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Abstract
Applications that use smartphone cameras for visual colorimetric analysis are often developed in combination with compo-
nents that serve as sample holders, fluidic chambers, or active membranes. Using smartphones as handheld visual colorimetric 
analysis devices and sample managers with novel flexible materials raises challenges not present when using rigid materials 
and better-controlled settings. For instance, accurately finding where analytes are is crucial to a correct analysis. This work 
has used deformed 96-wells plates as a model of devices that may be used in the field in combination with smartphone appli-
cations as colorimetric devices. An algorithm based on the application of the Hough transform followed by an interpolation 
is developed and tested with plate images that have been deformed in a controlled fashion. The procedure accurately detects 
the wells in all images of the test sets.

Introduction

Visual colorimetry is a method of detecting or measuring 
the presence of chemical species by observing changes 
in color. Descriptions of such methods date back to the 
nineteenth century [1, 2]. Nowadays, materials science 
has acquired a significant role in developing nanoparti-
cles, polymers, thin films, nanorods, nanofibers, dyes, 
among others, for sensor probes and in the drive towards 
their miniaturization [3]. The number of computer vision-
based analytical procedures and systems has exponentially 
exploded at the beginning of the current century. More 
recently the use of smartphones comprises most of such 
reports [2, 4]. They have been used mainly in three ways: 
as a camera to take pictures to be analyzed later with soft-
ware running on computers, as data collectors and analyz-
ers when connected to an external device via an appro-
priate interface [5], and as a standalone analysis device 
due to the increased sophistication of their sensors. Often, 
these apps are developed in combination with new com-
ponents that serve as sample holders, fluidic chambers, or 

active membranes that change colors in the presence of 
analytes. Some of them use novel materials that can be 
easily and cheaply deployed to unconventional settings 
outside of the lab. One example is paper-based devices 
for chemical assays that are designed to be analyzed with 
smartphone applications and data science techniques [6, 
7]. They replace standard materials such as plastics and 
metals and sophisticated equipment, thus increasing acces-
sibility, lowering costs, and reducing their impact on the 
environment.

When using smartphones as handheld visual colorimetric 
analysis devices and sample managers with novel materials, 
challenges arise that are not present in controlled settings, 
such as variations in illumination, position of the sample, 
direction, and inclination of the camera sensor that are 
impossible to accurately control. One example is the utili-
zation of smartphone devices with cameras for the develop-
ment of mobile applications whose aim is to analyze micro-
well plates assays. Detecting the specific spots of the image 
containing control, blank and test samples is the very first of 
such challenges. At the time of this writing, some apps are 
currently available in app-stores. For example, the Spotxel 
Microplate Reader [8] relies on presenting a template of the 
microwell plate superimposed on the image of the plate to 
be analyzed. The user must align to the physical plate shown 
on the phone screen. This mechanism assumes that the plate 
is a standard rigid plate.

In this work, the assumption of rigidity and the need 
to rely on the user to align the plate with a superimposed 
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template have been eliminated. Removing these assump-
tions brings two immediate benefits: making the accu-
racy of measurements less dependent on the person who 
operates the device and allowing the option of analyzing 
plate images that were captured offline without the use 
of a specialized app. The initial steps of the algorithm, 
consisting of detecting the borders of the plate and cor-
recting the keystone effect, are explained in detail. The 
procedure for detecting wells based on an interpolation 
process is also described. The efficacy of well detection 
is measured in a controlled manner by means of a sample 
of images generated by deforming the image of a rigid 
plate to various degrees. Its importance is that devices 
which hold analytes in spaces with more complex shapes 
would be automatically detected with modifications of 
the proposed method.

Materials and methods

Upon uploading or capturing an image of the microplate, the 
algorithm detects the plate border. The next stage involves 
correcting the keystone effect followed. In this section the 
procedure for detecting the wells is presented. Then, the 
Python implementation of this algorithm is discussed in 
detail. Finally, the procedure generating test images sets is 
explained.

Image preprocessing

The initial stages of this procedure are based on image pre-
processing. The initial step consists of brightness equaliza-
tion of the image and applying a Multidimensional Gaussian 
Filter [9] with the scipy.ndimage.gaussian_filter function, 
which is used to perform blurring for noise reduction. Such 
procedures allow for more defining edges. The edges (bor-
ders) of the microplate are located by utilizing a Sobel Filter 
[10] with the filters.sobel function. Upon finding the borders 
of the microplate the corners are identified as well. Perspec-
tive transformation is performed, allowing for the correction 
of the Keystone effect. This is accomplished with the cv2.
warpPerspective function [11]. After this correction, the 
image is cropped leaving only the microplate, thus remov-
ing the inessential background.

Finding wells

Upon applying the previously mentioned image processing 
procedures further approaches are taken, involving blur-
ring of the image with a Median filter. Such procedure is 
accomplished with the cv2.medianBlur function [11]. This 
approach is taken to reduce noise in the image, which will 
be beneficial for the Hough Transform algorithm. Such an 

algorithm is based on the detection of geometric features 
[12] which allows the detection of lines, circles, etc. The 
detection of circles with this algorithm is based on finding 
pixels with high gradients in light intensity using the canny 
algorithm [13, 14] which determines the edge points of the 
circles. The algorithm allows for setting constraints for the 
radii of the circles and their distance from each other. The 
wells-finding algorithm computes these constraints based 
on the dimensions of the size of the cropped image and 
the dimensions of the microplate. Upon finding the edge 
points of the circles in the image space (feature space) these 
are then used in a parameter space for the determination 
of parameter values of the searched shape [13]. An edge 
point of a circle in image space is mapped to a circle in 
the parameter space. Such a procedure is executed for each 
edge point of a circle, which gives multiple circles in the 
parameter space. An additional gradient constraint parameter 
influences the number of edge points that are considered. A 
lower than usual value is used to avoid spurious or overlap-
ping circles. Consequently, in some images not all the plate’s 
wells are going to be detected. The original color informa-
tion is not altered because a copy of the original image is 
used in this process.

The Hough algorithm yields a set of the centers and radii 
of the detected wells borders. In order to find complete rows 
of wells a custom clustering algorithm is applied to the 
y-coordinates of the centers of the detected circles. Clusters 
which contain twelve centers of circles, complete rows, are 
selected. Wells in other clusters are discarded. Now, the set 
that is closest to the median of the y-coordinates is selected 
as the “reference row”. An analogous process is used to 
select a “reference column” (Fig. 1). These two reference 
sets are represented as

The common element of these two sets is set as the origin 
O. Upon establishing such a procedure, all of the well cent-
ers not in the reference axes are interpolated as

were

The radii of the 96 wells are set as the average of the 
reference wells radii. A summary of the process is shown 
in Fig. 2.
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Experimental

To evaluate the robustness of the algorithm, images con-
taining the microplates were manually deformed with the 
remap function from the OpenCV library. The function 
allows the relocation of pixels in an image of N x M pixels. 
A cropped and keystone corrected image of a 96-wells 
plate is selected as a base image. The mapping process was 
done by mapping the pixels in the ith row to an inverted 
parabola with the mapping

where (h, k) represents the vertex of the parabola and 
h = M/2, and k represents the number of pixels above the 
horizontal of the vertex. Different values of k were used in 
order to produce different degrees of deformation, k = 0, 20, 
40, 60, … 200 (Fig. 3). Two sets of 10 images each corre-
sponding to white and black colored plates were produced.

Implementation

The computer code was written in Python version 3.10.12. 
The library Skimage (v 0.21.0) [10] was used for image I/O, 
color mode conversions, filtering pixels (threshold_mini-
mum, sobel, scharr), Numpy (v 1.25.2) [15] for numerical and 
arrays computations, Scipy (v 1.11.2) [9] were used for gauss-
ian_filter, linregress, from OpenCV (v 4.7.0) [11] perspective 

(3)(i, j) →
(

i,−
k

h2
(x − h)2 + k

)

transformations related to keystone correction and opencv.
remap for image bending were used. Graphical outputs were 
produced with Matplotlib (v 3.7.2) [16].

Results

The utilization of the Hough algorithm demonstrated its 
capability of detecting well’s centers (circles). However, the 
algorithm is very sensitive to its accumulator threshold param-
eter. For lower values, it tends not to find all 96 wells while 
for higher values it detects either many spurious circles (for 
example, circles completely outside wells) or many circles for 
some wells. Getting it to consistently detect exactly 96 wells 
was not possible for a diversity of images. Thus, the necessity 
of using lower values for the parameter which consistently 
underestimated the wells detected but gave some complete 
rows and columns of wells (Fig. 1a) and to find the missing 
ones by interpolation. With the implementation of interpola-
tion for those missing centers of the wells, the robustness of 
the algorithm improved drastically, as shown in Fig. 1b.

Figure 3 presents a sample of plates with different degrees 
of deformation and the wells detected by the implemented 
algorithm. The pictures were taken in a common room envi-
ronment with fluorescent light illumination.

To quantify the precision of the wells’ positions we define 
the error sets

Fig. 1   Finding wells using 
interpolation. a wells found by 
Hough algorithm are marked 
in green, reference row and 
column are chosen as well as 
the origin. b wells computed by 
formulae (2) above

Fig. 2   Plate Wells detection 
algorithm

Function extrapolated_wells(image):
Input: image as N × M×C array
Output: list of triples (x coordinate, y coordinate, radius)

Copy, grayscale, and blur the original image
Detect edge-pixels using the Canny algorithm
Detect circles that are candidates to be wells edges using Hough Transform
Remove outlier circles
Find rows of 12 circles
Find columns of 8 circles
Choose a row and a column closest to the center of the image as references
Set Origin as common circle in reference row and column
Interpolate the rest of the wells using the origin and reference row and column
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where k is the deformation parameter defined above ck
i,j

 is the 
actual center of the well in row i, column j in the plate 
deformed by k pixels, d

(

ck
i,j
,wk

i,j

)

 is the distance between ck
i,j

 
and the detected center wk

i,j
 as defined in Eq. (1). The coor-

dinates of the actual centers c0
i,j

 of the undeformed plate with 
k = 0 were obtained by visually identifying the center of the 
four corner wells and computing the rest of the centers of 
the undeformed plate by interpolation according to Eq. (2). 
To compute ck

i,j
 for k > 0 the deformation formula (3) was 

applied to the centers c0
i,j

.
Figure 4 shows the behavior of the sets E(k), the dif-

ference between detected wells centers and exact centers, 
for the white and black plates. As expected, average errors 
tend to increase as deformation increases. The black plate 
produced smaller errors than white’s. The violin’s plot also 
shows that the distribution of the errors for each plate tend to 
be skewed with most errors tending to fall below the average 
with a few large errors when compared to averages.

The maximum average error was 19.37 pixels for white 
plates and 12.92 pixels for black plates. The average error 
across all plates was 12.74 pixels. Given that the cropped 
images are larger than 2000 by 3000 pixels, this average 
error represents less than 0.35% of the diagonal of the 
plate’s image. Considering that the diameters of the wells 
in Fig. 3 are about 170 pixels, the average error would be 
less than 10% of the well diameter. Considering the infor-
mation inferred from the violin plots these errors are lower 
for most wells.

E(k) =
{

d
(

ck
i,j
,wk

i,j

)

, i = 1,⋯ , 8, j = 1,⋯ , 12

} Figure 4 (insert) represents the average errors per well. 
For each plate well, average distances between detected and 
expected well centers were considered across all sample 
plates at the same position. Detected centers tend to be less 
accurate for corner wells. Since the proposed algorithm pri-
oritizes reference axes’ origins closer to the center of the 
plate, corner wells correspond to the wells farthest from the 
origin. This is consistent with the expected behavior from 
an interpolation process.

The algorithm was tested under the additional illumina-
tion sources found in the literature when evaluating the accu-
racy of colorimetric methods using smartphones [18–21]. 
Plates were illuminated with camera flash, LED, indirect 
sunlight and ultraviolet. Qualitatively the results were 
like the ones described above. The table 1 shows that the 

Fig. 4   Analysis of errors in wells’ localizations. Violin plot of the 
errors in wells center’s locations for various levels of deformations k. 
Average errors per deformation are joined by lines. Insert: heatmap 
representing error averages per plate well in all samples

Fig. 3   Plates with different amounts of deformations starting from undeformed plates (k = 0) to maximum deformation (k = 200) for black and 
white plates. Wells detected with the implemented algorithms are shown as white or red circles, respectively
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variations of the average errors for both types of plates are 
similar among all illumination sources.

Discussion

This work has used deformed 96-well plates as a model of 
devices that may be used out of laboratories in combina-
tion with smartphone applications as colorimetric devices. 
Although the Hough transform alone is not robust enough 
to find the edges of exactly the 96 wells of the deformed 
plates under varying conditions, the implementation of 
the interpolation presented here improves the robustness 
of the algorithm. Further applications to other types of 
devices are plausible, such as for the detection of moving 
targets. Furthermore, the original Hough transform was 
formulated to detect straight segments in images. Thus, by 
using a similar interpolation method, polygonal features 
of the devices holding analytes may be detected. Moreo-
ver, with further modifications of the base Hough method 
[22], other more complex shapes present in devices such 
as mixers, separators, and other fluidic devices would be 
automatically detected.

The algorithm’s main limitation is in the detection of 
the edges of the microplate during the image preprocess-
ing stage. This is due to factors such as shadows, specular 
light reflections on shiny backgrounds, and background 
patterns that produce spurious edge detections. These fac-
tors prevent the algorithm from achieving plate detection 
and an efficient correction of the keystone effect. However, 
once the microplate is successfully located, the proposed 
method shows robustness in detecting the wells (circles) 
in the plate. An appropriate accumulator threshold param-
eter of the Hough transform algorithm can be automati-
cally found for the given picture. Further challenges may 
involve smartphones cameras that often process the images 
in unspecified ways to enhance the visual appeal of the pic-
tures. However, these aspects pertain more to colorimetric 
analysis of the wells’ contents which are out of the scope 
of this work.

Works in literature specifically dealing with 96-wells 
microplate readers using smartphones such as the Spotxel 
Microplate Reader [8] rely on presenting a template of the 
microwell plate superimposed on the image of the plate 
to be analyzed and do not attempt to automatically detect 
the wells. Y. Chen et.al. [23] use a convolutional neural 
network to detect the content of a smaller 8 × 8 microwell 
plate. They use a correlation between the network classi-
fication and the training set as an accuracy measurement 
that is not directly related to well detection. G.C. Ravi-
chandran [24] uses the Hough transform to detect micro-
wells in a device with 10195 wells. He does not report the 
accuracy as it is done here but does report an accuracy 
between 99.4% and 100% of well detection, noting some 
difficulties in detection of wells close to corners which the 
present algorithm detects by interpolation. C. Militello et.
al [25]. also uses the Hough transform on relatively flat 
cell-culture plates with a varying number of wells (6–48 
wells). They consider detection of wells in inclined plate 
positions but not deformed plates. As in the present work 
adjustments to the accumulator threshold parameter are 
performed but they rely on detecting overlapping circles 
and selecting the first n wells according to a circle strength 
value. Accuracy of the method is measured based on a 
comparison between cell-cultures detected manually and 
by their method. No accuracy of the location of the wells 
is reported.
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Illumination type Average error
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LED lamp 8.56 24.35
Camera flash 13.53 17.17
Indirect sunlight 17.09 16.42
Ultraviolet lamp 11.82 n/a
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