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The asymptotics of r(4, t)

By Sam Mattheus and Jacques Verstraete

Abstract

For integers s, t ≥ 2, the Ramsey number r(s, t) denotes the minimum

n such that every n-vertex graph contains a clique of order s or an inde-

pendent set of order t. In this paper we prove

r(4, t) = Ω
(

t
3

log4t

)
as t → ∞,

which determines r(4, t) up to a factor of order log2t, and solves a conjecture

of Erdős.

1. Introduction

Ramsey Theory is an area of mathematics underpinned by the philoso-

phy that in any large enough structure, there exists a relative large uniform

substructure. The area is named after F. P. Ramsey [46], but it has roots

in a variety of branches of mathematics, including logic, set theory, topology,

geometry and number theory. Celebrated results include Schur’s Theorem [49]

leading to Fermat’s Last Theorem modulo primes, Rado’s partition regular-

ity [45], van der Waerden’s Theorem [57] on arithmetic progressions and She-

lah’s Theorem [51], and Bourgain’s Theorem [9] on Euclidean distortion in

metric Ramsey Theory, to mention a few. The area has grown into a corner-

stone of modern combinatorics research, and the central quantities of study

are known as Ramsey Numbers.

The classical expository example is the statement that amongst any six

people, there will be at least three people who all know each other, or at

least three people who all do not know each other. In general, for integers

s, t ≥ 2, the Ramsey number r(s, t) denotes the minimum n such that every

n-vertex graph contains either a clique of order s or an independent set of size t,
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and the afore-mentioned example is equivalent to the statement r(3, 3) ≤ 6.

The quantities r(s, t) are the cornerstone of Ramsey Theory and have been

studied for many decades; their existence is proved by Ramsey’s Theorem [46]

— see also the book by Graham, Rothschild, Solymosi and Spencer [23]. The

quantities r(t, t) are sometimes referred to as diagonal Ramsey Numbers — see

Campos, Griffiths, Morris, Sahasrabudhe [12] for a recent major breakthrough

— whereas r(s, t) for fixed s and t → ∞ are referred to as off-diagonal Ramsey

numbers. The focus of this paper is on off-diagonal Ramsey numbers.

The original upper bounds on off-diagonal Ramsey numbers were given

by Erdős and Szekeres [20] in 1935. They showed that for all fixed s ≥ 3

and t → ∞, we have r(s, t) = O(ts−1). Ajtai, Komlós and Szemerédi [1]

established the first improvement to this upper bound on r(s, t) by analyzing

a randomized greedy algorithm for producing large independent sets. Bohman

and Keevash [7] proved a lower bound by analyzing the random Ks-free graph

process, improving on earlier results of Spencer [52], [53]. These bounds are

as follows: for s ≥ 3, there exist constants c1(s), c2(s) > 0 such that the

off-diagonal Ramsey numbers satisfy

(1) c1(s)
t
s+1

2

(log t)
s+1

2
− 1

s−2

≤ r(s, t) ≤ c2(s)
ts−1

(log t)s−2
.

Extending ideas of Shearer [50], the upper bound was further improved

by Li, Rousseau and Zang [38], who showed that as t → ∞,

(2) r(s, t) ≤ (1 + o(1))
ts−1

(log t)s−2
.

The only off-diagonal Ramsey numbers r(s, t) for s ≥ 3 whose order of

magnitude is known is r(3, t), as it was shown in 1995 by Kim [33] that r(3, t) =

Ω(t2/ log t) as t → ∞, matching previous upper bounds by Ajtai, Komlós and

Szemerédi [1] and Shearer [50], and improving earlier bounds of Spencer [52].

The current state of the art is due to Fiz Pontiveros, Griffiths and Morris [21]

and Bohman and Keevash [8], where r(3, t) is determined asymptotically up

to a factor four.

The current best lower bounds for r(4, t) come from the K4-free process in

random graphs, studied by Bohman and Keevash [7], improving earlier bounds

of Spencer [53]. With the upper bound (2), the best bounds are, for some

absolute constant a > 0,

a
t
5

2

log2t
≤ r(4, t) ≤ (1 + o(1))

t3

log2t
.

The exponent 5/2 has stood for more than forty years; see Spencer [52], [53].

In this paper, we determine r(4, t) up to a factor of order log2t and show

the exponent is 3:
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Theorem 1. As t → ∞,

r(4, t) = Ω

Å
t3

log4 t

ã
.

This solves a long-standing conjecture of Erdős [13]. The upper bound for

r(5, t) from (1) is ‹O(t4), whereas the lower bound given by (1) has the same

order of magnitude Ω̃(t3) as the lower bound for r(4, t) in Theorem 1 up to

logarithms, leaving the problem of the asymptotics of r(5, t) as a tantalizing

open problem.

Theorem 1 also gives almost tight bounds on multicolor Ramsey numbers:

for k ≥ 2, let rk(4; t) denote the minimum n such that every k-coloring of the

edges of Kn contains a monochromatic K4 in one of the first k − 1 colors or a

monochromatic Kt in the last color. In particular, r2(4; t) = r(4, t). The upper

bound rk(4; t) = O(t2k−1/(log t)2k−2) was proven by He and Wigderson [26],

generalizing the result for rk(3; t) due to Alon and Rödl [3]. Using the approach

of Alon and Rödl [3], we establish a lower bound on rk(4; t) which is sharp up

to polylogarithmic factors:

Theorem 2. For each k ≥ 3, as t → ∞,

rk(4; t) = Ω

Ç
t2k−1

(log t)6(k−1)

å
.

The constructive methods of this paper are inspired by the approaches of

Alon and Rödl [3] and Mubayi and the second author [42], and they may be use-

ful for providing lower bounds on other graph Ramsey numbers, for example cy-

cles versus cliques; see Conlon, Mubayi and the authors [14]. The constructions

in [15], [42], [14] rely on point-line incidence graphs from finite geometry and

random sampling. Our construction for r(4, t) in this paper relies on unitals in

finite geometry, and hence has a substantial non-probabilistic aspect, unlike the

afore-mentioned constructions for r(s, t), which rely heavily on random graphs.

1.1. Organization. This paper is organized as follows. In Section 2, for

each prime power q, we describe the classical or Hermitian unitals, from which

we obtain a partial linear space with q3+1 points and n = q2(q2− q+1) lines,

which we call secants, each containing q + 1 of the points.

In Section 2 we define the graph Hq whose vertex set is the set of n secants

to the unital, and where two secants are adjacent if they intersect in a point

of the unital. Thus Hq is a union of q3 + 1 edge-disjoint cliques of order q2

with n = q2(q2 − q + 1) vertices. The graph Hq has the key property (due

to O’Nan [43]) that all K4s have at least three vertices inside the designated

cliques of order q2. What remains is to modify Hq to remove all these K4s
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while controlling the independence number. The structure of Hq is discussed

at length in Section 2.

In Section 3, we construct the random n-vertex K4-free graph H∗
q , as a

union of random complete bipartite subgraphs, one from each maximal clique in

Hq. This type of “random block construction” was first introduced by Brown

and Rödl [11] and was considered by Dudek and Rödl [19], Wolfovitz [58],

Dudek, Retter and Rödl [18], Kostochka, Mubayi and the second author [36],

Conlon [15], Mubayi and the second author [42], and Gowers and Janzer [22].

The main theorem in Section 3 states that if q is large enough, then all sets of

224q2 vertices of H∗
q induce at least 240q3 edges in H∗

q with positive probability.

This is proved in Section 3 using the Hoeffding-Azuma inequality. In particular,

we address a remark of Conlon on optimal pseudorandomness of the triangle-

free graphs defined in [15].

Fixing such an instance G∗
q , we use a theorem of Kohayakawa, Lee, Rödl

and Samotij [35] in Section 4.1 to show that the number of independent sets of

size t = d230q log2qe in G∗
q is at most (q/ log2q)t. This is an alternative but re-

lated approach to the spectral approach of Mubayi and the second author [42]

and Alon and Rödl [3]; see Samotij [47] for a survey on methods for count-

ing independent sets in graphs, and also see Axenovich, Bradač, Gishboliner,

Mubayi and Weber [4], which has similar ideas. Finally, in Section 4, by ran-

domly sampling vertices of G∗
q as in [42] with probability (log2q)/q, we arrive at

a K4-free graph with at least (q3 log2q)/2 vertices and no independent sets of

size t, and this proves r(4, t) ≥ ct3/ log4t for some constant c > 0. We did not

expend effort in optimizing the value of c; from the proof, c = 2−100 will do.

Finally, in Section 5 we use Theorem 1 and the ideas of Alon and Rödl [3],

based on random blowups, to prove Theorem 2.

We use the following graph-theoretic notation. Let G be a graph, and

denote by V (G) and E(G) the vertex set and edge set of G respectively, and

e(G) = |E(G)|. For X ⊆ V (G), let G[X] denote the subgraph of G induced

by X, and e(X) = e(G[X]) when the graph G is clear from the context.

2. Unitals and the O’Nan configuration

A unital in the projective plane PG(2, q2) is a set U of q3 + 1 points such

that every line of PG(2, q2) intersects U in 1 or q + 1 points. Lines will be

referred to as tangents or secants respectively. A classical or Hermitian unital

H is a unital described in homogeneous co-ordinates as the following set of

one-dimensional subspaces of F3
q2 :

H = {〈x, y, z〉 ⊂ F
3
q2 : xq+1 + yq+1 + zq+1 = 0}.

Here arithmetic is in the finite field Fq2 , and 〈x, y, z〉 is the one-dimensional

subspace of F3
q2 generated by (x, y, z) 6= 0. The set H is the set of absolute
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points of a unitary polarity; see Barwick and Ebert [6] for a monograph. We

may consider the partial linear space whose points are the points of H, and the

lines are the secants to H. Combinatorially, the lines form a design or Steiner

(q + 1)-tuple system: every pair of points of H is contained in exactly one of

the lines.

One of the remarkable features of this partial linear space is that it does

not contain the so-called O ’Nan configuration, namely the configuration of four

lines meeting in six points shown in the figure on the left below [43]:

Figure 1. O’Nan or Pasch configuration

In the combinatorial design theoretic literature, this configuration is also

referred to as the Pasch configuration. Piper [44] conjectured that the Her-

mitian unital is characterized among all such Steiner systems by the absence

of O’Nan configurations. We give a short proof here that H does not contain

these configurations, first proved by O’Nan [43]:

Proposition 1. The Hermitian unital does not contain O ’Nan configu-

rations.

Proof. Label the points a, b, c, d, e, f of the O’Nan configuration as shown

in the figure above, where a point a is identified with a chosen generator

(a1, a2, a3) ∈ F
3
q2\{0}. For a, b ∈ F

3
q2\{0}, define

σ(a, b) = a1b
q
1 + a2b

q
2 + a3b

q
3

so that H is precisely the set of 〈x〉 such that σ(x, x) = 0. Since {a, b, d},
{a, c, e}, {c, d, f} and {b, e, f} are collinear triples, we may choose generators

for a, b, c, d, e, f satisfying d = a+b, e = a+c and f = a+b+c. For convenience,

write aq = (aq1, a
q
2, a

q
3). Let A be the matrix whose rows are a, b and c, and let

B be the matrix whose columns are aq, bq, cq. Since a, b, c are not collinear, A

is non-singular, and since x 7→ xq is a field automorphism, the matrix B is also
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non-singular. Therefore

AB =

Ñ
σ(a, a) σ(a, b) σ(a, c)

σ(b, a) σ(b, b) σ(b, c)

σ(c, a) σ(c, b) σ(c, c)

é

is also non-singular. On the other hand, since σ(d, d) = 0, it follows that

σ(a, b) = −σ(b, a), and similarly using σ(e, e) = σ(f, f) = 0, we find

σ(a, c) = −σ(c, a) and σ(b, c) = −σ(c, b).

Since σ(a, a) = σ(b, b) = σ(c, c) = 0, the diagonal of AB is zero. Therefore

det(AB) = σ(a, b)σ(b, c)σ(c, a) + σ(a, c)σ(c, b)σ(b, a) = 0,

contradicting that AB is non-singular. �

The bipartite incidence graph of the O’Nan configuration is shown in the

figure below:

Figure 2. The 1-subdivision of K4

In combinatorial terms, this bipartite graph is a 1-subdivision of K4 —

the white points in the figure correspond to the lines. The bipartite incidence

graph Bq of secants L and points H has q2(q2 − q+1) vertices in L and q3 +1

vertices in H. The vertices in L have degree q + 1, and the vertices in H have

degree q2, and consequently e(Bq) = q2(q3 + 1). A key property is that Bq

does not contain a 1-subdivision of K4 with four vertices in L and six vertices

in H, since the O’Nan configuration is absent from the Hermitian unital. The

problem of finding the largest number of edges in a bipartite graph of given

order not containing a fixed bipartite subgraph is known as a Zarankiewicz-type

problem [59]. The bipartite incidence graph Bq is in this sense a near extremal

bipartite graph not containing a 1-subdivision of K4 with four vertices in P

and six in H. We refer the reader to Janzer [28], [29], Conlon, Janzer and

Lee [16], [17] and Jiang and Qiu [31], [32] for work on the extremal problem

for subdivisions.
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2.1. The graph Hq . We construct a graph Hq on L = V (Hq) in which

{u, v} is an edge if u and v intersect in a point of the unital, and we list

basic properties of Hq in this section. The graph Hq is in fact a strongly

regular graph; strongly regular graphs are the subject of extensive research

in the literature, and their properties can be found in the recent monograph

of Brouwer and Van Maldeghem [10]. The graph Hq is denoted NU3(q
2) in

the literature (see page 81 in Brouwer and Van Maldeghem [10]). We record

the following lemma listing only the basic properties of Hq we need. These

properties are all verified by O’Nan [43] using elementary group theory and

finite geometry:

Proposition 2. The graph Hq is an n-vertex d-regular graph with

(i) n = q2(q2− q+1) = q4− q3+ q2 and d = (q+1)(q2−1) = q3+ q2− q−1;

(ii) a set C of q3 + 1 maximal cliques of order q2, every two sharing exactly

one vertex,

(iii) each vertex in exactly q + 1 cliques of C;
(iv) every copy of K4 in Hq contains at least three vertices in some clique in C.

Proof. Combining the facts that there are q2 + 1 lines through a point in

PG(2, q2) and lines intersect in 1 or q+1 points, one can verify that there are

q2 secants and a unique tangent through any point in H. In particular, there

are q3 + 1 tangents.

Proof of (i). As there are q4+ q2+1 lines in PG(2, q2), it follows from the

remarks above that the number of secants is n = q4 + q2 +1− (q3 +1). Given

a secant `, there are q2 − 1 more secants through every point of H on `, which

shows d = (q + 1)(q2 − 1).

Proof of (ii). Observe that the q2 secants through a fixed point of H form

a maximal clique in Hq. We define C to be the set of all such cliques, one

for each point of H. Since there is exactly one secant through two distinct

points of H, it follows that any two distinct cliques in C intersect in exactly

one vertex.

Proof of (iii). As every secant contains q + 1 points of H, it follows that

every vertex is contained in q + 1 cliques in C.
Proof of (iv). This follows from Proposition 1: The lack of an O’Nan con-

figuration implies that every copy of K4 in Hq corresponds to four secants, at

least three of which are concurrent in a point of H. The three concurrent se-

cants comprise a triangle in the clique in C corresponding to their intersection

point. �

Remark. With a bit more work and using Proposition 1, one can show

that the set C is the set of all maximum cliques whenever q ≥ 3. For q = 2, one

can construct different cliques of size four by taking three secants concurrent
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in a point of H and one more secant intersecting each of the three others in a

point of H. Since we do not need the fact that the cliques in C are maximum,

we will not refer to them as such in the remainder.

Remark. The graph Hq also has many other interesting properties. For

instance, it is a strongly regular graph in which adjacent vertices have 2q2 − 2

common neighbors and non-adjacent vertices have (q+1)2 common neighbors.

The spectrum of its adjacency matrix is therefore determined by the theory of

strongly regular graphs (see Brouwer and Van Maldeghem [10, §3.1.6]). In this

way, one can find that the non-trivial eigenvalues of the adjacency matrix of

Hq are q2− q− 2 and −q− 1, with multiplicities q3 and (q2− q− 1)(q2− q+1)

respectively.

It will be convenient throughout the following sections to let m = 224q2.

2.2. Clique structure of Hq . By Proposition 2(ii),Hq is a union of maximal

cliques of order q2 pairwise intersecting in at most one vertex. The goal of this

section is to prove the following lemma, which says in words that although

many edges of Hq[X] may lie in cliques of large size relative to |X| — as many

as
(q2
2

)
in a single clique — in all instances of sets X of size m, many edges lie

in cliques of linear size in q. The point is to show concentration of the number

of edges in X once each clique is replaced by a random complete bipartite

graph. Fix a set X ⊆ V (Hq), and let

TX = {X ∩ C | C ∈ C, |X ∩ C| ≥ 2},
where C is the set of cliques from Proposition 2(ii).

Lemma 1. Let X ⊆ V (Hq) with |X| = m = 224q2. Then either the num-

ber of edges of Hq[X] contained in cliques in TX of order at most
√
2m/ log n

is at least

(3)
m2

64q

or the number of edges of Hq[X] in cliques in TX of order between
√
2m/ log n

and
√
2m is at least

(4)
qm3/2

16 log2n
.

It is convenient to introduce some further notation and terminology to

prove this lemma. We consider a partition of T = TX into three sets StMtL
of small, medium and large cliques, respectively, where if |X| = k,

S = {T ∈ T : 2 ≤ |V (T )| ≤
√
2k/ log n},

M= {T ∈ T :
√
2k/ log n < |V (T )| ≤

√
2k},

L= {T ∈ T :
√
2k < |V (T )| ≤ q2}.
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For a set U ⊆ T , it is convenient to define

v(U) =
∑

T∈U

|V (T )| and e(U) =
∑

T∈S

(|V (T )|
2

)
.

In words, e(U) is the number of edges in cliques in U , and Lemma 1 claims

if |X| = m, then e(S) ≥ m2/64q or e(M) ≥ qm3/2/16 log2n. We use the

following key lemma:

Lemma 2. For any set X ⊆ V (Hq),

v(L) ≤ 2|X|,(5)

v(S tM) ≥ (q − 1)|X| − q3 − 1.(6)

Proof. By Proposition 2(iii), if |X| = k, then v(T ) ≥ (q+1)k−q3−1 since

the number of cliques T ∈ T such that |V (T )∩X| = 1 is at most q3+1. So (5)

implies (6) using v(S tM) = v(T ) − v(L). Let d(x) = |{T ∈ L : x ∈ V (T )}|
be the degree of x. As cliques in T pairwise share at most one vertex by

Proposition 2(ii),
∑

x∈X

Ç
d(x)

2

å
≤
Ç
|L|
2

å
.

Applying Jensen’s inequality, noting that the average degree is d = v(L)/k, we
obtain

|L|2 ≥ v(L)(v(L)k − 1).

Suppose, for a contradiction, that v(L) > 2k. Then v(L)/k − 1 > v(L)/2k.
Since each element of L is a large clique, v(L) >

√
2k|L|. Therefore

|L|2 > v(L)2
2k

>
(
√
2k|L|)2
2k

= |L|2,

a contradiction. We conclude v(L) ≤ 2k. �

Proof of Lemma 1. By (6), either v(S) ≥ 1
2 [(q− 1)m− q3 − 1] or v(M) ≥

1
2 [(q − 1)m − q3 − 1]. We consider each of these cases separately, in order to

prove (3) and (4) respectively.

Casee 1: v(S) ≥ 1
2 [(q − 1)m− q3 − 1]. By Proposition 2(ii), |S| ≤ q3 + 1.

We apply Jensen’s inequality to obtain

e(S) =
∑

T∈S

Ç
|V (T )|

2

å

≥ |S| ·
Ç
v(S)/|S|

2

å

≥ v(S) (v(S)− |S|)
2

≥ ((q − 1)m− q3 − 1)((q − 1)m− q3 − 1− (q3 + 1))

8
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using the lower bound on v(S) and the upper bound on |S|. A calculation

using m = 224q2 shows that this is at least m2/64q for all q ≥ 2, proving (3).

Case 2: v(M) ≥ 1
2 [(q − 1)m − q3 − 1]. Since |V (T )| ≤

√
2m for every

clique T ∈ M, and as q ≥ 2 and m ≥ 224q2,

|M| ·
√
2m ≥ v(M)≥ 1

2
[(q − 1)m− (q3 + 1)]

≥ 1√
8
(q − 1)m.

In particular, as q ≥ 2, |M| ≥ q
√
m/8. As |V (T )| ≥

√
2m/ log n for all T ∈ M,

e(M) =
∑

T∈M

Ç
|V (T )|

2

å
≥ q

√
m

8
·
Ç√

2m/ log n

2

å
.

A calculation using m = 224q2 gives (4). This completes the proof of Lemma 1.

�

3. The random K4-free graph H∗
q

According to Proposition 2(ii), the graph Hq is a union of maximal cliques

of size q2 pairwise intersecting in at most one vertex. For each maximal clique

T in Hq, let (AT , BT ) be a random partition of V (T ) defined by independently

placing vertices in AT or BT with probability 1/2 each. Let H∗
q be the random

graph consisting of the union over all maximal cliques T in Hq of the complete

bipartite subgraph with parts AT and BT . According to Proposition 2(iv), this

graph H∗
q does not contain a complete graph of order four, since each complete

graph of order four contains at least three vertices from some maximal clique T ,

whereas H∗
q [V (T )] is bipartite and therefore triangle-free for each maximal

clique T . In this sense, H∗
q is a random K4-free graph. We plan to prove the

following theorem:

Theorem 3. For each prime power q ≥ 240, there exists a K4-free graph

G∗
q with q2(q2 − q+ 1) vertices such that for every set X of at least m = 224q2

vertices of G∗
q ,

e(G∗
q [X]) ≥ |X|2

256q
.

This theorem is essentially best possible, in the sense that the average set

X of vertices ofHq of size at least about q
2 induces at most about |X|2/q edges.

The graph G∗
q in Theorem 3 will simply be an instance of the random graphH∗

q .

We prove Theorem 3 in Section 3.2, using the Hoeffding-Azuma martingale

inequality [27] in Section 3.1. It is possible to invoke other concentration

inequalities, such as McDiarmid’s bounded differences inequality [41] or the

Hanson-Wright [25] inequality as in Conlon [15], but we opted to describe

explicitly the fairly simple martingale which leads to the proof of Theorem 3.
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Remark. The approach used to prove Theorem 3 can be used to improve

the results of Conlon [15] on triangle-free graphs: it was shown that if Jq is

the graph whose vertices are the points of a generalized quadrangle of order

q and whose edges are the pairs of collinear points, then Jq is a union of

q3+ q2+ q+1 edge-disjoint cliques of order q+1. Let J∗
q be defined by taking

random complete bipartite graphs in these cliques of order q+1. Then for any

set X of vertices of J∗
q , writing the expected density of J∗

q as p = (1+o(1))/2q,

Conlon [15] showed

e(X) ≥ p

Ç
|X|
2

å
−O(q log q)|X|.

This is effective for |X| = Ω(q2 log q). Using the approach in this paper, we

can show

e(X) ≥ p

Ç
|X|
2

å
−O(q)|X|,

which is effective for |X| = Ω(q2), and is in this sense best possible, since Jq
has independent sets of size q2 + 1. The separation of small from medium

cliques is key in eliminating the logarithmic factor in Conlon’s bound, and this

solves a question raised in the concluding remarks of Conlon [15]. For H∗
q , the

approach in this paper may be used to give a similar lower bound on e(X).

However, for our purposes, it is more convenient to use in H∗
q a lower bound

of the form e(X) = Ω(|X|2/q) in order to prove Theorem 1.

3.1. Pseudorandomness in H∗
q . The main result of this section, which es-

sentially says that sets of large quadratic size in H∗
q induce many edges with

high probability, is proved using the Hoeffding-Azuma Inequality [27], which

may be stated in the following form:

Proposition 3 (Hoeffding-Azuma Inequality). Let λ≥0 and c1, c2, . . . , ck
> 0 be reals, and let Z = (Z0, Z1, Z2, . . . , Zk) be a martingale with Z0 = E(Z)

and |Zi − Zi−1| ≤ ci for all i ≤ k. Then

P(Z − Z0 ≤ −λ) ≤ exp
(
− 2λ2

∑k
i=1 c

2
i

)
.

If ci ≤ c for all i, then the martingale as in Proposition 3 is called

c-Lipschitz.

For a set X ⊆ V (H∗
q ), it is convenient to define the random variable ZX =

e(H∗
q [X]). The main result used to prove Theorem 3 is the following, which

essentially proves Theorem 3 for sets X of size exactly m. Then Theorem 3

follows for any setX with |X| ≥ m by samplingm vertices ofX; see Section 3.2.
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Lemma 3. If q ≥ 240, X ⊆ V (Hq) and |X| = m = 224q2, then

(7) P(ZX ≤ 240q3) < n−m.

Proof. It is convenient to use the notation of Section 2.2; specifically S and

M denote the small and medium cliques in Hq[X], and e(S) and e(M) denote

the number of edges of Hq[X] in those cliques, respectively. By Lemma 1,

either e(S) ≥ m2/64q or e(M) ≥ qm3/2/16 log2n edges, and we consider these

two cases separately. Let ZS and ZM be the number of edges of H∗
q in small

and medium cliques respectively, so ZX ≥ ZS +ZM. Recall H∗
q is a union over

maximal cliques T ⊆ Hq of complete bipartite graphs with parts AT and BT ,

where AT t BT is a random partition of V (T ) such that vertices are placed

independently in AT or BT with probability 1/2 each, independently for each

maximal clique T of Hq.

Case 1: e(S) ≥ m2/64q. For a small maximal clique T of Hq, and a vertex

v ∈ V (T ), let Zv,T = 0 if v is placed in AT and let Zv,T = 1 if v is placed in BT ,

and these random variables are independent. Let Z = ZS , and let Y1, Y2, . . . , Yk
be an ordering of all the random variables Zv,T for T ∈ S and v ∈ V (T ). Let Fi

be the σ-field generated by Y1, Y2, . . . , Yi. Here k = v(S) and Z is a function of

k independent random variables Zv,T for T ∈ S. Then Zi = E(Z | Fi) defines

a martingale which terminates with Z. If ci = max |Zi − Zi−1|, then by the

Hoeffding-Azuma inequality, for any λ ≥ 0,

P(Z − E(Z) ≤ −λ) ≤ exp
(
− 2λ2

∑k
i=1 c

2
i

)
.

Since ci ≤ |V (T )| − 1 when Yi = Zv,T ,

k∑

i=1

c2i ≤
∑

T∈S

∑

v∈V (T )

(|V (T )| − 1)2 =
∑

T∈S

|V (T )|(|V (T )| − 1)2.

As each clique in S is a small clique,

max{ci : 1 ≤ i ≤ k} ≤ max{|V (T )| : T ∈ S} ≤
√
2m/ log n,

so the martingale is c-Lipschitz with c =
√
2m/ log n, and

k∑

i=1

c2i ≤
∑

T∈S

|V (T )|(|V (T )| − 1)2

≤ c ·
∑

T∈S

(|V (T )| − 1)2

≤ 2c ·
∑

T∈S

(|V (T )|
2

)
= 2c · e(S).
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We conclude

P(Z − E(Z) ≤ −λ) ≤ exp
(
− λ2

c · e(S)
)
.

We select λ = E(Z)/2. Since e(S) ≥ m2/64q, and E(Z) = e(S)/2,

λ = 1
4e(S) ≥

m2

256q
= 240q3.

Using λ/e(S) = 1/4 and λ/4c ≥ e(S)/16c ≥ m3/2 log n/(4096q),

P(Z ≤ λ) = P(Z − E(Z) ≤ −λ) ≤ exp
(
− λ

4c

)
≤ exp

(
−m3/2 log n

4096q

)
= n−m,

where we used m = 224q2. This completes Case 1.

Case 2: e(M) ≥ qm3/2/16 log2n. Let Z = ZM, and let

λ =
1

2
E(Z) =

1

4
e(M).

Then λ ≥ 240q3 since m = 224q2 and q ≥ 240. By the Hoeffding-Azuma

inequality as in Case 1, with c =
√
2m for the medium cliques in M, we obtain

P(Z ≤ λ)≤ exp
(
− λ

4c

)

≤ exp
(
− qm

1024 log2n

)
≤ n−m

as q ≥ 240 easily implies q ≥ 1024 log3n. �

3.2. Proof of Theorem 3. Let m = 224q2. Then, by Lemma 3, the prob-

ability that a set X ⊆ V (H∗
q ) of size m induces at most 240q3 edges of H∗

q

is at most n−m. It follows that the expected number of such X is at most(n
m

)
n−m < 1, and so there exists an instance G∗

q of H∗
q such that every set of

m vertices induces at least 240q3 edges. Fix such a G∗
q , and recall G∗

q is K4-free

with q2(q2 − q + 1) vertices. To prove Theorem 3, consider a set X of at least

224q2 vertices. We count pairs (e, Y ) where Y ⊆ X has size m and e is an edge

of G∗
q [Y ]. On one hand, the number of such pairs is at least

Ç
|X|
m

å
· 240q3

by the choice of G∗
q , whereas the number of pairs (e, Y ) is also exactly

e(G∗
q [X]) ·

Ç
|X| − 2

m− 2

å
.
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We conclude that for every set X of size at least m in G∗
q ,

e(G∗
q [X])≥ 240q3

|X|2
m2

≥ |X|2
256q

.

This proves Theorem 3. �

4. Randomly sampling from G∗
q

In this section, we prove Theorem 1 using the graph G = G∗
q guaranteed

by Theorem 3, a theorem in Section 4.1 for counting independent sets, and

random sampling as in [42]. The theorem on counting independent sets is

based on early work of Kleitman and Winston [34].

4.1. Counting independent sets. The following is found in Kohayakawa,

Lee, Rödl and Samotij [35], and is a special case of the method of containers

due to Balogh, Morris and Samotij [5] and Saxton and Thomason [48]:

Proposition 4. Let G be a graph on n vertices, and let r,R ∈ N, and

α ∈ [0, 1] satisfy

(8) e−αrn ≤ R

and, for every subset X ⊆ V (G) of at least R vertices,

(9) 2e(X) ≥ α|X|2.
Then the number of independent sets of size t ≥ r in G is at most

(10)

Ç
n

r

åÇ
R

t− r

å
.

For completeness, we briefly outline the proof of this result: To count

independent sets, we may select the vertices of an independent set one by one

and then delete their neighbors. If X is the set of vertices remaining in G at

any particular stage in the process, and |X| ≥ R, then there exists a vertex v in

X with at least α|X| neighbors in X, due to (9). Removing v and its neighbors,

we arrive at a new set X ′ of remaining vertices satisfying |X ′| ≤ (1−α)|X|. If
we repeat this r times, there are at most (1− α)rn ≤ e−αrn ≤ R vertices left

to select from, and at that stage we select the remaining t − r vertices of the

independent set.

4.2. The proof of Theorem 1. Let G = G∗
q be the graph guaranteed by

Theorem 3, so G is a K4-free graph with n = q2(q2 − q + 1) vertices such that

for every set X of at least 224q2 vertices of G, e(X) ≥ |X|2/256q for each large

enough prime power q. This allows us to apply Proposition 4 to G.
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The main claim is that the number of independent sets of size t=230q log2q

in G is at most (q/ log2q)t. To prove this, let R = 224q2, r = 1024q log q, and

α = 1/256q in Proposition 4. Then exp(−αr)n = e−4 log qn ≤ q−4n ≤ R so (8)

is satisfied. Since e(X) ≥ α|X|2 for all X ⊆ V (G) with |X| ≥ R, (9) is also

satisfied. By (10), the number of independent sets of size t in G is at mostÇ
n

r

åÇ
R

t− r

å
≤ nr

Ç
R

t

å
≤ q4r

(4R
t

)t

using the bound
(x
y

)
≤ (4x/y)y for integers x ≥ y ≥ 1, and using n ≤ q4. Using

q4r ≤ et/2 ≤ 2t and 4R/t ≤ q/2 log2q, this is at most (q/ log2q)t, which proves

the claim.

Finally, we prove Theorem 1 using the claim. Randomly sample a set V

of vertices of G with probability log2q/q independently for each vertex. If I is

the number of independent sets of size t in G[V ], then E(I) ≤ 1 and therefore

E(|V | − I) ≥ n log2q

q
− 1 ≥ q3 log2q

2

since n = q2(q2 − q + 1) ≥ q4/2 + q. In particular, there exists V ⊆ V (G)

such that G[V ] is a K4-free graph on at least q3 log2q/2 vertices containing

no independent set of size at least t. Since this is valid for any large enough

prime q, and there is a prime q between any positive integer and its double by

Bertrand’s Postulate, this shows that there exists an absolute constant c1 > 0

such that r(4, t) ≥ c1t
3/ log4t for all t ≥ 3, proving Theorem 1. �

5. Proof of Theorem 2

We use the random blowup approach of Kim and Mubayi alluded to in the

work of Alon and Rödl [3]. Let Gt denote a K4-free graph with no independent

sets of size at least s = bt/ log tc, where |V (Gt)| = T = Ω(t3/ log7t), guaranteed

by Theorem 1. The r-blowup Gt(r) of Gt is the graph obtained by replacing

each vertex x of Gt with an independent set Ix of size r and each edge {x, y}
of At by a complete bipartite graph between Ix and Iy. We shall set

r =
⌈ δkt

2(k−2)

(log t)6k−13

⌉
,

where δk > 0 is a constant to be chosen shortly. Alon and Rödl [3] observed

that the number of independent sets of size t in Gt(r) is at most
(T
s

)
(sr)t

t!
.

For a permutation σ of V (Gt(r)), let Gt(r, σ) denote the copy of Gt(r) with

vertex set σ(V (Gt(r))). For k ≥ 3, taking k−1 independent random permuta-

tions σ1, σ2, . . . , σk−1 of V (Gt), let G(k) be the graph with vertex set V (Gt(r))
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and edge set

E(G(k)) =
k⋃

i=1

E(Gt(r, σi)).

Each Gt(r, σi) plays the role of the ith color in a k-coloring of the edges of

KrT , and the edges of E(KrT )\E(G(k)) form the last color. In the event that

an edge is in more than one of the graphs Gt(r, σi) — in other words there is

a choice of colors for the edge — we arbitrarily assign one of the colors to the

edge. The expected number of independent sets of t vertices in G(k) is precisely

((T
s

)
(sr)t

t!

)k−1
Ç
rT

t

å−(k−2)

.

Using T ≤ t3 and the boundsÇ
T

s

å
≤ T s ≤ t3s ≤ e3t and

Ç
rT

t

å
≥ (rT/t)t ≥ (crt2/ log7t)t

for some constant c > 0 and t! ≥ (t/e)t, the above expression is at most

Ct
k ·

(sr
t

)(k−1)t
·
( rt2

log7t

)−(k−2)t
≤ Ct

k · rt · t−2(k−2)t · (log t)(6k−13)t

for some constant Ck > 0. If δk < 1/Ck, then the choice of r ensures this quan-

tity is less than 1. Consequently, there exists a graph G(k) with rT vertices

that is the union of k−1 copies of K4-free graphs and G(k) has no independent

set of size t. Consequently, for each k ≥ 3, there exists γk > 0 such that

rk(4; t) > rT ≥ γk
t2k−1

(log t)6(k−1)
.

This completes the proof of Theorem 2. �

6. Concluding remarks

• Asymptotics of r(4, t). To prove r(4, t) = Ω(t3/ log2t), it would be enough

to prove that for some constants c, C > 0, the number of independent sets

of size t = cq log q in G∗
q is at most (Cq2/t)t. However, the technical condi-

tion (8) precludes an application of Proposition 4. This loss of logarithmic

factors appears to occur also in [42] when counting independent sets using

spectral methods. A survey of counting independent sets in graphs is given

by Samotij [47]. Nevertheless, we believe r(4, t) has order t3/ log2t, and that

G∗
q may indeed have at most (Cq2/t)t independent sets of size t = cq log q

for some constants c, C > 0:

Conjecture 1. As t → ∞,

r(4, t) = Θ
( t3

log2t

)
.
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• Spectral approach. A key part of the proof of Theorem 1 is the pseudoran-

domness of the graphs H∗
q , as stated in Theorem 3. The non-trivial eigen-

values of the adjacency matrix of the graph Hq are q2 − q − 2 and −q − 1

with multiplicities q3 and (q2 − q − 1)(q2 − q + 1) respectively. A one-sided

version of the expander mixing lemma [2], see for instance Theorem 3.5 in

Haemers [24], shows

2e(X) ≥ |X|2
2q

− (q + 1)|X|

for all sets X ⊆ V (Hq), and so Hq itself is pseudorandom. Unfortunately, as

pointed out to us by Carl Schildkraut, the smallest eigenvalue of the random

subgraph H∗
q is of order at most −q2 with high probability: a typical clique

in Hq is partitioned into two roughly equal parts, and the complete bipartite

graph with those parts has smallest eigenvalue of order−q2, which by Cauchy

interlacing shows the same for H∗
q .

• Optimal pseudorandom graphs. Another salient open problem is to determine

whether there exists a K4-free (n, d, λ)-graph with λ = O(
√
d) and d =

Ω(n4/5); this problem remains open. Such a graph would be optimal in the

sense of the bounds of Sudakov, Szabó and Vu [55]. As shown by Mubayi

and the second author [42], this would imply the same lower bound on r(4, t)

as in Theorem 1. The graph Hq is not an optimal pseudorandom graph as

the non-trivial eigenvalues of the adjacency matrix of Hq are q2 − q − 2 and

−q−1, with multiplicities q3 and (q2−q−1)(q2−q+1) respectively. These are

determined from the theory of strongly regular graphs; see Brouwer and Van

Maldeghem [10]. Since Hq is not an optimal pseudorandom graph, or even a

weakly optimal pseudorandom graph in the sense of He and Wigderson [26],

it seems unlikely that H∗
q is an optimal or weakly optimal pseudorandom

graph; moreover, H∗
q is generally not a regular graph.

• Graph Ramsey numbers. Given a graph F , define r(F, t) to be the mini-

mum n such that every F -free n-vertex graph contains an independent set

of size t. In this paper, we studied r(4, t) — the case F = K4 — but

we believe that the methods of our paper could be fruitful for other graph

Ramsey numbers r(F, t). For instance, for the well-studied cycle-complete

graph Ramsey numbers r(Ck, t) when k is odd; see Sudakov [54] for upper

bounds. There are a number of dense constructions of Ck-free graphs with

many rich properties to which the methods of this paper — in particular,

counting independent sets via containers — may apply, such as the graphs

defined by Margulis [40], the Ramanujan graphs of Lubotzky, Phillips and

Sarnak [39], the high girth graphs of Lazebnik, Ustimenko and Woldar [37],

and graphs from generalized polygons; see [42]. A survey of extremal prob-

lems for cycles in graphs is given in [56]. Recent work of Conlon, Mubayi and

the authors [14] gives good lower bounds on cycle-complete graph Ramsey
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numbers. We also believe the approach in this paper should also help with

estimates of the Erdős-Rogers functions [19], [18], [58], [36], [15], [42], [22].

Recent progress was obtained along these lines by Janzer and Sudakov [30]

using the results of this paper.

• Extremal graph theory. The bipartite incidence graph Bq of points P in H
and secants L to the Hermitian unital H is in fact a near extremal bipartite

graph not containing a 1-subdivision of K4 with four vertices in P and six

in L; this is a Zarankiewicz-type problem [59]. Let F4 be a 1-subdivision of

K4, and define z(n,m, F4) to be the maximum number of edges in an n by

m bipartite graph which does not contain F4 with four vertices in the part

of size n and six in the part of size m. It is possible via counting arguments

(adapting those of Conlon, Janzer and Lee [16]) to show that for n ≥ m ≥ 2,

z(n,m, F4) = O(m3/5n4/5).

When G=Bq, we have m= q3+1, n= q2(q2 − q + 1) and e(G)=(q + 1)n=

q5 + o(q5), which matches the order of magnitude of the upper bound on

z(n,m, F4) as q → ∞. The extremal problem for subdivisions has been stud-

ied extensively; see Conlon, Janzer and Lee [16] and the references therein.

One of their conjectures implies that if Fs is a 1-subdivision of Ks, then

z(n, n, Fs) = Θ(n3/2−1/(4s−6)), and this conjecture remains open for s ≥ 4.

If this conjecture is true, and in addition extremal graphs contain no cycles

of length four, then as in the work of Conlon, Mubayi and the authors [14],

r(s, t) = ‹Θ(ts−1) as t → ∞. It may therefore be more fruitful for lower

bounds on r(s, t) for s ≥ 5 to look for lower bounds on z(m,n, Fs), i.e.,

for a near extremal m by n bipartite graph with no 1-subdivision of Ks for

appropriate values of m and n, as was done in this paper for s = 4.
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