),
(5) v(£) < 2[X],
(6) v(SUM) 2 (¢ - 1)|X] - ¢’ 1.

Proof. By Proposition 2(iii), if | X| = k, then v(T) > (¢+1)k—¢®—1 since
the number of cliques T' € T such that |[V(T)NX| = 1 is at most ¢*+ 1. So (5)
implies (6) using v(SUM) =v(T) —v(L). Let d(z) = {T € L:z € V(T)}]
be the degree of z. As cliques in T pairwise share at most one vertex by

=(%)=(5)

Applying Jensen’s inequality, noting that the average degree is d = v(L)/k, we
obtain

Proposition 2(ii),

£ > v() (- 1),
Suppose, for a contradiction, that v(£) > 2k. Then v(L)/k — 1 > v(L)/2k.
Since each element of L is a large clique, v(£) > v2k|L|. Therefore

2 V(L) (VE2KILD? s

a contradiction. We conclude v(£) < 2k. O

Proof of Lemma 1. By (6), either v(S) > £[(¢ — 1)m — ¢ — 1] or v(M) >
31(¢ — 1)m — ¢® — 1]. We consider each of these cases separately, in order to
prove (3) and (4) respectively.

Casee 1: v(S) > 3[(¢ — 1)m — ¢® — 1]. By Proposition 2(ii), [S| < ¢* + 1.
We apply Jensen’s inequality to obtain

o=y (M)

TeS

. (v<s>2/|8|>

v(S) (v(8) —~ |S])

2
S a=Dm—-1((g=1m—¢*—1- (¢ +1))
= 8

>
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using the lower bound on v(S) and the upper bound on |S|. A calculation
using m = 224¢? shows that this is at least m?/64q for all ¢ > 2, proving (3).

Case 2: v(M) > L[(g — 1)m — ¢ — 1]. Since |V(T)| < v2m for every
clique T € M, and as ¢ > 2 and m > 2%4¢?,

IM[-V2m > (M) =<[(g—Dm—(¢* +1)]

N

>—(qg—1)m.

5

In particular, as ¢ > 2, |[M| > g/m/8. As |V(T)| > v/2m/logn for all T € M,
e(M) = Z (|V(T)|> > q\gm_ (\/Qm/logn).

2 2
TeM
A calculation using m = 224¢? gives (4). This completes the proof of Lemma 1.

O

3. The random Ky-free graph H;

According to Proposition 2(ii), the graph H, is a union of maximal cliques
of size ¢? pairwise intersecting in at most one vertex. For each maximal clique
T in Hy, let (A7, Br) be a random partition of V(T") defined by independently
placing vertices in Ap or By with probability 1/2 each. Let H, 4 be the random
graph consisting of the union over all maximal cliques 7" in H, of the complete
bipartite subgraph with parts Ay and Bp. According to Proposition 2(iv), this
graph H does not contain a complete graph of order four, since each complete
graph of order four contains at least three vertices from some maximal clique T',
whereas H;[V(T)] is bipartite and therefore triangle-free for each maximal
clique 7'. In this sense, Hy is a random Kjy-free graph. We plan to prove the
following theorem:

THEOREM 3. For each prime power q > 2%, there exists a Ky-free graph
Gy, with ?(q* — q + 1) wertices such that for every set X of at least m = 2*4¢>
vertices of Gy,
X ?
> .
— 256q

This theorem is essentially best possible, in the sense that the average set

e(GylX])

X of vertices of H, of size at least about ¢* induces at most about | X | /q edges.
The graph G7 in Theorem 3 will simply be an instance of the random graph H.
We prove Theorem 3 in Section 3.2, using the Hoeffding-Azuma martingale
inequality [27] in Section 3.1. It is possible to invoke other concentration
inequalities, such as McDiarmid’s bounded differences inequality [41] or the
Hanson-Wright [25] inequality as in Conlon [15], but we opted to describe
explicitly the fairly simple martingale which leads to the proof of Theorem 3.
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Remark. The approach used to prove Theorem 3 can be used to improve
the results of Conlon [15] on triangle-free graphs: it was shown that if J, is
the graph whose vertices are the points of a generalized quadrangle of order
g and whose edges are the pairs of collinear points, then J; is a union of
¢+ ¢® + ¢+ 1 edge-disjoint cliques of order ¢+ 1. Let J; be defined by taking
random complete bipartite graphs in these cliques of order ¢+ 1. Then for any
set X of vertices of J, writing the expected density of J; as p = (1+0(1))/2q,
Conlon [15] showed

e(X) Zp('f ') ~O(glogg)|X|.

This is effective for |X| = Q(¢?logq). Using the approach in this paper, we
can show

(X) > p<'§'> - 0la)|],

which is effective for | X| = Q(¢?), and is in this sense best possible, since J,
has independent sets of size ¢ + 1. The separation of small from medium
cliques is key in eliminating the logarithmic factor in Conlon’s bound, and this
solves a question raised in the concluding remarks of Conlon [15]. For Hj, the
approach in this paper may be used to give a similar lower bound on e(X).
However, for our purposes, it is more convenient to use in H; a lower bound
of the form e(X) = Q(|X|?/q) in order to prove Theorem 1.

3.1. Pseudorandomness in H;. The main result of this section, which es-
sentially says that sets of large quadratic size in H; induce many edges with
high probability, is proved using the Hoeffding-Azuma Inequality [27], which
may be stated in the following form:

ProPOSITION 3 (Hoeffding-Azuma Inequality). Let A>0 and ¢y, ca, ..., ¢k
> 0 be reals, and let Z = (Zy, Z1, Za, ..., Zy) be a martingale with Zy = E(Z)
and |Z; — Zi—1| < ¢; for alli < k. Then

2)2
P(Z—-2p<-))< eXP<—k72)
di=1G

If ¢, < ¢ for all 7, then the martingale as in Proposition 3 is called
c-Lipschitz.

For aset X C V/(H,), it is convenient to define the random variable Zx =
e(Hy[X]). The main result used to prove Theorem 3 is the following, which
essentially proves Theorem 3 for sets X of size exactly m. Then Theorem 3

follows for any set X with | X| > m by sampling m vertices of X; see Section 3.2.
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LEMMA 3. If ¢ >2% X CV(H,) and |X| =m = 2*¢?, then
(7) P(Zx < 2% <n™™.

Proof. 1t is convenient to use the notation of Section 2.2; specifically S and
M denote the small and medium cliques in H,[X], and e(S) and e(M) denote
the number of edges of Hy[X] in those cliques, respectively. By Lemma 1,
either e(S) > m?/64q or e(M) > gm3/?/16log?n edges, and we consider these
two cases separately. Let Zs and Z( be the number of edges of Hy in small
and medium cliques respectively, so Zx > Zs+ Zp. Recall Hj is a union over
maximal cliques 7' C H, of complete bipartite graphs with parts Ar and Br,
where A7 U By is a random partition of V(7T') such that vertices are placed
independently in Ay or By with probability 1/2 each, independently for each
maximal clique T of H,.

Case 1: e(S) > m?/64q. For a small maximal clique T of H,, and a vertex
veV(T),let Z,r = 0if v is placed in Ay and let Z, 7 = 1 if v is placed in Br,
and these random variables are independent. Let Z = Zs, and let Y1,Y5,...,Y}
be an ordering of all the random variables Z, 7 for T' € S and v € V(T'). Let F;
be the o-field generated by Y1, Ys,...,Y;. Here k = v(S) and Z is a function of
k independent random variables Z, r for T' € S. Then Z; = E(Z | F;) defines
a martingale which terminates with Z. If ¢; = max|Z; — Z;_1|, then by the
Hoeffding-Azuma inequality, for any A > 0,

2)2
P(Z —E(Z) < -)\) < exp(—ﬂ).
i=1Cj

Since ¢; < |[V(T)| — 1 when Y; = Z, 1,

k

dad<) T D> (VD=1 =D VDI(V(T)| - 1)

i=1 TeS veV (T) Tes

As each clique in S is a small clique,
max{c;: 1 <i <k} <max{|V(T)|: T € S} < v2m/logn,

so the martingale is c¢-Lipschitz with ¢ = v/2m/logn, and

k
d @< vmI(v(T)| - 1)
i=1 TeS
<c Y (V(T)| - 1)?
TeS
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We conclude

P(Z —E(Z) < -)\) < exp(—c'ZES))

We select A = E(Z)/2. Since e(S) > m?/64q, and E(Z) = e(S)/2,

2
m
A= 1e(S) > 2560 — 24043

Using A\/e(S) = 1/4 and \/4c > e(S)/16¢ > m®/? logn/(4096q),

m?3/2log n) B

P(Z <\ =PB(Z-E(Z) < -)) < exp(_%) < exp(- [

where we used m = 224¢?. This completes Case 1.

Case 2: e(M) > qm3/?/161og?n. Let Z = Zy, and let
1

Then A > 2403 since m = 224¢® and ¢ > 2%°. By the Hoeffding-Azuma
inequality as in Case 1, with ¢ = v/2m for the medium cliques in M, we obtain

P(Z <))< exp(—%c)

qm -
Sexp<—72> < n™
1024 1log“n

240

as q > easily implies ¢ > 1024 log>n. U

3.2. Proof of Theorem 3. Let m = 224¢®. Then, by Lemma 3, the prob-
ability that a set X C V(H) of size m induces at most 24043 edges of Hj
is at most n~™. It follows that the expected number of such X is at most
(T’;‘l)n_m < 1, and so there exists an instance G of H; such that every set of
m vertices induces at least 240¢® edges. Fix such a Gy, and recall Gy is Ky-free
with ¢?(¢> — ¢ + 1) vertices. To prove Theorem 3, consider a set X of at least
22442 vertices. We count pairs (e,Y) where Y C X has size m and e is an edge

of G7[Y]. On one hand, the number of such pairs is at least

<|X|) 10,3
m

by the choice of G}, whereas the number of pairs (e, Y') is also exactly

m— 2
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We conclude that for every set X of size at least m in Gy,

(G5 2 2%

| X]?
>
— 256q

This proves Theorem 3. ([

4. Randomly sampling from G

In this section, we prove Theorem 1 using the graph G' = G} guaranteed
by Theorem 3, a theorem in Section 4.1 for counting independent sets, and
random sampling as in [42]. The theorem on counting independent sets is
based on early work of Kleitman and Winston [34].

4.1. Counting independent sets. The following is found in Kohayakawa,
Lee, R6dl and Samotij [35], and is a special case of the method of containers
due to Balogh, Morris and Samotij [5] and Saxton and Thomason [48]:

PROPOSITION 4. Let G be a graph on n wvertices, and let r, R € N, and
a € [0, 1] satisfy

(8) e n<R
and, for every subset X C V(QG) of at least R vertices,
(9) 2¢(X) > a| X|2.

Then the number of independent sets of size t > r in G is at most

05

For completeness, we briefly outline the proof of this result: To count
independent sets, we may select the vertices of an independent set one by one
and then delete their neighbors. If X is the set of vertices remaining in G at
any particular stage in the process, and |X| > R, then there exists a vertex v in
X with at least o| X| neighbors in X, due to (9). Removing v and its neighbors,
we arrive at a new set X' of remaining vertices satisfying |X'| < (1 — )| X]|. If
we repeat this r times, there are at most (1 — a)"n < e™*"'n < R vertices left
to select from, and at that stage we select the remaining ¢t — r vertices of the
independent set.

4.2. The proof of Theorem 1. Let G = G} be the graph guaranteed by
Theorem 3, so G is a Ky-free graph with n = ¢?(¢> — ¢ + 1) vertices such that
for every set X of at least 224¢? vertices of G, e(X) > | X|?/256¢ for each large
enough prime power g. This allows us to apply Proposition 4 to G.
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The main claim is that the number of independent sets of size t =230¢log?q
in G is at most (g/log?q)t. To prove this, let R = 224¢%, r = 1024qlog ¢, and
o = 1/256q in Proposition 4. Then exp(—ar)n = e 41989n < ¢7*n < R so (8)
is satisfied. Since e(X) > a|X|? for all X C V(@) with |X| > R, (9) is also
satisfied. By (10), the number of independent sets of size ¢ in G is at most

()2 ) < (F) <oy

using the bound (5) < (4x/y)Y for integers x > y > 1, and using n < ¢*. Using
¢'" < et/? < 2t and 4R/t < q/2log?q, this is at most (¢/log?q)?, which proves
the claim.

Finally, we prove Theorem 1 using the claim. Randomly sample a set V'
of vertices of G' with probability logq/q independently for each vertex. If I is
the number of independent sets of size ¢ in G[V], then E() < 1 and therefore

nlog’y | _ ¢’log’q

E(VI=1) =

since n = ¢?(¢> — ¢+ 1) > ¢*/2 + ¢q. In particular, there exists V C V(G)
such that G[V] is a Ky-free graph on at least ¢°log®q/2 vertices containing
no independent set of size at least ¢. Since this is valid for any large enough
prime ¢, and there is a prime ¢ between any positive integer and its double by
Bertrand’s Postulate, this shows that there exists an absolute constant ¢; > 0
such that r(4,t) > ¢1t3/log?t for all t > 3, proving Theorem 1. O

5. Proof of Theorem 2

We use the random blowup approach of Kim and Mubayi alluded to in the
work of Alon and R6dl [3]. Let G; denote a Ky-free graph with no independent
sets of size at least s = [t/ logt], where |V (Gy)| = T = Q(t3/1og"t), guaranteed
by Theorem 1. The r-blowup G¢(r) of G is the graph obtained by replacing
each vertex = of Gy with an independent set I, of size r and each edge {z,y}
of A; by a complete bipartite graph between I, and I,,. We shall set

6kt2(k—2)
"= [(logt)ﬁk*13-|’
where d; > 0 is a constant to be chosen shortly. Alon and Ro6dl [3] observed
that the number of independent sets of size ¢t in G¢(r) is at most

() ()’

t
For a permutation o of V(G¢(r)), let G¢(r,0) denote the copy of G¢(r) with
vertex set o(V(G¢(r))). For k > 3, taking k — 1 independent random permuta-
tions o1, 09, ...,0r_1 of V(Gy), let G(k) be the graph with vertex set V (Gy(r))
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and edge set
k

E(G(k)) = U E(Gi(r,0:)).
i=1
Each Gi(r,0;) plays the role of the ith color in a k-coloring of the edges of
K, 7, and the edges of E(K,7)\E(G(k)) form the last color. In the event that
an edge is in more than one of the graphs G¢(r, 0;) — in other words there is
a choice of colors for the edge — we arbitrarily assign one of the colors to the
edge. The expected number of independent sets of ¢ vertices in G(k) is precisely

((f)(sr)t>k1 i\
! t '
Using T < t3 and the bounds
T s o 138 3t rT t 2 Tt
<T<t¥<e and ; > (rT/t)" > (crt®/log't)
s
for some constant ¢ > 0 and ! > (¢/e)?, the above expression is at most
_ 2\ (k_
ct . (ﬂ)““ e (%) E720 ot 220 (1 4y (0R-13)t
t logt -
for some constant Cy, > 0. If §;, < 1/C}, then the choice of  ensures this quan-
tity is less than 1. Consequently, there exists a graph G(k) with 7T vertices

that is the union of £ —1 copies of Ky-free graphs and G(k) has no independent

set of size t. Consequently, for each k > 3, there exists v, > 0 such that
$2k—1

(log t)6(k=1)"
This completes the proof of Theorem 2. O

re(4it) > T >y

6. Concluding remarks

o Asymptotics of r(4,t). To prove r(4,t) = Q(t3/log?t), it would be enough
to prove that for some constants ¢, C > 0, the number of independent sets
of size t = cqlog ¢ in G7 is at most (Cq?/t)t. However, the technical condi-
tion (8) precludes an application of Proposition 4. This loss of logarithmic
factors appears to occur also in [42] when counting independent sets using
spectral methods. A survey of counting independent sets in graphs is given
by Samotij [47]. Nevertheless, we believe (4, t) has order t3/log?t, and that
G, may indeed have at most (Cq?/t)t independent sets of size t = cqlogq
for some constants ¢, C' > 0:

CONJECTURE 1. Ast — oo,

r(4,0) =6 r ).

log?t
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e Spectral approach. A key part of the proof of Theorem 1 is the pseudoran-
domness of the graphs H;, as stated in Theorem 3. The non-trivial eigen-
values of the adjacency matrix of the graph H, are ¢> — ¢ — 2 and —¢ — 1
with multiplicities ¢® and (¢® — g — 1)(¢® — g + 1) respectively. A one-sided
version of the expander mixing lemma [2], see for instance Theorem 3.5 in
Haemers [24], shows

| X|?
2e(X) > 20 (¢+1)IX|
for all sets X C V(H,), and so H, itself is pseudorandom. Unfortunately, as
pointed out to us by Carl Schildkraut, the smallest eigenvalue of the random
subgraph H; is of order at most —q? with high probability: a typical clique
in H, is partitioned into two roughly equal parts, and the complete bipartite
graph with those parts has smallest eigenvalue of order —¢?, which by Cauchy
interlacing shows the same for H;.

e Optimal pseudorandom graphs. Another salient open problem is to determine
whether there exists a Ky-free (n,d, \)-graph with A\ = O(v/d) and d =
Q(n4/ ®); this problem remains open. Such a graph would be optimal in the
sense of the bounds of Sudakov, Szabé and Vu [55]. As shown by Mubayi
and the second author [42], this would imply the same lower bound on (4, t)
as in Theorem 1. The graph H is not an optimal pseudorandom graph as
the non-trivial eigenvalues of the adjacency matrix of H, are ¢> —q—2and
—q—1, with multiplicities ¢® and (¢ —q—1)(¢?—g+1) respectively. These are
determined from the theory of strongly regular graphs; see Brouwer and Van
Maldeghem [10]. Since H, is not an optimal pseudorandom graph, or even a
weakly optimal pseudorandom graph in the sense of He and Wigderson [26],
it seems unlikely that Hj is an optimal or weakly optimal pseudorandom
graph; moreover, Hy is generally not a regular graph.

e Graph Ramsey numbers. Given a graph F', define r(F,t) to be the mini-
mum 7 such that every F-free n-vertex graph contains an independent set
of size t. In this paper, we studied r(4,t) — the case FF = K4 — but
we believe that the methods of our paper could be fruitful for other graph
Ramsey numbers r(F,t). For instance, for the well-studied cycle-complete
graph Ramsey numbers r(Cy, t) when k is odd; see Sudakov [54] for upper
bounds. There are a number of dense constructions of Cg-free graphs with
many rich properties to which the methods of this paper — in particular,
counting independent sets via containers — may apply, such as the graphs
defined by Margulis [40], the Ramanujan graphs of Lubotzky, Phillips and
Sarnak [39], the high girth graphs of Lazebnik, Ustimenko and Woldar [37],
and graphs from generalized polygons; see [42]. A survey of extremal prob-
lems for cycles in graphs is given in [56]. Recent work of Conlon, Mubayi and
the authors [14] gives good lower bounds on cycle-complete graph Ramsey
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numbers. We also believe the approach in this paper should also help with
estimates of the Erdds-Rogers functions [19], [18], [58], [36], [15], [42], [22].
Recent progress was obtained along these lines by Janzer and Sudakov [30]
using the results of this paper.

e Extremal graph theory. The bipartite incidence graph B, of points P in H
and secants L to the Hermitian unital # is in fact a near extremal bipartite
graph not containing a 1-subdivision of K4 with four vertices in P and six
in L; this is a Zarankiewicz-type problem [59]. Let Fy be a 1-subdivision of
Ky, and define z(n,m, Fy) to be the maximum number of edges in an n by
m bipartite graph which does not contain F; with four vertices in the part
of size n and six in the part of size m. It is possible via counting arguments
(adapting those of Conlon, Janzer and Lee [16]) to show that for n > m > 2,

z(n,m, Fy) = O(m®/5n*/?).

When G = By, we have m=¢*+1, n=¢*(¢> — ¢+ 1) and e(G)=(¢+ 1)n=
¢ + o(q°), which matches the order of magnitude of the upper bound on
z(n,m, Fy) as ¢ — 0o. The extremal problem for subdivisions has been stud-
ied extensively; see Conlon, Janzer and Lee [16] and the references therein.
One of their conjectures implies that if Fs is a 1-subdivision of K, then
z(n,n, Fy) = ©(n3/2~1/(4s=6)) "and this conjecture remains open for s > 4.
If this conjecture is true, and in addition extremal graphs contain no cycles
of length four, then as in the work of Conlon, Mubayi and the authors [14],
r(s,t) = 6(t5*1) as t — oo. It may therefore be more fruitful for lower
bounds on r(s,t) for s > 5 to look for lower bounds on z(m,n, Fy), i.e.,
for a near extremal m by n bipartite graph with no 1-subdivision of K for
appropriate values of m and n, as was done in this paper for s = 4.
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