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Abstract

Applications that use smartphone cameras for visual colorimetric analysis are often developed in combination with compo-
nents that serve as sample holders, fluidic chambers, or active membranes. Using smartphones as handheld visual colorimetric
analysis devices and sample managers with novel flexible materials raises challenges not present when using rigid materials
and better-controlled settings. For instance, accurately finding where analytes are is crucial to a correct analysis. This work
has used deformed 96-wells plates as a model of devices that may be used in the field in combination with smartphone appli-
cations as colorimetric devices. An algorithm based on the application of the Hough transform followed by an interpolation
is developed and tested with plate images that have been deformed in a controlled fashion. The procedure accurately detects

the wells in all images of the test sets.

Introduction

Visual colorimetry is a method of detecting or measuring
the presence of chemical species by observing changes
in color. Descriptions of such methods date back to the
nineteenth century [1, 2]. Nowadays, materials science
has acquired a significant role in developing nanoparti-
cles, polymers, thin films, nanorods, nanofibers, dyes,
among others, for sensor probes and in the drive towards
their miniaturization [3]. The number of computer vision-
based analytical procedures and systems has exponentially
exploded at the beginning of the current century. More
recently the use of smartphones comprises most of such
reports [2, 4]. They have been used mainly in three ways:
as a camera to take pictures to be analyzed later with soft-
ware running on computers, as data collectors and analyz-
ers when connected to an external device via an appro-
priate interface [5], and as a standalone analysis device
due to the increased sophistication of their sensors. Often,
these apps are developed in combination with new com-
ponents that serve as sample holders, fluidic chambers, or

> Emmanuel Rosa Delgado
emmanuel.rosa2 @upr.edu

José O. Sotero Esteva

jose.sotero@upr.edu

Department of Mathematics, University of Puerto Rico
at Humacao, Call Box 860, Humacao 00792-0860,
Puerto Rico

Published online: 04 January 2024

active membranes that change colors in the presence of
analytes. Some of them use novel materials that can be
easily and cheaply deployed to unconventional settings
outside of the lab. One example is paper-based devices
for chemical assays that are designed to be analyzed with
smartphone applications and data science techniques [6,
7]. They replace standard materials such as plastics and
metals and sophisticated equipment, thus increasing acces-
sibility, lowering costs, and reducing their impact on the
environment.

When using smartphones as handheld visual colorimetric
analysis devices and sample managers with novel materials,
challenges arise that are not present in controlled settings,
such as variations in illumination, position of the sample,
direction, and inclination of the camera sensor that are
impossible to accurately control. One example is the utili-
zation of smartphone devices with cameras for the develop-
ment of mobile applications whose aim is to analyze micro-
well plates assays. Detecting the specific spots of the image
containing control, blank and test samples is the very first of
such challenges. At the time of this writing, some apps are
currently available in app-stores. For example, the Spotxel
Microplate Reader [8] relies on presenting a template of the
microwell plate superimposed on the image of the plate to
be analyzed. The user must align to the physical plate shown
on the phone screen. This mechanism assumes that the plate
is a standard rigid plate.

In this work, the assumption of rigidity and the need
to rely on the user to align the plate with a superimposed
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template have been eliminated. Removing these assump-
tions brings two immediate benefits: making the accu-
racy of measurements less dependent on the person who
operates the device and allowing the option of analyzing
plate images that were captured offline without the use
of a specialized app. The initial steps of the algorithm,
consisting of detecting the borders of the plate and cor-
recting the keystone effect, are explained in detail. The
procedure for detecting wells based on an interpolation
process is also described. The efficacy of well detection
is measured in a controlled manner by means of a sample
of images generated by deforming the image of a rigid
plate to various degrees. Its importance is that devices
which hold analytes in spaces with more complex shapes
would be automatically detected with modifications of
the proposed method.

Materials and methods

Upon uploading or capturing an image of the microplate, the
algorithm detects the plate border. The next stage involves
correcting the keystone effect followed. In this section the
procedure for detecting the wells is presented. Then, the
Python implementation of this algorithm is discussed in
detail. Finally, the procedure generating test images sets is
explained.

Image preprocessing

The initial stages of this procedure are based on image pre-
processing. The initial step consists of brightness equaliza-
tion of the image and applying a Multidimensional Gaussian
Filter [9] with the scipy.ndimage.gaussian_filter function,
which is used to perform blurring for noise reduction. Such
procedures allow for more defining edges. The edges (bor-
ders) of the microplate are located by utilizing a Sobel Filter
[10] with the filters.sobel function. Upon finding the borders
of the microplate the corners are identified as well. Perspec-
tive transformation is performed, allowing for the correction
of the Keystone effect. This is accomplished with the cv2.
warpPerspective function [11]. After this correction, the
image is cropped leaving only the microplate, thus remov-
ing the inessential background.

Finding wells

Upon applying the previously mentioned image processing
procedures further approaches are taken, involving blur-
ring of the image with a Median filter. Such procedure is
accomplished with the cv2.medianBlur function [11]. This
approach is taken to reduce noise in the image, which will
be beneficial for the Hough Transform algorithm. Such an
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algorithm is based on the detection of geometric features
[12] which allows the detection of lines, circles, etc. The
detection of circles with this algorithm is based on finding
pixels with high gradients in light intensity using the canny
algorithm [13, 14] which determines the edge points of the
circles. The algorithm allows for setting constraints for the
radii of the circles and their distance from each other. The
wells-finding algorithm computes these constraints based
on the dimensions of the size of the cropped image and
the dimensions of the microplate. Upon finding the edge
points of the circles in the image space (feature space) these
are then used in a parameter space for the determination
of parameter values of the searched shape [13]. An edge
point of a circle in image space is mapped to a circle in
the parameter space. Such a procedure is executed for each
edge point of a circle, which gives multiple circles in the
parameter space. An additional gradient constraint parameter
influences the number of edge points that are considered. A
lower than usual value is used to avoid spurious or overlap-
ping circles. Consequently, in some images not all the plate’s
wells are going to be detected. The original color informa-
tion is not altered because a copy of the original image is
used in this process.

The Hough algorithm yields a set of the centers and radii
of the detected wells borders. In order to find complete rows
of wells a custom clustering algorithm is applied to the
y-coordinates of the centers of the detected circles. Clusters
which contain twelve centers of circles, complete rows, are
selected. Wells in other clusters are discarded. Now, the set
that is closest to the median of the y-coordinates is selected
as the “reference row”. An analogous process is used to
select a “reference column” (Fig. 1). These two reference
sets are represented as

R — {(xfl)w’ y;ow’ r;’()W
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C = {(wol, yeol, ey s i = 1,...,8).

The common element of these two sets is set as the origin
O. Upon establishing such a procedure, all of the well cent-
ers not in the reference axes are interpolated as
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The radii of the 96 wells are set as the average of the
reference wells radii. A summary of the process is shown
in Fig. 2.
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Experimental

To evaluate the robustness of the algorithm, images con-
taining the microplates were manually deformed with the
remap function from the OpenCV library. The function
allows the relocation of pixels in an image of N x M pixels.
A cropped and keystone corrected image of a 96-wells
plate is selected as a base image. The mapping process was
done by mapping the pixels in the ith row to an inverted
parabola with the mapping

Gi,j) — (i, —%(x —h)?+ k) 3)

where (h, k) represents the vertex of the parabola and
h=M/2, and k represents the number of pixels above the
horizontal of the vertex. Different values of k were used in
order to produce different degrees of deformation, k=0, 20,
40, 60, ... 200 (Fig. 3). Two sets of 10 images each corre-
sponding to white and black colored plates were produced.

Implementation

The computer code was written in Python version 3.10.12.
The library Skimage (v 0.21.0) [10] was used for image 1/O,
color mode conversions, filtering pixels (threshold_mini-
mum, sobel, scharr), Numpy (v 1.25.2) [15] for numerical and
arrays computations, Scipy (v 1.11.2) [9] were used for gauss-
ian_filter, linregress, from OpenCV (v 4.7.0) [11] perspective

Fig.1 Finding wells using
interpolation. a wells found by
Hough algorithm are marked

in green, reference row and
column are chosen as well as
the origin. b wells computed by
formulae (2) above

“0Q” circle

transformations related to keystone correction and opencv.
remap for image bending were used. Graphical outputs were
produced with Matplotlib (v 3.7.2) [16].

Results

The utilization of the Hough algorithm demonstrated its
capability of detecting well’s centers (circles). However, the
algorithm is very sensitive to its accumulator threshold param-
eter. For lower values, it tends not to find all 96 wells while
for higher values it detects either many spurious circles (for
example, circles completely outside wells) or many circles for
some wells. Getting it to consistently detect exactly 96 wells
was not possible for a diversity of images. Thus, the necessity
of using lower values for the parameter which consistently
underestimated the wells detected but gave some complete
rows and columns of wells (Fig. 1a) and to find the missing
ones by interpolation. With the implementation of interpola-
tion for those missing centers of the wells, the robustness of
the algorithm improved drastically, as shown in Fig. 1b.

Figure 3 presents a sample of plates with different degrees
of deformation and the wells detected by the implemented
algorithm. The pictures were taken in a common room envi-
ronment with fluorescent light illumination.

To quantify the precision of the wells’ positions we define
the error sets

Reference row

Reference column

Fig.2 Plate Wells detection
algorithm

Remove outlier circles
Find rows of 12 circles

Function extrapolated wells(image):
Input: image as N x MxC array
Output: list of triples (x coordinate, y coordinate, radius)

Copy, grayscale, and blur the original image
Detect edge-pixels using the Canny algorithm
Detect circles that are candidates to be wells edges using Hough Transform

Find columns of 8 circles

Choose a row and a column closest to the center of the image as references
Set Origin as common circle in reference row and column

Interpolate the rest of the wells using the origin and reference row and column
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Fig.3 Plates with different amounts of deformations starting from undeformed plates (k=0) to maximum deformation (k=200) for black and
white plates. Wells detected with the implemented algorithms are shown as white or red circles, respectively
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where k is the deformation parameter defined above cﬁ]. is the

actual center of the well in row i, column j in the plate
k

i

deformed by & pixels, d <cffJ, w@) is the distance between ¢
and the detected center Wﬁi as defined in Eq. (1). The coor-
dinates of the actual centers c?J. of the undeformed plate with
k=0 were obtained by visually identifying the center of the
four corner wells and computing the rest of the centers of

the undeformed plate by interpolation according to Eq. (2).
To compute cﬁj for k> 0 the deformation formula (3) was
applied to the centers c?J..

Figure 4 shows the behavior of the sets E(k), the dif-
ference between detected wells centers and exact centers,
for the white and black plates. As expected, average errors
tend to increase as deformation increases. The black plate
produced smaller errors than white’s. The violin’s plot also
shows that the distribution of the errors for each plate tend to
be skewed with most errors tending to fall below the average
with a few large errors when compared to averages.

The maximum average error was 19.37 pixels for white
plates and 12.92 pixels for black plates. The average error
across all plates was 12.74 pixels. Given that the cropped
images are larger than 2000 by 3000 pixels, this average
error represents less than 0.35% of the diagonal of the
plate’s image. Considering that the diameters of the wells
in Fig. 3 are about 170 pixels, the average error would be
less than 10% of the well diameter. Considering the infor-
mation inferred from the violin plots these errors are lower
for most wells.
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Figure 4 (insert) represents the average errors per well.
For each plate well, average distances between detected and
expected well centers were considered across all sample
plates at the same position. Detected centers tend to be less
accurate for corner wells. Since the proposed algorithm pri-
oritizes reference axes’ origins closer to the center of the
plate, corner wells correspond to the wells farthest from the
origin. This is consistent with the expected behavior from
an interpolation process.

The algorithm was tested under the additional illumina-
tion sources found in the literature when evaluating the accu-
racy of colorimetric methods using smartphones [18-21].
Plates were illuminated with camera flash, LED, indirect
sunlight and ultraviolet. Qualitatively the results were
like the ones described above. The table 1 shows that the
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Fig.4 Analysis of errors in wells’ localizations. Violin plot of the
errors in wells center’s locations for various levels of deformations k.
Average errors per deformation are joined by lines. Insert: heatmap
representing error averages per plate well in all samples
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Table 1 Average errors in well location for all deformations among
the different plates and illumination sources

Illumination type Average error

White plates Black plates
Fluorescent 19.37 12.92
LED lamp 8.56 24.35
Camera flash 13.53 17.17
Indirect sunlight 17.09 16.42
Ultraviolet lamp 11.82 n/a

variations of the average errors for both types of plates are
similar among all illumination sources.

Discussion

This work has used deformed 96-well plates as a model of
devices that may be used out of laboratories in combina-
tion with smartphone applications as colorimetric devices.
Although the Hough transform alone is not robust enough
to find the edges of exactly the 96 wells of the deformed
plates under varying conditions, the implementation of
the interpolation presented here improves the robustness
of the algorithm. Further applications to other types of
devices are plausible, such as for the detection of moving
targets. Furthermore, the original Hough transform was
formulated to detect straight segments in images. Thus, by
using a similar interpolation method, polygonal features
of the devices holding analytes may be detected. Moreo-
ver, with further modifications of the base Hough method
[22], other more complex shapes present in devices such
as mixers, separators, and other fluidic devices would be
automatically detected.

The algorithm’s main limitation is in the detection of
the edges of the microplate during the image preprocess-
ing stage. This is due to factors such as shadows, specular
light reflections on shiny backgrounds, and background
patterns that produce spurious edge detections. These fac-
tors prevent the algorithm from achieving plate detection
and an efficient correction of the keystone effect. However,
once the microplate is successfully located, the proposed
method shows robustness in detecting the wells (circles)
in the plate. An appropriate accumulator threshold param-
eter of the Hough transform algorithm can be automati-
cally found for the given picture. Further challenges may
involve smartphones cameras that often process the images
in unspecified ways to enhance the visual appeal of the pic-
tures. However, these aspects pertain more to colorimetric
analysis of the wells’ contents which are out of the scope
of this work.

Works in literature specifically dealing with 96-wells
microplate readers using smartphones such as the Spotxel
Microplate Reader [8] rely on presenting a template of the
microwell plate superimposed on the image of the plate
to be analyzed and do not attempt to automatically detect
the wells. Y. Chen et.al. [23] use a convolutional neural
network to detect the content of a smaller 8 X 8 microwell
plate. They use a correlation between the network classi-
fication and the training set as an accuracy measurement
that is not directly related to well detection. G.C. Ravi-
chandran [24] uses the Hough transform to detect micro-
wells in a device with 10195 wells. He does not report the
accuracy as it is done here but does report an accuracy
between 99.4% and 100% of well detection, noting some
difficulties in detection of wells close to corners which the
present algorithm detects by interpolation. C. Militello et.
al [25]. also uses the Hough transform on relatively flat
cell-culture plates with a varying number of wells (6—-48
wells). They consider detection of wells in inclined plate
positions but not deformed plates. As in the present work
adjustments to the accumulator threshold parameter are
performed but they rely on detecting overlapping circles
and selecting the first n wells according to a circle strength
value. Accuracy of the method is measured based on a
comparison between cell-cultures detected manually and
by their method. No accuracy of the location of the wells
is reported.
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