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Abstract—Since the early days of computers, dividing a pro-
gram into functions or subroutines has been a common way to
manage complexity. Functions make programs easier to read,
facilitate code reuse, and provide clean interfaces for separate
compilation. However, function calls incur runtime overhead.
We quantify the impact of this runtime overhead on GPUs and
demonstrate that the register spills/fills required to maintain
the function call application binary interface place significant
bandwidth and capacity pressure on shared resources.

To alleviate this overhead, we introduce Concurrency-Aware
Register Stacks (CARS), a hardware mechanism that re-purposes
segments of the GPU register file as a software-controlled
hardware stack. CARS exploits the regularity in function pro-
logue/epilogues to rename registers pushed to the stack with
linear base + offset addressing, similar to the baseline GPU.
Informed by lightweight call graph analysis and dynamic function
behavior, CARS balances the space devoted to register stacks with
the concurrency required to hide latency in GPUs.

Without harming function-free programs, CARS improves the
performance and energy efficiency of 22 function-calling appli-
cations by 26% and 28%, respectively, outperforming idealized
GPUs with impractical resources.

Index Terms—GPU, Programmability, Register File.

I. INTRODUCTION

The ability to call functions is a cornerstone of any
general-purpose language. General-Purpose Graphics Pro-
cessing Unit (GPGPU) programming frameworks [25], [41],
[43], [53] have supported device-side function calls (i.e.,
GPU functions calling GPU functions) since their inception.
Historically, GPU codebases have been relatively small, com-
piled as single objects, where all device-side function calls
are inlined [10], [11], [32], avoiding any runtime function
calling overhead. However, GPU applications and libraries
have grown significantly in size, complexity, and functionality.
Figure 1 plots the trend in benchmark suite/library source
lines of code (SLOC) and the number of device-side GPU
functions implemented in those applications over the past
15 years of CUDA development. As GPU development has
expanded, so have the codebases and their use of device
functions. For example, the latest NVIDIA-supported machine
learning libraries we study, Cutlass [39] and Rapids [9], [36]-
[38], contain 3129 and 6348 code files, with 3760 and 27469
device-side function implementations, respectively.

*Work conducted at Purdue University, currently at Meta.
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Fig. 1: Number of device functions and source lines of code
(SLOC) for different GPU benchmark suites and libraries over
the past 15 years, y-axes are in log scale.

Continuing to scale an “always-inline” approach to compil-
ing GPU programs is not sustainable. Although inlining can
improve performance by removing function calls and perform-
ing inter-procedural optimizations, it also has many downsides.
Function inlining decreases software flexibility and can result
in counter-intuitive performance cliffs that are difficult to pre-
dict statically [34], [49]. From a flexibility standpoint, inlining
burdens the binary construction toolchain (often informed by
the programmer) with determining which functions should be
inlined, requires expensive link-time optimization [19] (LTO)
to work with statically linked libraries or separate object com-
pilation, is not possible with dynamically linked libraries, hin-
ders the debuggability of the binary, and provides no runtime
flexibility to adjust thread occupancy since the registers for one
giant function must be loaded and persistent throughout the life
of a warp. From a performance perspective, inlining increases
compile/link time and memory consumption and can bloat the
application’s code size, increasing instruction cache pressure.
For example, compiling and linking our suite of function
calling workloads (detailed in Section V) with aggressive
inlining results in a 10.15x increase in binary construction
time and a 1.54% increase in binary size. Contemporary GPU
instructions are wide (16B each in Volta/Hopper) since they
encode explicit stalling information in each instruction to
avoid dynamic dependency checking [13]. This, combined
with larger codebases and aggressive inlining, has motivated
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Fig. 2: Memory accesses broken down into spills/fills, globals,
and other locals that are not spills/fills. Averaged over 22
function calling GPU apps (Section V) on an NVIDIA V100.

NVIDIA to increase their L1 instruction cache from 4kB in
2008 [59] (GT 200), to 128kB [16] in 2017 (Volta). We argue
that the reliance of contemporary GPUs on inlining is hurting
the software development process and adds storage resources
to the frontend of the pipeline that could be used more
effectively elsewhere. This paper proposes a novel mechanism
that enables more efficient GPU function calls without relying
on the programmer and compiler to remove them completely.
An examination of the GPU function calling Application
Binary Interface (ABI) reveals that it is surprisingly similar to
CPU ABIs despite drastically different bandwidth and register
file demands. If a function uses a particular subset of the
thread-private registers, it must spill/fill them to and from
an in-memory stack. This spilling/filling of registers places
increased pressure on shared resources. To understand the
magnitude of this pressure, Figure 2 quantifies the spill/fill
access frequency averaged across 22 function-calling appli-
cations on an NVIDIA V100 GPU. 40.4% of in-core L1D
accesses come from moving register state back and forth
between the register file and the L1D to enforce the ABIL
These frequent spills/fills, implemented as local memory
instructions in GPUs, consume bandwidth and cache capacity
that could be devoted to more useful instructions if the register
state can stay resident in the register file. Both bandwidth
interference and capacity interference play a role in spill/fill
overhead. However, we demonstrate that prior work which
focuses on mitigating capacity interference [8], [14], [15],
[171, [18], [23], [30], [31], [47], [48], [60] cannot avoid the
bandwidth interference caused by maintaining the ABI with
memory instructions. We argue that massively multithreaded
machines require a novel register allocation system to keep
per-function register state in the register file more often.
Fundamentally, a register is spilled when entering a function
because its value inside the function must differ from its
value outside the function. On function entry, the architectural
register is effectively renamed, via store/load instructions, then
renamed back to its original value on exit. When performing
traditional spills/fills using memory instructions, this renaming
is implemented via relatively expensive tag lookups and cache
accesses. To free up cache bandwidth and capacity, we propose
renaming registers without accessing the memory system by
augmenting the GPU’s existing base + index register renaming.
We propose Concurrency-Aware Register Stacks (CARS)

to achieve this in-register renaming. At a high level, CARS
must do two things. First, it must decide how much register
file space to devote to hardware stacks, possibly sacrificing
concurrency, and handle the case when dynamic stack de-
mand exceeds allocated capacity. Second, it must rename the
registers pushed to the hardware stack to an empty region of
the allocated register file and restore the name to its original
location when it is popped.

CARS augments the register allocator on contemporary
GPUs to carve out space for each warp’s register stack.
Contemporary GPUs examine each warp’s register demand
to partition the register file when thread blocks are assigned
to cores. Using lightweight call graph analysis at link-time,
already present in GPU compilers, CARS adds to this demand
by estimating how much space each warp requires to keep the
stack resident in the register file. When new thread blocks are
scheduled, CARS adapts the space allocated to hardware stacks
based on dynamic function calling behavior and the effect of
reduced concurrency on runtime. When the demanded stack
space exceeds the size allocated by CARS, a software trap is
triggered to fall back to using local memory accesses.

Once registers are allocated, CARS leverages the GPU’s
existing hardware to perform efficient register renaming.
Contemporary GPUs rename physical register locations with
simple base + offset logic that allows physical registers to
be assigned to different architectural registers based on kernel
demand (i.e., a physical register can be assigned to warp 0:R64
in one kernel and warp 1:RO in another). CARS uses a register
frame and stack pointer to offset values for registers renamed
on function calls (i.e., those spilled in the baseline). This
lightweight renaming mechanism requires minimal changes to
existing GPU hardware and avoids the expensive renaming
hardware in CPUs and other GPU renaming schemes [14].

CARS requires minimal changes to the ABI and compiled
code. ABI register designations (i.e., persistent, temporary,
etc.) are unchanged. Spills and fills are replaced with push/pop
instructions that move the register stack pointer when there is
space and trigger memory accesses when there is not. Function
call instructions save the caller’s register frame pointer to the
register stack and set the register frame pointer to the current
register stack pointer. Upon the function’s return, the register
stack pointer is set to the current frame pointer, and then the
caller’s register frame pointer is restored.

In summary, we make the following contributions:

e We perform the first study of direct function calls on
GPUs. We illustrate that the spill/fill instructions used to
maintain the GPU function calling ABI introduce cache
capacity and bandwidth interference.

o To alleviate these bottlenecks, we introduce Concurrency-
Aware Register Stacks (CARS). CARS exploits the regu-
larity in stack spill/fill operations to implement a novel
register renaming mechanism that allows per-function
register state to remain in the register file.

« To balance concurrency with deep register stacks, CARS
introduces a novel hardware/software prediction mecha-
nism that analyzes the call graph and observes runtime



function call behavior to adapt the size of the register
stack reserved for each warp.

On a diverse suite of 22 function-calling applications, we
demonstrate that CARS improves contemporary GPUs’ perfor-
mance and energy efficiency by 26% and 28%. CARS elim-
inates the spills/fills required to maintain the contemporary
ABI to outperform a set of idealized configurations, including
cores with unlimited register file and shared memory capacity,
an oracle concurrency limiter that maximizes performance in
the presence of L1D cache contention [47], and a GPU with
a 10x larger L1D cache. CARS outperforms these idealized
systems by alleviating capacity and bandwidth contention, as
opposed to prior work, which focused on capacity alone.

II. BACKGROUND AND MOTIVATION

Contemporary GPU ISAs implement a function-call ABI
similar to contemporary RISC CPU ISAs [3]. Function param-
eters are passed first by registers, then the stack. The callee
must preserve a subset of registers, and GPUs have both direct
and indirect branch instructions to call/return from functions.
Since GPUs group threads into warps, it is possible for threads
in the same warp to call different functions [62], [63], return
to different positions in the program or exit the function at
different points. In most GPU codes, divergence on function
calls/returns is rare.

Unlike traditional single-threaded ISAs, GPU instruction
sets assign a variable number of architectural registers to each
warp. GPU register files are organized like vector register
files, where each thread in a warp is assigned one lane of a
vector register. Individual registers are allocated at the warp-
granularity (i.e., 128B-wide registers, with 4B for each of
the 32 threads in a warp). Four factors can limit the number
of thread blocks on each core: number of threads, number
of thread blocks, register usage, and shared memory usage.
When thread blocks are scheduled on a core, each warp is
assigned a contiguous, fixed region of registers, whose size
is determined at compile time. For kernels that do not call
functions (or have all their functions inlined), the number
of registers/warp is simply the registers needed in the main
kernel function. For kernels with device-side function calls
that are not inlined, each function is compiled individually,
spilling/restoring any callee-saved registers it needs as required
by the ABI. A maximum of 256 registers (8-bit are used to
encode register identifiers in the instruction) are available to
any given function. After each device function is compiled and
labeled with its required register usage, the linker determines
the worst-case register usage at any point in the call graph (i.e.,
which function uses the most registers). It allocates registers
to each warp according to this worst-case.

Register spilling/filling is necessary for three reasons. First,
if the compiler does not have full visibility of all the functions
in the program (i.e., separate object compilation without link-
time optimization), then the callee-saved registers in the ABI
provide a guarantee that functions do not interfere with each
other’s registers. Second, if the compiler does have visibility
into all functions, register usage may be too high, either greater
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Fig. 3: Register file allocation mechanisms. (a) Depicts the
baseline, and (b) illustrates CARS’ extensions to the baseline.

than the 256 register maximum or so high that allocating
more registers to each warp statically through global register
allocation reduces concurrency and hurts performance. The
concurrency aspect makes the compiler’s life even more chal-
lenging since concurrency information (i.e., the size and the
number of thread blocks in a kernel) is not known statically.
Finally, supporting recursion requires spilling/filling. CARS is
designed to alleviate all three of these scenarios, relieving the
compiler from making difficult spill/fill decisions.

We profile the ABI of contemporary NVIDIA GPUs and
find that callee-saved registers come from a contiguous set of
architectural registers starting at R16. CARS’ renaming design
benefits from this fact, eliminating the need for an expensive
register renaming table. Since threads (and warps) within
a core tend to call the same functions simultaneously, this
spilling/filling places pressure on the memory system. Even
if the GPU were given infinite registers, individual functions
would still be required to spill/fill registers to maintain the
callee-saved register state defined by the ABI. Our goal is to
alleviate pressure on the memory system by keeping multiple
copies of architectural registers in the register file such that
the contemporary ABI can be maintained.

III. CONCURRENCY-AWARE REGISTER STACKS (CARS)

To keep the register state resident in the register file on
function calls, we propose Concurrency-Aware Register Stacks
(CARS). CARS creates a hardware stack for each warp in the
register file. Using register frame and register stack pointers,
we efficiently rename callee saved registers that require mem-
ory access in the baseline. Efficiently implementing CARS
requires space in the register file to store each warp’s stack.
Determining how much register state to devote to each warp
is non-trivial since increasing each warp’s register stack can
decrease parallelism. Therefore, we propose a novel allocation
and renaming mechanism (Section III-A) that uses static and
dynamic information to adapt the space devoted to register
stacks in each thread block (Section III-B). CARS is general-
izable, handling arbitrary control flow and function call depth
(Section III-C) by leveraging the reconvergence stack and
triggering software traps that fall back to traditional spills/fills
when a warp’s hardware stack is exhausted.
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Fig. 4: CARS call graph analysis.

A. Register Stack Allocation and Renaming

In this subsection, we discuss how the register file is split
among concurrent in-flight warps. An ideal allocator would
freely share unused register space among all concurrent warps.
However, implementing such an allocator in hardware is com-
plex and costly. We leverage the fact that register spills/fills
are implemented as a stack to design an efficient register file
allocation mechanism. In the baseline GPU (Figure 3 (a)), each
warp is given a contiguous region of the register file, based
on static demand. The index for each warp’s register (i.e.,
WOR3) is a simple base + offset computation of the warp’s
starting index plus the architectural register number. The base
and size of each warp’s allocation is set when a thread block
is assigned to a core and does not change during the life of
the thread block. CARS maintains this one-time partitioning
of the register file among warps in a thread block. However,
when the thread block is scheduled, CARS optionally assigns
additional register space to each warp for an in-register stack.
This space is contiguous with the base register allotment, and
is not assigned to any registers until functions are called.

To manage register renaming as new functions are called,
each warp is assigned a Register Frame Pointer (RFP) that
keeps track of the warp’s current function frame and a Register
Stack Pointer (RSP) to keep track of the top of its stack.
The operation is similar to a software stack. The RSP is
increased/decreased when elements are pushed/popped (the
stack grows up in our example). As functions are called, the
RFP moves to the free region after the stack pointer. Figure 3
(b) shows an example function, namely funl. Each warp is
allocated a base amount of registers (kernel in Figure 3) +
extra space for its in-register stacks. We call the additional
registers needed for each function the Function Register Usage
(FRU).

Funl has three callee-saved registers, R16, R17 and R18.
The function call instruction pushes the current RFP to the
stack, the local store instructions originally in funl are re-
placed with push instructions and the local loads with pop.
CARS uses the indexing logic from the baseline (Base[W;] +
R;, where i is the warp ID and j is the register number),
with one small modification. Callee-saved registers (which are

a contiguous set of architectural registers, starting at R16)
are renamed if they have been pushed to the stack for the
current function call. For a given register R,, if x >= R16
and x < R16 + RSP[W,] — RFP[W,], then the index for
register x becomes: RFP[W;] + (z — 16). After the number
of registers used for a warp exceeds the registers per warp, a
software trap is triggered that spills/fills to local memory.

B. Determining the Register Stack Size

There are many ways to determine the number of registers
to allocate to each warp’s stack. More registers per warp
means each SM will schedule fewer warps, but the chance
of spills/fills decreases. To assign the stack size per warp, we
explore three mechanisms:

1) Low-watermark: Low-watermark represents our design
point with the most concurrency. Each warp is allocated
enough register stack space to support at least one
function call, on top of the base kernel. If another factor
is limiting concurrency (i.e. shared memory, #thread
blocks, etc.), then the leftover space is divided equally
among the warps. In the worst-case, Low-watermark will
trigger software spill/fill instructions on almost every
function call/return.

2) High-watermark: High-watermark is our design point
with the least concurrency. A full call graph analysis is
performed to determine the register stack size needed to
prevent all spills/fills in an acyclic call graph. However,
the number of registers per warp of High-watermark
can be large, severely limiting parallelism. In appli-
cations with cyclic call graphs (i.e., recursive applica-
tions), maximum register usage cannot be determined
statically. We discuss recursive applications further in
Section III-C. To guarantee forward process in High-
watermark mode, CARS will context switch the register
state for warps waiting at barriers if there are other warps
in the same thread block waiting.

3) NxLow-watermark: NxLow-watermark allocates N
times Low-watermark registers to each warp, it is a
middle ground between High- and Low-watermark.

To make an initial prediction about which allocation mech-
anism will fit the workload best, we perform a lightweight
analysis of the call graph. For each node in the call graph, the
compiler computes the number of additional registers needed
for each function i.e., the FRU. Figure 4 shows an example
call graph. We list the FRU for each node in the graph, as well
as the MaxStackDepth, which is simply the maximum number
register that could be demanded by any path to a leaf node
from this function.

The root node (i.e. the __global__ kernel function) FRU
includes all the temporary and global registers available to
all the functions. The compiler identifies each function’s FRU
and each function’s individual MaxStackDepth. Note that this
analysis is only applied to acyclic call graphs, for recursive
applications, there is no MaxStackDepth. The bold path in
Figure 4 delineates the High-watermark chain for the kernel.
From the call graph analysis, Low-watermark would need 30
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Fig. 5: CARS’ dynamic register reservation state machine. The
performance of threadblocks using different allocation policies
is measured and recorded.

registers per warp (20 for the kernel + 10 for the largest
function), and High-watermark would need 56 registers (the
MaxStackDepth of the root function). To determine the final
registers per warp, the other factors that limit occupancy must
be known, which happens at kernel launch time. When a kernel
is launched, we know what the maximum possible number of
registers can be based on other limiting factors. For example,
if the kernel is limited by shared memory to 8 warps per core,
then the minimum register space available to each warp is 1/8
of the register file. If this number is greater than the number
of registers used in High-watermark, then all warps are given
this large allocation, because there is register space to spare. If
this number is less than the High-watermark allocation, then
a dynamic selection mechanism is used.

For kernels where High-watermark allocation is not possible
without limiting occupancy, CARS begins with half of the
SMs running Low-watermark mode and half running High-
watermark mode. After each thread block’s execution, CARS
records the performance. As thread blocks finish, the average
thread block performance for both modes is computed. Once
one thread block from each of High- and Low-watermark
is complete, CARS begins employing a state machine, illus-
trated in Figure 5 to newly spawned thread blocks. If High-
watermark performs better, new thread blocks launched on
the Low-watermark SM will be launched with a 2xLow-
watermark. Conversely, if Low-watermark performs better, the
High-watermark SMs will spawn thread blocks with fewer
registers allocated. Each thread block’s performance at each
allocation level is continuously monitored and recorded. At
the end of each kernel launch, the average performance of
all executed flavors is remembered, and the best-performing
allocation represents the starting point for the next invocation
of the same named kernel. If the current selection performs
worse than the recorded performance of a higher or lower
allocation, the allocation policy is adjusted accordingly.

[ERp——

‘_I_,
Needed for S8

| SO (Kernel)

Fig. 6: A circumstance when spilling other stacks is necessary.

C. Handling Control Flow Divergence and Recursion

There are three instances where control flow divergence
can affect CARS: (1) when warps experiencing control flow
divergence call a direct function, (2) when threads within a
warp return from a function at different points, and (3) when
an indirect call sends threads in the same warp to different
functions. In the case of (1), all the threads calling the function
will traverse the same control-flow path and full warp-wide
registers will be allocated based on the registers requested by
the function. This solution wastes register space in the empty
lanes, but simplifies the register allocation mechanism, and is
consistent with the baseline. For (2), some threads will finish
the function early, however, they will not be allowed to proceed
until all threads have returned from the function. Similarly,
the register stack cannot be released until all threads return.
Finally, for (3), indirect functions are relatively rare (typically
used to implement virtual functions or function pointers), the
challenge is that the compiler does not know what function
will be called statically. Here we use the highest register usage
count for all the dynamic function calls that belong to the same
static function call point to perform the static analysis.

For recursive workloads, we assume only one iteration
of the recursive components and assign the MaxStackDepth
accordingly. In such a case, High-watermark will not guarantee
zero spills/fills, as the static analysis cannot account for the
dynamic call depth.

IV. COMPILER AND ARCHITECTURE MODIFICATIONS

This section details our compiler changes in Section IV-A
and architectural changes in Section IV-B.

A. Compiler Modifications

The compiler embeds the following information in the
binary to enable efficient stack management by the hardware:

« For the kernel function: it embeds the FRU into the kernel
launch parameter.

o For a device function call: it embeds the FRU into each
relocatable call instruction so the space for the next frame
can be efficiently allocated. To enable the restoration of
the frame on the function’s return, a push pop is inserted
before every call instruction to push the RFP of the caller
onto the stack. After each relocatable call instruction, the
registers to be renamed and allocated are listed in pushes.

« For a device function return: it embeds the FRU into each
return instruction. Registers are restored and deallocated
via pops.

The compiler inserts each function’s FRU into the call/return

instructions so that the hardware knows (before the function
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starts executing) if there is sufficient space on the stack. When
space runs out in a warp’s register stack (depicted in Figure 6),
a software trap will be triggered. In Figure 6, the shaded region
shows the total register space available to a particular warp,
where S# is the stack usage of a particular function. The
warp has called seven functions and has little register stack
space left. When the warp initiates a call to another function
requiring a stack of the size indicated by the dotted outline,
insufficient registers remain to accommodate S8. CARS will
keep the top of the stack resident in the register file, evicting
the data at the bottom. All register contents within S/ (not
shown on the graph) will be spilled to memory in a wrap-
around fashion. If the size of S/ is still insufficient, more stacks
will be spilled. When the function corresponding to S8 returns,
S8 will be released, and the registers spilled will be filled back
when the corresponding function is back in control. In general,
every warp utilizes a circular register stack to avoid frequent
register spills and fills upon function calls and returns.

B. Architectural Design

In this subsection, we discuss the architectural details of
the CARS design. We first introduce the overall flow, then
detail how the existing GPU units are modified and what new
units and hardware resources are added. And we finish off by
examining the extra area cost and timing overhead.

1) Overall Flow: Figure 7 shows the overall architecture
design of CARS. Three units are modified: issue, the operand
collector, and the SIMT stack. One additional unit is intro-
duced, the warp status check unit.

To avoid modifying the global thread block scheduler, CARS
limits concurrency by blocking the execution of warps not
allocated registers in the issue scheduler. When an instruction
is in the issue stage, the issue scheduler first checks whether
the warp is in a stalled warp list of warps that are not executing
because they have not been allocated space in the register
file. The instruction is not issued if its corresponding warp is
deactivated. For the executing warps, if the instruction issued
is a function call, it pushes the caller’s RFP to the callee’s
register stack and sets the RFP to the current RSP. The number
of free registers in each warp’s register stack is also stored in
the issue stage, updated following each call/return. A trap can
be triggered if insufficient registers are left for the warp to

allocate a register stack for the function call. If triggered, the
software initiates register spills and fills.

The operand collector is augmented with the register re-
naming logic, which is responsible for renaming the registers
based on the warp’s RFP (Section III-A). Our augmentation
is implemented as a small logic change to the baseline GPU.

After the instruction finishes execution, it goes through the
SIMT Stack stage. Since it is possible that different threads can
return at different points in the function due to control flow
divergence, we augment the SIMT Stack entries with a single
bit to identify whether it is a function call (Section IV-B2).
Once all of the threads have returned from a function, the SIMT
Stack informs the Operand Collector unit to set the RSP to
the current RFP, and then the caller’s RFP is restored. It also
informs the issue stage to update the number of free registers.

The instruction information also goes through the warp
status check unit, which checks whether the warp has finished.
If a warp has finished, the unit will inform the issue stage to
release another warp if one is waiting.

2) Microarchitecture Details: Issue: As described in Sec-

tion IV-B1, apart from the normal issue operations, issue is
also responsible for recording the number of free registers left
in each warp. This information decides whether to trigger a
trap to spill out or fill back a register stack. The unit also stores
the IDs for the deactivated warps in the stalled-warp list and
stops issuing instructions from these warps. Once it receives
the release signal from the warp status check unit, it proceeds
to release a warp. Moreover, if a barrier is encountered and
there are deactivated warps, a trap is activated to switch out a
warp’s register state, preventing potential deadlocks. A trap is
also triggered when insufficient registers exist (Section IV-A).
SIMT Stack: The SIMT Stack is an existing structure used
to keep track of control flow divergence due to the lock-step
execution of multiple threads within one warp. As introduced
in Section III-C, there are three instances when control flow
divergence can happen for function calls. CARS works with-
out issue except when threads from the same warp return
at different points in a function. CARS cannot release the
function’s register frame until all threads return. To handle
multiple returns, CARS adds 1 bit to each SIMT stack entry
set for the function call’s stack SIMT stack entry. If control
flow diverges inside a function call, additional entries will be
pushed onto the SIMT stack. When a subset of threads return
from the function, CARS will delay the frame’s deallocation
until the SIMT stack is returned to the function call entry
(identified by our added bit).
Warp Status Check: The functionality of the warp status
check checks whether a warp has finished. It is used when
there could be warp de-scheduling and reactivating. Every time
a warp finishes, it sends the release signal to the issue unit and
releases one waiting warp from the same kernel.

C. Overall Cost

The hardware resources added to our design are a list of
stalled warps (per SM), a register for the number of free
registers (per warp), an RFP (per warp), and an RSP (per



warp). There can be a maximum of 64 concurrent warps
running on each SM. Although they cannot all be stalled
simultaneously, we still allocate space for 64 in our esti-
mate. The list of stalled warps takes 64 x 6b = 48B. The
number of bits needed to record the free registers can be
formulated as log, #ioffps * #warps. Since this function
increases monotonically, the max size of the number of
registers is log, 2212 %64 = 40B. The cost of RFP and RSP is
64 % 11b* 2 = 176 B. So, the maximum possible total storage
cost is only 264B.

From a timing perspective, in the issue stage, CARS checks
the number of free registers only upon each function call.
Rarely, it may perform context switches to avoid register
spills/fills; only one kernel we evaluated required this. In this
case, we need to check the stalled warps list before issuing
the instruction (Section VI-B). The warp status check unit is
only initiated when an EXIT instruction is issued to check
whether a warp has finished. Similarly, this only happens
when the kernel requires context switches. The push and pop
instructions modify the RSP as they pass through the operand
collector. We add an extra pipeline cycle to the issue and
operand collector stage to model these additional checks,
making a worst-case assumption that they affect cycle-level
timing. However, we anticipate these simple operations are
unlikely to affect the SM’s critical path.

V. EXPERIMENTAL METHODOLOGY
A. Experiment Setup

We evaluate the effectiveness of CARS using Accel-
Sim [24] and AccelWattch [21], a cycle-level simulator, and a
power modeling framework. The traces are generated using
NVBit [57]. Workloads other than Cutlass and Rapids are
compiled with one main compilation module and one library
module that contains common device functions. We maintain
the file structure of Cutlass and Rapids, but inter-module
function calls are not inlined. The modules are compiled with
the NVCC separate compilation flag (-dc) using CUDA 11.4.

B. Workloads for Experiments

We study 22 representative function calling applications and
ML layers from six different benchmark suites: LoneStar [5],
Rodinia [6], ParaPoly [62], Department of Energy Apps [22],
Cutlass [39] and Rapids [9]. To evaluate CARS on recursive
applications, we also include a Fibonacci [4] workload in our
experiments. Note that FIB is included only as a demonstration
that CARS executes correctly in the presence of a cyclic call
graph, which does not exist in other workloads.

The 22 applications and ML layers cover different applica-
tion areas, such as model simulations [62], raytracing-based
rendering [45], compiler analysis [12], and machine learn-
ing [1], [2], [9], [33], [39], [44], [46]. To execute the layers
of our DNNs, we use the highly optimized Cutlass library
from NVIDIA [39], selecting the best-performing GEMM
kernel that uses tensor cores. Cutlass is the most optimized
open-source GPU implementation of GEMM operations with
performance that rivals the closed-source cuBLAS [40]. We

TABLE I: 22 function calling workloads from six different
benchmark suites.

[ Workload | Call Depth | CPKI |
LoneStar Benchmark Suite [5]
Points-to Analysis (PTA) 9 46.11
Delaunay Mesh Refinement (DMR) 1 11.61
Minimum Spanning Tree (MST) 5 20.75
Single-Source Shortest Paths (SSSP) 3 6.30
Rodinia Benchmark Suite [6]
CFD Solver (CFD) [ 3 | 17.48
ParaPoly Benchmark Suite [62]
Traffic (TRAF) 3 3.13
Game of Life (GOL) 1 7.05
NBody (NBD) 2 21.40
Collision (COLI) 3 19.54
Structure (STUT) 3 10.94
Raytracing (RAY) 4 19.71
Department of Energy Apps [22]
Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics 3 2.84
(LULESH)
Recursive Workload [4]
Fibonacci (FIB) B [ 2241
MLPerf Workloads [33], [39], [46]
Bert Linear Transformation Layer (Bert_LT) 5 17.01
Bert Attention Score (Bert_Atscore) 5 17.62
Bert Attention Operation (Bert_Atop) 5 17.48
Bert Fully-Connected Layer (Bert_FC) 5 17.01
Resnet50 Forward Propagation (Resnet_FP) 5 17.04
Resnet50 Weight Gradient (Resnet_WG) 5 16.91
Rapids Workloads [9]
Support Vector Regression (SVR) 17 47.03
K-Means Clustering (KMEAN) 14 41.23
Random Forests Classifier (RF) 17 47.11

use the cutlass kernels, as opposed to cuBLAS, because
Cutlass is open-source, and can be recompiled.

The workloads are massively parallel, and some of them
exhibit irregular behaviors. This diversity shows that even
though the applications have different properties in other
aspects, they all suffer from the memory and bandwidth
pressures resulting from register spills and fills. The workloads
are listed in Table I, which also lists the call depth and calls
per thousand instructions (CPKI). The call depth and CPKI
numbers vary across the 22 workloads, with Rapids workloads
having the highest count. This is due to their heavy usage of
multiple CUDA libraries, resulting in increased call depth.

C. Simulation Methodology

We utilize Accel-Sim [24] and AccelWattch [21], a trace-
driven simulator and power modeling framework for the ex-
periments, and the main simulation methodology is as below:

Compiler Analysis: We first dump the call graph in-
formation using the -dump-callgraph nvlink option during
compilation to get the register usage information for the base
kernels. Then, we analyze the SASS code to find the number
of registers spilled for each function, which we label as the
Function Register Usage (FRU). We dump the ELF files from
the workloads’ binaries and perform static analysis on them to
retrieve global (kernel) and device function information. The
symbol tables can be parsed and extracted from the ELF file.



The function call graph analysis and CARS prediction are then
conducted as introduced in Section III-A.

Register Spills and Fills Trap Triggering: We use Accel-
Sim to implement the core design of CARS, ensuring that
our implementation identifies the moments to initiate register
spills/fills, and seamlessly injects the corresponding instruc-
tions for trap triggering.

D. Techniques Studied

Baseline (V100): We simulate the NVIDIA V100 GPU as
our baseline design, including all the register spills and fills
introduced by nvcc. The V100 configuration in [24] is used.
Idealized Virtual Warps: We model an idealized version of
a previous work, Zorua [56], where the GPU has an unlimited
number of registers, shared memory, and thread block slots.
10MB L1: We extend the cache size for each SM from 128KB
to 10MB, which is large enough to eliminate the overhead due
to cache capacity misses for most of the workloads.

Static Wavefront Limiter (Best-SWL): This scheduling tech-
nique limits the number of concurrent warps on each SM core.
We perform experiments on six warp counts (1, 2, 3, 4, 8, and
16) and choose the highest performing limit number, which
outperforms CCWS. This technique limits parallelism to avoid
cache capacity oversubscription [47].

Concurrency-Aware Register Stacks (CARS): Our main de-
sign as described in Sections III and IV.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate CARS and related work and
investigate the causes of the observed performance.

A. Performance Improvement Analysis

Figure 8 shows the performance comparison for 22 work-
loads among Baseline (V100), Idealized Virtual Warps, 10MB
LI, Best-SWL and CARS. Compared to the baseline, CARS
demonstrates the most performance improvement at a geomean
26%. The register spills/fills problem cannot be simply re-
solved by assigning unlimited hardware resources to the core,
eliminating cache capacity misses, or limiting the SM warp
count to avoid cache oversubscription. To further analyze the
results, Table II enumerates the varied reasons why CARS
improves the performance of our workloads.

1) LID Capacity and Contention: We analyze the perfor-
mance improvement of CARS using the /OMB LI and Best-
SWL configurations here specifically. /0MB L1 can reduce the
cache misses due to the capacity limit, while Best-SWL shows
the best-performing configuration that has been fine-tuned for
cache contention purposes by controlling the number of in-
flight warps. Compared to the baseline, DMR, MST, CFD,
GOL, STUT, and Resnet_FP show performance improvement
with both of the configurations, while Bert_LT, Bert_FC and
Resnet_WG only show speedup with 10MB L1.

Because CARS can effectively eliminate the majority of
register spills/fills memory accesses, it can alleviate pressure
on cache capacity. Figure 9 demonstrates the reduction in
memory accesses with CARS compared to the baseline. On

average, the fraction of register spills/fills decreases by 40%.
The global load and store accesses are unaffected since CARS
only reduces local memory instructions. Some of the work-
loads use local memory for other purposes. Each workload in
this class significantly reduces memory access, contributing to
the observed speedup.

Also, because CARS can limit concurrency in exchange
for a higher number of registers allocated per warp, the
speedup also results from alleviating inter-warp cache capacity
interference by reducing local memory accesses and limiting
parallelism. DMR demonstrate more pronounced performance
improvements with the Best-SWL and 10MB LI configurations.
This occurs because /0MB LI and Best-SWL can capture more
global access locality, given the prevalence of global accesses
in those workloads.

The I0MB LI configuration effectively accounts for the
improvement observed in Bert_LT, Bert_FC, and Resnet_ WG
for CARS, whereas Best-SWL shows minimal speedup for
most layers. This discrepancy arises because ML workloads
generally have larger data footprints that Best-SWL fails to ac-
commodate. Nevertheless, CARS delivers performance similar
to the JOMB L1 in these scenarios by mitigating the spills/fills.

2) LID Bandwidth Contention: To further explain CARS’
performance improvement, we explore an ideal ALL-HIT
configuration, where every register spill/fill memory access
hits in the L1D cache without traversing the cache. To keep the
L1D cache bandwidth usage the same, all accesses still suffer
the cache hit latency. We show the performance comparison
of ALL-HIT and CARS in Figure 10.

We observe that the workloads experiencing the cache
capacity and contention problems generally have outstanding
speedup with ALL-HIT. However, for some workloads, like
PTA, SSSP, TRAF, FIB, and Rapids, while increasing the
cache capacity does not have much effect on performance,
ALL-HIT explains the performance improvement of CARS.
This is due to the high absolute value of the number of memory
accesses, with the majority being local memory accesses
resulting from register spills/fills. Due to the interference
caused by these local memory accesses, the global data cannot
consistently reside in the cache, leading to cache misses.

Figure 11 plots L1D bandwidth contention versus time.
Here, we show a timeline graph of the L1 cache bandwidth
on global and local accesses for both the baseline and CARS
for one of the kernels in PTA. For this kernel, CARS does not
eliminate all the register spills/fills traffic. The average global
memory access bandwidth is also shown on the graph, and
this number in CARS is 98% higher than in the baseline. With
less interference of register spills/fills, the core pipeline can
issue more global memory instructions per unit time.

3) Low Occupancy: For applications like Bert_Atscore and
Bert_Atop, neither the 10MB L1 cache, Best-SWL, nor ALL-
HIT configurations exhibit speedup comparable to CARS. Our
observation is that these workloads have low occupancy on
each SM, so there are not enough warps running concur-
rently on the SM to hide the memory load latency entirely.
The reason why Bert_Atscore and Bert_Atop have lower
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Fig. 12: L1D MPKI for Baseline (V100) and CARS.

occupancy compared to the other layers is that they involve
smaller-sized GEMMs due to the multi-head design [55]. With
CARS, the substantial reduction in local memory accesses
significantly reduces the number of cycles stalled due to the
load dependencies for these two workloads.

We plot MPKI (misses per thousand instructions) in
Figure 12 to further indicate the speedup gained by CARS. On
average, CARS experiences a 35% reduction in MPKI. While
most of the applications exhibit a notable decrease, NBD,
COLI, and RAY show low MPKI values. These three work-
loads and LULESH demonstrate only a marginal reduction
compared to the baseline. To explain this, we plot Figure 13
to show the breakdown of different types of instructions for
both CARS and the baseline. We can see that the fraction of
register spills/fills instructions is low for these four workloads.

In general, among the 22 workloads, MST performs best.
While it may not exhibit the most significant reduction in
memory accesses, CARS effectively mitigates issues related
to its limited L1D capacity and inter-warp cache resource
contention, which can be indicated by its high reduction of
L1D cache miss frequency. On the contrary, LULESH barely
has any speedup, attributed to its relatively low count of
absolute register spills/fills instructions and memory accesses.

GOL performs worse than the baseline with Idealized Vir-
tual Warps, and this is because not limiting the number of con-
current thread blocks running on the core can thrash the cache.
Generally speaking, CARS out-performs the realistic related
work Best-SWL, and it also out-performs the unrealistic /0MB
L1, Idealized Virtual Warps and ALL-HIT configurations.



TABLE II: Main factors contributing to the improved perfor-
mance of CARS across the 22 workloads studied.

| Workload | CARS Main Speedup Factors |

PTA L1D bandwidth contention

DMR LI1D capacity and contention

MST L1D capacity and contention

SSSpP L1D bandwidth contention

CFD L1D capacity and contention

TRAF L1D bandwidth contention

GOL LI1D capacity and contention

NBD L1D bandwidth contention

COLI L1D bandwidth contention

STUT L1D capacity and contention

RAY L1D bandwidth contention

LULESH Low total local memory access count

FIB L1D bandwidth contention

Bert_LT L1D capacity

Bert_Atscore | Low occupancy

Bert_Atop Low occupancy

Bert_FC L1D capacity

Resnet_FP LI1D capacity and contention

Resnet_WG L1D capacity

SVR L1D bandwidth contention

KMEAN L1D bandwidth contention

RF L1D bandwidth contention
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Fig. 13: Instruction frequency, normalized to the baseline.

B. Allocation Mechanisms and Context Switching

Figure 14 shows the performance improvement of the ker-
nels within one iteration of PTA, normalized to the baseline.
Since each kernel can have different High-watermark and
Low-watermark register allocations, the number of possible
allocation mechanisms varies. The x-axis represents various
kernels, each with its distinct allocation mechanisms. Over
half of the kernels show no performance improvement over
the baseline, primarily due to the absence of any register
spills/fills within these kernels. Consequently, Low- and High-
watermark yield the same results. High-watermark performs
worse than Low-watermark in K3, K14 and K21. To explain
this, High-watermark for these kernels needs to perform con-
text switches due to the existence of barriers, which incur
register spills/fills traffic. K1 also needs context switches, but
the High-watermark configuration delivers better performance.
This is attributed to the high function call depth of K1, where
Low-watermark needs to spill/fill the allocated stack frequently

to accommodate the depth of functions. K2 and K13 show
barely any performance differentiation across various config-
urations, primarily due to their shallow function call depth
and the small disparity between High- and Low-watermark.
Additionally, for K22, the total number of thread blocks to
be dispatched is lower than the total number of SMs. Thus,
High- and Low-watermark dispatch the same number of thread
blocks on each SM for these three kernels, so the performance
does not change.

Out of all the kernels we evaluated across the 22 applica-
tions, only one requires context switches, which is K1 in PTA.
Three reasons account for why just this single kernel opts
for context switches. First, the absence of barriers obviates
the need for context switches in kernels. Second, few ker-
nels choose High-watermark, as Low-watermark and NxLow-
watermark configurations are already effective in reducing
most register spills/fills without compromising parallelism.
Only kernels that either have a high function call depth or
inter-warp cache contention would prefer High-watermark.
Lastly, as shown in Figure 14, CARS avoids selecting High-
watermark if context switches have a detrimental impact.

C. Register Spill/Fill Frequencies

TABLE III: Software trap handling frequency and severity.

Workload Fraction of functions that invokes | # of l')ytes spilled/filled per
trap handler function call
[ PTA [ 0.014% [ 078 ]

We show applications that still have register spills/fills
after applying CARS in Table III. While the fraction of func-
tions with spills/fills reflects only the proportion of functions
that undergo stack spills/fills due to insufficient registers, #
bytes spilled/filled per function call includes both the context
switches and stack spills/fills.

There are two reasons why only PTA exercises spilling with
CARS. First, if Low-watermark is preferred, there typically
exists a minimal number of register spills/fills. Second, in
the case where Low-watermark still produces a substantial
number of register spills/fills, and if the application allows
for a sacrifice of parallelism without encountering any barri-
ers, High-watermark is preferred, which means the complete
elimination of register spills/fills in non-recursive kernels.
Therefore, register spills/fills only happen when there is a
trade-off between parallelism and the number of registers
allocated for each warp, or when context switches occur. Our
recursive FIB benchmark does not spill/fill because the call
depth with our input is low. Increasing the call depth of FIB
by changing the input triggers spills/fills with CARS.

D. Energy Efficiency

Figure 15 plots the energy efficiency of /0MB LI, Best-
SWL, Idealized Virtual Warps and our CARS design. On
average, CAR is 28% more energy efficient. The figure also
matches what we found in the previous figures, which show
that MST suffers most from register spills/fills. However, MST
does not get as much energy reduction as its performance
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improvement, and this is because CARS can limit concurrency.
Although the L1D cache pressure is relieved by not having
as many warps running on the core simultaneously, more
core resources are used to run the less paralleled workload.
However, the total energy used still decreases due to the
execution time reduction. Overall, the energy gains are slightly
better than performance owing to both a reduction in static
energy (caused by a reduced runtime) and a reduction in core
activity by not moving spills and fills around.

E. Sensitivity Studies

Although the goal of CARS is to perform efficient function
calls at runtime, avoiding the downsides and lack of flexi-
bility full inlining places on the program, understanding the
performance of CARS versus a statically inlined version of
the code helps to put the work in context and provides a best-
case scenario for CARS in some workloads. Figure 16 plots
the performance of fully inlining all functions (using LTO) and
CARS. As shown in Figure 16, the fully-inlined code performs
28% better than the baseline on average, while CARS has

a 26% improvement. Most applications perform better with
fully-inlined code, as function inlining offers more optimiza-
tion opportunities beyond just eliminating register spills/fills.
However, there are several applications where the fully-inlined
code performs worse. This is because fully inlining increases
the instruction footprint, which raises the GPU’s front-end
pressure, and in some applications, the concurrency-limiting
properties of CARS reduce inter-warp memory contention that
will continue to be present in the fully-inlined code.

Figure 17 plots the performance of the baseline and CARS
as L1D cache ports are scaled from from 2x to 8x. On average,
the three bandwidth settings have a speedup of 1.02x, 1.03x,
and 1.03x over the baseline, compared to CARS’ speedup
of 1.28x, 1.29x, and 1.29x at the same bandwidth level.
Only applications sensitive to cache hit bandwidth, without
significant miss pressure, see a rise in performance, as cache
miss bandwidth and resources remain constant.

Figure 18 plots the performance of CARS when applied to an
Ampere RTX 3070 GPU. Most applications exhibit a speedup
similar to V100, except MST, which shows a lower speedup.
On the V100, CARS selects the High-watermark configuration,
maximizing register locality while achieving sufficient concur-
rency. On the RTX 3070, changes in occupancy cause CARS
to select the Low-watermark mode, resulting in more memory
accesses and a slightly lower speedup. However, CARS’ overall
speedup is resilient on a more recent architecture.

VII. RELATED WORK

GPU Programmability: A body of work exists on pro-
viding CPU-like programmability for GPUs. Support for a
file system abstraction [52], network stack [26], and more
advanced memory management [51] are examples of this.
ParaPoly [62] created a set of workloads to emphasize the
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bottlenecks of GPU virtual function calls, and techniques
have been proposed to mitigate the effects of calling virtual
functions on GPUs [63]. Lee et al. [30] exploit orthogonal
programming characters, such as inter-CTA locality and con-
current execution, to improve performance.

Functions Optimizations at Link and Runtime: NVIDIA in-
troduced separate compilation with link-time optimization [35]
in CUDA 11.2, so that the performance of applications with
multiple source files and libraries does not suffer. A large
number of research works are devoted to compilation opti-
mization; for example, Chen et al. proposed AutoFDO [7], a
Feedback based link-time optimization that can tolerate the
staleness of the profile used by the next release, and Johnson
et al. proposed ThinLTO [19], a scalable framework designed
for Cross-Module Optimization.

Techniques for Managing CPU Register Files: Register
renaming [54] resolves false data dependencies by remapping
logical registers to physical ones. Oechmke et al. propose a new
register file architecture that treats the physical register space
as a cache of a much larger architectural register space [42],
reducing memory accesses. SVF [29] by Lee et al., similar to
CARS, focuses on stack accesses. Zhuang et al. [64] suggest a
hardware-managed register allocation for embedded systems.
Yan and Zhang [61] introduce virtual registers to ease register
pressure. Jordan et al. [20] propose a software-managed stack
cache, using a scratchpad memory. All these works explore
architecture limited to a few threads. An alternative hardware
mechanism to avoid explicit spill/fill accesses is to use register
windows [27], [28], [58]. However, register windows see
little use today due to inefficiencies in aggressive register

management, resulting in wasted registers which are a precious
resource in GPUs.

Techniques for Managing GPU Register File: Xie et al. pro-
posed the CRAT compiler framework [60] to coordinate reg-
ister allocation for TLP and spill registers to shared memory.
Sakdhnagool et al. proposed RegDem [50], which identifies
register allocation as a main factor in limiting occupancy and
mitigates register demand in function-free programs. Jeon et
al. proposed register file virtualization [14], utilizing register
renaming to reduce register file size and save energy. Vijayku-
mar et al. proposed Zorua [56] to virtualize GPU on-chip
resources, such as registers, scratchpad memory, and thread
slots. All of these prior works attempt to make better use of
on-chip resource capacity, while CARS explicitly targets both
the capacity and bandwidth bottleneck introduced by excessive
spills/fills on function calls.

VIII. CONCLUSION

We perform the first quantitative analysis of direct function
calls on GPUs, demonstrating that register spills/fills are
a problem. We propose Concurrency-Aware Register Stacks
for efficient GPU function calls, a lightweight register stack
mechanism for massively parallel architectures. By balancing
concurrency with spills and fills CARS eliminates much of
the data movement between the register file and memory
required to maintain the GPU’s RISC-like ABI. CARS uses
a lightweight call graph analysis and an adaptive prediction
mechanism to choose among allocation schemes that balance
concurrency and register stack locality.

Experimental results demonstrate that Concurrency-Aware
Register Stacks delivers 1.26 x performance improvement with
28% better energy efficiency, adding negligible area overhead.
Notably, Concurrency-Aware Register Stacks outperforms sev-
eral idealized stackless systems with an impractical amount
of hardware resources. As the first paper to study hardware
for direct function call support on GPUs, CARS opens a new
design space for optimizing function calls on GPUs.
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