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Abstract—The broad usage of accelerators, such as GPUs, faces
two important challenges. Developing code for a new accelerator
is expensive and unpredictable. Porting large parallel programs
from Multiple Instruction Multiple Data (MIMD) CPUs to Single
Instruction Multiple Thread (SIMT) GPUs involves significant
effort that may or may not result in improved performance versus
the CPU. This high activation energy to create new workloads in-
troduces the second challenge: architects and systems researchers
lack a diverse SIMT codebase to study new designs.

To tackle these challenges, we introduce ThreadFuser, an
analysis framework that efficiently and accurately predicts the
performance of any pre-written MIMD program on SIMT
hardware. ThreadFuser conducts thorough control and data
flow analysis on dynamic CPU program traces, determining
the impact of lock-step execution on CPU binaries. Thread-
Fuser efficiently delivers accurate reports on a MIMD pro-
gram’s divergence and synchronization characteristics. Moreover,
ThreadFuser seamlessly integrates with state-of-the-art GPU
simulators to conduct detailed analyses and produce fine-grained
performance measurements.

We evaluate ThreadFuser on a diverse set of 36 CPU work-
loads, demonstrating the potential and challenges of executing
MIMD code on a SIMT machine. We demonstrate ThreadFuser’s
potential to inform software development decisions and open new
areas to explore in data-parallel hardware design.

Index Terms—SIMT, GPU, Programmability, Simulation, Per-
formance.

I. INTRODUCTION

Most parallel programs are written in a Multiple Instructions
Multiple Data (MIMD) fashion, primarily targeting CPUs [5],
[20], [21], [33], [39]. However, the slowing of Moore’s Law
and the energy-efficiency limitations of CPUs have prompted
a paradigm shift in architectural approaches, ushering in the
era of accelerators, with the GPU’s Single Instruction Multiple
Thread (SIMT) model gaining the most commercial traction.
Beyond their conventional role in graphics processing, SIMT-
based architectures are used pervasively in High-Performance
Computing (HPC) and Machine Learning (ML). However,
they have yet to gain significant traction in other parallel
domains. Additional classes of software can benefit from exe-
cution on efficient SIMT hardware, creating a more diverse set
of applications for architects to explore SIMT designs outside
of traditional GPUs. From a software developer’s perspective,
porting code to a SIMT accelerator demands significant devel-
opment time, and there is a risk of wasting effort if the code
is unsuitable for the hardware. As a result, most GPU codes
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Fig. 1: Estimated SIMT Efficiency for 36 MIMD applications
(Section V-A) using ThreadFuser.

are ported from CPU codes with easy-to-identify regularity in
their control flow and access patterns. However, many parallel
applications miss acceleration opportunities because no effort
has been invested in moving them to a GPU. If developers had
access to a zero-effort performance estimation framework, the
risk of porting would be reduced, and more software could
take advantage of SIMT hardware. Similarly, architects face
limitations in analyzing and assessing the efficiency of new
SIMT hardware due to the limited variety of available software
for SIMT machines. Granting hardware designers the ability
to examine the impact of SIMT hardware on any CPU binary
can lead to more sophisticated SIMT accelerators that target
workloads beyond graphics, HPC, and ML.

To address both the developer’s lack of predictability and
the architect’s lack of software, we introduce ThreadFuser.
ThreadFuser is an analysis and trace-generation framework
designed to rapidly and precisely predict the performance
of any MIMD CPU program on SIMT hardware. By gath-
ering dynamic traces from unaltered parallel CPU binaries,
ThreadFuser quickly analyses control flow and memory access
patterns. This process results in a comprehensive, per-function
breakdown of a parallel application’s SIMT efficiency, mem-
ory divergence level, and synchronization characteristics if it
were to be executed on SIMT hardware. This initial estimate is
cheap to produce (generated with no programmer effort in only
2-6x native CPU execution time) and can be applied to any
CPU binary, even closed source. For a more comprehensive
analysis, ThreadFuser also generates a trace file that integrates



with trace-based SIMT hardware simulators [27], [45]. Using
the open-source Accel-Sim [27] framework, we demonstrate
ThreadFuser’s capability to generate detailed performance
analysis that accounts for all the cycle-level factors that impact
performance, allowing architects to evaluate SIMT designs that
target diverse workloads.

To demonstrate ThreadFuser’s effectiveness, Figure 1 plots
the estimated SIMT efficiency of 36 MIMD CPU workloads
(described in Section V-A) if they were run on SIMT hardware
with warp sizes of 8, 16, and 32. Some of these workloads
have complimentary GPU implementations (which we use
for correlation in Section 1V); however, most do not. This
information is instructive to developers, who can quickly see
if the workload will perform poorly on a GPU if no addi-
tional optimizations are made. For instance, Pigz [1], a Linux
binary that implements GZip, exhibits notably low efficiency
compared to N-body simulation. A quick as-is port of Pigz
is unlikely to perform well on the GPU, where the N-body
code, as-written, will map very easily to SIMT hardware. Note
that SIMT efficiency is a necessary but insufficient condition
for performance improvement on a GPU. If the application’s
control flow, memory divergence, and synchronization patterns
look promising, the software designer can use ThreadFuser’s
simulator integration to analyze speedup predictions and bot-
tlenecks deeply. However, for software developers, the quickly
generated high-level information allows them to identify which
applications or services might be good GPU candidates with
little SIMT-specific code optimizations.

ThreadFuser leverages Intel’s x86 PIN tool [30] to gen-
erate dynamic instruction traces for each CPU thread, for-
warding them to a backend analyzer that employs a config-
urable batching algorithm to group threads into warps. Subse-
quently, ThreadFuser conducts a stack-based Immediate Post-
Dominator (IPDOM) reconvergence analysis for the grouped
threads [15]. This analysis calculates the SIMT control-flow
efficiency and the application’s anticipated memory diver-
gence (average accesses per memory instruction). ThreadFuser
also monitors the invocation of synchronization primitives,
ensuring that serialization is enforced when multiple threads
fused into the same warp access the same lock. To validate
the accuracy of ThreadFuser, we correlate efficiency and
performance metrics against real GPU hardware in 11 parallel
workloads with existing CPU and CUDA implementations.

Utilizing ThreadFuser, we conduct case studies to showcase
its potential application and shed light on untapped oppor-
tunities within contemporary parallel CPU workloads. For
instance, we explore the viability of porting multi-threaded
Linux utilities to SIMT hardware. Many of these workloads,
with unaltered code, demonstrate promisingly convergent con-
trol flow, achieving up to 99% SIMT efficiency and projected
speedups of 15-20x. We also explore the effect SIMT exe-
cution has on data center microservices [16], [41]. Modern
data centers exhibit extensive degrees of similar request-level
parallelism, receiving numerous independent requests from
millions of users running the same service code. ThreadFuser’s
analysis reveals that some microservices exhibit high con-

trol efficiency, averaging 78%, indicating potential efficiency
gains from executing them in a SIMT fashion. Using these
workloads, we also examine their synchronization patterns and
demonstrate the impact fine-grained locking can have on SIMT
workloads.

While ThreadFuser helps analyze closed-source applica-
tions, it is also designed to help developers perform pre-
port source code analysis. ThreadFuser generates a function-
specific report on efficiency metrics that helps identify likely
bottlenecks in GPU execution. Using this information, de-
velopers can make more informed decisions about which
functions are easy-wins and which need more refactoring to
make them amenable to GPU acceleration. We perform a case
study using production microservice to identify code—buried
deep within a library call—that single-handedly destroys the
application’s SIMT efficiency. Once identified, we demonstrate
how a SIMT-aware modification to the code improves SIMT
efficiency from 6% to 90%.

ThreadFuser is not limited to studying how developers
might better use GPUs. Integrating with a cycle-level sim-
ulator, ThreadFuser can be used to design efficient SIMT
machines with thread counts between a multicore CPU and
a GPU. Prior work has demonstrated that SIMT architectures
with a thread count in the hundreds to low thousands can be
an energy-efficient way to execute general-purpose instruction
sets [14], [26], [44]. The ThreadFuser infrastructure makes it
possible to study any MIMD workload with any thread count
using the Accel-Sim SIMT simulator.

This paper makes the following contributions:

o We introduce ThreadFuser, an innovative analysis frame-
work designed to rapidly and accurately estimate the per-
formance characteristics of parallel CPU workloads when
executed on SIMT hardware. ThreadFuser is validated
using GPU hardware across 11 OpenMP workloads with
CUDA implementations (Section IV).

e We demonstrate ThreadFuser’s ability to aid software
developers in creating zero-cost estimates of GPU per-
formance, showcasing how ThreadFuser can pinpoint
code regions that are challenging for GPUs. Our analysis
demonstrates that many CPU workloads have untapped
potential on contemporary GPUs (Section V-A).

o We highlight ThreadFuser’s ability to provide architects
with more diverse SIMT software and drive innovation
in data-parallel accelerators that target workloads outside
of graphics, ML, and HPC. We integrate ThreadFuser
with a state-of-the-art GPU simulator, demonstrating
that accelerator innovations can be driven by evaluating
MIMD software (Section V-B).

II. BACKGROUND

Switching from conventional CPUs to SIMT architecture,
a blend of SIMD and multithreading, responds to the
demand for parallelism and energy efficiency. Through warps
and control-flow divergence management, SIMT optimizes
efficiency. This section details the SIMT execution model
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Fig. 2: Example of SIMT Stack operations performed by
ThreadFuser.

and the effect of batching MIMD threads together for SIMT
execution.

SIMT Execution Model: Modern SIMT architectures com-
prise multiple processing cores, each hosting numerous par-
allel lanes (SIMD units), a vector register file, and a shared
memory segment. The primary unit of execution is referred to
as a warp (or wavefront), representing a collection of threads
executed in lockstep on a SIMD unit. Shared memory is
distributed among the warps concurrently executing on a core.

SIMT execution on GPUs involves running multiple threads
within a warp simultaneously, each potentially taking a differ-
ent path in the program’s control flow graph, as exemplified in
Figure 2. When threads in the same warp diverge, as shown
after BBL1 in Figure 2b, current SIMT architectures execute
all control paths, such as BBL2 and BBL3, sequentially. This
serial execution of divergent paths can reduce parallelism and
SIMD unit utilization. To counter this, modern GPUs ensure
the reconvergence of threads that follow different control
paths.

Control-flow divergence in SIMT hardware is man-
aged through a SIMT stack and immediate post-dominator
(IPDOM)-based convergence mechanism, as depicted in Fig-
ure 2. In this context, all threads reaching a specific diverged
branch reconverge at the immediate post-dominator basic
block of that branch. The post-dominator (IPDOM) basic
block, is the first basic block in the static control flow and
is guaranteed to be on both diverged paths (as indicated in

BBL4 in Figure 2b), plays a crucial role in orchestrating
reconvergence and maintaining high SIMD unit utilization
for optimal parallel execution. This approach is essential
for maximizing GPU performance and utilization in parallel
computing tasks [15], [31], [32].

Currently, the method for implementing IPDOM reconver-
gence in SIMT architectures is to treat control flow execution
as a serial stack, as shown in Figure 2c . Initially, a new
entry is pushed onto the SIMT stack with the active mask of
all threads set to all 1s. The top of the stack (TOS) keeps
track of the next basic block to execute. When encountering
a divergence in threads’ traces, such as BBL2 and BBL3, the
SIMT hardware adds new entries to the SIMT stack and uses
IPDOM analysis to identify the immediate post-dominator
(reconvergence point), exemplified by BBL4 in Figure 2c.
Each time control diverges, both the taken and not taken paths
are pushed onto the stack (in arbitrary order), and the path at
the new top of the stack is executed. As the SIMT hardware
processes divergent entries (BBL2, BBL3), it executes them
with distinct lock-step instructions and active masks (e.g.,
10 and Ol1), resulting in limited parallelism. However, this
approach allows for efficient handling of divergent paths
within a warp. Upon reaching the reconvergence point (BBL4),
the hardware removes the entry of the respective thread
from the SIMT stack, enabling the reconvergence of threads.
This mechanism allows threads to execute the instruction in
lockstep with active lanes, effectively managing control-flow
divergence in SIMT architectures.

From CPU to SIMT: The escalating demand for parallelism
in computational tasks and the critical need for energy-efficient
solutions have propelled the shift from conventional CPU
architectures to SIMT (Single Instruction, Multiple Threads)
architectures. SIMT combines the principles of SIMD (Single
Instruction, Multiple Data) with multithreading, allowing a
single instruction to be executed on multiple threads simul-
taneously while enabling divergence in data paths. Unlike
SIMD, SIMT’s implicit vectorization simplifies programming,
eliminating the need for explicit predicates when lanes diverge.
Its execution model, based on Single Program Multiple Data
(SPMD) on SIMD hardware, allows each thread to be treated
separately by the programmer while hardware groups threads
together into warps (usually 64 or 32 threads wide) to aggre-
gate control logic and exploit spatial data reuse among parallel
threads. The inherent efficiency in SIMT hardware comes from
(i) amortizing the pipeline front-end overhead by fetching,
decoding, and scheduling each instruction only once for all
the threads in the same warp and (ii) generating less traffic
to the memory system by coalescing accesses from threads
in the same warp. GPUs have traditionally been recognized as
the predominant platform for SIMT hardware. However, recent
studies by Kalathingal et al. [25], and Tino et al. [44] challenge
this notion, demonstrating that SIMT efficiency can extend to
Simultaneous Multi-Threading (SMT) CPU hardware as well.
This is achieved by dynamically grouping multiple scalar SMT
threads to execute in lockstep when they share a common



instruction stream.

Programming abstractions for SIMT, such as CUDA [36]
or HIP [6], create the illusion of data parallelism with in-
dependent threads. However, in actual execution, a group of
program instances (threads) is mapped to a warp and exe-
cuted synchronously. Consequently, control-flow divergence in
SPMD programs can significantly impact performance due to
the inherent limitations of SIMT execution.

In SIMT hardware, memory coalescing is illustrated in
figure 4, showcasing its optimization impact. This process
consolidates multiple memory requests from threads within a
warp into a single, efficient transaction. This streamlined ap-
proach minimizes the number of 32-byte transactions needed
for load/store instructions, enhancing overall memory access
performance. The coalescing process showcased in figure 4
mirrors algorithms commonly utilized in GPU hardware [35],
[36], emphasizing its alignment with established optimization
principles and its contribution to improved efficiency and
throughput in SIMT architectures.

Whether utilizing GPUs or the previously suggested SIMT-
based CPU hardware, a fundamental inquiry arises: How much
can a specific workload capitalize on SIMT-based hardware?
In simpler terms, what is the extent of SIMT efficiency in
parallel CPU workloads?

III. SYSTEM OVERVIEW

Figure 3 visually represents the design of the ThreadFuser

system, providing insight into its structure and functionalities.
The overarching goal of ThreadFuser is to establish a
framework capable of accurately estimating and predicting
the performance of diverse parallel MIMD programs without
requiring to port them to SIMT hardware architecture
platforms. At its core, ThreadFuser has two primary
components: 1) The ThreadFuser tracer component (depicted
in Figure 3a) responsible for capturing detailed traces of
the MIMD application’s instructions and memory accesses.
This critical functionality forms the foundation for precise
performance estimation and analysis within the ThreadFuser
framework. (2) The ThreadFuser analyzer (depicted in
Figure 3b) that analyzes the generated traces to project the
SIMT efficiency and the memory divergence.
Additionally, ThreadFuser includes a separate component
that can be utilized to generate warp-based instruction traces.
These traces can be fed into a state-of-the-art traced-based
GPU simulator like Accel-Sim [27], providing a detailed
performance analysis.

ThreadFuser Tracer: The ThreadFuser Tracer leverages a
tracing tool built on Intel’s PIN platform [30] to systematically
generate traces for each thread initiated by the CPU program.
This tool inserts callbacks before the execution of each basic
block (BBL) to capture essential information such as addresses
and the number of instructions within executed basic blocks.
Moreover, the traces include detailed per-instruction (x86
CISC instruction) memory access information. Additionally,
the tracing tool instruments the recording of function calls,
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Fig. 3: ThreadFuser architecture.

capturing both call and return points and collecting the called
function names. This enables the framework to construct a
detailed function-call stack, providing valuable insights into
the program’s execution flow and aiding in comprehensive
analysis. Furthermore, the tool captures the addresses of
accessed synchronization locks, which are utilized by the
ThreadFuser Analyzer component to study lock contention
and synchronization overhead in multi-threaded programs.
The tool is configurable, allowing programmers to selectively
choose specific functions for tracing or exclusion. This
capability enables a more focused analysis, allowing for a
detailed study of particular regions within the application.
This flexibility showcases the tool’s adaptability to various
analyses and requirements. In essence, with its low overhead,
typically ranging between only 2 to 6 X the native CPU
execution time, the tracing tool serves as the foundational
component of ThreadFuser, actively facilitating the generation
of warp-based SIMT traces and enabling detailed analyses of
SIMT efficiency across diverse MIMD workloads running on
SIMT hardware.

ThreadFuser Analyzer: The initial goal of the
is to provide a quick, cost-effective first-order
and prediction, covering SIMT efficiency and memory
divergence. This initial estimation prepares for a more
detailed performance study, enabled by the subsequent
generation of SIMT-based traces. The ThreadFuser Analyzer
pipeline, illustrated in Figure 3b, includes several key stages.
Initially, the analyzer parses the basic block and memory
traces, generated by the ThreadFuser Tracer.

The subsequent phases focus on preparing and analyzing
the parsed traces to create intermediate data structures and
metadata utilized in performance predictions. As mentioned
in section II, SIMT hardware relies on IPDOM and SIMT
divergence stacks to manage threads’ divergence. To find the
IPDOMs of basic blocks, the tool must construct the program’s
Control Flow Graph. The analyzer leverages the collected

analyzer
estimate



traces of dynamically executed basic blocks to build the
Dynamic Control Flow Graph (DCFG). This graph represents
the program’s evolving control flow during execution by
identifying successors and predecessors for each Basic Block
(BBL) to form the DCFG.To simplify matters, the DCFG
is generated independently for each thread and subsequently
merged into a unified graph. In case of threads divergance, the
analyzer ensures to reconverge the threads at the reconvergence
point(IMPDOM).

ThreadFuser implements the Immediate Post-Dominator
(IPDOM) algorithm, similar to GPGPU-sim [2], [9]. This
algorithm is pivotal in identifying the first basic block that is
guaranteed to execute after all paths in the program converge.
It iteratively refines the IPDOM information for each basic
block (BB) in the program’s control flow graph

Following the IPDOM analysis, ThreadFuser organizes the
threads into warps, emulating the warp structure in SIMT
hardware. The analyzer allows user configuration of the warp
width, facilitating the exploration of different SIMT hardware
different SIMT hardware widths, as we observed how that
influences the applications in Section I. Moreover, different
batching algorithm can be explored in the process of warp
formation.

After these stages are completed, ThreadFuser proceeds to
emulate warp execution in a lock-step manner.If the analyzer
detects thread divergence based on the traces, ThreadFuser
incorporates SIMT stack operations. It utilizes data obtained
from the IPDOM analysis to ensure the convergence of threads
at the reconvergence points, emulating the architecture of
contemporary SIMT hardware (e.g., GPUs) as discussed in
Section II.

In Figure 2a, the operation of ThreadFuser is illustrated,
demonstrating how the tracer collects traces from two CPU
threads executing the same function. These traces are then
processed to construct the Dynamic Control Flow Graph
(DCFG), showcased in Figure 2b, based on the observed basic
block trace. Subsequently, ThreadFuser forms these threads
into a warp, assuming a warp size of 2 in this example.
The utilization of the SIMT stack algorithm, as detailed in
Section II, guides this process. A visual representation of the
SIMT stack operation in ThreadFuser is provided in Figure 2.

ThreadFuser captures a crucial performance metric for SIMT
hardware—SIMT efficiency. This metric involves counting
the instructions executed in lock-step mode and those exe-
cuted by each thread within the warp. SIMT efficiency is
key in assessing how effectively the program utilizes the
SIMD processing capabilities offered by SIMT hardware. The
overall SIMT efficiency for the program is then computed by
averaging these efficiencies across all warps, with the specific
formula outlined in Equation 1. For instance, a program with a
50% SIMT efficiency indicates that half of the computational
resources in a SIMD hardware unit are effectively utilized
during processing.

Add eax ,[ebx] x86 instruction that generates memory load

Thread 0, 0x00
Thread 1, 0x04
Thread 2, 0x08
Thread 3, 0x10

memory _

0 32 64
1 memory transaction

Thread 0, 0x00
Thread 1, 0x08
Thread 2, 0x28
Thread 3, 0x38
—

weror T |

0 32 64

3 memory transactions

Fig. 4: Memory coalescing technique used in ThreadFuser.
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#Instructions in lock-step x WarpSize

SIMT efficiency =

Selecting the optimal granularity for constructing the Dy-
namic Control Flow Graph (DCFG) presents a challenge.
Building the DCFG based on the entire trace might lead to
a situation where a single function is called from various
parts of the application. Consequently, the function return
instruction could point to multiple basic blocks in the DCFG,
making the Immediate Post Dominator (IPDOM) algorithm
more conservative and selecting distant reconvergence points.

To address this challenge, ThreadFuser employs a solution
by introducing a virtual basic block at the end of each
function and creating a per-function DCFG. This strategy
compels divergent threads to converge at the conclusion of
each function, mirroring the behavior seen in contemporary
SIMT hardware like GPUs. This refined approach results in a
more accurate DCFG.

Additionally, ThreadFuser maintains a function-call stack
in its SIMT stack to accurately track the currently emulated
function. Leveraging the per-function DCFG, ThreadFuser
generates a per-function efficiency report that specifically
excludes the influence of nested function calls. This feature
allows programmers to identify bottleneck functions that could
hinder SIMT performance, as exemplified in Section V-A.
Through the analysis of per-function efficiency, programmers
can optimize application performance by precisely identifying
and enhancing less efficient functions. This proves particularly
valuable in complex applications with numerous functions,
providing a detailed assessment of performance at the function
level.

ThreadFuser, in addition to evaluating SIMT efficiency,
offers valuable insights into the memory performance of the
application. The tool generates a comprehensive report on
the total number of memory transactions per x86 instruction
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TABLE I: Studied Workloads. #SIMT threads is the number of threads simulated by ThreadFuser

that initiates memory accesses. This involves checking
the accessed addresses by each thread within the warp,
subsequently coalescing them to determine the number
of 32-byte transactions necessary for the load or store
instruction. Figure 4 provides an illustrative example of
how ThreadFuser adeptly coalesces memory accesses. For
instance, when an ADD instruction generates a load memory
access, and all threads in the warp touch memory addresses
that are 4 bytes apart, ThreadFuser coalesces these accesses
into a single memory transaction (i.e., coalesced accesses).
Conversely, in scenarios of divergent memory access, multiple
transactions might be required to load the data necessary for
the ADD instruction. Moreover, ThreadFuser breaks down the
transactions based on the accessed segment, distinguishing
between stack and heap transactions. As the tool coalesces
transactions into 32-byte cache line transactions, the ideal
number of memory transactions per coalesced memory
instruction for a 32-thread warp is ideally 4x 32B transactions
for 4-byte access or 8x 32B transactions for 8-byte access.
This insightful breakdown aids in identifying memory access
patterns and unveils optimization opportunities for enhancing
application performance.

Synchronization handling in ThreadFuser: Dealing with
synchronization and locking presents a significant obstacle
when attempting to port MIMD applications to SIMT
hardware. Locks contention can affect the control flow
efficiency of the running application. As a result, to ensure
accurate prediction of the performance of MIMD applications
ThreadFuser monitors all the locks acquiring/releasing
operations performed by each thread. The ThreadFuser Tracer
records the calls to all synchronization primitives along with
the addresses of the accessed locks. In the analysis phase,
we use the traced information to quantify the effects of
the synchronization. To identify the critical section being
executed by the threads, we match the lock and unlock
operations based on the lock address they refer to. As we
emulate the execution of the warps, if a synchronization
primitive is called, we check the addresses of locks accessed
by all threads and allow threads acquiring different locks to

execute in parallel. For threads that compete on the same
lock, the analyzer will simulate their execution in a serial
fashion. Therefore, ThreadFuser pushes multiple entries to
the SIMT stack, reflecting the serial execution of the threads.
The identification and location of the reconvergence point of
serialized threads can impact the efficiency of control flow.
We select one of the unlock pairs of one of the threads as
the anticipated reconvergence point. We acknowledge that
different choices of reconvergence points may have varying
effects on the control flow efficiency, but we defer this
investigation to future research. In section V-B, we explore
the impact of the critical section on control flow efficiency.

Generating warp-based instruction traces using Thread-
Fuser: To provide a comprehensive performance evaluation
of parallel MIMD applications on SIMT hardware like GPUs,
ThreadFuser generates warp-based instruction traces.

These traces can be fed to trace-based SIMT hardware
simulators, like Accel-Sim [27]. Utilizing these traces enables
detailed microarchitectural performance predictions, including
cycle-level timing predictions using the SIMT simulator. This
capability significantly enhances the precision of performance
estimation, providing a deeper understanding of the applica-
tion’s behavior on SIMT hardware. Section V-A discuss how
ThreadFuser used to predict the actual speedups of various
MIMD applications with minimum developer effort.

ThreadFuser generates x86 instruction SIMT traces, which
Accel-Sim utilizes by mapping those instructions to Accel-
Sim virtual instructions. Furthermore, ThreadFuser converts
x86 CISC instructions to a set of multiple RISC instructions.
For example a CISC add instruction with memory operand
breaks down into a load and add when converted to RISC in-
structions. ThreadFuser directs stack accesses to local memory
accesses and other accesses to global memory accesses.

This feature is particularly helpful for architects seeking
to explore various application types, including those with
complex control flow or memory access patterns. Such
exploration is important in optimizing performance on SIMT
hardware. The availability of this capability proves beneficial
in the design of new domain-specific SIMT accelerators
for applications like microservices, as exemplified by the



hardware architecture proposed in previous work [14], [26],
[44]. In Section V-A, we discuss the accuracy and validity of
these traces on Accel-Sim.

IV. CORRELATION RESULTS

In this section, we examine the accuracy of our proposed
framework, ThreadFuser (specifically the analyzer), by con-
ducting a validation against real SIMT hardware, specifi-
cally an NVIDIA Hopper H100. The validation employs 11
multithreaded CPU workloads, outlined in Table I, imple-
mented using Linux POSIX threads (Pthread) and OpenMP
frameworks. Our selection includes applications derived from
Rodinia 3.1 [12], featuring OpenMP implementations iden-
tical to their CUDA implementations. Furthermore, we re-
implemented three applications with complex control flow
graph from the Parapoly [48] suite using Pthreads. Also we
implemented two microbenchmarks which are simple vector
multiply-add kernels with different memory accessing pat-
terns.

For validation, two metrics are employed: (1) Mean Ab-
solute Error (MAE) and (2) Karl Pearson Coefficient of
Dispersion (Correl). MAE quantifies the error between the
analyzer data and hardware data, providing insight into the
accuracy of our framework. Correl, on the other hand, assesses
the strength of trends between the analyzer and hardware
data.For our experiments, we employ the CUDA 12.3 toolkit,
including the NVCC compiler toolchain, runtime library, and
SDK utilities. Furthermore, we collect SIMT efficiency and
memory transaction data for Volta GPU hardware using the
Nvidia Profiling tool (Nsight Compute) [34]. These metrics
and tools collectively form the basis for a robust validation
process, ensuring the reliability and accuracy of ThreadFuser
against real SIMT hardware.

We compile the CUDA workloads using nvce at the -O3
optimization level. We did not observe significant variations
in the results when the CUDA workloads were compiled using
different optimization options. In contrast, we adopt the gcc
compiler for compiling CPU workloads, employing various
optimization options such as 00, OI, 02, and O3. Subse-
quently, traces are collected for each optimized binary version.
The tracing tool, developed using the Intel PIN 3.15 platform,
captures x86 traces from our multithreaded applications. This
tracing procedure is conducted on a machine with an Intel
Xeon CPU E5-2630 with 20 cores.

In scenarios where the CPU application establishes a thread
pool (e.g., OpenMP), the workload distribution among threads
depends on the OS or the library’s scheduling policy. In
contrast, in GPUs, all threads within a kernel execute identical
code and handle an equivalent amount of fine-grain work.
To ensure an equitable comparison between CPU and GPU
threads, ThreadFuser addresses this challenge by generating
a trace for each loop iteration in OpenMP workloads and
a trace for each call to the traced thread’s worker function
in Pthread workloads. This approach guarantees consistency
in data partitioning and interleaving between CPU and
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Fig. 5: ThreadFuser SIMT efficiency and memory divergence
correlation versus Nvidia Hopper H100.

GPU implementations throughout the study. In Table I,
the ”#SIMT Threads” column denotes both the number of
threads executed on the actual GPU and the number of
OpenMP iterations/Pthreads worker functions simulated by
ThreadFuser.

SIMT Efficiency Correlation: Figure 5a illustrates a com-
parative analysis of SIMT control efficiency as projected by
ThreadFuser in contrast to SIMT-based NVIDIA H100 GPU
hardware. This experiment includes all correlation workloads
detailed in Table I, compiled with varying optimization options
to ensure a comprehensive evaluation. ThreadFuser demon-
strates a perfect 1.0 correlation with hardware when employing
00 and O] optimizations. Notably, O/ exhibits a minimal 3%
mean absolute error, making it the closest approximation to
the real GPU.

In general, the analyzer tends to overestimate SIMT ef-
ficiency when O3 optimizations are applied, given that the
compiler employs more aggressive optimization strategies to
enhance performance. Techniques such as loop unrolling and
jump table implementation for switch statements play a role
in minimizing code divergence.

An interesting observation we found when comparing the
PTX generated by nvee and the x86 assembly code generated



by gcc. Surprisingly, gcc applies more aggressive optimiza-
tions than nvcee, even when both compilers are invoked with the
highest optimization option.gcc targets x86 CPUs, which have
a rich instruction set and various optimization opportunities.
For example, gcc can utilize SSE and AVX instructions for
vectorization and parallel processing, optimizing performance
for x86 architectures.

We calculated the standard deviation (std) of errors across
the different optimization levels for all 11 applications to
assess the variability in performance outcomes. The calculated
std value is approximately 6%, reflecting the range of errors
observed among the tested optimization levels. Additionally,
the average error across these samples is approximately 4%.
Notably, 30 out of these 44 samples, or approximately 83%,
exhibit errors that fall within one standard deviation from
the mean. This statistical measure provides insights into the
consistency and predictability of error outcomes relative to the
mean performance across the optimization spectrum.
Memory Accesses Correlation: In Figure 5b, we present a
comparison of the total number of 32-byte memory trans-
actions for each workload detailed in Table I. This figure
illustrates the relationship between the load/store accesses
estimated by ThreadFuser and the actual data collected during
the execution of the workloads on the Nvidia H100 GPU. The
analysis focuses on the overall number of global transactions
issued per load/store on the GPU and the number of accesses
per each x86 instruction generating memory accesses to the
heap segment (as disccused in section III). Both the X and Y
axes of the graph utilize a base-10 logarithmic scale.

Remarkably, ThreadFuser exhibits a robust correlation with
hardware data for memory transactions, akin to the efficiency
study. Specifically, the correlation factors are 0.99, 0.98, 0.98,
and 0.96 for 00, O1, 02, and O3, respectively. Among these
optimization options, O/ boasts the lowest mean absolute error
(MAE) of 17%. Similar to SIMT efficiency analysis, the study
of memory transactions reveals that 85% of the applications
exhibit transaction rates within one standard deviation of the
mean rate, approximately 34%.

Upon analyzing the assembly code generated by the gcc
compiler across different optimization levels, significant vari-
ations in memory accesses were observed. Specifically, O0
exhibited a tendency to include a load or store instruction for
each global variable access, whereas O2 and O3 applied more
aggressive optimizations to minimize memory transactions.
These optimizations leverage the differing number of archi-
tectural registers provided by SIMT and x86 ISAs as well as
the significant differences in compiler toolchains, influencing
the accuracy of memory transaction estimates in ThreadFuser.

Taking the example of VectorAdd, the use of O2 and O3
resulted in storing the cumulative sum value in the register
file, reducing the number of issued transactions. OI, with
a moderate level of optimization, found a middle ground,
positioning itself between the extremes and achieving the
lowest Mean Absolute Error (MAE) of 17% among the four
levels of optimization.
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Fig. 6: Projected Speedup of the studied MIMD CPU workload
using GPU simulator(Speedup Normalized to Multi-threaded
CPU execution on actual CPU).

V. ThreadFuser USE CASES

This section unveils use cases of ThreadFuser for both
developers and architects, illustrating the practical value and
versatility of the ThreadFuser framework. In the first use case,
covered in Section V-A, we explore a practical application
of the ThreadFuser framework for developers. This section
demonstrates the analyzer’s ability to swiftly estimate SIMT
efficiency with minimal time overhead and to project speedup
when utilized with a warp-based simulator. We present a
case study in which we identify the sources of SIMT in-
efficiency bottlenecking a particular workload. Importantly,
this is achieved without the necessity of undergoing the
porting effort. In Section V-B, we demonstrate the framework’s
utility for architects in guiding the design of future SIMT
hardware. We emphasize the importance of designing future
SIMT hardware to handle a broader range of general-purpose
workloads. The section offers a detailed study of the impact
of synchronization primitives on SIMT efficiency, explores the
relationship between SIMT width and efficiency, and discusses
the design considerations for compilers and underlying mem-
ory systems to exploit the efficiency of SIMT hardware.

A. Developers Use Case

Table I provides an exhaustive catalog of the workloads
incorporated in this case study. These workloads primarily rely
on CPU-based processing and currently lack a corresponding
CUDA implementation. Consequently, we utilize the original
CPU C++ implementation without any modifications to assess
the Single Instruction, Multiple Thread (SIMT) efficiency of
these multi-threaded workloads. We limit traced threads to
capture essential patterns efficiently. Additional threads would
repeat the same patterns without adding significant insights.

The focal point of this case study revolves around exploring
the feasibility of executing these multi-threaded workloads
on SIMT hardware, particularly GPUs [35], [36]. To achieve
this, compute-intensive applications, alongside data center
microservice workloads, are implemented using C++ OpenMP
and Pthread libraries. The microservices, crafted in C++,



leverage a spectrum of libraries, including C++ stdlib, Intel
MKL, gRPC, and FLANN. Compilation is carried out using
gcc with the -O3 optimization and SSE vectorization enabled.

To optimize performance, the applications with compute-
intensive tasks are partitioned into multiple chunks, and each
thread executes the same computation on the assigned chunk in
parallel. This design aligns with the Single Program Multiple
Data (SPMD) pattern, making the applications well-suited for
efficient parallelization.

As illustrated in Figure 1, the data compression benchmark,
pigz, displays constrained efficiency due to its control flow
being intrinsically data-dependent [28], [29], [37]. Notably,
microservices applications such as TextSearch exhibit re-
markable SIMT efficiency. This is a noteworthy observation,
considering that the SIMT hardware domain has, until now,
remained relatively unexplored and unported for microservices
applications.

By leveraging ThreadFuser, developers can rapidly and cost-
effectively estimate the porting effort for these workloads,
minimizing overhead. This provides developers with a valuable
tool to gauge the potential SIMT efficiency of their code
without undergoing the actual porting process. SIMT effi-
ciency is a pivotal factor that dictates the extent of porting
and code reengineering efforts required to make a code SIMT-
friendly. Therefore, this estimation approach aids developers in
making informed decisions about the feasibility and resource
implications of adapting their code for SIMT architectures.

Moreover, through the ThreadFuser trace generation feature,
developers can utilize state-of-the-art simulators such as Ac-
celSim [27] to forecast the performance speedup gains when
migrating CPU MIMD applications to SIMT hardware, like
GPUs. Figure 6 delineates the projected speedups for all the
applications listed in Table I.

For applications where a SIMT implementation exists in
CUDA, traces for the CUDA implementation were generated
using nvbit [46] and the tracing tool integrated with Accel-
Sim [27] on an Nvidia Volta 100 GPU. For CPU implemen-
tations, traces were generated using ThreadFuser with a warp
size of 32 threads. Subsequently, both sets of collected traces
were executed in the AccelSim simulator, configured with
Nvidia RTX 3070 settings.

As depicted in the figure, ThreadFuser enables accurate
measurement and prediction of performance, as evidenced by
the close alignment of both series on the left side of the graph,

following the same trend line. This capability shows the effec- ;

tiveness of ThreadFuser in providing developers with valuable
insights into the potential speedup of their applications on
SIMT hardware, aiding in informed decision-making during
the porting process.

In cases where access to the source code is available,
ThreadFuser proves to be an invaluable tool for identifying
the underlying causes of low SIMT efficiency when porting
current MIMD implementations to SIMT hardware.

We conducted an in-depth analysis on one of the microser-
vices, specifically HDSearch-Midtier. Initially, the SIMT effi-
ciency for this workload was measured at only 7%. However,
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leveraging ThreadFuser’s per-function analysis, we were able
to break down the SIMT efficiency on a per-function basis,
enabling us to pinpoint specific code sections exhibiting high
control divergence. The distribution of executed instructions
per function call in HDSearch-Midtier, depicted in Figure 7a,
revealed that half of the instructions were generated from the
getpoint method, showing a substantial control divergence of
6%, as illustrated in Figure 7b.

Further examination of the source code of the getpoint
function in the FLANN library, as shown in Listing 1, unveiled
data-dependent control flow for kd-tree traversal. To address
this issue, we ensured that the number of computations per-
formed by getpoint matched the originally reported results by
the HDSearch-Midtier microservice to the client. By fixing the
number of computations to return the first top 10 results for all
queries, we guaranteed uniform execution across all threads in
the for loop at line #5. This adjustment significantly increased
SIMT efficiency to 90%, while still maintaining an impressive
93% image search accuracy. Notably, the other two methods,
ProcessRequest and vector, faced limitations associated with
the serialization from dynamic memory allocation in the C++
glibc library.

for (; table != table_end; ++table) {
for (; xor_mask != xor_mask_end; ++xor_mask) {
sub_key = key ~ (*xor_mask);

for (int j = 0; j < num_point; J++) {
point_id_vec->push_back (point) ;
}
}
}

Listing 1: Code snapshot from FLANN library used in
HDSearch-midtier workload

B. Architects Use Case

ThreadFuser aimes at assisting architects in evaluating the
efficiency and effectiveness of emerging SIMT hardware. It



provides architects with the opportunity to delve into a new
realm of workloads that were previously unconsidered for
SIMT hardware. This capability empowers architects to ex-
plore a diverse set of applications beyond the traditional focus
on graphics and machine learning. By doing so, architects
gain valuable insights into the hardware features necessary
for future SIMT architectures, enabling them to design novel
accelerators tailored to a broader spectrum of applications like
the ones introduced in previous work [13], [14], [26], [44].

For example, utilizing ThreadFuser, architects can effi-
ciently investigate the impact of SIMT warp width on SIMT
efficiency. While a warp size of 32 is commonly employed
in modern SIMT hardware, such as NVIDIA GPUs [36], we
extend the configurability of the warp size in ThreadFuser,
ranging it from 8 to 32. Comprehensive experiments are then
conducted on all the workloads discussed in the preceding
sections.

As depicted in Figure 1, the SIMT efficiency of the work-
loads is illustrated across various warp sizes. The results
prominently showcase a consistent trend: as the warp size
increases, the efficiency of all workloads experiences a decline.
This observed decline can be attributed to the augmented num-
ber of threads accommodated within the warp, consequently
escalating the likelihood of thread divergence.

The decreasing control efficiency with an increasing warp
width stems from the expanded number of threads in the warp.
This, in turn, amplifies the probability of thread divergence.
Furthermore, the increase in control-flow divergence becomes
more harmful as all divergent paths are executed serially,
leading to a reduction in parallelism. This observed behavior
aligns seamlessly with Equation 1, as previously discussed.

Figure 1 shows that high SIMT efficiency workloads are
less affected by warp size. For example, Nbody and MD5 have
minimal variations below 5%.

On the other hand, lower SIMT efficiency workloads are
more sensitive to warp size. Pigz achieves 18% efficiency with
a warp size of 8, compared to 10% with a warp size of 32.
Similarly, Rodinia BFS jumps to 40% efficiency with an 8-
thread warp size.

These findings imply that workloads with lower SIMT

efficiency could benefit from hardware optimizations or warp
size adjustments. Understanding sensitivity variations across
workloads is crucial for architects optimizing SIMT efficiency
based on each application’s unique characteristics.
Impact of synchronization primitives on SIMT efficiency:
When looking at workloads that involve synchronization, like
microservices, it’s important to note that the SIMT efficiency
we report assumes fine-grain locking and doesn’t consider lock
spinning in the traces we generate. For example, the C++ glibc
allocator uses a single shared mutex for dynamic memory
allocation, causing conflicts between threads, especially during
the new operation.

We assume the use of fine-grain locking and a high-
throughput concurrent memory manager, a common practice
in optimized data center workloads for good performance
scaling [17].
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In Figure 8, we show the percentage of instructions not
traced, including spinning lock instructions and I/O operations.
The GEOMEAN indicates that we are tracing 90% of the in-
structions, which means that we can safely skip the remaining
10%. This approach ensures a practical evaluation of SIMT
efficiency in workloads with synchronization, giving a realistic
view of performance scaling potential.

Furthermore, architects can leverage ThreadFuser to explore
more complex workloads where synchronization primitives
play a crucial role, an area often overlooked and underexplored
in SIMT hardware like GPUs.

Using ThreadFuser, we investigate the impact of imple-
menting locks and other synchronization primitives on the
overall control flow efficiency. The study used a measure of
SIMT efficiency built for data center workloads, as depicted
in Figure 9.

Dealing with synchronization primitives, following the
intra-warp approach discussed in Section III, did result in
a decrease in SIMT efficiency. However, this decline was
not found to be as substantial, aligning with the findings
discussed in 8. This observation can be attributed to the
nature of the workloads studied, where microservices han-
dle independent requests from multiple clients, resulting in
minimal data sharing. Additionally, upon closer examination
of the source code, we identified the use of fine-grained
locking, effectively mitigating lock contentions and reducing
synchronization overheads.

This study shows the importance of carefully optimizing
synchronization methods to ensure optimal control flow
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Metric XAPP ThreadFuser
Input CPU code CPU MIMD traces
Estimation SIMT efficiency
Estimation memory divergence
Output GPU speedup projection Cycle level detailed performance
estimation
Source code bottlenecks
Analysis Profiling ML-based Dynamic CFG
3% SIMT efficiency , 17% memory
Accuracy (error %) 26.9% Execution time 0.97 Speedup projection correlation
33% Execution time
Hardware support Only GPUs Any SIMT hardware including GPU

TABLE II: XAPP [8] vs ThreadFuser comparison

efficiency in parallel computing environments.

Impact of Memory divergence: In Figure 10, we present
the memory divergence degree, quantified as the number of
memory transactions per load/store instruction, for both heap
and stack memory access. The depicted workloads exhibit
significant memory divergence, a result of each thread having
its private stack, and the memory manager allocating scattered
data chunks in the heap segment. This allocation strategy
diminishes the opportunity for data coalescing during runtime.
To address this challenge, data restructuring, such as transi-
tioning from a array-of-structure (AoS) to a structure-of-array
(SoA) representation, can enhance the memory efficiency of
these workloads [36].

Architects and compiler developers play a pivotal role in
proposing hardware or software solutions, such as optimized
memory allocators [17], [24], [38], [42], to minimize memory
divergence. This proactive approach ensures that the memory
access patterns align with the underlying hardware archi-
tecture, optimizing data layout, and consequently improving
overall memory efficiency for these workloads.

VI. RELATED WORK

The closest existing work to ThreadFuser is XAPP [8].
Table II outlines the main differences between XAPP and
ThreadFuser. XAPP employs a machine-learning-based ap-
proach to predict GPU performance based on single-threaded
CPU implementations, identifying code segments likely to
benefit from GPU porting using 16 profile-based program
properties. In contrast, ThreadFuser utilizes dynamic control-
flow graph properties for more accurate SIMT control ef-
ficiency and memory divergence predictions. In contrast to

XAPP, ThreadFuser is designed to analyze and simulate
MIMD workloads, allowing for fine-grained identification
of code bottlenecks and detailed architectural explorations.
XAPP’s opaque machine learning model is well suited to
providing a quick estimate of code performance but lacks the
comprehensive performance analysis ThreadFuser’s architec-
tural simulation integration provides.

From a prediction accuracy perspective, XAPP achieves
a 26.9% error rate in predicting execution time, while
ThreadFuser averages 33% for similar workloads. More-
over, while XAPP is limited to existing GPU architectures,
ThreadFuser supports the analysis of multithreaded CPU
workloads on various SIMT hardware platforms, including
GPUs. This capability is facilitated by ThreadFuser’s SIMT
trace generator, which can feed any SIMT trace-based simu-
lator, enabling the exploration of diverse SIMT hardware mi-
croarchitectures and offering insights for previously unstudied
MIMD workloads. ThreadFuser stands out as the first frame-
work enabling programmers and architects to comprehensively
study and predict MIMD performance on SIMT machines
without code porting effort. Furthermore, ThreadFuser excels
in accurate predictions of dynamic workload performance that
vary with input, distinguishing it from XAPP’s reliance solely
on static code analysis.

In GPU First [43], the authors present a compiler technique
for executing CPU code on GPUs, but it is limited to OpenMP
programs. In contrast, our approach supports a broader range
of multithreading models, offering greater flexibility for port-
ing CPU workloads to SIMT architectures.

Various GPU analytical performance models with distinct
focuses have been proposed [22], [23], [47], [49]. Wu et
al. [47] employ machine learning for GPU performance and
power estimation, while Zhou et al. [23] introduce GPUMech,
using interval analysis to model multithreading and resource
contentions. Zhang et al. [49] develop a microbenchmark-
based model to identify GPU program bottlenecks, and Hong
et al. [22] propose an integrated power and performance
prediction model for GPUs. Previous works [11], [40], [46],
[50] have proposed performance profiling methodologies for
CUDA workloads, aiming to pinpoint performance bottle-
necks. Zhou et al. [50] introduce GPA, a performance advisor
for NVIDIA GPUs that suggests potential code optimizations
across multiple levels. Shen et al. [40] present CUDAAdvisor,
a profiling framework designed to guide code optimization
on modern GPUs, conducting fine-grained analyses based on
profiling results from GPU kernels.

In contrast, ThreadFuser offers distinctive insights, specif-
ically targeting CPU MIMD programs such as OpenMP or
microservices. ThreadFuser determines whether these pro-
grams would benefit from porting to SIMT hardware and
provides performance optimization suggestions to enhance
SIMT efficiency.

Previous research [3], [4], [18] have found that server
workloads have SIMT efficiency that can be exploited on
GPUs. To take advantage of request similarity, Sandeep et
al. [3] proposed running data center server workloads, SPEC-



Web benchmarks, in lock-step execution on GPUs. While
achieving significant energy efficiency, the authors had to
rewrite the workloads from PHP to CUDA. Similarly, Het-
herington et al. [18], [19] run the Memcahced workload on
a GPU. Agrawal et al. [4] investigate the SIMT efficiency of
SPEC-web workloads, demonstrating that they have promis-
ing control and memory efficiency that can be executed on
SIMT hardware. In all these previous studies, they focused
on monolithic services and had to rewrite the workloads in
CUDA, whereas ThreadFuser analyzes SIMT efficiency of
microservices as-is on the CPU in its original programming
language. Furthermore, they do not explore the bottlenecks of
SIMT deficiency.

Tino et al. [44] describe how an out-of-order pipeline can be
integrated with SIMT hardware to execute OpenMP workloads
efficiently. ThreadFuser can be used to improve the reach of
these previous works by providing control flow and memory
efficiency estimations for a broad class of CPU workloads.

VII. LIMITATIONS

With zero coding effort, the framework enables program-
mers to project the first-order performance gain of multi-
threaded CPU workloads on SIMT hardware, including ar-
bitrary multithreaded code that does not follow the SPMD
programming model. Although ThreadFuser gives the pro-
grammer a sense of how well the program will perform with
zero restructuring, it does not directly project the potential
performance possible if the programmer is willing to invest
the effort required to leverage GPU-specific features such
as shared memory or tensor cores. However, by leveraging
ThreadFuser’s detailed simulation results, the programmer
can assess the potential impact of these optimizations. Pro-
grammers must explicitly use these features for maximum
performance benefits; for example, existing SIMT compilers
do not automatically target tensor cores. Similarly, optimizing
data movement for shared memory requires careful manual
consideration.

From an ISA perspective, since ThreadFuser relies on
the output of a CPU compiler optimized for x86 machines,
some of the assumptions made by the compiler could be
sub-optimal for a SIMT design. For example, the register
allocation mechanism is unaware of the large multi-threaded
registers available for throughput hardware, which may lead
to more register spills/fills than necessary. These kinds of
hardware/software co-design considerations are possible for
architects to assess by modifying ThreadFuser’s simulation
infrastructure but hamper direct correlation between equivalent
CPU and GPU programs. For example, the CPU compiler’s
optimization level can have a non-trivial effect on memory
system correlation, as shown in Figure 5.

From a programmer’s perspective, ThreadFuser is most
useful in projecting the performance of large codebases with
less structured and less easily predictable patterns. Estimating
the performance of a matrix multiplication CPU program,
for example, is better left to higher-level roofline analysis
since optimized library kernels already exist for these kinds

of workloads. ThreadFuser focuses more on finding the next
optimization frontier for SIMT-based accelerators than per-
fectly predicting their current use cases in workloads where
a rich suite of software already exists. We believe that SIMT
simulation of these workloads will enable architects to explore
more exotic SIMT-based designs not limited to today’s GPUs
and drive the exploration of more heterogeneous hardware.

VIII. CONCLUSION

We introduce ThreadFuser, a correlated analysis framework
designed to evaluate the effects of SIMT execution on arbitrary
CPU binaries. Without changing a line of code, ThreadFuser
enables application developers to evaluate the compatibility
of multithreaded CPU applications with SIMT GPUs. We
demonstrate that there is significant potential to accelerate
MIMD CPU programs, previously considered too irregular for
SIMT, with contemporary GPUs. ThreadFuser’s per-function
analysis helps to rapidly identify problematic code segments,
providing a clear understanding of code modifications that are
necessary for efficient GPU execution.

By integrating with state-of-the-art simulation tools [27],
ThreadFuser enables architects and system designers to study
the implications of data-parallel acceleration on diverse soft-
ware. The GPU revolution in machine learning was enabled by
giving programmers the ability write general-purpose code for
a data-parallel SIMT machine. ThreadFuser seeks to build on
this momentum, unhindered by the often painstakingly task of
porting code to a GPU programming language. ThreadFuser
allows architects to explore the wide space of CPU software
and evaluate alternative SIMT accelerator designs in new
domains that have yet to be accelerated.
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