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Abstract— Several task and motion planning algorithms have
been proposed recently for teams of robots assigned to col-
laborative high-level tasks specified using Linear Temporal
Logic (LTL). However, the majority of prior works cannot
effectively adapt to new missions that may arise in the field
due to unexpected service requests. To address this novel
challenge, we propose a reactive planning algorithm for teams of
heterogeneous robots with collaborative LTL-encoded missions
that dynamically change. The robots are heterogeneous in terms
of their skills while the mission requires them to apply these
skills in specific regions/objects in a temporal/logical order. Our
method designs paths that can adapt to unexpected changes in
the mission and effectively address potential mission violations
arising due to conflicting logical task requirements or a limited
number of robots. We achieve this by locally allocating new sub-
tasks to the robots based on their capabilities, minimizing dis-
ruptions to the existing team plan, and strategically prioritizing
the most crucial sub-tasks according to user-specified priorities.
We provide theoretical guarantees and numerical experiments
to demonstrate the efficiency of our method.

I. INTRODUCTION

Linear Temporal Logic (LTL) has emerged as one of the
main approaches to define robot tasks with temporal and
logical requirements that go beyond the classical reach-avoid
ones [1]. Temporal logic planning methods initially focused
on robots operating in known environments [2]-[8]. These
works have been extended to handle unknown static environ-
ments [9]-[11], unknown dynamic environments [12]-[14],
unknown system dynamics [15]-[17], and unexpected robot
failures [18]-[21]. A recent survey can be found in [22]. A
key assumption in these works is that the task remains fixed
over time. However, this may not hold in practice in case of
unexpected mission disruptions or service requests.

To tackle this novel challenge, we present a multi-robot
planning algorithm designed to adapt to unforeseen mission
changes. Specifically, we consider robots with heterogeneous
capabilities (e.g., mobility, sensing, or manipulation) tasked
with a collaborative nominal mission encoded as an LTL
formula. The mission requires them to apply their skills
at specific areas or objects in a known environment. New
tasks, not necessarily pre-assigned to robots, may emerge
unexpectedly, modeled as LTL formulas. This gives rise to
a new mission defined as the conjunction of the nominal
and the new tasks. Our goal is to design online paths that
can adapt to these dynamic mission requirements. A key
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challenge is determining which sub-task each robot should
undertake, as soon as new tasks are announced, to minimize
potential mission violations. Such violations can occur either
due to conflicting logical requirements or due to limited num-
ber of available robots. To address this, we propose a joint
task re-allocation and re-planning framework. First, the task
re-allocation algorithm assigns robots to the new sub-tasks.
To minimize potential mission violations, previous sub-tasks
may be re-assigned to different robots, prioritizing critical
sub-tasks based on user-defined priorities. We show that
this algorithm minimizes disruptions to the team’s behavior
by minimizing the number of task re-assignments. Second,
after the sub-tasks are re-assigned, we revise the existing
robot plans to accommodate the new mission requirements.
We validate the efficiency of the proposed algorithm both
theoretically and via numerical experiments.

Related Works: Several task allocation methods have
been proposed that assign either individual LTL tasks [23],
[24] or sub-tasks of a collaborative LTL mission [25], [26] to
robots. These approaches typically perform task assignment
offline and do not consider online changes in the mission.
While these methods can be used to globally re-allocate
sub-tasks when new missions are announced, the compu-
tational cost of global task re-assignment at runtime may
render it impractical. To the contrary, our method attempts
to minimize the number of task re-assignments. Related
are also the works on designing least-violating plans [27]-
[31]. These works design single-robot plans that minimally
violate temporal logic specifications in the presence of timing
and environmental constraints, or exogenous disturbances
that may render certain parts of a fixed mission hard or
impossible to satisfy. In contrast, this paper focuses on de-
signing minimum-violation multi-robot paths in the presence
of dynamic mission requirements. Closer to our approach
are the reactive planning algorithms proposed in [32], [33].
These algorithms design plans ensuring that a nominal/global
temporal logic specification is always satisfied while also
adapting the plans to accomplish local service requests. How-
ever, unlike our method, they consider single-robot systems
and assume that mission conflicts do not occur.

Contribution: First, we address a new planning problem
for teams of heterogeneous robots with dynamically chang-
ing temporal logic missions. Second, we propose a task re-
allocation and re-planning algorithm that can (asymptoti-
cally) compute minimum-violation plans in cases of mission
conflicts or limited number of available robots. Third, we
demonstrate the efficiency of our algorithm through numer-
ical experiments.
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Fig. 1. Consider 4 robots, illustrated as colored disks. The set of
skills is C = {co, c1,c2,c3}, where co, c1, c2, and c3 refer to mobility,
fire extinguishing, taking photos, and object recognition skills. The robots
can be divided into 4 groups based on their skills: 7¢, = {1,2,3,4},
T, = {1,2,3}, Tes = {3,4}, Te; = {4}. The initial task is
@cur(0) = Ofmey (1,€1) A O(mey (4, £1))], which requires eventually robot
1 to extinguish the fire in landmark 1 and then robot 4 to take photos.
The offline-designed robot paths for this task are shown in Fig. 1(b).
At time t, while the robots are still on the way to ¢1, a fire also
breaks out at landmark ¢2, prompting an additional mission ¢pew(t) =
Omey (£2) A [—mey (b2)UTey (€2)]; see Fig. 1(c). This task requires the
robots to recognize the object under fire at ¢2 and then extinguish the
fire. Addressing this problem requires assigning new tasks to the robots
and then revising the original paths. For instance, here, robot 2 can take
over the fire extinguishing task ¢, (¢2) since it is currently free. However,
the task 7¢, (¢2) of identifying the object can be undertaken only by robot
4, which, however, is currently engaged with a take-photo task 7, (4, £1).
This requires re-assigning the previous take-photo task to the robot 3 which
is currently free. Here, mission violations did not occur; see Sec. 1I-C.

II. PROBLEM FORMULATION

A. Teams of Heterogeneous Robots

Consider a team of N robots with the following dynamics:
p;j(t+1) =1f;(p;j(t),u;(t),j € R ={1,2,..., N}, where
p;(t) € R™ and u;(t) € R™ stand for state of robot j and its
control input at time ¢. Hereafter, we succinctly denote dy-
namics of the robot team by p(t+1) = f(p(¢), u(t)), p(t) €
R™N u(t) € R™™. We assume that p(t) is known for all
time steps ¢. The robots are heterogeneous in terms of their
capabilities/skills. The robots have collectively C' > 0 skills
collected in a set C. We also define the set C; C C collecting
all skills that robot j can apply. We assume that a robot can
apply one skill at a time and that each skill can be executed
perfectly. Based on the individual robot abilities, we can
divide the robots into C' sub-teams 7. = {j € R | ¢ € C;}
that collect all robots that possess skill ¢ € C; see Fig. 1.

B. Specifying Dynamic Missions

The robots operate in an environment 2 C R4, d € {2,3}
that contains M > 0 regions/objects of interest {.,e €
{1,2,..., M} at locations x.. We assume that the obstacle-
free space Qpee C ) of the environment and the locations
x. are known. The robots are tasked with accomplishing

collaborative high-level tasks requiring them to apply their
skills at the regions/objects of interest in a temporal logical
order. We formally describe the mission as a Linear Temporal
Logic (LTL) specification ¢. LTL is a type of formal logic
whose basic ingredients are a set of atomic propositions col-
lected in a set AP, the Boolean operators, (i.e., conjunction
A and negation —), and two temporal operators, next ()
and until . For brevity, we abstain from presenting the
derivations of other Boolean and temporal operators, e.g.,
always O, eventually §, implication =. We consider LTL
tasks constructed using the following atomic propositions:

True, if any robot j € 7. applies skill ¢ at £,

False, otherwise.
(D
Notice that 7.(¢) is true if any robot j € 7. applies the skill
c at {.. Building upon (1), we define the following predicate:

(.t) True,if robot j € 7. applies skill ¢ at £,
Te\)yte) = .
J False, otherwise.

2)
Essentially, the key difference of (2) from (1) is that the
former requires a specific robot j € 7 to apply skill ¢ at /..
We also define atomic propositions of the form

7Trc(ge) = _‘7Tc(€e)a (3)

that is true if none of the robots in 7. applies skill ¢ at /.
The set AP contains predicates 7 of the form (1)-(3).!

We denote the mission at time ¢ by ¢, (t) initialized as
deur(0) = @pom using a nominal LTL task ¢pom; see Fig.
1. We assume that this nominal mission is defined over
predicates of the form (2)-(3). At unknown time steps ¢, a
new task is announced modeled as an LTL formula ¢yey (%)
with sub-tasks that are not necessarily pre-assigned to robots.
Specifically, ¢new(t) may be defined over predicates of the
form (1)-(3). Then, the mission gets updated as follows:

Geur () ¢ Peur(t) A Pnew(t). (4)

C. Reactive Robot Plans

Given a feasible task ¢, (0), we can design a plan 79,
i.e., an infinite sequence of multi-robot states and actions
satisfying ¢, (0) using existing planners [3], [6]. This plan
is defined as 79 = 79(0), 79(1), ..., 70(t) ..., where 7o(t) =
[p(t),s(t)] and s(t) = [s1(t),...,sn(t)], s;(t) € C; at time
t. In other words, s;(t) determines the skill that robot j
should apply at time ¢; if robot j does not need to apply any
skill at time ¢, then we denote this by s;(t) = @.

Lett =1%1,...,tn,... be a possibly infinite sequence of
unknown time steps ., at which a new mission ¢ney (t:,) is
announced. As soon as a new mission ¢y (t,,) is constructed
as per (4), our goal is to design a multi-robot plan, denoted by
Tty = Tt (tm), Tt (tm-i-l), ey T, (tm+k') ..., S0 that the
new task ey (t,,) is satisfied. We denote the overall multi-
robot plan by 7 = 79(0 : 1), 7, (t1 : t2), ..., 7, —1(Em—1 :
tm), Tt,,- With slight abuse of notation, 7, (v : §) captures

I'The atomic propositions in (3) are introduced only because they facilitate
the definition of a penalty function.
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the part of a plan 7;,, from ¢ = « until ¢t = . Hereafter,
for simplicity, we denote by ¢ (instead of ¢,,) the time step
when the most recent task was announced.

There are two key challenges in designing 7;. First, new
sub-tasks (modeled as predicates of the form (2) in @pew (%))
should be assigned to robots based on their capabilities
so that the resulting mission ¢ (t) is feasible. To ensure
that there are no unassigned sub-tasks/predicates, past sub-
tasks may need to be re-allocated to other robots [21].
Second, such a feasible assignment may not exist either
due to conflicting logical mission requirements or because
of a limited number of available robots. In this case, an
assignment should be generated yielding a robot plan 7 that
minimizes mission violations. In what follows, we construct
an objective function measuring violation of ¢ (t) by a plan
Ty, given a fixed assignment of all predicates to robots.

D. Mission Violation Cost Function for Robot Planning

To define a cost function measuring mission violation by
a given plan, we need to introduce the following definitions.
First, we define a penalty function for each predicate in AP:
Definition 2.1 (Penalty Function): The penalty function
F : AP — R, returns the penalty for treating a false
predicate m € AP as true. The larger the penalty of a
predicate, the more important the corresponding task is.
Second, given an LTL mission, we translate it, offline, into
a Nondeterministic Biichi Automaton (NBA) [1], [34].
Definition 2.2 (NBA): A Nondeterministic Biichi Au-
tomaton (NBA) B over ¥ = 24P js defined as a tuple
B = (95,9%,%,6p, Q). where Qp is the set of states,
Q% C QOp is a set of initial states, > is an alphabet,
5 : O x ¥ — 295 s a non-deterministic transition
relation, and Qg C Qp is a set of accepting/final states.
Third, consider a task ¢, (t) with all predicates assigned
to robots. Using existing temporal logic planners we can
define plans of the form 7;, where 73 = T7(t), 7:(t +
1),...,7e(t+k),... and 7 (t+k) = [p(t+k),s(t+k), gp(t+
k)], for some k > 0; hereafter, for simplicity, we will replace
t + k with t. In the state 7(¢'), gg(t’) denotes the NBA
state that has been reached once the robots have executed
the plan 7; up to the time step t’. Informally, ¢ (') captures
how much mission progress has been made. Eliminating the
NBA state from 7; yields the plan 73 discussed earlier. A
plan 7; satisfies ¢cy(t) if it goes through states containing
an accepting NBA state an infinite number of times; a more
formal definition can be found in [1]. Feasible plans 7;
can be computed using existing temporal logic planning
methods and they are typically represented in a prefix-suffix
form, ie., 7 = 7/ [7"1]“. The prefix 7/ is executed first
followed by the indefinite execution of the suffix %f“f; in 7,
w stands for indefinite repetition. The prefix part is defined
as 71 = 7(t),"(t + 1),...,7(t + T), for some horizon
T >0, where qp(t+T) € OF and the suffix part is defined
as B = 7 (t+T+1), 7(t+T+2),...,7(t+T+K), for
some K > 0 where 7 (t+T+1) = 7, (t+T+K) = 7 (t+T).
Fourth, consider the NBA states ¢ = qp(t'),qh =
qp(t'+1) in 7. We denote by by, . the Boolean formula,

defined over AP, for which it holds that if o = by .-
then ¢%% € dp(¢,0) where o € 3. Such Boolean formulas
can be constructed automatically using existing tools such as
[34]. If 7 satisfies ¢y (t), then for all time steps ¢’, we have
that o(t') = by, 4 wWhere o(t') = L([p(¥'),s(t)]) and L
is labeling function L : RY x C¥ — X determining which
atomic propositions are true given p(¢') and s(t').

Using the above definitions, we can now define our cost
function. Given a fixed plan 7; and mission ¢q(t), let
a5 = qs(t'),qd% = qp(t’ + 1). Consider the case where
we have that o(t') B by, g, i.e., the transition from g to
q7; cannot be enabled based on the current multi-robot state
p(t') and action s(t'). There exists at least one o* € 3, such
that the concatenation of the symbols o(¢') and o* satisfies
by, .qy» 1€ o(t')o™ [ by g Thus, the predicates in o,
if assumed true at time ¢, allow the transition from qjg to
q%;. We allow this assumption by taking into account the
total penalty for treating o* as true. The violation score of
the symbol o(t’) over an NBA transition from ¢ to ¢7; is
defined as C, () = minyg-ex+ (D, - F (7)) where ¥* =
{0 €S| o(t)o | byyqs} and o(t') = L(p(H), s(t))]).
Thus the violation score is the lowest possible penalty that
we can take to enable this transition. The violation score
Cs, associated with a prefix-suffix plan 7; is the sum of all
violation scores for each transition in the plan, i.e.,

t+T+K

Cr,= > Cop, )
t=t

where o(t) = L([p(f),s(?)]) is the symbol to enable the
transition from ¢p(f) to gp(f + 1).

Example 2.3 (Violation Cost Function): Consider the for-
mula ¢ = Om A Omg, where m = 7., (1,41), 13 =
Tey(1,02), F(m) = 5 and F(my) = 10. A transition in
the corresponding NBA is enabled if this Boolean formula
bey,.qy = ™ A w2 is true. Notice that this transition is
infeasible to activate as it requires robot 1 to be present in
two locations simultaneously. Given a symbol o(t') = 7y,
then ¥* = {ma}. Thus, Cy ) = F(m2) = 10.

E. Problem Statement

This paper addresses the following problem; see Fig. 1.

Problem 1: Consider an initial task ¢, (0) and a plan
7o satisfying it. Given a new task ¢pew(t) announced at ¢
(a) design an online task (re)allocation method (re)assigning
sub-tasks/predicates to the robots and (b) revise the current
plan (i.e. design 7;) to satisfy the updated mission. The
requirements (a)-(b) should be met so that (5) is minimized.

Remark 2.4 (Independence of Sub-tasks): We assume
that the ability of a robot to fulfill a predicate does not
depend on any other predicates assigned to it or other
robots. This also means that any predicate/sub-task initially
assigned to a robot ¢ can be re-assigned to any other robot
7 as long as it has the skill required to complete it.

III. REACTIVE TEMPORAL LOGIC PLANNING

In this section, we present an algorithm to address Problem
1. In Section III-A, we provide a brief overview of an existing
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Algorithm 1: Minimum Violation Task Allocation
Input: (i) NBA B for ¢eur(t), (ii) Current NBA state ¢%3"; (iii)
Set of predicates AP,,; (iv) Set of NBA transitions £
Output: Revised NBA B
1 for every m € AP, do

2 if Find robot i replacement for new task then
3 Define the ordered set of edges Ex;
4 for every e = (¢z,q%) € Ex do
5 Rewrite: bquq% = \/5):1 bZ}g,qg;
6 ford=1,...,D do
7 Define G and functions V¢ gd, "
a5.9%’ 7ag 9%
8 Apply Alg. 2 to compute a sequence of
re-assignments p = p(0),...,p(P);
9 Re-assign atomic predicates as per p;
10 Revise b%, ,, in B; as per p;
a5.9%

planner that we employ to generate 7. This occurs offline. In
Section III-B-III-C, we present a task re-allocation algorithm
that is executed as soon as new tasks are announced. Our
task allocation algorithm builds upon our earlier work [21].
A key difference is that the proposed algorithm accounts for
potential mission conflicts that may arise due to dynamically
changing task requirements. In Section III-D, we propose an
online re-planning algorithm that revises the team plan to
accommodate the new tasks and mitigate potential mission
conflicts. This algorithm is executed as soon as the new, and
possibly previous, sub-tasks are (re)assigned to the robots.

A. Offline Planning

Consider a nominal task ¢, (0) defined over predicates
(2)-(3). We design a feasible plan 7y using the sampling-
based planner developed in [3] due to its abstraction-free
and scalability benefits; any other motion planner can be
employed. This planner incrementally builds a tree 7 that ex-
plores both the robot motion space and the automaton state-
space. The tree 7 is defined as 7 = {Vr,E7,Cost}. The
set V1 consists of nodes defined as q(t) = [p(¢),s(t), gp(t)].
The root q(0) of the tree is defined using the initial state
p(0), a null vector s(0), and an initial NBA state ¢qp(0) €
0%. The set of edges & captures transitions among the
nodes in V. Moreover, the cost function Cost : V5 —
R* computes the cost of reaching node q(t) from the
root by following a path, i.e., a sequence of tree nodes,
d = q(0),q(1),...,q(t). We define this function as in
(5), ie., Cost(q(t)) = Cq. This sampling-based planner
is asymptotically optimal i.e., as the number of tree nodes
goes to infinity, the probability of computing the optimal
(prefix-suffix) plan 7 satisfying an LTL task ¢, (0) goes
to 1. This also implies that if ¢¢,(0) is infeasible, then the
planner will asymptotically compute the least violating plan.

B. Setting Up the Task Allocation Process

As the robots execute the initial plan 7¢, a new task @pew (t)
may be announced at an unknown time step ¢ giving rise to
a new mission ¢ (t) as defined in (4). Let AP,, C AP
be a set collecting all ‘unassigned’ atomic predicates (1) in
@new(t). To revise the current plan, first, we need to assign
the new sub-tasks in AP,, to new robots. As discussed in
Section II-C, it is possible that the sub-tasks in AP, can

be accomplished only by robots that are currently busy with
other sub-tasks. In such cases, it is necessary to reassign the
previous tasks to accommodate the new requirements while
mitigating any mission conflicts that may arise. Next, we set
up this task allocation process summarized in Alg. 1.

Given the updated LTL formula ¢, (¢), we construct its
corresponding NBA denoted by B;. Then, we determine how
much progress the robots have made towards accomplishing
this new task ¢, (¢). Formally, this is represented by the
NBA state that the robots can reach in B, starting from
an initial state ¢% given the sequence of actions they have
applied up to time ¢ [1].> We denote this state by ¢5*. Due
to the non-deterministic nature of the NBA there may exist
multiple candidate states ¢3". We select the closest one to
the accepting NBA states using existing ‘distance’ metrics
defined over automata [3]. Next, we compute all NBA states
that can be reached from the current state ¢%" through a
multi-hop path. This step can be implemented by treating the
NBA as a directed graph and checking which states ¢; € Op
can be reached from ¢#". We collect these states (including
¢y in a set Q%' C Qp. Let e = (¢/g, ¢4) denote an NBA
transition from ¢y € Q%' to ¢4 € Q% for which there
exists an unassigned predicate in the corresponding Boolean
formula by, .. We collect all these edges e in a set £. The
NBA By, the state ¢%", the set of unassigned sub-tasks AP,,,

and the set of NBA transitions £ serve as inputs to Alg. 1.

Let m € AP,, be an unassigned predicate and £, C & be
a set of NBA edges where 7 appears in the corresponding
Boolean formulas by, ... The key idea in Alg. 1 is to inspect
all edges e € &, in parallel and allocate 7 to a robot.
It is important to note that we do not require the robot
assigned to undertake 7 in each edge to be the same since we
assume independent sub-tasks; see Remark 2.4. This process
is repeated sequentially for all unassigned predicates so that
the resulting LTL formula remains feasible.

A necessary condition to preserve the feasibility of the
LTL formula after task allocation is that by, .~ should be
feasible (i.e., it can become ‘true’) for all e = (¢’z, ¢%%) € &x,
and 7 € AP,,. In other words, there should exist a symbol
o = L([p,s]) generated by the robots, that satisfies the
revised formulas b,/ .+ arising after task assignment. A chal-
lenge arising here is that there may not exist enough available
robots capable of taking over all unassigned predicates or
bqy, qy, is infeasible regardless of the task assignments due to
logical conflicts. This implies the necessity of sacrificing the
completion of a sub-task/predicate, incurring a penalty as per
F' (see Definition 2.1). In this case, our goal is to allocate
tasks to minimize a violation task allocation objective. To

2This computation is done without sacrificing satisfaction of any predicate
required to activate the NBA transitions, i.e., q“B”r is reached from q% using
the currently implemented plan while the cost of this plan, as per (5), over
the NBA B; is 0. We note that depending on the previous and the new task,
as well as the actions that the robots have applied so far, such an NBA state
may not exist. For instance, consider the nominal task ¢cur(0) = O A, for
some predicate A. Assume that at some time ¢, when ¢cur(0) has already
been satisfied, a new task ¢new(t) = OB A=A is announced. In this case,
there is no g" in By that can be reached using the current robot actions;
this can be confirmed by inspection of B; [34]. In this case, we select qCB“r
to be the initial state in By.
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formally define this objective, we need to introduce the
following definitions [21]; see Ex. 3.3. For every edge in
&, we re-write the Boolean b, .~ in a disjunctive normal

dp.dp

form (DNF), i.e., by v = Vi be o o+ for some D > 0.
B°'iB

ay> We collect all robots that

For each Boolean formula bgjg
appear in b L3S the set ’Rq, q,, C R. Also, we define a set
AP; C .AP that collects all atomic predicates that appear in
b o associated with skills ¢ € C;, i € R, assuming that all
these predrcates are assigned to robot i. Using AP;, we can
define X; = = 24P, Using these definitions, we can define the
following functions that capture (i) the tasks/predicates that
if a robot i undertakes, then ¢, (t) will become infeasible
and (ii) which robots are currently busy with other sub-tasks.

Definition 3.1 (Function ti a ): The set-valued func-

tion V, ) : R — 3;, given as input a robot index 7 € R,
returns "2 set collecting all symbols o; € X; that if robot
1 € R generates, then bd "l will be ‘false’ regardless of the

values of the other predrcates We define Vd ﬁé( i) = 0 for

all robots 7 € R\ R
Definition 3.2 (Functzon g "l ): The function g "
7 B7 B
R — AP, given as an 1nput a robot index i € ‘R, returns
a set collectmg the atomic predicates that are assigned to
robot % in b "l excluding the negated ones. We define
B

gq, q”( i) = @ for all robots i & R Ly and for all robots

1€ Rq, . appearing only in negated predrcates

Example 3.3 (Functions V, 7, and g "l ): Consider 5
robots divided into teams TCO = {1 2,3, 4 5? T, ={1,3},

Te, = {3,4,5}, Te, = {4}, and T, = {5} The skills co,
c1, c2, c3, and ¢4 refer to mobility, fire extinguishing, object
recognition, taking photos, and cleaning skills. Consider the
Boolean formula bdb, y = M AT2 AT3ATy AT, Where 71 =
ﬂcl(l,él),ﬂ'g = 7T62<4,€3),ﬁ'3 = ﬁcl(fg),ﬂzl = 7Tc4(5,€3),
and m5 = 7., (f2); T3 is defined as in (3). Observe that
7y is unassigned. The robots that are crucial for satisfaction
of bgg,qg are Rg, ¢ = {1,3,4,5}.We have gg%’q%(l) =
T, g;i al (3) = @, gg (4) = T, g;l q,,(5) = my, and
gfll%,q,,(') & for robots i € R\ R gy As for v Ly it
holds that Vd ( ) =0 for all ¢ ¢ 7'Cl ‘As for the robots in
T.,, we have that v + (1) = {m3} and that Vd o (3) =
{mq, w3, Tam3} since 1f robot 3 satisfies o it w111 satrsfy 3.

C. Minimum-Violation Task Allocation Algorithm

In this section, we present our task allocation algorithm
that utilizes the definitions introduced earlier; see Alg. 1.
Consider an unassigned atomic predicate m = m,(f.) €
AP, and an edge e € &, associated with a Boolean formula
ber gy = \/f 1 ;i al [lines 1-5, Alg. 1]. Then for each
sub formula b , . (in parallel), we search for an assignment
using graph- searcﬁ methods [lines 6-10, Alg. 1]. Particularly,
for each sub-formula b? gy We can define a directed graph
G = {Vg,&g} capturrng all possible assignments. In this
graph, we have that Vg and &g denote the set of nodes
and edges, respectively [line 7, Alg. 1]. The set of nodes
is defined as Vg = R U ag, where ag is an artificial node;

the purpose of ag will be explained later. An edge from a
node a to a’ (# a) exists if a’ € T, where c is the skill
required to satisfy the predicate 95%7 ¢, (a). The directed edge
indicates that robot a’ can take over predicate of robot a in
b(dljy " Also, a direct edge from ag to a exists if a € Tp,.
We emphasize that we do not explicitly construct this graph;
instead, we only require knowledge of all teams 7.

As discussed in Section III-B, there may not exist any
available robots that can undertake m. As a result, already
assigned predicates may need to be re-allocated. Thus, we
compute a path in G dictating this sequence of re-assignments
[line 8, Alg. 1]. Let p = p(0), p(1),...,p(P) denote such a
path over G, where p(k) € Vg, for all k € {1,2,..., P — 1},
and p(0) = ag [line 1, Alg. 2]. The transition from p(k) to
p(k+ 1) means that p(k + 1) will relinquish its current sub-
task (which is ggjy a (p(k + 1))) to take over the sub-task
of robot p(k) (which is gg%7qg (p(k))). This also means that
the robot p(1) will take over the unassigned task.

Observe that if the robot p(P) was associated with a
predicate in b Ly 16 ge T B( p(P)) # 0, then this means
that the task of pr) will be sacrificed causing a penalty of
F(gq,Bng (p(P))) > 0. Similarly, if the robot p(k + 1) un-
dertakes the sub-task ggr. qw( (k)), this will yield a penalty
of F(gl, o (p(k)) > 0t g2, (p(k)) € V2 L (p(k+1)
(i.e., the task that the robot p(k—+1) will take over will result
in violating the boolean formula bg/ g We collect in a set

B
. . d
K all indices k € {1,...,P} where 9at (p(P)) # 0 or
gq ) (p(k)) € Vd ( (k 4+ 1)). This way, we can define
the violation cost of a path p as follows:

Cq(p) = {Z’fG’C Flgg, g (p(k))),if K # 0, ©

0, otherwise,

where the function gg/ ! is applied to the Boolean forrnula
B’1B

be P before re-allocating tasks to robots as per p.}

Our goal is to compute the path p that minimizes (6). To
compute it, we adopt a Breadth First Search (BFS) search
approach; see Alg. 2 and Ex. 3.4. We use a queue data
structure Q, initialized as Q = [ag], similar to the traditional
BEFS algorithms [line 1, Alg. 2]. When a node a is removed
from Q [line 2, Alg. 2], then each adjacent node a’ is
added to Q@ if it has not been explored yet (as in standard
BFS) [lines 7-8, Alg. 2]. This also prevents cases where a
single robot will be assigned to complete two tasks at the
same time. Then, we compute the paths p connecting these
unexplored nodes a’ to the root ag and then corresponding
cost Cg(p) [line 12, Alg. 2]. Then, we update a* to point
to the node with the lowest cost C* = Cg(p ) [lines 13-14,
Alg. 2]. Nodes o’ for which it holds that g ) q,,( a) =0
are not included in @ [line 11, Alg. 2]. The reason is that
these robots are not assigned to any task and, therefore,
reassignment for them is not meaningful. As a result, such
nodes are never expanded. The search process ends as soon
as a path p with Cg(p) = 0 is found [lines 5-6, Alg. 2]. If

3In fact, Cg(p) is equal to the minimum penalty Cg () that any plan 7
will incur in order to make bgg,qg true at time %; see also (5).
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F(m3) = 10 Robot 3
(‘“free’)
Node ag Robot 4
(s, F(m5) = 20)) (72, F(m2) = 15),
Robot 5
(4, F(my) = 15),

Fig. 2. Graphical depiction of Alg. 2 for Ex. 3.4. The shaded path stands
for the minimum violation path p computed by Alg. 2.
this happens, then this means no sub-tasks were sacrificed.
If such a path does not exist, Alg. 2 will exhaustively search
all possible paths to compute the one with the minimum
violation penalty cost [lines 15-16, Alg. 2]. Once Alg. 1
terminates, all formulas by .~ are revised by assigning
predicates as per the corresponding paths p [lines 9-10, Alg.
1]. This revised NBA is an input to the online re-planner.
Example 3.4 (Task Re-allocation): Consider the Boolean
formula of Ex. 3.3: bg/ g = T N T AN T3 A\ Ty N T5,
where m = Wcl(l,gl)B,’/Tg = ’/TCQ(4,€3),7_1’3 = ﬁcl(gg),
T4 = T¢, (5, 43) and 75 = 7, (¢2). The penalty function F is
defined as F(my) = 10, F(my) = 15, F(73) = 10, F(my) =
15, and F'(m5) = 20. The tree constructed by Alg. 2 to assign
75 to a robot is shown in Fig. 2. Observe that the root a( has
only one child node, as only robot 4 can undertake 75 (since
Tes = {4}). The node associated with robot 4 is currently
busy with task 7o requiring skill co. Thus, the children of
that node are associated with robots 3 and 5. Observe that
robot 3 is currently free (i.e., gff;g, a2 (3) = @) while robot 5
is busy with 74 (i.e., ggg,qg (5) = m4). The BFS algorithm
terminates at that point since the nodes associated with robots
3 and 5 cannot be expanded further since the former is ‘free’
and the latter cannot be replaced by any other robot (robot 5
is the only one that has the c4 skill). The output of Alg.
2 is C* = 10 and p = ag,4,3. Observe in Fig. 2 that
there are two paths in the constructed tree. The first path
is p1 = agp, 4, 3: robot 3 takes over the task of robot 4 (i.e.,
7). However, my € V;][L,q% (3) (see Ex. 3.3) incurring a cost
F(73) = 10. And robot 4 can take over 75 with no penalty
since quq% (4) = @. Thus, we have that Cg(p;) = 10. The
second path is po = ag, 4,5 which has a cost of 15 > 10.
Notice that if F(75) < 10, then Alg. 2 would return p = ag
with C* = F(7s5) i.e., the team would give up on 7.

D. Online Re-planning

Assume that at time ¢ a new task is announced and the
current joint robot-NBA state is [p(t),s(t),qp(t)] (before
task allocation). Let B; be the revised automaton, generated
by Alg. 1, i.e., after task re-allocation. A straightforward
solution to design a new plan 7, (see Section II-C) accom-
modating the updated mission is to apply the sampling-based
planner, discussed in Section III-A, to build a new tree. The
root of the new tree will be [p(t),s(t),¢%"] where g3 is
belongs to the revised automaton B; and denotes the current
NBA state (see Section III-B). Nevertheless, re-planning
from scratch for all robots may be unnecessary given the
‘local’ task re-allocations. It may also be impractical for large
robot teams. To address this, we leverage the tree, denoted

Algorithm 2: Breadth First Search
Input: (i) Unassigned predicate m = m¢(e), (ii) qu, e (iii)
B’'iB
g%, . (iv) Teams Tc,Ve € C
al5,9%

)

Output: Path p
1 Initialize: Q = [ag]; a* = ao;p = ag; C* = F(m);
2 while (~empty(Q)) V (C* > 0) do

3 a + POP(Q);

4 Compute path p from a to ag;

5 if Cg(p) = O then

6 | Return path p from a to ao;

7 for a’ adjacent to a in G do

8 if a’ not explored then

9 Label a’ as explored;

10 Parent(a’) = a;

1 Append o’ to Q if g%, ,, (a’) # @ ;
al5.a%

12 Compute path p from a’ to ag;

13 if Cg(p) < C* then

14 | o =a*, C*=Cg(p)

15 if empty(Q) then

16 \ Return path p from a* to ag ;

by 7T, used to construct the previous plan. We provide a
brief overview of our approach. First, we extract from 7 the
sub-tree that is rooted at [p(t),s(t), ¢z (t)]. Second, since the
NBA has been updated due to the new tasks, we revise the
NBA states along the branches of the sub-tree accordingly.
Specifically, the NBA state gp(t) (that belongs to the pre-
vious NBA) is replaced by ¢%" that belongs to B;. Then,
based on the predicates that are satisfied along each branch
of the tree, we accordingly compute the corresponding NBA
states. This gives rise to a revised sub-tree. Then we apply
the sampling-based planner to compute a new plan where
the new tree is initialized using the revised sub-tree. We note
that the planner may find a path 7, with zero violation cost
according to (5), even if Alg. 2 made some re-assignments
with non-zero violation cost as per (6). The reason is that
the planner may compute paths that enable NBA transitions
where re-assignment occurred with zero cost; see Sec. V-B.

IV. ALGORITHM ANALYSIS
Proposition 4.1 (Optimality of Alg. 2): Consider a new
predicate # € AP, and Boolean formula bgg,qg that
contains 7. Alg. 2 will compute the optimal sequence p of
re-assignments as per Cg(p) defined in (6). If there exist
more than one optimal path/re-allocation, it will select the
one with the minimum number of re-assignments.

Proof: This result holds by the construction of Alg. 2.
Specifically, if there exists a path p with Cg(p) = 0, then
Alg. 2 will find it by the completeness of the BFS algorithm.
Also, since, by construction, search over G occurs in a
breadth-first manner, Alg. 2 will compute the path with the
minimum number of hops from the root ag. This equivalently
results in the minimum number of re-assignments. If there
does not exist a path p satisfying Cg(p) = 0 then Alg. 2 will
exhaustively search over the entire graph and it will return the
path from node a* to ag achieving the smallest cost Cg(p).
If there exists more than one path achieving the same optimal
cost, Alg. 2 returns the one that will be computed first. Due
to the breadth-first nature of the search process, this path has
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the smallest number of hops among all other paths achieving
the same violation cost. [ ]
Proposition 4.2 (Soundness/Optimality of Re-planning):

Consider an allocation of predicates by Alg. 1 as soon
as new tasks are released at time f. (i) If the re-planning
algorithm (Sec. III-D) returns a new prefix-suffix plan 7,
then this plan satisfies ¢. (ii) If there exists a feasible
prefix-suffix plan satisfying the ¢y (t), then the probability
that the re-planning algorithm will compute a prefix-suffix
plan 7; with the minimum violation cost as per (5) goes to
1 as the size of the constructed tree goes to infinity.

Proof: This result holds due to the soundness and
asymptotic optimality of the employed planner [3]. [ ]

V. EXPERIMENTS

We conducted our experiments using Python 3 on a
computer with Intel Core i5 2.4GHz and 8Gb RAM.

A. Case Study I: Limited Number of Available Robots
Consider the team of robots with skills as described in Ex.
3.3 residing in the environment shown in Fig. 3(a). The initial
mission is ¢eyr(0) = Oy A Oma, where m = 7., (3, ¢1) and
T = Tes (4, 2), corresponding to an NBA B with 4 states.
This task requires eventually robot 3 to recognize the object
at /1 and eventually robot 4 to take photos at {5 with penalty
function F'(m) = 5, F(m2) = 10. The plan 7y was computed
in 0.16 seconds; see Fig. 3(b). At ¢ = 3, while the robots
are still on the way to their destinations (i.e., gg(t) € Q% in
B and m; and 75 have not been satisfied yet), a fire breaks
out at landmarks ¢3, ¢1, and ¢4; see Fig.3(c). Thus, a user
specifies an additional mission ¢ew(3) = (0&) A (TlLE),
where £ = 73 A Ty A 5, T3 = ey (U3), T4 = 7e, (1), and
5 = T, (€4) with penalties F(mw3) = 10, F(my) = 20,
F(ms) = 30, and F(72) = 15. This mission requires the
robots to extinguish fires at /3, /1, and ¢4, simultaneously,
before taking photos at ¢1. The updated task ¢, (t) results in
a new automaton B; with 6 states. The state ¢5" in B; is an
initial one, since no progress has been towards completing
¢eur(t). Also, we have that AP,, = {m3, 74,75} and |E| =

6. In all formulas bq, gl ACTOss the edges in &, Alg. 2 re-
assigns 7 to robot 5 assigns 74 to robot 3, assigns 75 to
robot 1, while 73 remains unassigned. The latter occurs as 73
has the lowest priority among others in AP,, and there are
no available robots to satisfy 73, m4 and, 75 simultaneously;
see Fig. 3(d). The cost of this assignment for every bjqu%,
as per (6), is F(m3) = 10. Task allocation and re-planning
required 0.0017 and 0.096 seconds, respectively; the average
depth of the trees constructed by Alg. 2 across predicates
was 2. The violation cost of the new path, as per (5), is 10,
which occurred due to sacrificing 3. Consider also the case
where ¢pey (t) is announced at ¢ = 9, when 7 (but not m5)
has already been completed. In this case, the current NBA
state ¢i" in B; does not belong to the set of initial states.
The reason is that progress towards completing ¢, (9) has
already been made.* Then, we have |£| = 2 and AP, =
{ms, m4,75}. The tasks in AP, are assigned as before. Task
allocation and re-planning required 0.01 secs and 0.15 secs,
respectively. The average depth of the trees constructed by
Alg. 1 was 1.67.

B. Case Study II: Logical Mission Conflicts

Consider the same team of robots as in Case Study L.
The initial mission is @eu(0) = Omp A Omg, where m =
Wcl(l,gl), Ty = 77'03((1), F(T('l) = 10, and F(ﬁ'z) = 20,
requiring robot 1 to eventually extinguish a fire at ¢; while
prohibiting any robot in 7., = {4} taking photos at ¢;. This
formula corresponds to an NBA with 2 states. At time ¢ = 2,
while robot 1 is on its way to ¢; (as per 7p), the new mission
is released: dpew(t) = Omg V Omy, wWhere w3 = 7, (£1)
and my = m,(l3), with F(ms3) = 5,F(ms) = 5. This
task requires any robot to eventually take photos at either
£y or £3. Observe that {3 is in conflict with the original
requirement (7. The updated mission ¢, (t) corresponds
to an NBA B; with 4 states. Given that the robots have
not made any progress towards accomplishing ¢cy(t), the
current NBA state ¢ in B; is an initial one. We have
|€] = 3 and AP,, = {m3,m4}. Alg. 1 keeps 73 unassigned
and assigns 74 to robot 4 across all sub-formulas b e qg,
none of the remaining predicates are re-assigned to 0ther
robots. We note that although the assignment cost in some
of the Boolean formulas b? Toa is non-zero (as per (6)), the
(re)planner computes a plan with zero violation cost (as per
(5)). For instance, consider the formula b% o .q = TIAT2 AT,
In this case, m3 remains un-assigned (asBAfg. 2 returns the
path p = ay) incurring a penalty of F'(m3) = 5. Consider also
the formula b¢ oy = = m A\ Ty A T4, Where my is assigned to
robot 4 by Alg 2’ incurring zero penalty. The re-assignment
process requires 0.008 seconds. Given this task allocation,
our re-planning algorithm designed a path with zero violation

*If new(t) is announced when ¢eur(0) is already satisfied, then there is
no q%‘r in Bt as ¢cur(t) has already been violated by past actions. Then,
we set q%" to be an initial state; see Sec. III-B. This will result in plans
that make the robots perform tasks that have already been accomplished in
the past (i.e., 71 and 72). We assume that the robots are equipped with
sensing mechanisms allowing them to determine, as they execute the new
plans, whether a sub-task (e.g., 1), depending on its nature, can be deemed
as ‘completed’ and, therefore, the corresponding action in the plan can be
neglected, or it needs to be re-done.
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cost in 0.15 secs. Note that if VO’ did not exist in Pyey,
the resulting plan would have a non-zero violation cost.

C. Case Study III: Large Scale Robot Teams

Consider a team of N € {6,16,26} robots with C =
{co,c1,¢2,c¢3,C4,C5,c6}. The construction of the sub-teams
depends on N. For instance, when N = 6, we have: 7., =
{16}, Tey = {1}, Te, = {2}, Tey = {3}, Tey = {3,4},
Te; = {6} and T, = {6}. For all N € {6,16,26}, the
initial mission is ¢eyr(0) = Oy (1, €1) A[Tey (01)UTe, (2, 471)]
and that at ¢ = 5, the new task is announced: @pew(5) =
<>7TC5 (&l) A [ﬁ-cs (64)2/{77.61 (64)] A <>7T63 (63) A <>[7TC1 (61) A
Tey (01)] A Ofme, (€5) A Omey (€5)]. In all cases, we have that
|€] = 1800. The task allocation process required 0.59, 0.64,
and 0.542 secs for N = 6, 16, and 26, respectively. The
violation score is zero for all cases due to the sufficiently
large number of robots. These runtimes are comparable, as
the average depth of the BFS trees was similar, with values
of 1.33, 1.17, and 1 for N = 6, 16, and 26 respectively. The
replanning times for NV = 6, 16, and 26 were 0.64, 0.84, and
0.66 secs, respectively.

VI. CONCLUSIONS
We proposed a new reactive multi-robot planning algo-
rithm that can adapt to unexpected mission changes while ef-
fectively handling potential mission violations. We validated
the proposed method both theoretically and experimentally.
Our future work will focus on extensions to unknown envi-
ronments or missions expressed in natural language.
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