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Abstract. We describe the combinatorics of equilibria and steady states of neurons in threshold-
linear networks that satisfy Dale's law. The combinatorial code of a Dale network is characterized
in terms of two conditions: (i) a condition on the network connectivity graph, and (ii) a spectral
condition on the synaptic matrix. We find that in the weak coupling regime the combinatorial
code depends only on the connectivity graph, and not on the particulars of the synaptic strengths.
Moreover, we prove that the combinatorial code of a weakly coupled network is a sublattice, and
we provide a learning rule for encoding a sublattice in a weakly coupled excitatory network. In the
strong coupling regime we prove that the combinatorial code of a generic Dale network is intersection-
complete and is therefore a convex code, as is common in some sensory systems in the brain.
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1. Introduction. We study the equilibria and steady states of threshold-linear
networks that satisfy Dale's law. Dale's law, introduced by Dale in 1935 [11, 25],
postulates that a single neuron utilizes the same set of chemical messengers. This
usually implies that each neuron's efferent (outgoing) synapses are either all excitatory
or all inhibitory. While this restriction on the signs of the synaptic weights has a
number of exceptions in some neural systems, it is observed in most neural circuits
on the brain [20].

Threshold-linear networks have been extensively studied in [15, 32, 14, 6, 7, 10, 24],
and a number of results regarding the stable fixed points of these networks were ob-
tained, especially in the case of a symmetric synaptic matrix. Networks that satisfy
Dale's law have been previously investigated in the context of large random networks
[28, 1, 18] (this list is very incomplete), where statistical properties such as the spec-
trum, the number of equilibria, and phase transitions have been investigated. In
contrast, we are interested in describing the exact combinatorics of the neural code
of these networks, as opposed to investigating statistical features.

To this end we developed a method for understanding the combinatorial codes of
threshold-linear networks that obey Dale's law. A combinatorial code is the collection
of patterns of neuronal activation at the equilibria that is possible in a given network.
In particular, this discards the details of the firing rates, and only keeps track of what
neurons are coactive at a fixed point. It turns out it is possible to directly translate
features of the connectivity graph into the combinatorial code of a Dale network. We
show that the connectivity features completely determine the combinatorial neural
code in the weak coupling regime. In the strong coupling regime, the code is described
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2523

Fig. 1. A Dale recurrent network.

in terms of connectivity and certain spectral conditions on the excitatory subnetworks.
We also show that these combinatorial codes are convex, that is, they are compatible
with patterns of overlaps of convex receptive fields that are common in many sensory
systems of the brain [5].

This paper is organized as follows. In section 2 we introduce the necessary back-
ground for threshold-linear networks and Dale's law and define the combinatorial and
stable combinatorial codes. In section 3 we state our main results. In section 4 we
discuss the findings of our manuscript. The proofs are relegated to section 5. Ap-
pendix A contains some necessary results concerning the stability of fixed points of
threshold-linear networks.

2. Preliminaries: The combinatorial codes of Dale networks. We con-
sider a standard firing rate model of a recurrent neural network of n neurons, where
the dynamics of the firing rates xi(t)\geq 0 is described by the differential equations

\.xi = - xi +

\left[  n\sum 
j=1

Wijxj + bi

\right]  
+

, i= 1, . . . , n,(2.1)

and [y]+ =max(0, y) is the ReLU transfer function.
We assume that this excitatory-inhibitory network respects Dale's law [12], where

the neurons are either excitatory (denoted as \scrE ) or inhibitory (denoted as \scrI ), and the
synaptic weights satisfy the following sign constraints:

excitatory synapses: i\in \scrE =\Rightarrow Wji \geq 0 \forall j = 1 . . . n,

inhibitory synapses: i\in \scrI =\Rightarrow Wji \leq 0 \forall j = 1 . . . n.

This follows the neuroscience convention that the weight Wij is the j to i synaptic
strength. Furthermore, we assume that the diagonal entries of W are zeros, Wii = 0,
and denote the collection of all n\times n Dale matrices by Dn.

Following a common architecture of the neocortex, we also assume that the exci-
tatory neurons ``broadcast"" the output, while the activity of the inhibitory neurons is
not observable directly outside of the network. We thus consider the setup where the
inputs to the network are excitatory, while only the excitatory output can be ``read""
from the network (Figure 1). We shall call such a network a Dale network.

We are interested in the combinatorics of the excitatory output of Dale networks.
A combinatorial code is the set of possible patterns of neural activation at the fixed
points (or steady states). For a firing rate vector x\in Rn

\geq 0, we consider the excitatory
support, i.e., the set of active excitatory neurons:

supp+ x= \{ i\in \scrE | xi > 0\} \subset \scrE .

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2524 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

Recall that x\ast \in Rn is a fixed point of a network (2.1) if x(t) = x\ast is a constant
solution. For a given Dale network (2.1), we denote the set of excitatory supports of
all the possible fixed points as

FP+(W,b) =
\bigl\{ 
supp+ x\ast \bigm| \bigm| x\ast \in Rn

\geq 0 is a fixed point of (2.1)
\bigr\} 
.

Here the plus sign highlights the difference from a somewhat different definition in
[23], which considers the combinatorics of all fixed points, which were previously
investigated.

The combinatorial code of a Dale synaptic matrixW is the collection of all possible
excitatory supports of all fixed points in response to all possible inputs:

\scrC (W )
def
=

\bigcup 
b\in Rn

\geq 0

FP+(W,b).(2.2)

The stable combinatorial code is the set of the excitatory supports of asymptoti-
cally stable fixed points:

\scrS \scrC (W )
def
=

\bigcup 
b\in Rn

\geq 0

\{ supp+ x\ast | x\ast \in Rn
\geq 0 is an asymptotically stable fixed point of (2.1)\} .

It turns out that the combinatorial codes of Dale networks can be completely
described in terms of connectivity and spectral radius of the synaptic matrix. We
also show that the combinatorial code is always intersection complete, which implies
it is also always a convex combinatorial code [5].

3. The main results. Here we state the main results, while all the proofs of
the theorems are provided in section 5. To simplify the mathematical analyses of the
network, we make the following mild assumption.

Ground Assumption 3.1. The synaptic matrix W of the network (2.1) satisfies
the condition that for every nonempty subset of neurons \sigma \subset [n] the principal submatrix
(I  - W )\sigma is nonsingular.

Note that for a square n \times n matrix A and a subset \sigma \subset [n] we denote by A\sigma 

the appropriate principal submatrix, i.e., the submatrix of A obtained by restricting
it to the rows and columns indexed by \sigma . In all our results Ground Assumption
3.1 is always implicitly assumed. Note that the set of matrices that do not have this
property has measure zero, thus this assumption is generically satisfied in any network
without fine tuning.

3.1. The role of excitatory-inhibitory connectivity in shaping the com-
binatorial code. We first observe that to understand the combinatorial code, one
can streamline the excitatory-inhibitory connectivity to its ``essential features"" as fol-
lows.

Theorem 3.2. Let W \in Dn be a Dale matrix with a set of excitatory neurons \scrE 
and inhibitory neurons \scrI . Let m= | \scrE | + 1 and let W \prime \in Dm be any Dale matrix such
that W \prime 

\scrE =W\scrE and for all i\in \scrE ,

W \prime 
im =

\Biggl\{ 
 - 1, \exists j \in \scrI with Wij \not = 0,

0 \forall j \in \scrI with Wij = 0.

Then \scrC (W ) = \scrC (W \prime ).

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2525

In other words, the combinatorial code \scrC (W ) remains unchanged if we replace all
the inhibitory neurons with a single inhibitory neuron that mimics the connectivity
of the entire inhibitory population to each excitatory neuron. Note that here the
numerical values of the inhibitory-excitatory weights of the synaptic matrix W do not
affect the combinatorial code, even though they may determine the stability of the
appropriate fixed points. Furthermore, the following result states that the connections
from excitatory to inhibitory neurons have no influence over the combinatorial code
\scrC (W ), while they still may determine the stability of the appropriate fixed points, as
well as other dynamical properties.

Theorem 3.3. Let W \in Dn be a Dale matrix with a set of excitatory neurons \scrE 
and inhibitory neurons \scrI , and let W \prime \in Dn be such that

W \prime 
ij =

\Biggl\{ 
0 \forall i\in \scrI \forall j \in \scrE ,
Wij otherwise.

Then \scrC (W ) = \scrC (W \prime ).

3.2. Characterization of the combinatorial code of a Dale network. The-
orems 3.2 and 3.3 imply that only excitatory  - excitatory synapses and a particular
feature of the inhibitory-excitatory connectivity play a role in shaping the combina-
torial code. To describe these features we give the following definitions.

Definition 3.4. Let W be a Dale matrix, and \scrE and \scrI denote the set of its
excitatory and inhibitory neurons, respectively.

\bullet An excitatory connectivity graph of W is a directed graph G\scrE whose vertices
are the exitatory neurons \scrE , and whose arcs are defined as

i\rightarrow j \Leftarrow \Rightarrow Wji>0, where i \not = j \in \scrE .

\bullet The uninhibited set \scrE \scrU \subset \scrE is the subset of excitatory neurons that do not
receive any inhibition, i.e.,

\scrE \scrU 
def
= \{ j \in \scrE | \forall i\in \scrI , Wji = 0\} .

\bullet The inhibited set \scrE \scrI \subset \scrE is the subset of excitatory neurons that receive inhi-
bition, i.e., \scrE \scrI = \scrE \setminus \scrE \scrU .

\bullet For a directed graph G on a set of vertices \scrE and a subset \scrE \scrU \subset \scrE , we define
a code of a pair (G,\scrE \scrU ) as

code(G,\scrE \scrU )
def
=
\bigl\{ 
\sigma \subset \scrE | N+

G (\sigma )\cap \scrE \scrU \subset \sigma 
\bigr\} 
= \{ \sigma \subset \scrE | N+

G\scrE 
(\sigma ) \setminus \sigma \subset \scrE \scrI \} ,

where

N+
G (\sigma )

def
=
\bigcup 
i\in \sigma 

\{ j \in \scrE | i\rightarrow j\} 

denotes the out-neighborhood of a set of vertices \sigma in the graph G. In other
words, code(G,\scrE \scrU ) is the set of \sigma such that all the outneighbors of \sigma are
inhibited (other than possibly the nodes in \sigma themselves). We consider an
excitatory connectivity graph of some Dale network G=G\scrE and refer to the
set of excitatory neurons N+

G\scrE 
(\sigma ) as the synaptic targets of a subset \sigma .

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2526 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

Fig. 2. A Dale network (left) and its connectivity features (right).

Fig. 3. An excitatory connectivity graph of a Dale network. A codeword in code(G\scrE ,\scrE \scrU ,) (left)
and a codeword not in code(G\scrE ,\scrE \scrU ,) (right).

These connectivity features are illustrated on an example in Figure 2.
Intuitively, a network has a fixed point, supported at excitatory neurons \sigma \subset \scrE ,

if all the other excitatory neurons are silent. This will not occur if neurons outside of
\sigma receive excitatory input from neurons in \sigma and don't have any inhibitory neurons
to silence them. This is equivalent to requiring that the only unihibitted nodes that
can receive excitation from \sigma are nodes in \sigma itself. This intuition is formalized in the
definition of code(G\scrE ,\scrE \scrU ).

The following theorem describes the combinatorial code of a Dale network.

Theorem 3.5. Let W be a Dale matrix, and \sigma \subset \scrE be a nonempty subset of
excitatory neurons. Then \sigma \in \scrC (W ) if and only if the following two conditions are
both satisfied:

(i) (the spectral condition) \rho (W\scrE \scrU \cap \sigma )< 1;
(ii) (the graph condition) \sigma \in code(G\scrE ,\scrE \scrU ),

where W\scrE \scrU \cap \sigma denotes the synaptic weights of the excitatory subnetwork on the subset
\scrE \scrU \cap \sigma , and \rho (W\scrE \scrU \cap \sigma ) denotes the spectral radius of the matrix W\scrE \scrU \cap \sigma .

To illustrate an application of Theorem 3.5, consider the excitatory connectivity
graph of a Dale network from Figure 2. From Figure 3, we see that N+

G\scrE 
(\{ 1,2,4\} ) =

\{ 1,2,3,4\} and N+
G\scrE 

(\{ 1,2,3\} ) = \{ 2,3,4,5\} . Thus

N+
G\scrE 

(\{ 1,2,4\} )\cap \scrE \scrU = \{ 4\} \subset \{ 1,2,4\} 

(equivalently N+
G\scrE 

(\{ 1,2,4\} ) \setminus \{ 1,2,4\} = \{ 3\} \subset \scrE \scrI )), so \{ 1,2,4\} \in code(G\scrE ,\scrE \scrU ). On
the other hand,

N+
G\scrE 

(\{ 1,2,3\} )\cap \scrE \scrU = \{ 4,5\} \not \subset \{ 1,2,3\} ,

(equivalently, N+
G\scrE 

(\{ 1,2,3\} ) \setminus \{ 1,2,3\} = \{ 4,5\} \not \subset \scrE \scrI ), so \{ 1,2,3\} \not \in code(G\scrE ,\scrE \scrU ).
Thus, since \{ 1,2,4\} \in code(G\scrE ,\scrE \scrU ), we have a candidate for an element in \scrC (W ).

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2527

Assuming one has access to the synaptic weights, the last remaining step would be
checking the spectral radius condition to see if \{ 1,2,4\} is indeed in the code \scrC (W ) of
the network.

We say that the network (2.1) is weakly coupled [31, 16, 22] if the Frobenius matrix
norm

| | W | | F =
\sqrt{} 
trace(W TW )

of its synaptic matrix W is smaller than 1. It is natural to consider the weak coupling
regime separately, as in this regime the spectral condition in Theorem 3.5 is always
satisfied.

Theorem 3.6. Let W be a nonsingular Dale matrix that is weakly coupled, i.e.,
| | W | | F < 1. Then every fixed point is asymptotically stable, and the combinatorial
code is completely described by the graph condition

\scrC (W ) = \scrS \scrC (W ) = code(G\scrE ,\scrE \scrU ).

Furthermore, for all b\in Rn
\geq 0 there is a unique globally exponentially stable fixed point

of (2.1).

The above theorem implies that the combinatorial code of weakly coupled net-
works is completely determined by the connectivity features alone, and does not de-
pend on the strengths of the synapses as long as the network is in the weak coupling
regime. The following cautionary example illustrates two Dale matrices that are not
weakly coupled. These matrices have the same connectivity, but they exhibit differ-
ent eigenvalue spectra of excitatory subnetworks, resulting in different combinatorial
codes. Consider Dale matrices

W =

\left(    
0 2 0  - 2
1 0 2 0
0 1 0 0
1 1 1 0

\right)    and U =

\left(    
0 3 0  - 2
0.5 0 0.5 0
0 0.5 0 0
1 1 1 0

\right)    
and note that both these matrices have the same excitatory connectivity graph G\scrE 
and the same uninhibited excitatory neurons \scrE \scrU = \{ 2,3\} . Let \sigma = \{ 1,2,3\} , thus
\scrE \scrU \cap \sigma = \{ 2,3\} and observe that \rho (W\scrE \scrU \cap \sigma ) = \rho (W\{ 2,3\} ) =

\surd 
2 > 1; thus, by Theorem

3.5, \sigma \not \in \scrC (W ). On the other hand \rho (U\scrE \scrU \cap \sigma ) = \rho (U\{ 2,3\} ) = 0.5 < 1. Furthermore,
because \sigma = \scrE , the graph condition N+

G\scrE 
(\sigma )\cap \scrE \scrU \subset \sigma is satisfied and thus by Theorem

3.5, \sigma \in \scrC (U).

3.3. Combinatorial codes of Dale recurrent networks are convex. Per-
haps the most surprising implication of Theorem 3.5 is that Dale networks naturally
produce convex combinatorial codes. To explain the relevant background, we first
motivate and define convex combinatorial codes.

There are two complementary viewpoints on what determines neural activity in
sensory systems. One viewpoint is that the brain represents information via patterns
of neural activity that arise as a result of neural dynamics. A different perspective
is that the neural activity in sensory neural systems is induced by external stimuli,
whereby each neuron responds to a given stimulus according to its own receptive field.
If these two views are both correct, then the patterns of neural activity resulting from
the dynamics should be compatible with those determined by the intersection patterns
of the receptive fields.
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2528 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

We define a receptive field of an individual neuron as a subset U \subset Rd in a stimulus
space Rd, such that the firing rate x(t) of a given neuron is nonzero at the times when
the stimulus is in the region U and the firing rate is 0 (or below some threshold)
when the stimulus is outside U . Given a collection of receptive fields \scrU = \{ Ui\} of a
population of neurons \scrE , consider the code of \scrU that describes all possible intersection
patterns of the receptive fields Ui as

code(\scrU ) def
= \{ \sigma \subset \scrE | R\sigma \not =∅\} ,

where

R\sigma 
def
=

\Biggl( \bigcap 
i\in \sigma 

Ui

\Biggr) 
\setminus 
\bigcup 
j \not \in \sigma 

Uj

denotes the region in the stimulus space where each of the neurons in \sigma is activated

and no other considered neuron is active, and R∅
def
= Rd \setminus 

\bigcup 
j\in \scrE Uj . The regions R\sigma 

partition the stimulus space Rd (see Figure 4).
Note that code(\scrU ) is the set of all possible patterns of neuronal activation that

are compatible with the receptive fields \scrU . The same patterns should be allowed by
the neural network dynamics. We associate a combinatorial neural code \scrC (W ) with a
Dale network (2.1), and we interpret the fixed points of the excitatory neurons, both
stable and unstable, as our model for transiently activated stimulus representations.
This is because the neural activity spends a significant amount of time not only in the
neighborhood of stable fixed points, but also around saddle fixed points, while evolving
along heteroclinic trajectories (see, e.g., [17, 3, 27]). Following these interpretations we
posit that the combinatorial code of the network must be the same as the intersection
patterns of the receptive fields:

\scrC (W ) = code(\scrU ).

Recall that a set U \subset Rd is called convex if for any two points x, y \in U the line
segment [x, y] also lies in U . A number of sensory areas in the brain possess convex
receptive fields; a very incomplete list of such areas includes the hippocampus, the
primary visual cortex, the primary auditory cortex, etc. Following [9, 5, 19, 8], we
define convex combinatorial codes as follows.

U1

U3U2

U4

R13

Fig. 4. An example of a collection of receptive fields \scrU = \{ U1,U2,U3,U4\} and its code \scrC =
code(\scrU ) = \{ ∅,2,3,4,12,13,23,34,123,134\} . Here we denote a codeword \{ i1, i2, . . . , ik\} \in \scrC by the
string i1i2 . . . ik; for example, \{ 1,3,4\} is abbreviated to 134. Note that all Ui are convex (and thus
connected), but the regions R\sigma are typically nonconvex for nonmaximal subsets \sigma . For example R13

is neither convex nor connected.
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2529

Fig. 5. A nonconvex code \scrC = \{ 1,2,13,23\} .

Definition 3.7. A combinatorial code \scrC \subset 2[n] is open convex if \scrC = code(\scrU ) for
a collection \scrU = \{ Ui\} of open convex subsets in a Euclidean space Rd for some d\geq 1.

It has been previously established in [9, 13, 5] that not every combinatorial code
is open convex. The smallest example of a nonconvex code is illustrated in Figure 5.
The existence of the codewords 13 and 23 without 123 guarantee that the receptive
field U3 must be disconnected and thus nonconvex. The topological properties that
prevent a combinatorial code from being convex were studied in [5, 8, 21]. In fact,
a randomly chosen1 combinatorial code on a large number of neurons is nonconvex
with a high probability.

Following [5], recall that a combinatorial code \scrC is called intersection-complete, if
the intersection of any two codewords in \scrC also belongs to \scrC :

\sigma , \nu \in \scrC =\Rightarrow \sigma \cap \nu \in \scrC .

If a code is intersection-complete and also has the property that a union of two code-
words is a codeword, then such code is a sublattice of 2\scrE [29]. It has been previously
established in [5] that intersection-complete codes are open convex.

Theorem 3.8 (see [5]). Every intersection-complete code \scrC \subset 2[n] is open convex.

We use this result to show that the combinatorial codes of a Dale network are
convex. Consider a directed graph G\scrE , whose vertices are the excitatory neurons \scrE ,
and whose edges are derived from the excitatory connectivity as in Definition 3.4.
First we observe the following.

Proposition 3.9. The code code(G\scrE ,\scrE \scrU ) is a sublattice of the Boolean lattice 2\scrE .

This observation, combined with Theorem 3.6 implies that the combinatorial code
of a weakly coupled network is a sublattice. If the network is not weakly coupled, then
the spectral condition in Theorem 3.5 may prevent the code of the network from being
a sublattice; however, the code \scrC (W ) of a Dale network remains intersection-complete.

Theorem 3.10. For a Dale synaptic matrix W , its code \scrC (W ) is intersection-
complete and is thus convex.

The proof of this theorem is given in subsection 5.2. We suggest that this the-
orem may provide a new explanation for the prevalence of convex receptive fields of
excitatory neurons in recurrent circuits of sensory systems.

3.4. Constructing a Dale network from a combinatorial code. Can one
encode an arbitrary combinatorial code as the combinatorial code of a Dale network?
Theorem 3.10 implies that the code needs to be intersection-complete to be realized
on a generic Dale network. In addition, Proposition 3.9 tells us that if one wants
to build a weakly coupled network with a prescribed code, this code needs to be a

1This, of course, requires a proper definition of the probability distribution on the set of all codes
that we omit here.
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2530 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

1 2

3 4

Fig. 6. The graph Gc on four vertices with code(Gc, [4]) = \{ ∅,\{ 4\} ,\{ 2,4\} ,\{ 3,4\} ,\{ 2,3,4\} , [4]\} .

sublattice. It turns out that any sublattice can be encoded on a weakly coupled Dale
network.

Theorem 3.11. Given a sublattice \scrC \subset 2\scrE with ∅,\scrE \in \scrC , define a map c : 2\scrE \rightarrow \scrC 
as

c(\sigma )
def
=
\bigcap 
\nu \in \scrC ,
\nu \supset \sigma 

\nu ,(3.1)

and consider a directed graph Gc whose vertices are \scrE and whose edges are defined via
the rule

i\rightarrow j \Leftarrow \Rightarrow j \in c(\{ i\} ) and i \not = j.(3.2)

Then \scrC = code(Gc,\scrE ).
Note that code(Gc,\scrE ) from Theorem 3.11 is realized by a network with no inhi-

bition. This theorem, combined with Theorem 3.6 translates into the following.

Corollary 3.12. Given a sublattice \scrC \subset 2\scrE with ∅,\scrE \in \scrC , one can find a weakly
coupled network W of excitatory neurons with \scrC = \scrC (W ).

This ``learning rule"" for an excitatory synaptic matrix W amounts to assigning
small nonzero excitatory synaptic weights according to the directed arcs in the graph
Gc defined in (3.1), (3.2).

The following example illustrates the procedure described above to construct a
graph of connectivity from a given code. Consider a sublattice C = \{ ∅,\{ 4\} ,\{ 2,4\} ,
\{ 3,4\} ,\{ 2,3,4\} ,\{ 1,2,3,4\} \} . One can directly compute that c(\{ 1\} ) = \{ 1,2,3,4\} ,
c(\{ 2\} ) = \{ 2,4\} , c(\{ 3\} ) = \{ 3,4\} , and c(\{ 4\} ) = \{ 4\} . It is then straightforward to verify
that Gc is the graph in Figure 6 and thus C = code(Gc,\scrE \scrU =\{ 1,2,3,4\} ).

Remark 3.13. This construction is common and known in finitely generated
topologies or, equivalently, Alexandroff topological spaces [2]. Note that ∅,\scrE \in C
and C being a lattice mean that C is a collection of closed sets of a topology on \scrE . In
particular, the code \scrC is the closed sets of a topology on a finite set. The digraph we
obtained is also known as the specialization preorder,2 associated with the topology
of \scrC .

4. Discussion. We investigated threshold-linear recurrent networks that satisfy
Dale's law and established which features of the synaptic connectivity are responsible
for determining their combinatorial codes. Theorem 3.5 describes the combinatorial
code in terms of the connectivity graph and the spectral radii of the appropriate sub-
matrices. In the case of weakly coupled networks, the spectral conditions are always

2Technically, the digraph we would obtain would have all self-loops as it is a preorder and hence
a reflexive relation on the finite set. However, we ignore the loops in our construction which is not
a problem in our context.

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

05
/2

0/
25

 to
 9

8.
60

.1
76

.1
62

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



THE COMBINATORIAL CODE AND THE GRAPH RULES 2531

satisfied and the combinatorial code depends only on the features in code(G,\scrE \scrU ) that
are derived from the connectivity graph with a given set of uninhibited neurons \scrE \scrU 
(Theorem 3.6). In this situation, all the fixed points are stable; moreover, the combi-
natorial code is a sublattice. We also proved that any sublattice can be encoded as a
combinatorial code of an excitatory network (Corollary 3.12).

If the network is not weakly coupled, the spectral condition in Theorem 3.5 may
prevent the combinatorial code from being a sublattice. Intuitively, this is because
the union of two codewords in \scrC (W ) may not be in \scrC (W ), as the spectral radius of
the appropriate larger matrix may (or may not) increase. We have proven in Theorem
3.10 that every combinatorial code is intersection-complete and therefore convex. Can
any intersection-complete code be encoded on a Dale network? The answer to this
question is currently unknown, as it requires a better understanding of the interplay
of the spectral and the graph conditions in Theorem 3.5.

Finally, we hypothesize that the result (Theorem 3.10) that the combinatorial
codes of Dale recurrent networks are always convex may provide a natural explanation
for the ubiquity of convex receptive fields in many sensory systems in the mammalian
brain.

5. Proofs. In this section we give proofs for our main results stated in section 3.
First, we recall the conditions for having a fixed point of the dynamics of (2.1).

Lemma 5.1 (see [6, Proposition 2.1]). For a threshold linear network in (2.1),
characterized by (W,b), a point x\ast \in Rn is a fixed point with support \sigma \subset [n] if and
only if the following conditions are all satisfied:

1. (I  - W )\sigma x
\ast 
\sigma = b\sigma ,;

2. x\ast 
\sigma > 0; and

3. b\sigma \leq  - W\sigma \sigma x
\ast 
\sigma .

Here b\sigma is the restriction of a vector b to the indices in \sigma , \sigma denotes the comple-
ment in [n] to a subset \sigma , W\sigma \sigma is the rectangular submatrix of W , restricted to the
rows in \sigma and columns in \sigma , and (I  - W )\sigma = (I  - W )\sigma \sigma is the principal submatrix
restricted to the subset \sigma . Note that if (I  - W )\sigma is invertible, then there is at most
one fixed point with support \sigma and it is given by x\ast 

\sigma = (I\sigma  - W\sigma )
 - 1b\sigma .

The conditions for having a fixed point in Lemma 5.1 follow (with some work)
from the dynamical system in (2.1). In particular, (I  - W )\sigma x

\ast 
\sigma = b\sigma follows from

needing to evaluate the ReLU nonlinearity to a positive number, and b\sigma \leq  - W\sigma \sigma x
\ast 
\sigma 

follows from evaluating the ReLU nonlinearity to 0.
A key ingredient in our proofs is the observation that the first condition in Lemma

5.1 can be translated to the language of semipositive matrices (Definition 5.5 below).
From there we make use of the theory of M -matrices (Definition 5.2 below). Note
that the machinery of semipositive matrices has been previously used in a different
context of recurrent networks with a Heaviside transfer function in [30].

5.1. Necessary matrix theory results. First, we recall some definitions and
results from the theory of M -matrices, following [4]. An m\times n matrix A is positive
(nonnegative) if Aij > 0 (Aij \geq 0) for all i and j. If A is positive (nonnegative) we
denote this by A > 0 (A \geq 0). For a vector x \in Rn, we write x > 0, x < 0, x \geq 0, or
x\leq 0 if all the entries of corresponding vector x satisfy the appropriate inequality.

Definition 5.2 (see [4, Chapter 6]). A square matrix A is a Z-matrix if Aij \leq 0
for all i \not = j. A Z-matrix A is called an M -matrix if A= sI  - B, where I denotes the
identity matrix, Bij \geq 0 for all i \not = j, and the scalar s is not smaller than the spectral
radius of the matrix B, s\geq \rho (B).
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2532 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

The following lemma will be used later.

Lemma 5.3 (see [4, Lemma 2.1]). Assume that A= I  - W , where W \geq 0. Then
the following two statements are equivalent:

(i) The matrix A is a nonsingular M -matrix.
(ii) The spectral radius of W is smaller than one: \rho (W )< 1.

We shall also make use of the following.

Lemma 5.4 (see [4, Chapter 2, Corollary 1.6]). Let A be a square nonnegative
matrix. Suppose that B is a principal submatrix of A. Then \rho (B)\leq \rho (A).

Definition 5.5. A square matrix A is semipositive if \exists x> 0 such that Ax> 0.

Lemma 5.6. Let A be a nonsingular n\times n matrix. Then A is semipositive if and
only if there exists a vector x> 0 such that Ax\geq 0.

Proof. The forward direction is immediate. For the converse suppose that \exists x> 0
such that Ax\geq 0. Let a= | | A - 1| | op be the operator norm of A - 1, xm =min1\leq i\leq n(xi),
\varepsilon = xm

2a
\surd 
n
, and \vec{}\varepsilon \in Rn be the column vector whose components are all equal to \varepsilon .

Then | | \vec{}\varepsilon | | 2 = xm

2a by construction. Furthermore, | | A - 1\vec{}\varepsilon | | 2 \leq a| | \vec{}\varepsilon | | 2 = axm

2a = xm

2 . In

particular,
\sum n

i=1(A
 - 1\vec{}\varepsilon )2i \leq x2

m

4 for all 1 \leq i \leq n. Therefore, (A - 1\vec{}\varepsilon )2i \leq x2
m

4 which
implies | (A - 1\vec{}\varepsilon )i| \leq xm

2 for all 1 \leq i \leq n. Thus, x+A - 1\vec{}\varepsilon > 0 because of the way xm

was defined. Finally, A(x+A - 1\vec{}\varepsilon ) =Ax+ \vec{}\varepsilon \geq 0 + \vec{}\varepsilon > 0 and thus A is semipositive.

The following example illustrates the necessity of the hypothesis that A is a
nonsingular matrix in Lemma 5.6. Consider a singular matrix

A=
\Bigl( 

1  - 1 0
 - 1 1 0
0 0 1

\Bigr) 
.

Let x=
\bigl( 
1 1 1

\bigr) T
. Then note that Ax\geq 0. Now let y \in R3

>0. Suppose that Ay > 0.
This implies that y1 > y2 and y2 > y1 which cannot be. Thus A is not semipositive.

There are numerous characterizations of M -matrices; one can find several dozen
conditions on a matrix that are all equivalent to being an M -matrix [4]. However,
our proofs rely only on the following observation.

Theorem 5.7 (see [4, Chapter 6, Theorem 2.3]). Let A be a Z-matrix. Then A
is a nonsingular M -matrix if and only if A is semipositive.

5.2. Proof of Theorem 3.2 and related results. In order to prove Theorem
3.2 a few preliminary results are necessary. Namely, Theorem 5.9 and Corollary 5.10.
We also introduce the following notation for convenience.

Definition 5.8. For the dynamical system in (2.1) we denote the set of supports

of all the fixed points by FP (W,b) and we let FP (W )
def
=
\bigcup 

b\geq 0FP (W,b).

Theorem 5.9. Let W \in Dn and W \prime \in Dn+1 be Dale matrices such that W \prime 
[n] =W ,

and the last (n+1)th column of W \prime is inhibitory and satisfies the following condition:

\exists i\in \scrE with W \prime 
i(n+1) < 0 =\Rightarrow \exists j \in \scrI with Wij < 0.(5.1)

Then \scrC (W ) = \scrC (W \prime ).

Proof. The proof needs that both matrices W and W \prime satisfy Ground Assumption
3.1. Since being singular is a fine-tuned condition for matrices, the assumption is
generically true. Furthermore, we can explicitly construct a W \prime in such a way that it
satisfies Ground Assumption 3.1 and the hypothesis in the statement of the theorem.
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2533

In particular we can choose the (n+ 1)th row of W \prime to be the zero vector. This will
make it so that for any \sigma \subset [n+ 1], (I  - W \prime )\sigma is nonsingular, assuming that W was
already satisfying Ground Assumption 3.1. We now proceed with the proof.

Observe that by construction, as we are only adding an additional inhibitory neu-
ron to the network, both W and W \prime have the same collection of excitatory neurons, \scrE .
Furthermore, \scrE \scrI \subset \scrE \scrI \prime , where the \scrE \scrI \prime are the excitatory neurons in W \prime that receive
inhibition. However, (5.1) in fact yields us \scrE \scrI \prime \subset \scrE \scrI . Therefore \scrE \scrI = \scrE \scrI \prime , that is to
say, the collection of inhibited and uninhibited excitatory neurons in W and W \prime are
the same. Hence, there is no confusion when we write the excitatory neurons in W \prime 

as a partition \scrE = \scrE \scrU \sqcup \scrE \scrI .
Suppose that \sigma \in \scrC (W ). Then, there exists \tau \subset \scrI such that \nu = \sigma \sqcup \tau \in FP (W ),

and (by Lemma 5.1) a vector b\in Rn
\geq 0 such that x\nu = (I\nu  - W\nu )

 - 1b\nu > 0 and 0\leq b\nu \leq 
 - W\nu \nu x\nu , where \nu = [n] \setminus \nu . Let \nu \prime = \nu \sqcup \{ n+ 1\} and define y \in R| \nu | +1

>0 as follows. The

first | \nu | entries of y are those of x\nu , i.e., y\nu = x\nu \in R| \nu | 
>0, and the last entry is defined

as

y| \nu | +1 =

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \nu 

(I  - W \prime )(n+1)kxk

\bigm| \bigm| \bigm| \bigm| \bigm| + 1.

Note that for i\in \nu , we have

((I  - W \prime )\nu \prime y)i =
\sum 
k\in \nu \prime 

(I  - W \prime )ikyk =
\sum 
k\in \nu 

(I  - W )ikxk  - W \prime 
i(| \nu | +1)y| \nu | +1 \geq 0,

since  - W \prime 
i(| \nu +1) \geq 0, and x was such that (I\nu  - W\nu )x\nu = b\nu \geq 0. Thus, by construction

we have (I  - W \prime )\nu \prime y \geq 0. Furthermore,  - W \prime 
\nu \prime \nu \prime y \geq  - W\nu \nu x\nu \geq 0. Let b\prime \in Rn+1

\geq 0 be
defined by b\prime \nu \prime = (I  - W \prime )\nu \prime y and b\prime 

\nu \prime = 0. Then, by Lemma 5.1 \nu \prime = \sigma \sqcup \tau \cup \{ n+ 1\} \in 
FP (W \prime , b\prime )\subset FP (W \prime ), and thus \sigma \in \scrC (W \prime ).

Now suppose that \sigma \in \scrC (W \prime ). Then there exists a \tau \prime \subset \scrI \sqcup \{ n + 1\} such that
\nu = \sigma \sqcup \tau \prime \in FP (W \prime ). Since \nu \in FP (W \prime ), there exists a b\prime \in Rn+1

\geq 0 such that

x
def
= (I\nu  - W \prime 

\nu )
 - 1b\prime \nu > 0 and 0\leq b\prime [n+1]\setminus \nu \leq  - W \prime 

([n+1]\setminus \nu )\nu x,

by Lemma 5.1. We have two cases to consider: either \tau \prime \subset \scrI or (n+ 1)\in \tau \prime .
In the case that \tau \prime \subset \scrI , observe that (I\nu  - W \prime 

\nu )
 - 1 = (I\nu  - W\nu )

 - 1 and that
W \prime 

([n+1]\setminus \nu )\nu is almost identical to W([n]\setminus \nu )\nu ; W
\prime 
([n+1]\setminus \nu )\nu can be obtained from W([n]\setminus \nu )\nu 

by adding an extra row of entries induced from the (n+1)th row of W \prime . Define b\in Rn
\geq 0

by b\nu = (I  - W )\nu x= (I  - W \prime )\nu x= b\prime \nu and b[n]\setminus \nu = 0. Then by construction

x= (I\nu  - W\nu )
 - 1b\nu > 0 and 0\leq b[n]\setminus \nu \leq  - W([n]\setminus \nu )\nu x

and, thus, \nu = \sigma \sqcup \tau \prime \in FP (W,b)\subset FP (W ) by Lemma 5.1. Therefore \sigma \in \scrC (W ).
In the case that (n+1)\in \tau \prime , let \scrE \tau \prime be the set of indices of nonzero rows of W \prime 

\scrE \tau \prime 

(the set of inhibited excitatory neurons of the Dale network W \prime 
\scrE \tau \prime ). For each i\in \alpha let

ji \in \scrI be such that W \prime 
iji

=Wiji < 0 (we can always choose ji to not equal n+1 by the
hypothesis of the theorem, and thus we can assume ji \in \scrI ). Let \mu = \sigma \sqcup \scrI and define

c
def
= max

\Biggl\{ 
max

i\in \sigma \cap \scrE \tau \prime 
 - 1

Wiji

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

(I  - W )ikxk

\bigm| \bigm| \bigm| \bigm| \bigm| , max
i\in \scrI 

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

 - Wikxk

\bigm| \bigm| \bigm| \bigm| \bigm| ,
max

i\in ([n]\setminus \mu )\cap \alpha 
 - 1

Wiji

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

 - Wikxk

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr\} 
.
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2534 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

Let y \in R| \mu | 
>0 be defined by y\sigma = x\sigma and yj = 1 + c for j \in \scrI . We aim to show

that (I  - W )\mu y > 0 and that 0\leq  - W([n]\setminus \mu )\mu y as that will give us that \mu \in FP (W ) by
Lemma 5.1. We prove these inequalities by considering the partitions

\mu = \sigma \sqcup \scrI = (\sigma \cap \scrE \tau \prime )\sqcup (\sigma \setminus \scrE \tau \prime )\sqcup \scrI , [n] \setminus \mu = (([n] \setminus \mu )\cap \scrE \tau \prime )\sqcup (([n] \setminus \mu ) \setminus \scrE \tau \prime ).

Then for i\in \sigma \cap \scrE \tau \prime , we have

((I  - W )\mu y)i =
\sum 
k\in \mu 

(I  - W )ikyk =
\sum 
k\in \sigma 

(I  - W )ikyk +
\sum 
k\in \scrI 

(I  - W )ikyk

=
\sum 
k\in \sigma 

(I  - W )ikxk + (1+ c)
\sum 
k\in \scrI 

(I  - W )ik

=
\sum 
k\in \sigma 

(I  - W )ikxk + (1+ c)(I  - W )iji + (1+ c)
\sum 

ji \not =k\in \scrI 

(I  - W )ik

\geq 
\sum 
k\in \sigma 

(I  - W )ikxk + c( - Wiji) - Wiji + (1+ c)0

\geq 
\sum 
k\in \sigma 

(I  - W )ikxk + ( - Wiji)( - 
1

Wiji

)

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

(I  - W )ikxk

\bigm| \bigm| \bigm| \bigm| \bigm|  - Wiji

\geq 0 - Wiji > 0.

For i\in \sigma \setminus \scrE \tau \prime , we have

((I  - W )\mu y)i =
\sum 
k\in \mu 

(I  - W )ikyk =
\sum 
k\in \sigma 

(I  - W )ikyk +
\sum 
k\in \scrI 

(I  - W )ikyk

=
\sum 
k\in \sigma 

(I  - W )ikxk +
\sum 
k\in \scrI 

(I  - W )ikyk \geq 
\sum 
k\in \sigma 

(I  - W )ikxk + 0> 0,

because the ith row of W \prime 
\scrE \tau \prime is zero for i \not \in \scrE \tau \prime by assumption and x was by hypothesis

such that for i \in \sigma \setminus \scrE \tau \prime , ((I  - W \prime )\nu x)i =
\sum 

k\in \nu (I  - W \prime )ikxk =
\sum 

k\in \sigma (I  - W \prime )ikxk +\sum 
k\in \tau \prime (I  - W \prime )ikxk =

\sum 
k\in \sigma (I  - W )ikxk + 0> 0.

Let i\in \scrI . Since i \not \in \sigma , we have
\sum 

k\in \sigma (I  - W )ikxk =
\sum 

k\in \sigma  - Wikxk. Furthermore,
note that

\sum 
i\not =k\in \scrI  - Wik \geq 0. From all of this we have

((I  - W )\mu y)i =
\sum 
k\in \mu 

(I  - W )ikyk =
\sum 
k\in \sigma 

(I  - W )ikyk +
\sum 
k\in \scrI 

(I  - W )ikyk

=
\sum 
k\in \sigma 

(I  - W )ikxk + (1+ c)
\sum 
k\in \scrI 

(I  - W )ik

=
\sum 
k\in \sigma 

 - Wikxk + (1+ c)((I  - W )ii +
\sum 

i\not =k\in \scrI 

 - Wik)

\geq 
\sum 
k\in \sigma 

 - Wikxk + 1+ c\geq 
\sum 
k\in \sigma 

 - Wikxk + 1+

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

 - Wikxk

\bigm| \bigm| \bigm| \bigm| \bigm| > 0.

Together, all these inequalities yield that (I - W )\mu y > 0 and (I\mu  - W\mu )
 - 1(I - W )\mu y=

y > 0.
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2535

On the other hand, for i\in ([n] \setminus \mu )\cap \scrE \tau \prime , we have

( - W([n]\setminus \mu )\mu y)i = ( - W([n]\setminus \mu )\mu y)i =
\sum 
k\in \mu 

 - Wikyk

=
\sum 
k\in \sigma 

 - Wikyk +
\sum 
k\in \scrI 

 - Wikyk =
\sum 
k\in \sigma 

 - Wikxk +
\sum 
k\in \scrI 

 - Wik + c
\sum 
k\in \scrI 

 - Wik

=
\sum 
k\in \sigma 

 - Wikxk  - Wiji +
\sum 

ji \not =k\in \scrI 

 - Wik + c( - Wiji) + c
\sum 

ji \not =k\in \scrI 

 - Wik

\geq 
\sum 
k\in \sigma 

 - Wikxk  - Wiji + 0+ ( - Wiji)

\biggl( 
 - 1

Wiji

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

 - Wikxk

\bigm| \bigm| \bigm| \bigm| \bigm| + 0

\geq  - Wiji > 0.

Furthermore, for i\in ([n] \setminus \mu ) \setminus \scrE \tau \prime , we have

( - W([n]\setminus \mu )\mu y)i =
\sum 
k\in \mu 

 - Wikyk

=
\sum 
k\in \sigma 

 - Wikyk +
\sum 
k\in \scrI 

 - Wikyk \geq 
\sum 
k\in \sigma 

 - Wikxk + 0\geq 0,

because the ith row of W \prime 
\scrE \tau \prime is zero for i \not \in \scrE \tau \prime by assumption and x was by hypothesis

such that for i\in ([n] \setminus \mu ) \setminus \scrE \tau \prime \subset \scrE ,

( - W \prime 
([n+1]\setminus \nu )\nu x)i =

\sum 
k\in \nu 

 - W \prime 
ikxk =

\sum 
k\in \sigma 

 - W \prime 
ikxk +

\sum 
k\in \tau \prime 

 - W \prime 
ikxk =

\sum 
k\in \sigma 

 - Wikxk + 0\geq 0.

Let b \in Rn
\geq 0 be defined by b\mu = (I  - W )\mu y and b[n]\setminus \mu = 0. Then, by construction

\mu = \sigma \sqcup \scrI \in FP (W,b)\subset FP (W ) by Lemma 5.1. Therefore \sigma \in \scrC (W ).

Corollary 5.10. Let W \in Dn, and W \prime \in Dn+1 be Dale matrices such that
W \prime 

[n] = W , and the last (n + 1)th column of W \prime is inhibitory and such that for all
i \in \scrE , Wi(n+1) < 0 if and only if the ith row vector of W\scrE \scrI is nonzero. Let W \prime \prime be a
Dale matrix obtained by deleting all the inhibitory columns and rows of W \prime except the
(n+ 1)th row and column. Then \scrC (W ) = \scrC (W \prime \prime ).

Proof. By Theorem 5.9 we have that \scrC (W ) = \scrC (W \prime ). Now we can reindex the
inhibitory columns and rows so that the (n + 1)th column of W \prime becomes the first
inhibitory column. Then we start deleting all the other inhibitory rows and columns
one at a time and at the end we obtain the matrix W \prime \prime . The code will be preserved
at each deletion step by Theorem 5.9 and thus \scrC (W ) = \scrC (W \prime \prime ). Note that W \prime can be
generically chosen such that at each deletion step all relevant matrices satisfy Ground
Assumption 3.1, which was necessary in the proof of Theorem 5.9.

Proof of Theorem 3.2. Note that we can obtain W \prime from W by following the
procedure from Corollary 5.10 where we obtained W \prime \prime . The result thus follows.

Before proceeding to prove Theorem 3.3, we make a few observations in Proposi-
tion 5.11 and Corollary 5.12 which will simplify our proof strategy.

Proposition 5.11. Let W \in Dn, \sigma \subset \scrE and \tau \subset \scrI . If \sigma \sqcup \tau \in FP (W ), then
\sigma \sqcup \tau \prime \in FP (W ) for any \tau \subset \tau \prime \subset \scrI .

Proof. Suppose that \nu = \sigma \sqcup \tau \in FP (W ) and let \tau \subset \tau \prime \subset \scrI , \nu \prime = \sigma \sqcup \tau \prime . Then,
there exists a b\in Rn

\geq 0 such that

x
def
= (I\nu  - W\nu )

 - 1b\nu > 0 and 0\leq b\nu \leq  - W\nu \nu x
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2536 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

by Lemma 5.1. Define

c
def
= max

i\in \tau \prime \setminus \tau 

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

(I  - W )ikxk

\bigm| \bigm| \bigm| \bigm| \bigm| .
Let x\prime \in R| \nu \prime | 

>0 be defined by x\prime 
\nu = x and x\prime 

i = 1+ c for i\in \nu \prime \setminus \nu . Then for i\in \nu we have

((I  - W )\nu \prime x\prime )i =
\sum 
k\in \nu \prime 

(I  - W )ikx
\prime 
k

=
\sum 
k\in \nu 

(I  - W )ikx
\prime 
k +

\sum 
k\in \nu \prime \setminus \nu 

(I  - W )ikx
\prime 
k

\geq 
\sum 
k\in \nu 

(I  - W )ikxk + 0= bi \geq 0.

For i\in \nu \prime \setminus \nu we have

((I  - W )\nu \prime x\prime )i =
\sum 
k\in \nu \prime 

(I  - W )ikx
\prime 
k

=
\sum 
k\in \sigma 

(I  - W )ikx
\prime 
k +

\sum 
k\in \tau 

(I  - W )ikx
\prime 
k +

\sum 
k\in \tau \prime \setminus \tau 

(I  - W )ikx
\prime 
k

=
\sum 
k\in \sigma 

(I  - W )ikx
\prime 
k + 0+ (I  - W )iix

\prime 
i +

\sum 
i\not =k\in \tau \prime \setminus \tau 

(I  - W )ikx
\prime 
k

\geq 
\sum 
k\in \sigma 

(I  - W )ikxk + 1+ c+ 0\geq 
\sum 
k\in \sigma 

(I  - W )ikxk + 1+

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

(I  - W )ikxk

\bigm| \bigm| \bigm| \bigm| \bigm| \geq 1> 0.

Furthermore, for i\in \nu \prime \subset \nu we have

( - W\nu \prime \nu \prime x
\prime )i =

\sum 
k\in \nu \prime 

 - Wikx
\prime 
k =

\sum 
k\in \nu 

 - Wikx
\prime 
k +

\sum 
k\in \tau \prime \setminus \tau 

 - Wikx
\prime 
k \geq 

\sum 
k\in \nu 

 - Wikxk + 0\geq bi \geq 0.

Define b\prime \in Rn
\geq 0 by b\prime \nu \prime = (I  - W )\nu \prime x\prime and b\prime 

\nu \prime = 0. Then by construction and by
Lemma 5.1, \nu \prime = \sigma \sqcup \tau \prime \in FP (W,b\prime )\subset FP (W ).

Corollary 5.12. Let W \in Dn. Then \sigma \in \scrC (W ) if and only if \sigma \sqcup \scrI \in FP (W ).

We now prove Theorem 3.3, reprinted below for convenience.

Theorem 3.3. Let W \in Dn be a Dale matrix with a set of excitatory neurons \scrE 
and inhibitory neurons \scrI , and let W \prime \in Dn be such that

W \prime 
ij =

\Biggl\{ 
0 \forall i\in \scrI \forall j \in \scrE ,
Wij otherwise.

Then \scrC (W ) = \scrC (W \prime ).

Proof of Theorem 3.3. The proof relies on W satisfying Ground Assumption 3.1,
however, we will also need W \prime to satisfy Ground Assumption 3.1. Because of the way
W \prime was constructed from W , this is the case. Indeed, observe that for \sigma \subset [n], we

have a block matrix decomposition (I  - W \prime )\sigma = (
(I - W )\scrE \cap \sigma  - W(\scrE \cap \sigma )(\scrI \cap \sigma )

0 (I - W )\scrI \cap \sigma 
). Therefore

det((I  - W \prime )\sigma ) = det((I  - W )\scrE \cap \sigma )det((I  - W )\scrI \cap \sigma ) \not = 0 by Ground Assumption 3.1
for W . Having this in mind, we proceed with the proof.
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2537

Let \sigma \in \scrC (W ). Then there exists a \tau \subset \scrI such that \nu = \sigma \sqcup \tau \in FP (W ). Thus,
there exists a b\in Rn

\geq 0 such that

x
def
= (I\nu  - W\nu )

 - 1b\nu > 0 and  - W\nu \nu x\geq b\nu \geq 0

by Lemma 5.1. Observe that because of the way W \prime was defined we have that

(I  - W \prime )ij =

\Biggl\{ 
0, i\in \scrI , j \in \scrE ,
(I  - W )ij otherwise.

Therefore y
def
= (I  - W \prime )\nu x \geq (I  - W )\nu x = b\nu \geq 0. Observe that x = (I\nu  - W \prime 

\nu )
 - 1y =

(I\nu  - W\nu )
 - 1b\nu . Furthermore,  - W \prime 

\nu \nu x \geq  - W\nu \nu x \geq 0. Define b\prime \in Rn
\geq 0 by b\prime \nu = y and

b\prime \nu = 0. Then by construction \nu = \sigma \sqcup \tau \in FP (W \prime , b\prime ) \subset FP (W \prime ) by Lemma 5.1.
Therefore \sigma \in \scrC (W \prime ).

Now suppose that \sigma \in \scrC (W \prime ). By Corollary 5.12 it follows that \nu = \sigma \sqcup \scrI \in 
FP (W \prime ). Thus, there exists a b\prime \in Rn

\geq 0 such that

x\prime def= (I\nu  - W \prime 
\nu )

 - 1b\prime \nu > 0 and  - W \prime 
\nu \nu x

\prime \geq b\prime \nu \geq 0

by Lemma 5.1. Define

c
def
= max

i\in \scrI 

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

(I  - W )ikx
\prime 
k

\bigm| \bigm| \bigm| \bigm| \bigm| .
Let x \in R| \nu | 

>0 be defined by x\sigma = x\prime 
\sigma and xi = x\prime 

i + 1 + c for all i \in \scrI . Then, for i \in \sigma 
we have

((I  - W )\nu x)i =
\sum 
k\in \nu 

(I  - W )ikxk

=
\sum 
k\in \nu 

(I  - W \prime )ikx
\prime 
k + (1+ c)

\sum 
k\in \scrI 

(I  - W )ik

\geq 
\sum 
k\in \nu 

(I  - W \prime )ikx
\prime 
k + 0\geq 0.

For i\in \scrI we have

((I  - W )\nu x)i =
\sum 
k\in \nu 

(I  - W )ikxk =
\sum 
k\in \sigma 

(I  - W )ikxk +
\sum 
k\in \scrI 

(I  - W )ikxk

=
\sum 
k\in \sigma 

(I  - W )ikx
\prime 
k + (I  - W )iixi +

\sum 
i\not =k\in \scrI 

(I  - W )ikxk

\geq 
\sum 
k\in \sigma 

(I  - W )ikx
\prime 
k + (x\prime 

i + 1+ c) + 0

\geq 
\sum 
k\in \sigma 

(I  - W )ikx
\prime 
k + 1+

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

(I  - W )ikx
\prime 
k

\bigm| \bigm| \bigm| \bigm| \bigm| \geq 1> 0.

Furthermore, for i\in \nu = \scrE \setminus \sigma we have

( - W\nu \nu x)i =
\sum 
k\in \nu 

 - Wikxk =
\sum 
k\in \nu 

 - W \prime 
ikx

\prime 
k + (1+ c)

\sum 
k\in \scrI 

 - W \prime 
ik \geq 

\sum 
k\in \nu 

 - W \prime 
ikx

\prime 
k + 0\geq 0.

Define b \in Rn
\geq 0 by b\nu = (I  - W )\nu x and b\nu = 0. Then by construction and by Lemma

5.1, \nu = \sigma \sqcup \scrI \in FP (W,b)\subset FP (W ). Therefore, \sigma \in \scrC (W ).

From Theorems 3.2 and 3.3 we have the following corollary.
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2538 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

Corollary 5.13. Let W \in Dn with \scrE = \{ 1,2, . . . ,m\} , | \scrI | = k \geq 1, m+ k = n.
Let W \prime \in Dm+1 be a Dale matrix obtained from W in the following way: W \prime 

ij =Wij

for i, j \in \scrE , and for all i \in \scrE , W \prime 
i(m+1) < 0 if and only if the ith row of W\scrE \scrI is a

nonzero row vector, and the (m+ 1)th row of W \prime is zero. Then \scrC (W ) = \scrC (W \prime ).

Before we proceed to prove Theorem 3.5, we will need the following lemma.

Lemma 5.14. Let A be an n\times m matrix, n\leq m such that \exists \sigma \subset [m] with | \sigma | = n
and that A[n]\sigma is an invertible Z-matrix, and A[n]([m]\setminus \sigma ) \leq 0. Here A[n]\tau is a submatrix
of A obtained by deleting columns outside of \tau . Then \exists x \in Rm

>0 such that Ax \geq 0 if
and only if A[n]\sigma is an M -matrix.

Proof. We can assume without loss of generality that \sigma = [n], otherwise we can
reindex. Suppose that \exists x \in Rm

>0 such that Ax \geq 0. For all i \in [n] we then have
(Ax)i =

\sum 
k\in [m]Aikxk =

\sum 
k\in [n]Aikxk +

\sum 
k\in [m]\setminus [n]Aikxk \geq 0, from where it follows

that
\sum 

k\in [n]Aikxk = Ai[n]x[n] \geq 0 because Ai([m]\setminus [n]) \leq 0 by assumption. Thus,
A[n]x[n] \geq 0 and thus A[n] is semipositive by Lemma 5.6. Since it is also a Z-matrix
(off-diagonal entries are nonpositive) by assumption, we have that it is an M -matrix
by Theorem 5.7, meaning \rho (A)< 1.

Conversely, suppose that A[n] is an M -matrix. Then, since it is also invertible by
assumption, from Theorem 5.7 we have that A[n] is semipositive. Therefore, \exists y \in Rn

>0

such that A[n]y\geq 0 by Lemma 5.6. Note that for all i\in [n],
\sum 

k\in [m]\setminus [n]Aik \leq 0. Define

M
def
= min

i\in [n]

\sum 
k\in [n]

Aikyk, N
def
= min

i\in [n]

\sum 
k\in [m]\setminus [n]

Aik.

Observe that since A[n] is invertible by assumption and y > 0 it cannot be that
A[n]y = 0. Thus, M > 0. Suppose that N = 0. Since, A[n]([m]\setminus [n]) \leq 0 by assumption,
this implies that A[n]([m]\setminus [n]) = 0. Therefore, we can define x \in Rm

>0 by x[n] = y and
xj = 1 for all j \in [m] \setminus [n]. Then, by construction Ax\geq 0. Now suppose that N \not = 0,
that is, N < 0 and define x\in Rm

>0 by x[n] = y and xj =
 - M
N for all j \in [m] \setminus [n]. Then

for all i\in [n] we have

(Ax)i =
\sum 
k\in [m]

Aikxk =
\sum 
k\in [n]

Aikxk +
\sum 

k\in [m]\setminus [n]

Aikxk

=
\sum 
k\in [n]

Aikyk  - 
M

N

\sum 
k\in [m]\setminus [n]

Aik \geq M  - M

N
N =M  - M = 0.

Therefore Ax\geq 0.

Finally, we prove Theorem 3.5, reprinted below for convenience.

Theorem 3.5. Let W be a Dale matrix, and \sigma \subset \scrE be a nonempty subset of
excitatory neurons. Then \sigma \in \scrC (W ) if and only if the following two conditions are
both satisfied:

(i) (the spectral condition) \rho (W\scrE \scrU \cap \sigma )< 1;
(ii) (the graph condition) \sigma \in code(G\scrE ,\scrE \scrU ),

where W\scrE \scrU \cap \sigma denotes the synaptic weights of the excitatory subnetwork on the subset
\scrE \scrU \cap \sigma , and \rho (W\scrE \scrU \cap \sigma ) denotes the spectral radius of the matrix W\scrE \scrU \cap \sigma .

Proof of Theorem 3.5. By Theorems 3.2 and 3.3, we can assume that there is
only one inhibitory neuron, let us say the nth neuron, and that the nth row of W
is all 0. Recall that \scrE \scrU (resp., \scrE \scrI ) denotes the set of uninhibited (resp., inhibited)
excitatory neurons of W , i.e., \scrE = \scrE \scrU \sqcup \scrE \scrI , and that N+

G\scrE 
(\sigma ) is the out-neighborhood
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2539

or the synaptic targets of \sigma \subset \scrE in the excitatory connectivity graph G\scrE (Definition
3.4).

Suppose that \sigma \in \scrC (W ). As observed in Corollary 5.12, \sigma \in \scrC (W ) if and only if

\tau = \sigma \sqcup \{ n\} \in FP (W ). By Lemma 5.1, \tau \in FP (W ) if and only if \exists x \in R| \tau | 
>0 such that

the following two conditions are satisfied:

(I  - W )\tau x\geq 0,(5.2a)

0\leq  - W\tau \tau x.(5.2b)

For any vector y \in R| \tau | 
>0 and any i\in \scrE \scrU \cap \sigma we have

((I  - W )\tau y)i =
\sum 
k\in \tau 

(I  - W )ikyk =
\sum 
k\in \sigma 

(I  - W )ikyk

since (I  - W )in = 0. Therefore we can make the following two observations:
(a) The condition (5.2a) ensures that x\sigma > 0 satisfies (I  - W )(\scrE \scrU \cap \sigma )\sigma x\sigma \geq 0.

Observe that \sigma \setminus \scrE \scrU = \scrE \scrI \cap \sigma , i.e., \sigma = (\scrE \scrU \cap \sigma ) \sqcup (\scrE \scrI \cap \sigma ). Because (I  - 
W )\scrE \scrU \cap \sigma is a nonsingular Z-matrix (off-diagonal entries are nonpositive) and
(I  - W )(\scrE \scrU \cap \sigma )(\scrE \scrI \cap \sigma ) \leq 0, by Lemma 5.15 we have that this is equivalent to
(I  - W )\scrE \scrU \cap \sigma being an M -matrix, that is, \rho (W\scrE \scrU \cap \sigma )< 1.

(b) By observing that \tau = \scrE \setminus \sigma , the condition (5.2b) is equivalent to the require-
ment that for all i\in \scrE \setminus \sigma we need to have ( - W(\scrE \setminus \sigma )\tau x)i =

\sum 
k\in \tau  - Wikxk \geq 0.

For i\in \scrE \setminus \sigma , if Win = 0 the only possibility is that Wi\sigma = 0 for the inequality
to be true. Thus to be able to find an x \in Rn

>0 for which condition (5.2b) is
satisfied we need that for all i\in \scrE \setminus \sigma , Wi\sigma = 0 or Win < 0. This implies that
N+

G\scrE 
(\sigma )\cap \scrE \scrU \subset \sigma .

Now suppose the following two conditions are both satisfied:

\rho (W\scrE \scrU \cap \sigma )< 1,(5.3a)

N+
G\scrE 

(\sigma )\cap \scrE \scrU \subset \sigma .(5.3b)

Condition (5.3a) means that (I - W )\scrE \scrU \cap \sigma is anM -matrix. Since (I - W )(\scrE \scrU \cap \sigma )(\scrE \scrI \cap \sigma ) \leq 
0, by Lemma 5.15 this means that \exists x \in R| \sigma | 

>0 such that (I  - W )(\scrE \scrU \cap \sigma )\sigma x \geq 0. Let
\tau = \sigma \sqcup \{ n\} and define

c
def
= max

\Biggl\{ 
max

i\in \scrE \scrI \cap \sigma 
 - 1

Win

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

(I  - W )ikxk

\bigm| \bigm| \bigm| \bigm| \bigm| ,
max

i\in \scrE \scrI \setminus \sigma 
 - 1

Win

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

 - Wikxk

\bigm| \bigm| \bigm| \bigm| \bigm| ,
\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

 - Wnkxk

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr\} 
.

Define y \in R| \tau | 
>0 by y\sigma = x and y| \tau | = 1+ c. Then, for i\in \scrE \scrU \cap \sigma we have

((I  - W )\tau y)i =
\sum 
k\in \tau 

(I  - W )ikyk =
\sum 
k\in \sigma 

(I  - W )ikyk + (I  - W )iny| \tau | 

=
\sum 
k\in \sigma 

(I  - W )ikxk  - Win(1 + c)\geq 0 + 0(1 + c) = 0.
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2540 NIKOLA MILI\'CEVI\'C AND VLADIMIR ITSKOV

For i\in \scrE \scrI \cap \sigma we have

((I  - W )\tau y)i =
\sum 
k\in \tau 

(I  - W )ikyk =
\sum 
k\in \sigma 

(I  - W )ikyk + (I  - W )iny| \tau | 

=
\sum 
k\in \sigma 

(I  - W )ikxk  - Win(1 + c) =
\sum 
k\in \sigma 

(I  - W )ikxk  - Win  - Winc

\geq 
\sum 
k\in \sigma 

(I  - W )ikxk  - Win +Win
1

Win

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

(I  - W )ikxk

\bigm| \bigm| \bigm| \bigm| \bigm| \geq  - Win > 0.

Similarly if i= n, we will also have that ((I  - W )\tau y)i \geq 0 because of the definition of
y| \tau | . Therefore we have that (I  - W )\tau y \geq 0. Furthermore, N+

G\scrE 
(\sigma ) \cap \scrE \scrU \subset \sigma implies

that for all i \in \scrE \setminus \sigma , Wi\sigma = 0 or Win < 0. Note that \tau = \scrE \setminus \sigma = (\scrE \scrU \setminus \sigma )\sqcup (\scrE \scrI \setminus \sigma ).
Then for i \in \scrE \scrU \setminus \sigma , and thus Win = 0, we have that it must be that Wi\sigma = 0 and
therefore

( - W\tau \tau y)i =
\sum 
k\in \tau 

 - Wikyk =
\sum 
k\in \sigma 

 - Wikyk  - Winy| \tau | = 0 - 0(1 + c) = 0\geq 0.

On the other hand for i\in \scrE \scrI \setminus \sigma we have that Win < 0 and thus

( - W\tau \tau y)i =
\sum 
k\in \tau 

 - Wikyk =
\sum 
k\in \sigma 

 - Wikyk  - Winy| \tau | =
\sum 
k\in \sigma 

 - Wikxk  - Win(1 + c)

=
\sum 
k\in \sigma 

 - Wikxk  - Win  - Winc\geq 
\sum 
k\in \sigma 

 - Wikxk  - Win +Win
1

Win

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
k\in \sigma 

 - Wikxk

\bigm| \bigm| \bigm| \bigm| \bigm| 
\geq  - Win > 0.

Thus, we have that 0 \leq  - W\tau \tau y. Let b \in Rn be defined by b\tau = (I  - W )\tau y and
b\tau = 0. Then \tau = \sigma \sqcup \{ n\} \in FP (W,b) \subset FP (W ) (Definition 5.8) by Lemma 5.1.
Hence \sigma \in \scrC (W ).

We now prove Theorem 3.6, mainly relying on results stated in Appendix A. We
reprinted the theorem below for convenience.

Theorem 3.6. Let W be a nonsingular Dale matrix that is weakly coupled, i.e.,
| | W | | F < 1. Then every fixed point is asymptotically stable, and the combinatorial
code is completely described by the graph condition:

\scrC (W ) = \scrS \scrC (W ) = code(G\scrE ,\scrE \scrU ).

Furthermore, for all b\in Rn
\geq 0 there is a unique globally exponentially stable fixed point

of (2.1).

Proof of Theorem 3.6. Since | | W | | F < 1, this implies that \rho (W\eta ) < 1 for any
principal submatrix W\eta , \eta \subset [n]. Therefore by Theorem 3.5, \scrC (W ) = code(G\scrE ,\scrE \scrU ).
Furthermore, | | W | | F < 1 implies that W \in \scrL (Definition A.1) by Lemma A.2. Since
Ground Assumption 3.1 is assumed to hold, by Proposition A.3, for all b\in Rn

\geq 0, (2.1)
has a unique globally exponentially stable fixed point. In particular, if \sigma \in \scrC (W ),
by definition \sigma \sqcup \tau is a support of a fixed point of (2.1) for some \tau \subset \scrI and some
input b \in Rn

\geq 0. This fixed point is unique and asymptotically (exponentially) stable
as argued above. Therefore \sigma \in \scrS \scrC (W ). The inclusion \scrS \scrC (W ) \subset \scrC (W ) holds by
definition and thus \scrC (W ) = \scrS \scrC (W ).

The proof of Proposition 3.9 is straightforward and it gives us the important
Corollary 5.15. We reprinted the proposition below for convenience.
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THE COMBINATORIAL CODE AND THE GRAPH RULES 2541

Proposition 3.9. The code code(G\scrE ,\scrE \scrU ) is a sublattice of the Boolean lattice 2\scrE .

Proof of Proposition 3.9. It's easy to see that ∅,\scrE \in code(G,\scrE \scrU ). To show that
code(G\scrE ,\scrE \scrU ) is respected by intersections and unions assume that N+

G\scrE 
(\sigma i)\cap \scrE \scrU \subset \sigma i

for i= 1,2, \sigma i \subset \scrE . Since N+
G\scrE 

(\sigma 1 \cap \sigma 2)\subset N+
G\scrE 

(\sigma 1)\cap N+
G\scrE 

(\sigma 2), we obtain that

N+
G\scrE 

(\sigma 1 \cap \sigma 2)\cap \scrE \scrU \subset N+
G\scrE 

(\sigma 1)\cap N+
G\scrE 

(\sigma 1)\cap \scrE \scrU \subset \sigma 1 \cap \sigma 2.

Similarly,

N+
G\scrE 

(\sigma 1 \cup \sigma 2)\cap \scrE \scrU = (N+
G\scrE 

(\sigma 1)\cup N+
G\scrE 

(\sigma 2))\cap \scrE \scrU 
= (N+

G\scrE 
(\sigma 1)\cap \scrE \scrU )\cup (N+

G\scrE 
(\sigma 2)\cap \scrE \scrU )\subset \sigma 1 \cup \sigma 2.

Corollary 5.15. Let W \in Dn. The code \scrC (W ) is closed under intersections.

Proof. Suppose that \sigma , \tau \in \scrC (W ). By Theorem 3.5 we have that \rho (W\scrE \scrU \cap \sigma ),
\rho (W\scrE \scrU \tau 

) < 1 and that \sigma , \tau \in code(G\scrE ,\scrE \scrU ). Note that W\scrE \scrU \cap (\sigma \cap \tau ) is a principal sub-
matrix of W\scrE \scrU \cap \sigma which is nonnegative. Thus, by Lemma 5.4, \rho (W\scrE \scrU \cap (\sigma \cap \tau )) < 1.
Furthermore, code(G\scrE ,\scrE \scrU ) is closed under intersections by Proposition 3.9 and thus
\sigma \cap \tau \in code(G\scrE ,\scrE \scrU ). Thus, by Theorem 3.5 it follows that \sigma \cap \tau \in \scrC (W ).

By Corollary 5.15 and Theorem 3.8 we immediately get Theorem 3.10.

We now proceed to prove Theorem 3.11. Given a code C \subset 2\scrE that is a sublattice
with ∅,\scrE \in C, recall the definition of c : 2\scrE \rightarrow C and the graph (Gc,\scrE ) from Theorem
3.11. Let N+

Gc(\sigma ) denote the targets of \sigma \subset \scrE (the out-neighborhood of \sigma ) in the
graph (Gc,\scrE ). By definition, one sees that c(∅) = ∅, c(\scrE ) = \scrE , and \sigma \subset c(\sigma ). We
immediately make the following observations that will help us prove Theorem 3.11.

Lemma 5.16. Let C \subset 2\scrE be a sublattice with ∅,\scrE \in C. Then the following are
true:

1. Let \sigma , \tau \subset \scrE . Then c(\sigma \cup \tau ) = c(\sigma )\cup c(\tau ).
2. C = \{ \sigma \subset \scrE | \sigma = c(\sigma )\} .

Proof. For part 1, we first show that c(\sigma ) \cup c(\tau ) \subset c(\sigma \cup \tau ). Note that since
\sigma \subset \sigma \cup \tau it follows that c(\sigma ) \subset c(\sigma \cup \tau ). Similarly c(\tau ) \subset c(\sigma \cup \tau ). Therefore
c(\sigma ) \cup c(\tau ) \subset c(\sigma \cup \tau ). Now we show the other inclusion. Observe that since C is a
lattice, it follows that c(\sigma ), c(\tau ) and c(\sigma )\cup c(\tau )\in C. Furthermore, \sigma \cup \tau \subset c(\sigma )\cup c(\tau )
and therefore by definition c(\sigma \cup \tau )\subset c(\sigma )\cup c(\tau ).

To prove part 2, suppose that \sigma \in C. By definition,

c(\sigma ) =
\bigcap 

\nu \in C,\sigma \subset \nu 

\nu .

Since \sigma \in C, it follows that \bigcap 
\nu \in \scrC ,\sigma \subset \nu 

\nu = \sigma ,

and thus c(\sigma ) = \sigma . Now suppose that \sigma \subset \scrE is such that

c(\sigma ) =
\bigcap 

\nu \in C,\sigma \subset \nu 

\nu = \sigma .

Since C is finite and is closed under finite intersections, it follows that \sigma \in C.
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Lemma 5.17. The arcs in Gc are a transitive relation on \scrE .
Proof. Let i, j, k \in \scrE be such that i \rightarrow j and j \rightarrow k. In other words, we have

j \in c(i) and k \in c(j). Let \nu \in C be such that i \in \nu . Then, by definition, j \in \nu . Since
k \in c(j), by definition this implies that k \in \nu . Therefore, by definition i\rightarrow k.

Lemma 5.18. Let G be any graph whose transitive closure is Gc. Then code(G,\scrE ) =
code(Gc,\scrE ).

Proof. Let N+
G (\sigma ),N+

Gc(\sigma ) be the targets of \sigma \subset \scrE , in G and Gc, respectively. By
definition code(G,\scrE ) = \{ \sigma \subset \scrE | N+

G (\sigma )\subset \sigma \} and code(Gc,\scrE ) = \{ \sigma \subset \scrE | N+
Gc(\sigma )\subset \sigma \} .

By assumption N+
G (\sigma ) \subset N+

Gc(\sigma ) for all \sigma \subset \scrE . Thus for any \sigma \subset \scrE if N+
Gc(\sigma ) \subset \sigma ,

then N+
G (\sigma )\subset \sigma . Therefore code(Gc,\scrE )\subset code(G,\scrE ). Furthermore, if for any \sigma \subset \scrE ,

N+
G (\sigma ) \subset \sigma , then (N+

Gc)
m
(\sigma ) \subset \sigma , where (N+

Gc)
m

is an m-fold application of the
N+

Gc operator to \sigma , for any m \geq 1. Thus, N+
c (\sigma ) \subset \sigma . Therefore code(G,\scrE ) \subset 

code(Gc,\scrE ).
Finally, we can prove Theorem 3.11.

Proof of Theorem 3.11. By definition,

code(Gc,\scrE ) = \{ \sigma \subset \scrE | N+
Gc(\sigma )\cap \scrE =N+

Gc(\sigma )\subset \sigma \} .

Thus, we need to show that \{ \sigma \subset \scrE | N+
Gc(\sigma ) \cap \scrE =N+

Gc(\sigma )\subset \sigma \} = \{ \sigma \subset \scrE | c(\sigma ) = \sigma \} .
Let G be the digraph on \scrE and let it be defined by i \rightarrow j if and only if j \in c(i) for
all i, j \in \scrE . Let N+

G (\sigma ) be the targets of \sigma \subset \scrE in G. Note that by construction,
N+

G (\sigma ) =N+
Gc(\sigma ) \cup \sigma . Therefore for all \sigma \subset \scrE , N+

G (\sigma ) = \sigma if and only if N+
Gc(\sigma )\subset \sigma .

Furthermore, by construction N+
G (i) = c(i). Hence by Lemma 5.16 for all \sigma \subset \scrE we

have

N+
G (\sigma ) =

\bigcup 
i\in \sigma 

N+
G (i) =

\bigcup 
i\in \sigma 

c(i) = c

\Biggl( \bigcup 
i\in \sigma 

i

\Biggr) 
= c(\sigma ).

Therefore for all \sigma \subset \scrE , c(\sigma ) = \sigma if and only if N+
Gc(\sigma )\subset \sigma .

Appendix A. Stability of linear-threshold rate dynamics. Here we recall
the necessary results on the stability of the linear threshold dynamics from [24, 26]
that we used in the proofs of section 5. For a matrix A let | | A| | be its 2-norm and let
| A| denote the matrix | A| ij = | Aij | . Given a \sigma \in \{ 0,1\} n let \Sigma = diag(\sigma ), that is the
diagonal matrix with the elements of \sigma on the diagonal.

Definition A.1. An n\times n matrix A is totally-\scrL stable, written A \in \scrL , if there
exists P = PT \succ 0 such that ( - I +AT\Sigma )P +P ( - I +\Sigma A)\prec 0 for all \Sigma =diag(\sigma ) and
\sigma \in \{ 0,1\} n.

Lemma A.2 (see [24, Lemma 2.3]).
1. \rho (| W | )< 1 =\Rightarrow W \in \scrL .
2. | | W | | < 1 =\Rightarrow W \in \scrL .

In the statement of the following result the authors in [24] had a hypothesis that
W is nonsingular and that for all \sigma \in \{ 0,1\} n, (I - \Sigma W ) is nonsingular as well. By the
standard correspondence between finite binary sequences and finite subsets of 2[n], it
is not hard to observe that for a given \sigma \in \{ 0,1\} n, (I  - \Sigma W ) is nonsingular if and
only if (I  - W )\sigma is nonsingular. Thus, the second hypothesis is equivalent to Ground
Assumption 3.1. We thus continue not writing out Ground Assumption 3.1 in the
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statement of the following theorem as is the case in the rest of the paper, but the
reader should note that it is indeed necessary for the statement to be true.

Proposition A.3 (see [24, Proposition 4.9]). Consider the network dynamics in
(2.1). If \rho (| W | )< 1 or | | W | | < 1, then for all b \in Rn, the network has a unique fixed
point x\ast and it is globally exponentially stable relative to x\ast .

Note that it has been shown in [24], that a more general condition [24, Theorem
4.8] can also guarantee the above result. However, checking if the matrix W satisfies
those conditions is significantly harder in our context, thus we used the statement
above instead.

Acknowledgment. We thank the anonymous referees for their many helpful
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