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Unobtrusive Swallow Monitoring Enabled by Conformal
IONOGEL Biopotential Electrodes and Machine Learning

Penghao Dong, Jasmine Ives, Ethan Garcia, Christopher Caporusso, Polina Bragina,
Cassandra Laguatan, and Shanshan Yao*

Dysphagia or difficulty swallowing is caused by the failure of neurological
pathways to properly activate swallowing muscles. Current electromyography
(EMG) systems for dysphagia monitoring are bulky and rigid, limiting their
potential for long-term and unobtrusive use. To address this, a machine
learning-assisted wearable EMG system is presented, utilizing self-adhesive,
skin-conformal, semi-transparent, and robust ionic gel electrodes. The
presented electrodes possess good conductivity, superior skin contact, and
good transmittance, ensuring high-fidelity EMG sensing without impeding
daily activities. Moreover, the optimized material and structural designs
ensure wearing comfort and conformable skin-electrode contact, allowing for
long-term monitoring with high accuracy. Machine learning and mel-frequency
cepstral coefficient techniques are employed to classify swallowing events
based on food types and volumes. Through an analysis of electrode placement
on the chin and neck, the proposed system is able to effectively distinguish
between different food types and water volumes using a small number of
channels, making it suitable for continuous dysphagia monitoring. This work
represents an advancement in machine learning assisted EMG systems for
the classification and regression of swallowing events, paving the way for
more efficient, unobtrusive, and long-term dysphagia monitoring systems.

1. Introduction

The swallowing process involves a complex coordination of
over 50 pairs of muscles and both voluntary and involun-
tary neurologic pathways. Dysphagia or difficulty swallowing
arises when neurological pathways fail to properly activate
swallowing muscles.[1] If left untreated, dysphagia can lead
to severe complications such as choking, nasal regurgitation,
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dehydration, malnutrition, aspiration
pneumonia, and even death.[2–5] Addi-
tionally, dysphagia can have significant
psychological effects, including re-
duced self-esteem, embarrassment,
and social anxiety among patients.[6]

Effective rehabilitation for dysphagia
typically involves biofeedback tech-
niques, muscle-strengthening exercises,
and dietary modifications aimed at im-
proving swallowing efficiency. However,
adherence to these treatments remains
low, with studies indicating that only
22% to 52% of patients complete their
rehabilitation programs.[7] A signifi-
cant reason for this low adherence is
the cumbersome and expensive nature
of traditional biofeedback devices. For
instance, the gold standard for diagnos-
ing dysphagia is the videofluoroscopic
swallow study (VFSS), which provides
valuable insights into the swallowing
process.[8] However, VFSS has several
limitations, including requiring an
X-ray machine, exposing patients to ion-
izing radiation, and potential side effects

from barium contrast.[9] Moreover, there is an increasing need
for portable and easy-to-use devices that can screen for early-stage
swallowing disorders.[10] Detecting these problems early is vital
for preventing dysphagia from worsening.
To fill in these gaps, new devices based on electromyogram

(EMG)[11–13] or inertial measurement units (IMUs)[14,15] have
been developed to monitor swallowing-induced bio-signals con-
tinuously. EMG has become an essential tool due to its effec-
tiveness in detecting and diagnosing dysphagia by monitoring
complex muscle activities involved in swallowing.[16–18] How-
ever, most commercially available EMG devices rely on pre-gelled
Ag/AgCl electrodes. While effective, gel electrodes can trigger
skin irritations and become unreliable for long-term use as the
gel dries out.[19–21] To address this issue, soft electrodes are devel-
oped for dysphagia diagnosis. Table S1 (Supporting Information)
details the comparison between current research efforts on soft
wearable devices for swallowing monitoring. These sensors or
electrodes, placed under the chin or on the neck, allow for contin-
uous monitoring of swallowing behaviors.[12,13] Related studies
have demonstrated the feasibility of such sensor patches, which
are typically outfitted with metal electrodes on an elastomeric
substrate.[12] Metal EMG electrodes, as dry electrodes, offer
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superior biocompatibility and excellent conductivity, though they
may face challenges in terms of durability, skin-electrode con-
tact, and signal stability due to the mechanical mismatch be-
tween the electrode and the skin.[22] Moreover, their opacity and
invasive appearance may discourage long-term use. Additionally,
the methods for analyzing EMG signals collected by these sen-
sors are still under development, limiting their ability to pro-
vide detailed feedback on specific muscle performance during
swallowing.[23]

Conductive polymers, including hydrogels and ionic gels, have
emerged as potential electrodes for swallow monitoring.[24] Hy-
drogels stand out for their softness and ability to adhere to biolog-
ical tissues. Thesematerials can be tuned to achieve desirableme-
chanical, electrical, and chemical properties, making them suit-
able for wearable electronics.[25] However, hydrogels have limi-
tations in non-aqueous environments due to their tendency to
dehydrate.[26] Ionic gels, which combine ionic liquids with poly-
mer matrices, offer high conductivity, transparency, and stabil-
ity. Thesematerials are particularly attractive for wearable devices
due to their negligible vapor pressure and thermal stability.[27]

Machine learning techniques, such as Support Vector Ma-
chines (SVMs) and Artificial Neural Networks (ANNs), are widely
used in health monitoring, including bio-signal analysis.[28–31]

SVM is robust to overfitting, especially in high-dimensional
spaces and for small datasets.[32,33] In applications that involve
limited training samples, for instance, EEG-based systems for
detecting physiological artifacts (e.g., eye blinks)[30] and EMG-
driven prosthetics for movement classification,[31] SVM outper-
formsANNbecause SVM is able to generalize withminimal data,
whereas ANN is dependent on extensive datasets to avoid overfit-
ting. On the other hand, ANN’s structure enables automatic fea-
ture learning and modeling of complex non-linear relationships,
although it typically requires a careful hyperparameter tuning
process and large datasets to avoid overfitting.[34] This distinc-
tion highlights the advantage of SVMs in resource-constrained
bio-signal applications, where data acquisition is inherently
limited.
This work presents an EMG-based monitoring system based

on adhesive, skin-conformal, unobtrusive ionic gel electrodes
and machine learning. This system aims to address the above
challenges through innovations in materials, sensing locations,
and signal processing algorithms. This article presents improve-
ments in 1) enhancing electrode unobtrusiveness and skin-
electrode contact for improved signal quality, long-term use,
and wearing comfort; and 2) developing datasets correspond-
ing to food categories and machine learning algorithms to en-
hance the electrode’s ability to detect various swallowing ma-
neuvers. The study begins with an overview of the EMG-based
swallow monitoring process, followed by a detailed exploration
of the electrode’s design, fabrication, and performance evalu-
ation. Particularly, the designed electrode achieves great con-
ductivity, adhesiveness, transmittance, stability, as well as excel-
lent sensing performance. As for the signals relevant to swal-
lowing processes, machine learning algorithms and segmenta-
tion methods are employed to analyze them to optimize elec-
trode placement along a subject’s chin and neck for precise de-
tection of swallowing events. The detailed analysis demonstrates
the proposed system’s exceptional ability to classify different
types of swallows based on different types of food as well as

to predict water volumes via regression. The key advantage of
this design lies in the IONOGEL electrodes’ superior skin con-
formity, flexibility, transparency, and signal fidelity, which en-
ables unobtrusive and continuousmonitoring of swallowingwith
great wearing comfort. Combined with robust machine learn-
ing models, this system represents a highly efficient and reli-
able tool for both clinical and real-world rehabilitation applica-
tions, offering seamless and non-invasive tracking of swallowing
dynamics.

2. Result and Discussion

2.1. Overview of the EMG-Based Swallow Monitoring Process

Figure 1 presents the architecture of the EMG-based swallow
monitoring system, which integrates the epidermal ionic gel
(IONOGEL) EMG sensing electrodes with machine learning-
based classification and regression algorithms. Utilizing the
bipolar configuration[35] for EMG sensing, five pairs of skin-
conformal IONOGEL electrodes are strategically placed on the
chin and neck skin, forming five sensing channels to capture
high-fidelity muscular activities during swallowing (Figure 1a).
A shared ground electrode is positioned on the clavicle, a low-
activity muscle area, to reduce noise interference and enhance
signal stability.
After the data collection, essential pre-processing techniques

are applied to the collected EMG signals. A bandpass filter and a
notch filter (Figure 1b) are necessary to reduce noise caused by
motion artifacts[36] and to eliminate power line interference.[37]

Once clean signals are obtained, they are segmented so that
each segment corresponds to a single swallow. This segmenta-
tion allows for precise feature extraction from each swallowing
event, producing matrices for downstream analysis. Further pre-
processing details are discussed in Section 2.3. Then, the fea-
ture matrices are processed by a fully connected artificial neu-
ral network (ANN) and a support vector machine (SVM) model,
optimizing both training and channel selection (Figure 1c). The
model delivers highly accurate classifications of food categories
and precise regressions for predicting swallowed water volumes
(Figure 1d). The integration of machine learning enhances the
system’s ability to provide insights into the swallowing process,
as detailed in Section 2.4.

2.2. Optimization and Performance of the Electrode

The IONOGEL electrode is innovatively designed using a
combination of 1-Ethyl-3-methylimidazolium bis(trifluor-
omethylsulfonyl)imide (EMIM TFSI), waterborne polyur-
ethane (WPU), and poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate) (PEDOT:PSS), each contributing to
its exceptional performance (Figure 2a). EMIM TFSI, an ionic
liquid, ensures efficient ion transport while helping the electrode
maintain a high degree of softness and adhesion, which is critical
for seamless skin integration. WPU, a water-based polyurethane,
adds superior stretchability andmechanical compliance,[38] mak-
ing the electrode highly adaptable to the natural movements of
the skin. PEDOT:PSS, a conductive polymer, enhances electrical
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Figure 1. Overview of the EMG-based swallow monitoring process. a) Schematics showing the electrode position on the neck. b) EMG data acquisition
and pre-processing. c) Machine learning model training and channel selection. d) Classification results of the food category and regression results of
the water volume.

conductivity, ensuring reliable sensing performance of the
electrodes. The fabrication process, which involves stirring these
components into a homogeneous solution, drop-casting onto a
glass substrate, and knife cutting, allows for precise electrode
design (Figure 2b–d). Once patterned, the electrodes can be
easily peeled off and applied directly to the skin (Figure 2e,f),
offering an efficient and skin-friendly interface for EMG sensing
that combines comfort, durability, visual unobtrusiveness, and
high sensing performance.
To optimize and evaluate the electrode design, themechanical,

electrical, optical, and sensing performances were characterized

via a series of experiments. By varying the weight ratios of WPU,
EMIM TFSI, and PEDOT:PSS, an optimized material composi-
tion was achieved that produces an electrode with high conduc-
tivity, mechanical compliance, transmittance, and skin adhesion.
Additionally, with the help of acquiredmechanical properties and
an energy-based analytical model, the electrode was optimized to
achieve conformal contact with the skin for improved signal qual-
ity and wearing comfort.
For an EMIM TFSI loading in WPU beyond 50 wt.%, the re-

sulting electrode is unstable and cannot form a self-standing thin
film. Thus, the weight ratio between the EMIM TFSI and WPU

Figure 2. Fabrication process of the IONOGEL electrode. a) Chemical structures of PEDOT:PSS, EMIM TFSI, and WPU. b) Stirring process to obtain the
solution of all materials. c) Drop casting of the solution into a thin film. d) Patterning of the final IONOGEL electrode using a utility knife. Each electrode
is in the shape of a 13 mm square. e) Pictures of a set of fabricated IONOGEL electrodes on the glass substrate. f) Picture of one pair of IONOGEL
electrodes attached to the skin. The electrodes shown are IONOGEL-30 2% PEDOT.
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Figure 3. Characterizations of IONOGEL electrodes with different material compositions. a) Stress–strain curves of IONOGEL electrodes. b) Compar-
isons of secant moduli of IONOGEL with different composition ratios. The secant modulus is the slope drawn from the origin of the stress–strain
curve and intersecting the curve at the point of interest, which in this case is at 20% strain. c–f) Comparisons of c) adhesion force, d) conductivity, e)
transmittance, and f) electrode-skin impedance for IONOGEL electrodes with different composition ratios.

was set to 2:8, 3:7, and 4:6 for experiments. Meanwhile, increas-
ing PEDOT:PSS amount will significantly decrease the transmit-
tance. The weight ratios of PEDOT:PSS were set to 2%, 5%, and
7.5%, respectively. One example of denotation is IONOGEL-20
2% PEDOT, which means the weight ratio between the ionic liq-
uid and WPU is 2:8, and the weight ratio of PEDOT:PSS is 2% of
the total mixture weight.
Figure 3a,b compares the stress–strain behaviors and corre-

sponding secant moduli at different WPU, EMIM TFSI, and
PEDOT:PSS ratios, while Figure 3c shows the electrode adhesion
tested on the pig skin. The electrode shows nonlinear elasticity
due to the properties of WPU. As the ratio of ionic liquid toWPU

increases, thematerial becomes softer, and the adhesion force in-
creases. It should be noted that the adhesion force of IONOGEL-
30 to IONOGEL-40 is similar (Figure 3c). A softer material with
a higher adhesion force is more conducive to high-fidelity EMG
signals as it can help achieve conformal contact and thus low
electrode-skin impedance. To quantitatively evaluate the confor-
mal contact of electrodes with different material compositions,
an energy-based analytical model (detailed in Note S1, Support-
ing Information) was used. The model was modified from our
previous work[39] to adapt to the nonlinear elasticity. As shown in
Table S3 (Supporting Information), the critical thickness of the
IONOGEL electrodes, which means the electrode must be below
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Figure 4. Signal comparisons for different electrodes. Comparisons of a) EMG signals and b) SNR and noise RMS for IONOGEL electrodes with different
compositions and the commercial electrode.

this threshold to achieve conformal contact with the skin, varies
from 23 to 75 μmwhen increasing the weight ratio of ionic liquid
in WPU. Typically, a larger critical thickness means it is easier to
fabricate an electrode that can achieve conformal contact. As the
amount of ionic liquid increases from 20 wt.% in IONOGEL-20
to 30 wt.% in IONOGEL-30, the critical thickness jumps from 23
to 60 μm. IONOGEL-40 has a larger critical thickness, which is
75 μm, compared to IONOGEL-30 but the improvement is
relatively smaller than the improvement of IONOGEL-30 to
IONOGEL-20. The addition of PEDOT:PSS within the IONO-
GEL matrix has an increasing effect on the secant modulus of
the material for a loading ratio of 0–7.5 wt.% (Figure 3b). Based
on the modulus, adhesion force, and conformal contact analysis,
IONOGEL-30 and IONOGEL-40 are better than IONOGEL-20
for the electrode.
Figure S2 (Supporting Information) illustrates that increas-

ing the ratio of ionic liquid to WPU can effectively improve the
conductivity. With the PEDOT:PSS added in, the conductivity
of IONOGEL is further enhanced (Figure 3d; Figure S2, Sup-
porting Information). This is owing to PEDOT:PSS’s favorable
ion exchange capability with the ionic liquid and PEDOT:PSS’s
electrical conductivity.[40–42] Even the PEDOT:PSS can enhance
the conductivity, it also lowers the transmittance of the electrode
(Figure 3e). Taking IONOGEL-30 as an example, with a 7.5% PE-
DOT:PSS add-in, the transmittance under most wavelengths is
below 50%. Since the loading of PEDOT:PSS equal to or larger
than 7.5 wt.% results in an undesirable transmittance and a
minor conductivity improvement, 2 and 5 wt.% loading of PE-
DOT:PSS was chosen for further studies and analysis.
The impedance analysis shows several selected samples

have comparable performance to the commercial gel electrode
(Figure 3f). Figure 4a compares the signals of IONOGEL elec-
trodes against the commercial Ag/AgCl electrodes. Figure 4b

shows that IONOGEL-20 electrodes containing 2% PEDOT
or 5% PEDOT were unable to collect high-fidelity signals,
showing lower signal-to-noise ratio (SNR) and high noise root
mean square (RMS) compared to other samples or commercial
electrodes. IONOGEL-30 and IONOGEL-40 samples performed
comparably to the commercial electrode in both RMS and SNR.
The conformal contact and high conductivity of these IONOGEL
electrodes guarantee high signal quality and low noise of the
electrode. For the detection of swallowing events that involve
small voluntary and involuntary infrahyoid and suprahyoid
muscle groups, low noise RMS and high SNRs are essential
for accurate data collection and classification of signals. Among
all samples, IONOGEL-40 2% PEDOT and IONOGEL-30 2%
PEDOT demonstrate better performance due to their superior
softness, which enhances skin conformity, and their high con-
tent of EMIM TFSI and PEDOT:PSS, facilitating efficient signal
transduction. However, IONOGEL-40’s extreme softness makes
it challenging to maintain a freestanding structure during exper-
iments, hindering its application on human skin. For practical
use, IONOGEL-30 2% PEDOT was selected as the electrode ma-
terial because it offers a good balance of performance, structural
stability, and transmittance.
The wearing comfort of IONOGEL-30 with 2% PEDOT was

further analytically calculated (Note S2, Supporting Information).
The maximum normal stress generated from the electrode is
calculated to be 29.1 kPa (more details in Note S2, Support-
ing Information), lower than the pressure threshold (60–170
kPa) that causes discomfort for the chin and neck skin (areas
of interest).[43] Further, none of the subjects reported noticeable
pressure from the electrodes or skin discomfort during data ac-
quisition, confirming the electrodes’ good wearing comfort. The
resistance-strain performance for the IONOGEL-30 with 2% PE-
DOT:PSS was also tested. When subjected to around 15% strain,
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Figure 5. EMG signals associated with the swallowing process. a) Schematics illustrating involved muscle groups during the swallowing process, mod-
ified from reference with permission.[58] b) Electrode positions for five pairs/channels of electrodes. c) Collected five-channel EMG signals. Each color
means one swallow. d) Mel spectrogram of the collected five-channel EMG signals. When conducting the Fourier Transform to get the Mel spectrogram,
the window length and hop length were set to 0.2 and 0.1 s, respectively. The presented signals in (c) and (d) are for dry swallows.

the electrode experienced relatively large resistance variations at
the beginning of the cyclic stretching/releasing tests (Figure S3,
Supporting Information), and the resistance change was stabi-
lized afterward. The resistance variations were within 6% dur-
ing the 2000 stretching/releasing cycles, demonstrating the elec-
trode’s good electromechanical stability.
As observed in our experiments and the literature, slight re-

sistance variations would not affect EMG sensing performance if
the skin-electrode impedance remains stable.[20]As for the long-
term use of the IONOGEL, the ionic liquid used in our elec-
trodes (EMIM TFSI) has a very high boiling point (543.6 °C
from the datasheet) and extremely low vapor pressure (≈10−8

Pa from the datasheet), indicating a negligible evaporation rate.
A liquid’s evaporation rate within a polymer will generally
be lower than the evaporation rate of the same liquid in its
pure, unconstrained state.[44] A one-week experiment was con-
ducted to test if the developed IONOGEL can effectively col-
lect EMG data. The electrode was attached to the subject’s skin

for one week, and EMG signals were collected daily. The re-
sults show that the SNRs of EMG signals remain stable through-
out the week (Figure S4, Supporting Information), confirming
the electrode’s reliability for at least one week of continuous
use.

2.3. Collection and Preprocessing of the Swallow-Induced EMG
Signals

IONOGEL electrodes were applied according to the locations in
Figure 5 to target essential muscle groups involved in the swal-
lowing process.[45] The electrode positions that cover the mus-
cles from the infrahyoid and suprahyoid groups were selected
(Figure 5a). This ensures that the collected EMG signal conveys
the information highly related to the swallowing process. Chan-
nels 2, 3, and 4 monitor voluntary and involuntary muscle move-
ments involved in swallowing while channels 1 and 5 monitor
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involuntary movements only (Figure 5b).[45,46] The ground elec-
trode was placed on the collarbone, and all wires were spaced a
distance apart to eliminate possible interference or crosstalk from
other electrodes.
After the signal collection, a bandpass filter (20 – 200 Hz) and

a notch filter (60 Hz) were applied to the raw signal to minimize
noises and amplify the muscle signals activated during swallow-
ing. Following this, the filtered signal was segmented to sepa-
rate signal bursts from background data and noise.[39,47,48] Each
segment corresponds to a single swallowing event, extracted by
identifying the peaks of the signal (Figure 5c). This approach en-
sures that the most significant data from each swallowing trial
is used for feature extraction during machine learning classifi-
cation. Then, Mel-frequency cepstral coefficients (MFCC) were
extracted as features from the EMG signals and effectively cap-
ture the signal’s frequency components utilizing a “Mel scale”.
MFCC features mimic human perception, giving more weight to
low frequencies and less to high frequencies.[49,50] It turns out
that MFCC is also particularly useful for analyzing muscle activ-
ity patterns and identifying subtle variations in EMG signals, es-
pecially when dealing with complex muscle movements or differ-
entiating between muscle groups.[51] The MFCC extraction pro-
cess involves several steps. First, the signals were divided into
0.2 s windows with a 0.1 s overlap. Each window was then trans-
formed into the frequency domain using a Fourier Transform.
The resulting spectrumwasmapped onto theMel scale, as shown
in Figure 5d. Next, the first 13 (lowest-dimensional) MFCC fea-
tures were extracted. Finally, MFCC features corresponding to
each swallowing event were obtained with the help of the seg-
ment results in Figure 5c. Simply put, the MFCC extraction pro-
cess is similar to frequency feature extraction using the Fourier
Transform, with the key difference being that the spectrum is
mapped onto the Mel scale. All the processes can be finished us-
ing the open-source library ‘librosa’.[52]

2.4. Swallowing Classification and Regression using Machine
Learning

Following signal pre-processing,MFCC features and correspond-
ing labels for EMG signals were used to train machine learning
models for classifying swallow events from collected EMG sig-
nals. These events included dry swallows and swallowing 4 dif-
ferent foods − 1 Ritz cracker, 0.5 tsp Yoplait yogurt, 5 mL of wa-
ter, and 15 mL of water − selected based on their varying viscosi-
ties and volumes. Each event was repeated ten times. SVM and
ANN algorithms, using fivefold cross-validation, were employed
to train themodels. Through this validationmethod, the data was
divided randomly into five sets: Four of the sets were used to train
the model, and the model was validated using the remaining set.
As shown in the confusion matrix (Figure 6a,b), the average val-
idation accuracies of SVM classification and ANN classification
are 98.0% and 94.0%, respectively. The SVM model slightly out-
performs the ANN in distinguishing between different swallow
types. Overall, these results demonstrate the great feasibility and
effectiveness of the classification models in recognizing various
swallowing activities across different food textures and volumes.
In addition to classification, a regressionmodel was developed

to predict swallow volumes based on EMG signals, focusing pri-

marily on dry and water swallows. Regression predicts contin-
uous values, such as swallow volumes, rather than categorical
labels. Unlike classification, which assigns predefined classes,
regression models estimate numerical outputs based on input
features, enabling precise measurement of swallowing volumes
from EMG signals. The SVM model (Figure 6c) shows a better
performance in predicting 5 and 15 mL water swallows than the
ANN model (Figure 6d). However, for the prediction of dry swal-
lows, the SVM model shows a larger variation compared to the
ANN.Overall, the regression accuracy for SVMandANN is±1.17
and ±2.17 mL, respectively, which means SVM has a better per-
formance for the collected data set. ANN is inherently more data-
hungry than SVM for regression tasks, requiring larger datasets
to achieve comparable accuracy.While ANN’s performance could
be improved with larger datasets and detailed tuning of hyperpa-
rameters, SVM remains preferable for both classification and re-
gression tasks due to its robustness with small-sample and high-
dimensional data, enabling data-efficient generalization. While
there are different ways to track daily water intake, this study
shows an accurate, portable, and unobtrusive way for distinguish-
ing different swallow events enabled by continuous biopoten-
tial sensing and machine learning models. The ability to predict
swallow events from the collected EMG signals demonstrates the
great potential of the developed sensors and models as highly ac-
curate diagnostic tools.
To assess whether symmetrically positioned channels provide

complementary information, cross-correlation analysis was per-
formed on the root mean square (RMS) smoothed EMG sig-
nals (Figure S5, Supporting Information). RawEMGsignals were
considered unsuitable for such analysis because they have rapid
baseline-crossing oscillations, which would make the correla-
tion analysis uninformative even between physiologically rele-
vant channels. Results showed a strong cross-correlation between
Channels 3 and 4 (Table S4, Supporting Information), consistent
with their symmetrical anatomical locations. In contrast, despite
their symmetrical location, Channels 1 and 5 showed a weaker
correlation, due to their lower signal amplitude and increased
susceptibility to noise. Figure 7 demonstrates the performance
of the SVM model for food classification and water volume re-
gression using various combinations of EMG sensor channels.
For food classification, reducing the number of channels from
5 to 2 (specifically, with Channels 1 and 4 remaining) decreased
overall accuracy by only 4% (98% to 94%, as shown in Figure 7a),
demonstrating that a 60% reduction in electrode count has min-
imal impact on classification performance. The combination of
Channels 1 and 4 retained robust accuracy as these electrodes are
positioned over the infrahyoid group, which dominates swallow-
ing activation. Other channels (2, 3, 5) provide redundant infor-
mation to channels 1 and 4. The analysis shows the spatial speci-
ficity (attachment positions) of EMG signals, enabling simplified
configurations for classification without sacrificing much of the
performance. However, for water volume regression (Figure 7b),
such reduction in channels has amore pronounced effect. The av-
erage prediction error increases by nearly 80% when using only
two channels compared to all five, indicating that regression tasks
require more data inputs for accurate predictions. Another key
piece of information is that the SVM model trained exclusively
on Channels 2, 3, and 4 achieved 92% classification accuracy
and ±2.00 mL regression error, while adding Channels 1 and 5

Adv. Mater. Technol. 2025, e00229 © 2025 Wiley-VCH GmbHe00229 (7 of 11)
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Figure 6. Results for classification and regression models for Subject 1. a,b) Confusion matrices for the classification models using (a) SVM and
(b) ANN, respectively. The average accuracy is 98% for SVM and 94% for ANN. c,d) Prediction results for the regression models using (c) SVM and
(d) ANN, respectively. Predicted negative values in (c) and (d) were clamped to 0 mL, as negative volumes are non-physical in this context.

improved the accuracy. This implies that despite lower signal am-
plitudes and potentially higher noise susceptibility, Channels 1
and 5 provide supplementarily useful information for swallow
monitoring.
Besides, results from two subjects were compared to further

reveal the impact of channel configurations. It should be noted
that for both subjects, channel 3 (suprahyoid group) had lower
classification accuracy than the infrahyoid channels (1, 2, 4, 5), as
shown in Table S5 (Supporting Information). EMG signals from
two channels are sufficient for the model to obtain great classifi-
cation accuracy for both subjects (Table S6, Supporting Informa-
tion). As for regression tasks (Table S7, Supporting Information),
it is crucial to use data fromall channels, as fewer channels lead to
higher errors. These models are user-dependent, as EMG signal
patterns vary significantly between individuals due to anatom-
ical and physiological differences. The user-dependency is also
found in our prior work on biopotential-based speech recognition
systems.[39,48] These findings have important implications for
the design of wearable swallowing monitoring devices that allow
for simplified configurations in food classification and volume
estimation.
To develop a more compact system, Table S8 (Supporting In-

formation) shows the recommended electrode configurations for

different numbers of channels based on Subject 1. If based on
Subject 2, the channel selection results are very similar. While
the SVMmodel maintains high classification accuracy even with
reduced channels (Figure S6, Supporting Information), the re-
gression model requires more channels for precise predictions,
as reducing the number of channels significantly increases re-
gression error (Figure S7, Supporting Information). Therefore,
minimizing channels is not recommended for regression tasks.

3. Conclusion

In conclusion, the reported materials, electrode design, fabrica-
tion processes, and machine learning models provide a mechan-
ically and visually unobtrusive solution for monitoring EMG sig-
nals involved in swallowing. The skin-conformal and comfort-
able electrodes ensure that users can seamlessly integrate them
into daily activities without discomfort or disruption. The simple
aqueous fabrication process and 3D conductivity of the electrodes
facilitate the devices’ integration with external components, offer-
ing versatility for healthcare applications. Moreover, the proof-
of-concept demonstrations illustrate the system’s potential as
both a diagnostic and rehabilitation tool. The classificationmodel
successfully differentiates between five distinct swallowed food

Adv. Mater. Technol. 2025, e00229 © 2025 Wiley-VCH GmbHe00229 (8 of 11)
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Figure 7. Recognition results for different combinations of channels by the SVM model. a) Accuracies for the food classifications. b) Accuracies for
swallowing water volume regressions. The first configuration in each subplot used all five channels, and the accuracy of each channel alone is marked
on the schematic.

textures and volumes, reflecting varying muscle strengths that
could be critical for assessing patients with swallowing disorders.
Additionally, the regression model accurately estimates fluid in-
take per swallow, providing an objective and quantitative assess-
ment of swallowing performance, which is significant for evalu-
ating dysphagia risk and informing clinical decisions. These in-
novations not only advance the field of unobtrusive EMG moni-
toring but also open new avenues for patient-specific diagnostics
and rehabilitation in the management of swallowing disorders.

4. Experimental Section
Materials: WPU aqueous dispersion (Bondthane UD-410, 35% dis-

persion) was purchased from Bond Polymers International. PEDOT:PSS
(mean particle size: ≈30nm) aqueous solution was purchased from MSE
Supplies. EMIMTFSI (≥98%purity) andDMSO (≥99.9% purity) were pur-
chased from Sigma–Aldrich. All chemicals were used as received without
any further purification.

Fabrication of Electrodes: To prepare the electrodes, WPU was first
mixed with PEDOT:PSS and DMSO (half the weight of PEDOT:PSS) so-
lutions in a vortex mixer (Thinky, AR-100) at 1000 rpm for ≈1 min. Since
the aqueous dispersion form of PEDOT:PSS was used, DMSO served to
facilitate the homogeneous dispersion of PEDOT:PSS throughout the poly-
mer. After the solution was thoroughly mixed, EMIM TFSI was added to
the solution and stirred at 1000 rpm for 1 min until a homogenous cloudy
solution was obtained. A small amount of deionized water was then added
to the solution to decrease the viscosity of the solution and allow for eas-
ier handling when pouring into the mold. After distributing the solution
on the glass substrate, it was cured at 70 °C for 4 h. After the solution was
cured, the electrode was patterned into the desired shape using a utility
knife. For different samples, the weight ratios of WPU to EMIM TFSI in
each sample were 60:40 (IONOGEL-40), 70:30 (IONOGEL-30), or 80:20
(IONOGEL-20), respectively. The weight ratios of PEDOT:PSS to the WPU
and EMIM TFSI mixture were 2%, 5%, or 7.5%, respectively.

Characterization: The stress–strain curves of IONOGEL electrodes
were measured using a tensile stage (MTS, 858 Mini Bionix II) at a speed
of 5 mm min−1 according to the ASTM D412 standard.[53] The load cell
of the tensile stage has a resolution of 0.001 N. The engineering stress
was adopted for the stress calculation. The adhesion force was also tested
using the same tensile stage and the same parameters. The electrode was
attached to the pig skin and the adhesion force was measured by the load
cell during the delamination between the electrode and the pig skin. The
adhesion force was calculated by dividing the maximum stable force by
the electrode width.[54]

To assess the electrode-skin impedance, the electrodes were applied
to the forearm skin, spaced 8 cm apart. To ensure repeatability between
measurements, the electrodes were placed in identical locations on the
forearm for each impedance test. The impedance between the electrodes
wasmeasured using an impedance analyzer (Keysight, E4990A). Transmit-
tance of the electrodes was evaluated with UV–vis Spectroscopy (Thermal
Scientific, Genesys 30) across wavelengths from 400 to 700 nm. Each sam-
ple was attached to a glass microscope slide and placed inside the UV–vis
analyzer in such a way that all outgoing light passed onto the microscope
slide. The analyzer was calibrated to zero with a blank microscope slide.

An electrochemical impedance spectroscopy (EIS) experiment was per-
formed to evaluate the ionic conductivity of the electrode when no PE-
DOT:PSS was added in. Following the standard EIS measurement proto-
col for ionic materials,[55] AC signals with frequencies ranging from 0.1
Hz to 7 MHz were applied using a potentiostat (BioLogic, VSP-300). The
resulting Nyquist plot was used to calculate the ionic conductivity of the
developed ionic materials (Figure S2, Supporting Information). Briefly, af-
ter getting the Nyquist plot, the ionic conductivity can be calculated by the
equation: 𝜎 = L/(Rb·A).[55] L, Rb, and A are the thickness, bulk resistance,
and area of ionic material, respectively.

Since the PEDOT:PSS is both electrically and ionically conductive,[56]

the electrodes exhibit electrical conductivity with the addition of PE-
DOT:PSS. The conductivity of the electrode with PEDOT:PSS was eval-
uated with a Digital Multimeter (Keysight, 34470A). Each sample had a
cross-sectional area of 1 cm by 0.03 cm. The resistance was measured
using the multimeter, and the conductivity of the sample was calculated

Adv. Mater. Technol. 2025, e00229 © 2025 Wiley-VCH GmbHe00229 (9 of 11)
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using the equation 𝜎 = L/(R·A). where L, R, and A are the length, resis-
tance, and cross-sectional area of the sample, respectively. After the con-
ductivity measurement, the cyclic test of the resistance changes under
strain for the electrode was conducted using a tensile stage (MTS, 858
Mini Bionix II). The maximum tensile strain was set to 15%.

EMG Signal Collection: This study was approved by the Institutional
Review Board (IRB2024-00240), the institutional ethics committee at
Stony Brook University, ensuring compliance with ethical standards for
human subject research. The EMG signals were extracted using bio am-
plifiers (AD Instruments, Octal BioAmp) and a data acquisition system
(AD Instruments, PowerLab 8/30) through the LabChart Pro software at a
sampling frequency of 1 kHz. For analysis and visualization, a bandpass
filter with a low cutoff frequency of 20 Hz and a high cutoff frequency of
200 Hz was applied according to the standard of the International Society
of Electrophysiology and Kinesiology.[57] In addition, to minimize back-
ground noise, a 60 Hz notch filter was applied using the LabChart soft-
ware. The SNR was calculated by the following equation:

SNRdB = 20log10

(Asignal
Anoise

)
(1)

where Asignal is the root mean square of the EMG signals and Anoise is the
root mean square of the noise. Signals acquired when the subject was not
actively flexing muscles were considered as noise.

Model Training: For the SVM classification model, a grid-search cross-
validation was conducted to optimize hyperparameters, including the reg-
ularization parameter C, kernel coefficient 𝛾 , and kernel type. The radial
basis function (RBF) kernel was selected due to its ability to model non-
linear decision boundaries in the high-dimensional MFCC feature space.
For the ANN classification model, hyperparameters such as learning rate,
batch size, and dropout rate were tuned via the fivefold cross-validation to
improve accuracy and prevent overfitting. The Adam optimizer and ReLU
activation allow the network to learn discriminative spectral-temporal pat-
terns in MFCC features. Similar to the classification model, a support vec-
tor regressor (SVR) with RBF kernel was optimized for the SVM model,
focusing on parameters C and ϵ (error tolerance) to minimize volume pre-
diction errors. As for the ANN, a separate regression-focused architecture
was trained using mean absolute error (MAE) loss, with hyperparameters
adjusted to prioritize a smooth prediction of continuous volumes.

Statistical Analysis: Fivefold cross-validation was utilized for SVM and
ANN models, achieving classification accuracies of 98.0% (SVM) and
94.0% (ANN) across ten trials per swallow event (five food types, n =
10/event). Regression errors were ±1.17 mL (SVM) and ±2.17 mL (ANN)
for the three liquid volumes used in the swallow test. Cross-correlation
analysis revealed strong correlations between symmetrical channels (e.g.,
Channels 3 and 4). Models were optimized via grid-search (SVM) and
Adam optimizer (ANN), with analyses performed using Python (scikit-
learn, TensorFlow, librosa).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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