
Reactive Planning for Teams of Heterogeneous Robots

with Dynamic Collaborative Temporal Logic Missions

Yuqing Zhang, Samarth Kalluraya, George J. Pappas, Yiannis Kantaros

AbstractÐ Several task and motion planning algorithms have
been proposed recently for teams of robots assigned to col-
laborative high-level tasks specified using Linear Temporal
Logic (LTL). However, the majority of prior works cannot
effectively adapt to new missions that may arise in the field
due to unexpected service requests. To address this novel
challenge, we propose a reactive planning algorithm for teams of
heterogeneous robots with collaborative LTL-encoded missions
that dynamically change. The robots are heterogeneous in terms
of their skills while the mission requires them to apply these
skills in specific regions/objects in a temporal/logical order. Our
method designs paths that can adapt to unexpected changes in
the mission and effectively address potential mission violations
arising due to conflicting logical task requirements or a limited
number of robots. We achieve this by locally allocating new sub-
tasks to the robots based on their capabilities, minimizing dis-
ruptions to the existing team plan, and strategically prioritizing
the most crucial sub-tasks according to user-specified priorities.
We provide theoretical guarantees and numerical experiments
to demonstrate the efficiency of our method.

I. INTRODUCTION

Linear Temporal Logic (LTL) has emerged as one of the

main approaches to define robot tasks with temporal and

logical requirements that go beyond the classical reach-avoid

ones [1]. Temporal logic planning methods initially focused

on robots operating in known environments [2]±[8]. These

works have been extended to handle unknown static environ-

ments [9]±[11], unknown dynamic environments [12]±[14],

unknown system dynamics [15]±[17], and unexpected robot

failures [18]±[21]. A recent survey can be found in [22]. A

key assumption in these works is that the task remains fixed

over time. However, this may not hold in practice in case of

unexpected mission disruptions or service requests.

To tackle this novel challenge, we present a multi-robot

planning algorithm designed to adapt to unforeseen mission

changes. Specifically, we consider robots with heterogeneous

capabilities (e.g., mobility, sensing, or manipulation) tasked

with a collaborative nominal mission encoded as an LTL

formula. The mission requires them to apply their skills

at specific areas or objects in a known environment. New

tasks, not necessarily pre-assigned to robots, may emerge

unexpectedly, modeled as LTL formulas. This gives rise to

a new mission defined as the conjunction of the nominal

and the new tasks. Our goal is to design online paths that

can adapt to these dynamic mission requirements. A key
1Authors are with the Department of Electrical and Systems

Engineering, Washington University in St. Louis, St. Louis, MO,
USA. zyuqing,k.samarth,ioannisk@wustl.edu. 2Author
is with the Department of Electrical and Systems Engineering, University of
Pennsylvania, Philadelphia, PA, USA. pappasg@seas.upenn.edu.
This work was supported by the ARL grant DCIST CRA W911NF-17-2-
0181 and the NSF grant CCF #2403758.

challenge is determining which sub-task each robot should

undertake, as soon as new tasks are announced, to minimize

potential mission violations. Such violations can occur either

due to conflicting logical requirements or due to limited num-

ber of available robots. To address this, we propose a joint

task re-allocation and re-planning framework. First, the task

re-allocation algorithm assigns robots to the new sub-tasks.

To minimize potential mission violations, previous sub-tasks

may be re-assigned to different robots, prioritizing critical

sub-tasks based on user-defined priorities. We show that

this algorithm minimizes disruptions to the team’s behavior

by minimizing the number of task re-assignments. Second,

after the sub-tasks are re-assigned, we revise the existing

robot plans to accommodate the new mission requirements.

We validate the efficiency of the proposed algorithm both

theoretically and via numerical experiments.

Related Works: Several task allocation methods have

been proposed that assign either individual LTL tasks [23],

[24] or sub-tasks of a collaborative LTL mission [25], [26] to

robots. These approaches typically perform task assignment

offline and do not consider online changes in the mission.

While these methods can be used to globally re-allocate

sub-tasks when new missions are announced, the compu-

tational cost of global task re-assignment at runtime may

render it impractical. To the contrary, our method attempts

to minimize the number of task re-assignments. Related

are also the works on designing least-violating plans [27]±

[31]. These works design single-robot plans that minimally

violate temporal logic specifications in the presence of timing

and environmental constraints, or exogenous disturbances

that may render certain parts of a fixed mission hard or

impossible to satisfy. In contrast, this paper focuses on de-

signing minimum-violation multi-robot paths in the presence

of dynamic mission requirements. Closer to our approach

are the reactive planning algorithms proposed in [32], [33].

These algorithms design plans ensuring that a nominal/global

temporal logic specification is always satisfied while also

adapting the plans to accomplish local service requests. How-

ever, unlike our method, they consider single-robot systems

and assume that mission conflicts do not occur.

Contribution: First, we address a new planning problem

for teams of heterogeneous robots with dynamically chang-

ing temporal logic missions. Second, we propose a task re-

allocation and re-planning algorithm that can (asymptoti-

cally) compute minimum-violation plans in cases of mission

conflicts or limited number of available robots. Third, we

demonstrate the efficiency of our algorithm through numer-

ical experiments.

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1633-9/24/$31.00 ©2024 IEEE 1599

2
0
2
4
 I

E
E

E
 6

3
rd

 C
o
n
fe

re
n
ce

 o
n
 D

ec
is

io
n
 a

n
d
 C

o
n
tr

o
l

(C
D

C
)

| 9
7
9
-8

-3
5
0
3
-1

6
3
3
-9

/2
4
/$

3
1
.0

0
 ©

2
0
2
4
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/C

D
C

5
6
7
2
4
.2

0
2
4
.1

0
8
8
6
5
5
8

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2025 at 18:45:34 UTC from IEEE Xplore. Restrictions apply.

(a) Starting positions (b) Offline-designed paths

(c) New tasks released (d) Online revised paths

Fig. 1. Consider 4 robots, illustrated as colored disks. The set of
skills is C = {c0, c1, c2, c3}, where c0, c1, c2, and c3 refer to mobility,
fire extinguishing, taking photos, and object recognition skills. The robots
can be divided into 4 groups based on their skills: Tc0 = {1, 2, 3, 4},
Tc1 = {1, 2, 3}, Tc2 = {3, 4}, Tc3 = {4}. The initial task is
ϕcur(0) = ♢[πc1 (1, ℓ1) ∧ ♢(πc2 (4, ℓ1))], which requires eventually robot
1 to extinguish the fire in landmark 1 and then robot 4 to take photos.
The offline-designed robot paths for this task are shown in Fig. 1(b).
At time t, while the robots are still on the way to ℓ1, a fire also
breaks out at landmark ℓ2, prompting an additional mission ϕnew(t) =
♢πc1 (ℓ2) ∧ [¬πc1 (ℓ2)Uπc3 (ℓ2)]; see Fig. 1(c). This task requires the
robots to recognize the object under fire at ℓ2 and then extinguish the
fire. Addressing this problem requires assigning new tasks to the robots
and then revising the original paths. For instance, here, robot 2 can take
over the fire extinguishing task πc1 (ℓ2) since it is currently free. However,
the task πc3 (ℓ2) of identifying the object can be undertaken only by robot
4, which, however, is currently engaged with a take-photo task πc2 (4, ℓ1).
This requires re-assigning the previous take-photo task to the robot 3 which
is currently free. Here, mission violations did not occur; see Sec. II-C.

II. PROBLEM FORMULATION

A. Teams of Heterogeneous Robots

Consider a team of N robots with the following dynamics:

pj(t + 1) = fj(pj(t),uj(t)), j ∈ R = {1, 2, ..., N}, where

pj(t) ∈ R
m and uj(t) ∈ R

n stand for state of robot j and its

control input at time t. Hereafter, we succinctly denote dy-

namics of the robot team by p(t+1) = f(p(t),u(t)),p(t) ∈
R

mN ,u(t) ∈ R
nN . We assume that p(t) is known for all

time steps t. The robots are heterogeneous in terms of their

capabilities/skills. The robots have collectively C > 0 skills

collected in a set C. We also define the set Cj ⊆ C collecting

all skills that robot j can apply. We assume that a robot can

apply one skill at a time and that each skill can be executed

perfectly. Based on the individual robot abilities, we can

divide the robots into C sub-teams Tc = {j ∈ R | c ∈ Cj}
that collect all robots that possess skill c ∈ C; see Fig. 1.

B. Specifying Dynamic Missions

The robots operate in an environment Ω ⊆ R
d, d ∈ {2, 3}

that contains M > 0 regions/objects of interest ℓe, e ∈
{1, 2, ...,M} at locations xe. We assume that the obstacle-

free space Ωfree ⊆ Ω of the environment and the locations

xe are known. The robots are tasked with accomplishing

collaborative high-level tasks requiring them to apply their

skills at the regions/objects of interest in a temporal logical

order. We formally describe the mission as a Linear Temporal

Logic (LTL) specification ϕ. LTL is a type of formal logic

whose basic ingredients are a set of atomic propositions col-

lected in a set AP , the Boolean operators, (i.e., conjunction

∧ and negation ¬), and two temporal operators, next ⃝
and until U . For brevity, we abstain from presenting the

derivations of other Boolean and temporal operators, e.g.,

always □, eventually ♢, implication ⇒. We consider LTL

tasks constructed using the following atomic propositions:

πc(ℓe) =

{

True, if any robot j ∈ Tc applies skill c at ℓe,

False, otherwise.

(1)

Notice that πc(ℓe) is true if any robot j ∈ Tc applies the skill

c at ℓe. Building upon (1), we define the following predicate:

πc(j, ℓe) =

{

True, if robot j ∈ Tc applies skill c at ℓe

False, otherwise.

(2)

Essentially, the key difference of (2) from (1) is that the

former requires a specific robot j ∈ Tc to apply skill c at ℓe.

We also define atomic propositions of the form

π̄c(ℓe) = ¬πc(ℓe), (3)

that is true if none of the robots in Tc applies skill c at ℓe.

The set AP contains predicates π of the form (1)-(3).1

We denote the mission at time t by ϕcur(t) initialized as

ϕcur(0) = ϕnom using a nominal LTL task ϕnom; see Fig.

1. We assume that this nominal mission is defined over

predicates of the form (2)-(3). At unknown time steps t, a

new task is announced modeled as an LTL formula ϕnew(t)
with sub-tasks that are not necessarily pre-assigned to robots.

Specifically, ϕnew(t) may be defined over predicates of the

form (1)-(3). Then, the mission gets updated as follows:

ϕcur(t)← ϕcur(t) ∧ ϕnew(t). (4)

C. Reactive Robot Plans

Given a feasible task ϕcur(0), we can design a plan τ0,

i.e., an infinite sequence of multi-robot states and actions

satisfying ϕcur(0) using existing planners [3], [6]. This plan

is defined as τ0 = τ0(0), τ0(1), . . . , τ0(t) . . . , where τ0(t) =
[p(t), s(t)] and s(t) = [s1(t), . . . , sN (t)], sj(t) ∈ Cj at time

t. In other words, sj(t) determines the skill that robot j
should apply at time t; if robot j does not need to apply any

skill at time t, then we denote this by sj(t) = ∅.

Let t = t1, . . . , tm, . . . be a possibly infinite sequence of

unknown time steps tm at which a new mission ϕnew(tm) is

announced. As soon as a new mission ϕcur(tm) is constructed

as per (4), our goal is to design a multi-robot plan, denoted by

τtm = τtm(tm), τtm(tm+1), . . . , τtm(tm+k) . . . , so that the

new task ϕcur(tm) is satisfied. We denote the overall multi-

robot plan by τ = τ0(0 : t1), τt1(t1 : t2), . . . , τtm−1(tm−1 :
tm), τtm . With slight abuse of notation, τtm(α : β) captures

1The atomic propositions in (3) are introduced only because they facilitate
the definition of a penalty function.

1600

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2025 at 18:45:34 UTC from IEEE Xplore. Restrictions apply.

the part of a plan τtm from t = α until t = β. Hereafter,

for simplicity, we denote by t (instead of tm) the time step

when the most recent task was announced.

There are two key challenges in designing τt. First, new

sub-tasks (modeled as predicates of the form (2) in ϕnew(t))
should be assigned to robots based on their capabilities

so that the resulting mission ϕcur(t) is feasible. To ensure

that there are no unassigned sub-tasks/predicates, past sub-

tasks may need to be re-allocated to other robots [21].

Second, such a feasible assignment may not exist either

due to conflicting logical mission requirements or because

of a limited number of available robots. In this case, an

assignment should be generated yielding a robot plan τt that

minimizes mission violations. In what follows, we construct

an objective function measuring violation of ϕcur(t) by a plan

τt, given a fixed assignment of all predicates to robots.

D. Mission Violation Cost Function for Robot Planning

To define a cost function measuring mission violation by

a given plan, we need to introduce the following definitions.

First, we define a penalty function for each predicate in AP:

Definition 2.1 (Penalty Function): The penalty function

F : AP → R+ returns the penalty for treating a false

predicate π ∈ AP as true. The larger the penalty of a

predicate, the more important the corresponding task is.

Second, given an LTL mission, we translate it, offline, into

a Nondeterministic Büchi Automaton (NBA) [1], [34].

Definition 2.2 (NBA): A Nondeterministic Büchi Au-

tomaton (NBA) B over Σ = 2AP is defined as a tuple

B =
(

QB ,Q
0
B ,Σ, δB ,Q

F
B

)

, where QB is the set of states,

Q0
B ⊆ QB is a set of initial states, Σ is an alphabet,

δB : QB × Σ → 2QB is a non-deterministic transition

relation, and QF
B ⊆ QB is a set of accepting/final states.

Third, consider a task ϕcur(t) with all predicates assigned

to robots. Using existing temporal logic planners we can

define plans of the form τ̄t, where τ̄t = τ̄t(t), τ̄t(t +
1), . . . , τ̄t(t+k), . . . and τ̄t(t+k) = [p(t+k), s(t+k), qB(t+
k)], for some k ≥ 0; hereafter, for simplicity, we will replace

t + k with t′. In the state τ̄t(t
′), qB(t

′) denotes the NBA

state that has been reached once the robots have executed

the plan τ̄t up to the time step t′. Informally, qB(t
′) captures

how much mission progress has been made. Eliminating the

NBA state from τ̄t yields the plan τt discussed earlier. A

plan τ̄t satisfies ϕcur(t) if it goes through states containing

an accepting NBA state an infinite number of times; a more

formal definition can be found in [1]. Feasible plans τ̄t
can be computed using existing temporal logic planning

methods and they are typically represented in a prefix-suffix

form, i.e., τ̄t = τ̄ pre
t [τ̄ suf

t]ω . The prefix τ̄ pre
t is executed first

followed by the indefinite execution of the suffix τ̄ suf
t ; in τ̄t,

ω stands for indefinite repetition. The prefix part is defined

as τ̄ pre
t = τ̄t(t), τ̄t(t + 1), . . . , τ̄t(t + T), for some horizon

T ≥ 0, where qB(t+T) ∈ QF
B , and the suffix part is defined

as τ̄ suf
t = τ̄t(t+T +1), τ̄t(t+T +2), . . . , τ̄t(t+T +K), for

some K ≥ 0 where τ̄t(t+T+1) = τ̄t(t+T+K) = τ̄t(t+T).
Fourth, consider the NBA states q′B = qB(t

′), q′′B =
qB(t

′ +1) in τ̄t. We denote by bq′
B
,q′′

B
the Boolean formula,

defined over AP , for which it holds that if σ |= bq′
B
,q′′

B

then q′′B ∈ δB(q
′
B , σ) where σ ∈ Σ. Such Boolean formulas

can be constructed automatically using existing tools such as

[34]. If τ̄t satisfies ϕcur(t), then for all time steps t′, we have

that σ(t′) |= bq′
B
,q′′

B
where σ(t′) = L([p(t′), s(t′)]) and L

is labeling function L : RN × CN → Σ determining which

atomic propositions are true given p(t′) and s(t′).
Using the above definitions, we can now define our cost

function. Given a fixed plan τ̄t and mission ϕcur(t), let

q′B = qB(t
′), q′′B = qB(t

′ + 1). Consider the case where

we have that σ(t′) ̸|= bq′
B
,q′′

B
, i.e., the transition from q′B to

q′′B cannot be enabled based on the current multi-robot state

p(t′) and action s(t′). There exists at least one σ∗ ∈ Σ, such

that the concatenation of the symbols σ(t′) and σ∗ satisfies

bq′
B
,q′′

B
, i.e., σ(t′)σ∗ |= bq′

B
,q′′

B
. Thus, the predicates in σ∗,

if assumed true at time t, allow the transition from q′B to

q′′B . We allow this assumption by taking into account the

total penalty for treating σ∗ as true. The violation score of

the symbol σ(t′) over an NBA transition from q′B to q′′B is

defined as Cσ(t′) = min∀σ∗∈Σ∗(
∑

π∈σ∗ F (π)) where Σ∗ =
{σ ∈ Σ | σ(t′)σ |= bq′

B
,q′′

B
} and σ(t′) = L([p(t′), s(t′)]).

Thus the violation score is the lowest possible penalty that

we can take to enable this transition. The violation score

Cτ̄t associated with a prefix-suffix plan τ̄t is the sum of all

violation scores for each transition in the plan, i.e.,

Cτ̄t =

t+T+K
∑

t̄=t

Cσ(t̄), (5)

where σ(t̄) = L([p(t̄), s(t̄)]) is the symbol to enable the

transition from qB(t̄) to qB(t̄+ 1).
Example 2.3 (Violation Cost Function): Consider the for-

mula ϕ = ♢π1 ∧ ♢π2, where π1 = πc1(1, ℓ1), π2 =
πc2(1, ℓ2), F (π1) = 5 and F (π2) = 10. A transition in

the corresponding NBA is enabled if this Boolean formula

bq′
B
,q′′

B
= π1 ∧ π2 is true. Notice that this transition is

infeasible to activate as it requires robot 1 to be present in

two locations simultaneously. Given a symbol σ(t′) = π1,

then Σ∗ = {π2}. Thus, Cσ(t′) = F (π2) = 10.

E. Problem Statement

This paper addresses the following problem; see Fig. 1.

Problem 1: Consider an initial task ϕcur(0) and a plan

τ0 satisfying it. Given a new task ϕnew(t) announced at t
(a) design an online task (re)allocation method (re)assigning

sub-tasks/predicates to the robots and (b) revise the current

plan (i.e. design τt) to satisfy the updated mission. The

requirements (a)-(b) should be met so that (5) is minimized.

Remark 2.4 (Independence of Sub-tasks): We assume

that the ability of a robot to fulfill a predicate does not

depend on any other predicates assigned to it or other

robots. This also means that any predicate/sub-task initially

assigned to a robot i can be re-assigned to any other robot

j as long as it has the skill required to complete it.

III. REACTIVE TEMPORAL LOGIC PLANNING

In this section, we present an algorithm to address Problem

1. In Section III-A, we provide a brief overview of an existing

1601

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2025 at 18:45:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Minimum Violation Task Allocation

Input: (i) NBA Bt for ϕcur(t), (ii) Current NBA state qcur
B

; (iii)
Set of predicates APn; (iv) Set of NBA transitions E

Output: Revised NBA Bt

1 for every π ∈ APn do

2 if Find robot i replacement for new task then

3 Define the ordered set of edges Eπ ;
4 for every e = (q′

B
, q′′

B
) ∈ Eπ do

5 Rewrite: bq′
B
,q′′

B

=
∨D

d=1 b
d
q′
B
,q′′

B

;

6 for d = 1, . . . , D do

7 Define G and functions V d
q′
B
,q′′

B

, gd
q′
B
,q′′

B

;

8 Apply Alg. 2 to compute a sequence of
re-assignments p = p(0), . . . , p(P);

9 Re-assign atomic predicates as per p;

10 Revise bd
q′
B
,q′′

B

in Bt as per p;

planner that we employ to generate τ0. This occurs offline. In

Section III-B-III-C, we present a task re-allocation algorithm

that is executed as soon as new tasks are announced. Our

task allocation algorithm builds upon our earlier work [21].

A key difference is that the proposed algorithm accounts for

potential mission conflicts that may arise due to dynamically

changing task requirements. In Section III-D, we propose an

online re-planning algorithm that revises the team plan to

accommodate the new tasks and mitigate potential mission

conflicts. This algorithm is executed as soon as the new, and

possibly previous, sub-tasks are (re)assigned to the robots.

A. Offline Planning

Consider a nominal task ϕcur(0) defined over predicates

(2)-(3). We design a feasible plan τ0 using the sampling-

based planner developed in [3] due to its abstraction-free

and scalability benefits; any other motion planner can be

employed. This planner incrementally builds a tree T that ex-

plores both the robot motion space and the automaton state-

space. The tree T is defined as T = {VT , ET ,Cost}. The

set VT consists of nodes defined as q(t) = [p(t), s(t), qB(t)].
The root q(0) of the tree is defined using the initial state

p(0), a null vector s(0), and an initial NBA state qB(0) ∈
Q0

B . The set of edges ET captures transitions among the

nodes in VT . Moreover, the cost function Cost : VT →
R

+ computes the cost of reaching node q(t) from the

root by following a path, i.e., a sequence of tree nodes,

d = q(0),q(1), . . . ,q(t). We define this function as in

(5), i.e., Cost(q(t)) = Cd. This sampling-based planner

is asymptotically optimal i.e., as the number of tree nodes

goes to infinity, the probability of computing the optimal

(prefix-suffix) plan τ0 satisfying an LTL task ϕcur(0) goes

to 1. This also implies that if ϕcur(0) is infeasible, then the

planner will asymptotically compute the least violating plan.

B. Setting Up the Task Allocation Process

As the robots execute the initial plan τ0, a new task ϕnew(t)
may be announced at an unknown time step t giving rise to

a new mission ϕcur(t) as defined in (4). Let APn ⊆ AP
be a set collecting all ‘unassigned’ atomic predicates (1) in

ϕnew(t). To revise the current plan, first, we need to assign

the new sub-tasks in APn to new robots. As discussed in

Section II-C, it is possible that the sub-tasks in APn can

be accomplished only by robots that are currently busy with

other sub-tasks. In such cases, it is necessary to reassign the

previous tasks to accommodate the new requirements while

mitigating any mission conflicts that may arise. Next, we set

up this task allocation process summarized in Alg. 1.

Given the updated LTL formula ϕcur(t), we construct its

corresponding NBA denoted by Bt. Then, we determine how

much progress the robots have made towards accomplishing

this new task ϕcur(t). Formally, this is represented by the

NBA state that the robots can reach in Bt, starting from

an initial state q0B given the sequence of actions they have

applied up to time t [1].2 We denote this state by qcur
B . Due

to the non-deterministic nature of the NBA there may exist

multiple candidate states qcur
B . We select the closest one to

the accepting NBA states using existing ‘distance’ metrics

defined over automata [3]. Next, we compute all NBA states

that can be reached from the current state qcur
B through a

multi-hop path. This step can be implemented by treating the

NBA as a directed graph and checking which states q′B ∈ QB

can be reached from qcur
B . We collect these states (including

qcur
B) in a set Q̂cur

B ⊆ QB . Let e = (q′B , q
′′
B) denote an NBA

transition from q′B ∈ Q̂
cur
B to q′′B ∈ Q̂

cur
B for which there

exists an unassigned predicate in the corresponding Boolean

formula bq′
B
,q′′

B
. We collect all these edges e in a set E . The

NBA Bt, the state qcur
B , the set of unassigned sub-tasks APn,

and the set of NBA transitions E serve as inputs to Alg. 1.

Let π ∈ APn be an unassigned predicate and Eπ ⊆ E be

a set of NBA edges where π appears in the corresponding

Boolean formulas bq′
B
,q′′

B
. The key idea in Alg. 1 is to inspect

all edges e ∈ Eπ in parallel and allocate π to a robot.

It is important to note that we do not require the robot

assigned to undertake π in each edge to be the same since we

assume independent sub-tasks; see Remark 2.4. This process

is repeated sequentially for all unassigned predicates so that

the resulting LTL formula remains feasible.

A necessary condition to preserve the feasibility of the

LTL formula after task allocation is that bq′
B
,q′′

B
should be

feasible (i.e., it can become ‘true’) for all e = (q′B , q
′′
B) ∈ Eπ ,

and π ∈ APn. In other words, there should exist a symbol

σ = L([p, s]) generated by the robots, that satisfies the

revised formulas bq′
B
,q′′

B
arising after task assignment. A chal-

lenge arising here is that there may not exist enough available

robots capable of taking over all unassigned predicates or

bq′
B
,q′′

B
is infeasible regardless of the task assignments due to

logical conflicts. This implies the necessity of sacrificing the

completion of a sub-task/predicate, incurring a penalty as per

F (see Definition 2.1). In this case, our goal is to allocate

tasks to minimize a violation task allocation objective. To
2This computation is done without sacrificing satisfaction of any predicate

required to activate the NBA transitions, i.e., qcur
B

is reached from q0
B

using
the currently implemented plan while the cost of this plan, as per (5), over
the NBA Bt is 0. We note that depending on the previous and the new task,
as well as the actions that the robots have applied so far, such an NBA state
may not exist. For instance, consider the nominal task ϕcur(0) = ♢A, for
some predicate A. Assume that at some time t, when ϕcur(0) has already
been satisfied, a new task ϕnew(t) = ♢B∧□¬A is announced. In this case,
there is no qcur

B
in Bt that can be reached using the current robot actions;

this can be confirmed by inspection of Bt [34]. In this case, we select qcur
B

to be the initial state in Bt.

1602

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2025 at 18:45:34 UTC from IEEE Xplore. Restrictions apply.

formally define this objective, we need to introduce the

following definitions [21]; see Ex. 3.3. For every edge in

Eπ , we re-write the Boolean bq′
B
,q′′

B
in a disjunctive normal

form (DNF), i.e., bq′
B
,q′′

B
=

∨D

d=1 b
d
q′
B
,q′′

B

, for some D > 0.

For each Boolean formula bd
q′
B
,q′′

B

, we collect all robots that

appear in bd
q′
B
,q′′

B

as the setRd
q′
B
,q′′

B

⊆ R. Also, we define a set

APi ⊆ AP that collects all atomic predicates that appear in

bd
q′
B
,q′′

B

associated with skills c ∈ Ci, i ∈ R, assuming that all

these predicates are assigned to robot i. Using APi, we can

define Σi = 2APi . Using these definitions, we can define the

following functions that capture (i) the tasks/predicates that

if a robot i undertakes, then ϕcur(t) will become infeasible

and (ii) which robots are currently busy with other sub-tasks.

Definition 3.1 (Function V d
q′
B
,q′′

B

): The set-valued func-

tion V d
q′
B
,q′′

B

: R → Σi, given as input a robot index i ∈ R,

returns a set collecting all symbols σi ∈ Σi that if robot

i ∈ R generates, then bd
q′
B
,q′′

B

will be ‘false’ regardless of the

values of the other predicates. We define V d
q′
B
,q′′

B

(i) = ∅ for

all robots i ∈ R \ Rd
q′
B
,q′′

B

.

Definition 3.2 (Function gd
q′
B
,q′′

B

): The function gd
q′
B
,q′′

B

:
R → AP , given as an input a robot index i ∈ R, returns

a set collecting the atomic predicates that are assigned to

robot i in bd
q′
B
,q′′

B

excluding the negated ones. We define

gd
q′
B
,q′′

B

(i) = ∅, for all robots i ̸∈ Rd
q′
B
,q′′

B

and for all robots

i ∈ Rd
q′
B
,q′′

B

appearing only in negated predicates.

Example 3.3 (Functions V d
q′
B
,q′′

B

and gd
q′
B
,q′′

B

): Consider 5

robots divided into teams Tc0 = {1, 2, 3, 4, 5}, Tc1 = {1, 3},
Tc2 = {3, 4, 5}, Tc3 = {4}, and Tc4 = {5}. The skills c0,

c1, c2, c3, and c4 refer to mobility, fire extinguishing, object

recognition, taking photos, and cleaning skills. Consider the

Boolean formula bd
q′
B
,q′′

B

= π1∧π2∧π̄3∧π4∧π5, where π1 =

πc1(1, ℓ1), π2 = πc2(4, ℓ3), π̄3 = π̄c1(ℓ3), π4 = πc4(5, ℓ3),
and π5 = πc3(ℓ2); π̄3 is defined as in (3). Observe that

π5 is unassigned. The robots that are crucial for satisfaction

of bd
q′
B
,q′′

B

are Rd
q′
B
,q′′

B

= {1, 3, 4, 5}.We have gd
q′
B
,q′′

B

(1) =

π1, gd
q′
B
,q′′

B

(3) = ∅, gd
q′
B
,q′′

B

(4) = π2, gd
q′
B
,q′′

B

(5) = π4, and

gd
q′
B
,q′′

B

(i) = ∅ for robots i ∈ R \ Rd
q′
B
,q′′

B

. As for V d
q′
B
,q′′

B

, it

holds that V d
q′
B
,q′′

B

(i) = ∅ for all i /∈ Tc1 . As for the robots in

Tc1 , we have that V d
q′
B
,q′′

B

(1) = {π3} and that V d
q′
B
,q′′

B

(3) =

{π2, π3, π2π3} since if robot 3 satisfies π2 it will satisfy π3.

C. Minimum-Violation Task Allocation Algorithm

In this section, we present our task allocation algorithm

that utilizes the definitions introduced earlier; see Alg. 1.

Consider an unassigned atomic predicate π = πm(ℓe) ∈
APn and an edge e ∈ Eπ associated with a Boolean formula

bq′
B
,q′′

B
=

∨D

d=1 b
d
q′
B
,q′′

B

[lines 1-5, Alg. 1]. Then for each

sub-formula bd
q′
B
,q′′

B

(in parallel), we search for an assignment

using graph-search methods [lines 6-10, Alg. 1]. Particularly,

for each sub-formula bd
q′
B
,q′′

B

, we can define a directed graph

G = {VG , EG} capturing all possible assignments. In this

graph, we have that VG and EG denote the set of nodes

and edges, respectively [line 7, Alg. 1]. The set of nodes

is defined as VG = R ∪ a0, where a0 is an artificial node;

the purpose of a0 will be explained later. An edge from a

node a to a′ (̸= a) exists if a′ ∈ Tc, where c is the skill

required to satisfy the predicate gd
q′
B
,q′′

B

(a). The directed edge

indicates that robot a′ can take over predicate of robot a in

bd
q′
B
,q′′

B

. Also, a direct edge from a0 to a exists if a ∈ Tm.

We emphasize that we do not explicitly construct this graph;

instead, we only require knowledge of all teams Tc.

As discussed in Section III-B, there may not exist any

available robots that can undertake π. As a result, already

assigned predicates may need to be re-allocated. Thus, we

compute a path in G dictating this sequence of re-assignments

[line 8, Alg. 1]. Let p = p(0), p(1), ..., p(P) denote such a

path over G, where p(k) ∈ VG , for all k ∈ {1, 2, ..., P − 1},
and p(0) = a0 [line 1, Alg. 2]. The transition from p(k) to

p(k+1) means that p(k+1) will relinquish its current sub-

task (which is gd
q′
B
,q′′

B

(p(k + 1))) to take over the sub-task

of robot p(k) (which is gd
q′
B
,q′′

B

(p(k))). This also means that

the robot p(1) will take over the unassigned task.

Observe that if the robot p(P) was associated with a

predicate in bd
q′
B
,q′′

B

, i.e., gd
q′
B
,q′′

B

(p(P)) ̸= ∅, then this means

that the task of p(P) will be sacrificed causing a penalty of

F (gd
q′
B
,q′′

B

(p(P))) > 0. Similarly, if the robot p(k + 1) un-

dertakes the sub-task gq′
B
,q′′

B
(p(k)), this will yield a penalty

of F (gd
q′
B
,q′′

B

(p(k))) > 0 if gd
q′
B
,q′′

B

(p(k)) ∈ V d
q′
B
,q′′

B

(p(k+1))

(i.e., the task that the robot p(k+1) will take over will result

in violating the boolean formula bd
q′
B
,q′′

B

). We collect in a set

K all indices k ∈ {1, . . . , P} where gd
q′
B
,q′′

B

(p(P)) ̸= ∅ or

gd
q′
B
,q′′

B

(p(k)) ∈ V d
q′
B
,q′′

B

(p(k + 1)). This way, we can define

the violation cost of a path p as follows:

CG(p) =

{

∑

k∈K
F (gd

q′
B
,q′′

B

(p(k))), if K ̸= ∅,

0, otherwise,
(6)

where the function gd
q′
B
,q′′

B

is applied to the Boolean formula

bd
q′
B
,q′′

B

before re-allocating tasks to robots as per p.3

Our goal is to compute the path p that minimizes (6). To

compute it, we adopt a Breadth First Search (BFS) search

approach; see Alg. 2 and Ex. 3.4. We use a queue data

structure Q, initialized as Q = [a0], similar to the traditional

BFS algorithms [line 1, Alg. 2]. When a node a is removed

from Q [line 2, Alg. 2], then each adjacent node a′ is

added to Q if it has not been explored yet (as in standard

BFS) [lines 7-8, Alg. 2]. This also prevents cases where a

single robot will be assigned to complete two tasks at the

same time. Then, we compute the paths p connecting these

unexplored nodes a′ to the root a0 and then corresponding

cost CG(p) [line 12, Alg. 2]. Then, we update a∗ to point

to the node with the lowest cost C∗ = CG(p) [lines 13-14,

Alg. 2]. Nodes a′ for which it holds that gd
q′
B
,q′′

B

(a′) = ∅

are not included in Q [line 11, Alg. 2]. The reason is that

these robots are not assigned to any task and, therefore,

reassignment for them is not meaningful. As a result, such

nodes are never expanded. The search process ends as soon

as a path p with CG(p) = 0 is found [lines 5-6, Alg. 2]. If
3In fact, CG(p) is equal to the minimum penalty Cσ(t̄) that any plan τt

will incur in order to make bd
q′
B
,q′′

B

true at time t̄; see also (5).

1603

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2025 at 18:45:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Graphical depiction of Alg. 2 for Ex. 3.4. The shaded path stands
for the minimum violation path p computed by Alg. 2.

this happens, then this means no sub-tasks were sacrificed.

If such a path does not exist, Alg. 2 will exhaustively search

all possible paths to compute the one with the minimum

violation penalty cost [lines 15-16, Alg. 2]. Once Alg. 1

terminates, all formulas bq′
B
,q′′

B
are revised by assigning

predicates as per the corresponding paths p [lines 9-10, Alg.

1]. This revised NBA is an input to the online re-planner.

Example 3.4 (Task Re-allocation): Consider the Boolean

formula of Ex. 3.3: bd
q′
B
,q′′

B

= π1 ∧ π2 ∧ π̄3 ∧ π4 ∧ π5,

where π1 = πc1(1, ℓ1), π2 = πc2(4, ℓ3), π̄3 = π̄c1(ℓ3),
π4 = πc4(5, ℓ3) and π5 = πc3(ℓ2). The penalty function F is

defined as F (π1) = 10, F (π2) = 15, F (π̄3) = 10, F (π4) =
15, and F (π5) = 20. The tree constructed by Alg. 2 to assign

π5 to a robot is shown in Fig. 2. Observe that the root a0 has

only one child node, as only robot 4 can undertake π5 (since

Tc3 = {4}). The node associated with robot 4 is currently

busy with task π2 requiring skill c2. Thus, the children of

that node are associated with robots 3 and 5. Observe that

robot 3 is currently free (i.e., gd
q′
B
,q′′

B

(3) = ∅) while robot 5

is busy with π4 (i.e., gd
q′
B
,q′′

B

(5) = π4). The BFS algorithm

terminates at that point since the nodes associated with robots

3 and 5 cannot be expanded further since the former is ‘free’

and the latter cannot be replaced by any other robot (robot 5
is the only one that has the c4 skill). The output of Alg.

2 is C∗ = 10 and p = a0, 4, 3. Observe in Fig. 2 that

there are two paths in the constructed tree. The first path

is p1 = a0, 4, 3: robot 3 takes over the task of robot 4 (i.e.,

π2). However, π2 ∈ V d
q′
B
,q′′

B

(3) (see Ex. 3.3) incurring a cost

F (π̄3) = 10. And robot 4 can take over π5 with no penalty

since V d
q′
B
,q′′

B

(4) = ∅. Thus, we have that CG(p1) = 10. The

second path is p2 = a0, 4, 5 which has a cost of 15 > 10.

Notice that if F (π5) < 10, then Alg. 2 would return p = a0
with C∗ = F (π5) i.e., the team would give up on π5.

D. Online Re-planning

Assume that at time t a new task is announced and the

current joint robot-NBA state is [p(t), s(t), qB(t)] (before

task allocation). Let Bt be the revised automaton, generated

by Alg. 1, i.e., after task re-allocation. A straightforward

solution to design a new plan τt (see Section II-C) accom-

modating the updated mission is to apply the sampling-based

planner, discussed in Section III-A, to build a new tree. The

root of the new tree will be [p(t), s(t), qcur
B] where qcur

B is

belongs to the revised automaton Bt and denotes the current

NBA state (see Section III-B). Nevertheless, re-planning

from scratch for all robots may be unnecessary given the

‘local’ task re-allocations. It may also be impractical for large

robot teams. To address this, we leverage the tree, denoted

Algorithm 2: Breadth First Search

Input: (i) Unassigned predicate π = πc(ℓe), (ii) V d
q′
B
,q′′

B

, (iii)

gd
q′
B
,q′′

B

, (iv) Teams Tc, ∀c ∈ C

Output: Path p
1 Initialize: Q = [a0]; a∗ = a0; p = a0; C∗ = F (π);
2 while (∼empty(Q)) ∨ (C∗ > 0) do

3 a← POP(Q);
4 Compute path p from a to a0;
5 if CG(p) = 0 then

6 Return path p from a to a0;
7 for a′ adjacent to a in G do
8 if a′ not explored then

9 Label a′ as explored;
10 Parent(a′) = a;

11 Append a′ to Q if gd
q′
B
,q′′

B

(a′) ̸= ∅ ;

12 Compute path p from a′ to a0;
13 if CG(p) < C∗ then

14 a′ = a∗, C∗ = CG(p)
15 if empty(Q) then
16 Return path p from a∗ to a0 ;

by T , used to construct the previous plan. We provide a

brief overview of our approach. First, we extract from T the

sub-tree that is rooted at [p(t), s(t), qB(t)]. Second, since the

NBA has been updated due to the new tasks, we revise the

NBA states along the branches of the sub-tree accordingly.

Specifically, the NBA state qB(t) (that belongs to the pre-

vious NBA) is replaced by qcur
B that belongs to Bt. Then,

based on the predicates that are satisfied along each branch

of the tree, we accordingly compute the corresponding NBA

states. This gives rise to a revised sub-tree. Then we apply

the sampling-based planner to compute a new plan where

the new tree is initialized using the revised sub-tree. We note

that the planner may find a path τt with zero violation cost

according to (5), even if Alg. 2 made some re-assignments

with non-zero violation cost as per (6). The reason is that

the planner may compute paths that enable NBA transitions

where re-assignment occurred with zero cost; see Sec. V-B.

IV. ALGORITHM ANALYSIS

Proposition 4.1 (Optimality of Alg. 2): Consider a new

predicate π ∈ APn and Boolean formula bd
q′
B
,q′′

B

that

contains π. Alg. 2 will compute the optimal sequence p of

re-assignments as per CG(p) defined in (6). If there exist

more than one optimal path/re-allocation, it will select the

one with the minimum number of re-assignments.

Proof: This result holds by the construction of Alg. 2.

Specifically, if there exists a path p with CG(p) = 0, then

Alg. 2 will find it by the completeness of the BFS algorithm.

Also, since, by construction, search over G occurs in a

breadth-first manner, Alg. 2 will compute the path with the

minimum number of hops from the root a0. This equivalently

results in the minimum number of re-assignments. If there

does not exist a path p satisfying CG(p) = 0 then Alg. 2 will

exhaustively search over the entire graph and it will return the

path from node a∗ to a0 achieving the smallest cost CG(p).
If there exists more than one path achieving the same optimal

cost, Alg. 2 returns the one that will be computed first. Due

to the breadth-first nature of the search process, this path has

1604

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2025 at 18:45:34 UTC from IEEE Xplore. Restrictions apply.

(a) Initial Configuration (b) Offline-designed paths

(c) New task requirements (d) Online revised paths

Fig. 3. Graphical illustration of the paths designed for Case Study I.

the smallest number of hops among all other paths achieving

the same violation cost.

Proposition 4.2 (Soundness/Optimality of Re-planning):

Consider an allocation of predicates by Alg. 1 as soon

as new tasks are released at time t. (i) If the re-planning

algorithm (Sec. III-D) returns a new prefix-suffix plan τ̄t,
then this plan satisfies ϕ. (ii) If there exists a feasible

prefix-suffix plan satisfying the ϕcur(t), then the probability

that the re-planning algorithm will compute a prefix-suffix

plan τ̄t with the minimum violation cost as per (5) goes to

1 as the size of the constructed tree goes to infinity.

Proof: This result holds due to the soundness and

asymptotic optimality of the employed planner [3].

V. EXPERIMENTS

We conducted our experiments using Python 3 on a

computer with Intel Core i5 2.4GHz and 8Gb RAM.

A. Case Study I: Limited Number of Available Robots

Consider the team of robots with skills as described in Ex.

3.3 residing in the environment shown in Fig. 3(a). The initial

mission is ϕcur(0) = ♢π1 ∧ ♢π2, where π1 = πc2(3, ℓ1) and

π2 = πc3(4, ℓ2), corresponding to an NBA B with 4 states.

This task requires eventually robot 3 to recognize the object

at ℓ1 and eventually robot 4 to take photos at ℓ2 with penalty

function F (π1) = 5, F (π2) = 10. The plan τ0 was computed

in 0.16 seconds; see Fig. 3(b). At t = 3, while the robots

are still on the way to their destinations (i.e., qB(t) ∈ Q
0
B in

B and π1 and π2 have not been satisfied yet), a fire breaks

out at landmarks ℓ3, ℓ1, and ℓ4; see Fig.3(c). Thus, a user

specifies an additional mission ϕnew(3) = (♢ξ) ∧ (π̄2Uξ),
where ξ = π3 ∧ π4 ∧ π5, π3 = πc1(ℓ3), π4 = πc1(ℓ1), and

π5 = πc1(ℓ4) with penalties F (π3) = 10, F (π4) = 20,

F (π5) = 30, and F (π̄2) = 15. This mission requires the

robots to extinguish fires at ℓ3, ℓ1, and ℓ4, simultaneously,

before taking photos at ℓ1. The updated task ϕcur(t) results in

a new automaton Bt with 6 states. The state qcur
B in Bt is an

initial one, since no progress has been towards completing

ϕcur(t). Also, we have that APn = {π3, π4, π5} and |E| =

6. In all formulas bd
q′
B
,q′′

B

across the edges in E , Alg. 2 re-

assigns π1 to robot 5, assigns π4 to robot 3, assigns π5 to

robot 1, while π3 remains unassigned. The latter occurs as π3

has the lowest priority among others in APn and there are

no available robots to satisfy π3, π4 and, π5 simultaneously;

see Fig. 3(d). The cost of this assignment for every bd
q′
B
,q′′

B

,

as per (6), is F (π3) = 10. Task allocation and re-planning

required 0.0017 and 0.096 seconds, respectively; the average

depth of the trees constructed by Alg. 2 across predicates

was 2. The violation cost of the new path, as per (5), is 10,

which occurred due to sacrificing π3. Consider also the case

where ϕnew(t) is announced at t = 9, when π1 (but not π2)

has already been completed. In this case, the current NBA

state qcur
B in Bt does not belong to the set of initial states.

The reason is that progress towards completing ϕcur(9) has

already been made.4 Then, we have |E| = 2 and APn =
{π3, π4, π5}. The tasks in APn are assigned as before. Task

allocation and re-planning required 0.01 secs and 0.15 secs,

respectively. The average depth of the trees constructed by

Alg. 1 was 1.67.

B. Case Study II: Logical Mission Conflicts

Consider the same team of robots as in Case Study I.

The initial mission is ϕcur(0) = ♢π1 ∧ □π̄2, where π1 =
πc1(1, ℓ1), π̄2 = π̄c3(ℓ1), F (π1) = 10, and F (π̄2) = 20,

requiring robot 1 to eventually extinguish a fire at ℓ1 while

prohibiting any robot in Tc3 = {4} taking photos at ℓ1. This

formula corresponds to an NBA with 2 states. At time t = 2,

while robot 1 is on its way to ℓ1 (as per τ0), the new mission

is released: ϕnew(t) = ♢π3 ∨ ♢π4, where π3 = πc3(ℓ1)
and π4 = πc3(ℓ3), with F (π3) = 5, F (π4) = 5. This

task requires any robot to eventually take photos at either

ℓ1 or ℓ3. Observe that ♢π3 is in conflict with the original

requirement □π̄2. The updated mission ϕcur(t) corresponds

to an NBA Bt with 4 states. Given that the robots have

not made any progress towards accomplishing ϕcur(t), the

current NBA state qcur
B in Bt is an initial one. We have

|E| = 3 and APn = {π3, π4}. Alg. 1 keeps π3 unassigned

and assigns π4 to robot 4 across all sub-formulas bd
q′
B
,q′′

B

;

none of the remaining predicates are re-assigned to other

robots. We note that although the assignment cost in some

of the Boolean formulas bd
q′
B
,q′′

B

is non-zero (as per (6)), the

(re)planner computes a plan with zero violation cost (as per

(5)). For instance, consider the formula bd
q′
B
,q′′

B

= π1∧π̄2∧π3.

In this case, π3 remains un-assigned (as Alg. 2 returns the

path p = a0) incurring a penalty of F (π3) = 5. Consider also

the formula bd
q′
B
,q′′

B

= π1 ∧ π̄2 ∧ π4, where π4 is assigned to

robot 4 by Alg. 2 incurring zero penalty. The re-assignment

process requires 0.008 seconds. Given this task allocation,

our re-planning algorithm designed a path with zero violation
4If ϕnew(t) is announced when ϕcur(0) is already satisfied, then there is

no qcur
B

in Bt as ϕcur(t) has already been violated by past actions. Then,
we set qcur

B
to be an initial state; see Sec. III-B. This will result in plans

that make the robots perform tasks that have already been accomplished in
the past (i.e., π1 and π2). We assume that the robots are equipped with
sensing mechanisms allowing them to determine, as they execute the new
plans, whether a sub-task (e.g., π1), depending on its nature, can be deemed
as ‘completed’ and, therefore, the corresponding action in the plan can be
neglected, or it needs to be re-done.

1605

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2025 at 18:45:34 UTC from IEEE Xplore. Restrictions apply.

cost in 0.15 secs. Note that if ‘∨♢π4’ did not exist in ϕnew,

the resulting plan would have a non-zero violation cost.

C. Case Study III: Large Scale Robot Teams

Consider a team of N ∈ {6, 16, 26} robots with C =
{c0, c1, c2, c3, c4, c5, c6}. The construction of the sub-teams

depends on N . For instance, when N = 6, we have: Tc0 =
{1, ..., 6}, Tc1 = {1}, Tc2 = {2}, Tc3 = {3}, Tc4 = {3, 4},
Tc5 = {5} and Tc6 = {6}. For all N ∈ {6, 16, 26}, the

initial mission is ϕcur(0) = ♢πc3(1, ℓ1)∧[π̄c3(ℓ1)Uπc2(2, ℓ1)]
and that at t = 5, the new task is announced: ϕnew(5) =
♢πc5(ℓ4) ∧ [π̄c5(ℓ4)Uπc1(ℓ4)] ∧ ♢πc3(ℓ3) ∧ ♢[πc1(ℓ1) ∧
πc4(ℓ1)] ∧ ♢[πc2(ℓ5) ∧ ♢πc3(ℓ5)]. In all cases, we have that

|E| = 1800. The task allocation process required 0.59, 0.64,

and 0.542 secs for N = 6, 16, and 26, respectively. The

violation score is zero for all cases due to the sufficiently

large number of robots. These runtimes are comparable, as

the average depth of the BFS trees was similar, with values

of 1.33, 1.17, and 1 for N = 6, 16, and 26 respectively. The

replanning times for N = 6, 16, and 26 were 0.64, 0.84, and

0.66 secs, respectively.

VI. CONCLUSIONS

We proposed a new reactive multi-robot planning algo-

rithm that can adapt to unexpected mission changes while ef-

fectively handling potential mission violations. We validated

the proposed method both theoretically and experimentally.

Our future work will focus on extensions to unknown envi-

ronments or missions expressed in natural language.

REFERENCES

[1] C. Belta, B. Yordanov, and E. A. Gol, Formal methods for discrete-

time dynamical systems. Springer, 2017, vol. 89.
[2] C. I. Vasile and C. Belta, ªSampling-based temporal logic path

planning,º in IEEE/RSJ International Conference on Intelligent Robots

and Systems, Tokyo, Japan, November 2013, pp. 4817±4822.
[3] X. Luo, Y. Kantaros, and M. M. Zavlanos, ªAn abstraction-free

method for multirobot temporal logic optimal control synthesis,º IEEE

Transactions on Robotics, 2021.
[4] J. Tumova and D. V. Dimarogonas, ªMulti-agent planning under

local ltl specifications and event-based synchronization,º Automatica,
vol. 70, pp. 239±248, 2016.

[5] Y. Kantaros and M. M. Zavlanos, ªStylus*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,º The

International Journal of Robotics Research, vol. 39, no. 7, pp. 812±
836, 2020.

[6] D. Gujarathi and I. Saha, ªMt*: Multi-robot path planning for tem-
poral logic specifications,º in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2022, pp. 13 692±13 699.
[7] Z. Liu, M. Guo, and Z. Li, ªTime minimization and online synchro-

nization for multi-agent systems under collaborative temporal logic
tasks,º Automatica, vol. 159, p. 111377, 2024.

[8] A. Fang, T. Yin, J. Lin, and H. Kress-Gazit, ªContinuous execution of
high-level collaborative tasks for heterogeneous robot teams,º arXiv

preprint arXiv:2406.18019, 2024.
[9] M. Guo and D. V. Dimarogonas, ªMulti-agent plan reconfiguration

under local ltl specifications,º The International Journal of Robotics

Research, vol. 34, no. 2, pp. 218±235, 2015.
[10] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray,

ªPatching task-level robot controllers based on a local µ-calculus
formula,º in 2013 IEEE International Conference on Robotics and

Automation, 2013, pp. 4588±4595.
[11] Y. Kantaros, S. Kalluraya, Q. Jin, and G. J. Pappas, ªPerception-

based temporal logic planning in uncertain semantic maps,º IEEE

Transactions on Robotics, 2022.
[12] S. Kalluraya, G. J. Pappas, and Y. Kantaros, ªMulti-robot mission

planning in dynamic semantic environments,º in IEEE International

Conference on Robotics and Automation (ICRA), 2023.

[13] Z. Li, M. Cai, S. Xiao, and Z. Kan, ªOnline motion planning with
soft metric interval temporal logic in unknown dynamic environment,º
IEEE Control Systems Letters, vol. 6, pp. 2293±2298, 2022.

[14] Z. Zhou, Z. Chen, M. Cai, Z. Li, Z. Kan, and C.-Y. Su, ªVision-
based reactive temporal logic motion planning for quadruped robots in
unstructured dynamic environments,º IEEE Transactions on Industrial

Electronics, 2023.
[15] M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and

I. Lee, ªReinforcement learning for temporal logic control synthesis
with probabilistic satisfaction guarantees,º in IEEE Conference on

Decision and Control (CDC), Nice, France, December 2019.
[16] A. Balakrishnan, S. JakšiÂc, E. A. Aguilar, D. NičkoviÂc, and J. V.

Deshmukh, ªModel-free reinforcement learning for spatiotemporal
tasks using symbolic automata,º in IEEE Conference on Decision and

Control (CDC), 2023.
[17] H. Wang, H. Zhang, L. Li, Z. Kan, and Y. Song, ªTask-driven

reinforcement learning with action primitives for long-horizon ma-
nipulation skills,º IEEE Transactions on Cybernetics, 2023.

[18] F. Huang, X. Yin, and S. Li, ªFailure-robust multi-robot tasks planning
under linear temporal logic specifications,º in 13th Asian Control

Conference (ASCC 2022). IEEE, 2022.
[19] F. Faruq, D. Parker, B. Laccrda, and N. Hawes, ªSimultaneous task

allocation and planning under uncertainty,º in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2018, pp. 3559±3564.
[20] Z. Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo, and Y. Zhao,

ªReactive task allocation and planning for quadrupedal and wheeled
robot teaming,º in IEEE 18th International Conference on Automation

Science and Engineering (CASE), 2022, pp. 2110±2117.
[21] S. Kalluraya, G. J. Pappas, and Y. Kantaros, ªResilient temporal logic

planning in the presence of robot failures,º in 62nd IEEE Conference

on Decision and Control (CDC), 2023, pp. 7520±7526.
[22] X. Yin, B. Gao, and X. Yu, ªFormal synthesis of controllers for safety-

critical autonomous systems: Developments and challenges,º arXiv

preprint arXiv:2402.13075, 2024.
[23] C. Banks, S. Wilson, S. Coogan, and M. Egerstedt, ªMulti-agent task

allocation using cross-entropy temporal logic optimization,º in IEEE

International Conference on Robotics and Automation, 2020.
[24] Z. Li, Z. Liu, M. Guo, and W. Bao, ªFast and adaptive multi-agent

planning under collaborative temporal logic tasks via poset product,º
Research.

[25] X. Luo and M. M. Zavlanos, ªTemporal logic task allocation in
heterogeneous multirobot systems,º IEEE Transactions on Robotics,
vol. 38, no. 6, pp. 3602±3621, 2022.

[26] L. Li, Z. Chen, H. Wang, and Z. Kan, ªFast task allocation of
heterogeneous robots with temporal logic and inter-task constraints,º
IEEE Robotics and Automation Letters, 2023.

[27] J. Tumova, S. Karaman, C. Belta, and D. Rus, ªLeast-violating
planning in road networks from temporal logic specifications,º in
ACM/IEEE International Conference on Cyber-Physical Systems,
2016.

[28] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-
Gazit, and M. Y. Vardi, ªIterative temporal planning in uncertain
environments with partial satisfaction guarantees,º IEEE Transactions

on Robotics, vol. 32, no. 3, pp. 583±599, 2016.
[29] M. Lahijanian and M. Kwiatkowska, ªSpecification revision for

markov decision processes with optimal trade-off,º in IEEE 55th

Conference on Decision and Control (CDC), 2016, pp. 7411±7418.
[30] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, ªMinimum-

violation scltl motion planning for mobility-on-demand,º in IEEE

International Conference on Robotics and Automation (ICRA), 2017,
pp. 1481±1488.

[31] M. Cai, M. Mann, Z. Serlin, K. Leahy, and C.-I. Vasile, ªLearning
minimally-violating continuous control for infeasible linear temporal
logic specifications,º in American Control Conference, 2023.

[32] C. I. Vasile and C. Belta, ªReactive sampling-based temporal logic
path planning,º in 2014 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2014, pp. 4310±4315.
[33] C. I. Vasile, X. Li, and C. Belta, ªReactive sampling-based path

planning with temporal logic specifications,º The International Journal

of Robotics Research, vol. 39, no. 8, pp. 1002±1028, 2020.
[34] P. Gastin and D. Oddoux, ªFast ltl to bÈuchi automata translation,º in

International Conference on Computer Aided Verification. Springer,
2001, pp. 53±65.

1606

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on May 20,2025 at 18:45:34 UTC from IEEE Xplore. Restrictions apply.

