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ABSTRACT
Hyperspectral images consist of large numbers of pixels
across hundreds of spectral bands, making statistical analysis
computationally challenging. However, these images often
exhibit intrinsic structure that can be leveraged for efficient
statistical and machine learning. We propose a novel nonlin-
ear method for unmixing hyperspectral images. In contrast
to classical methods which consider an additive linear model,
we propose to represent hyperspectral spectra as probabil-
ity distributions in Wasserstein space and characterize pure
spectra as those that allow for typical observations to be re-
constructed as entropic Wasserstein barycenters. This allows
for the analysis and synthesis of hyperspectral spectra in a
geometry-preserving fashion. Results on synthetic data and
real HSI show important geometric features of hyperspectral
spectra are preserved when utilizing our nonlinear Wasser-
stein unmixing scheme.

Index Terms— Hyperspectral images, unmixing, optimal
transport, Wasserstein space

1. INTRODUCTION

Hyperspectral images (HSI) record reflectance across a range
of electromagnetic wavelengths, providing a powerful, high
spectral resolution characterization of imaged scenes. While
its rich information is useful for a range of remote sensing
tasks (e.g., land cover classification [1, 2], land change de-
tection [3], precision agriculture [4], and anomaly detection
[5, 6]), HSI data is very high-dimensional. Typically hun-
dreds of spectral reflectance ranges are recorded for millions
of pixels. The curse of dimensionality for HSI challenges
naive statistical and machine learning methods and demands
approaches that leverage intrinsic low-dimensional structures
in HSI [7].

Dimension reduction methods such as principal com-
ponent analysis (PCA) [8], non-negative matrix factoriza-
tion (NMF) [9, 10], and sparse dictionary learning [11] have
proven useful for reducing the dimension of HSI while retain-
ing properties that allow for downstream applications such
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as material labeling or image segmentation. A related notion
in HSI analysis is that of unmixing, which models individ-
ual pixels in HSI as consisting of reflectances from multiple
“pure” material spectra, due to the low spatial resolution of
typical HSI sensors (e.g., on the order of tens of square me-
ters). Important in its own right for understanding the context
of a scene captured by an HSI, unmixing also provides useful
features for classification and segmentation methods [12].
HSI unmixing not only provides useful information about
the constituent material contents of an individual pixel (when
interpreting the learned spectra as pure materials) but also
provides an efficient parameterization of the data when the
number of learned pure spectra is smaller than the number of
spectral bands in the full HSI.

We approach the problem of HSI unmixing via a novel
dictionary learning method based on optimal transport [13].
While most HSI unmixing methods posit an additive mixture
model, we consider a nonlinear mixture model based on en-
tropic Wasserstein barycenters, which preserves the intrinsic
geometry of the spectral signatures more effectively than ex-
isting methods. We apply our novel geometric Wasserstein
dictionary learning scheme to synthetic and real hyperspectral
spectra to demonstrate the efficient and interpretable compo-
nents learned by our method.

The rest of this paper is organized as follows. Section
2 provides necessary background on unmixing and optimal
transport. Section 3 details our Wasserstein Hyperspectral
Unmixing (WaHU) algorithm, which is then validated on syn-
thetic and real HSI data in Section 4. We conclude and discuss
future work in Section 5.

2. BACKGROUND

Let {µi}ni=1 ⊂ RD denote a collection of hyperspectral pix-
els with n being the total number of pixels imaged and D the
number of spectral bands. Typical approaches to HSI unmix-
ing attempt to learn pure spectra — which we will refer to as
atoms in what follows — {zj}mj=1 ⊂ RD and mixture weights
{wi}ni=1 ⊂ Rm such that 1

n

∑n
i=1 ∥µi −

∑m
j=1[wi]jzj∥2 is

small (i.e., a typical pixel is well-reconstructed by a linear
combination of the learned atoms) where m ≪ n and ∥ · ∥2
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denotes the ℓ2 norm. Various constraints on the atoms (e.g.,
non-negativity; lie on an D-simplex) and weights (e.g., non-
negativity; lie on an m-simplex; small ℓp norm; sparsity)
may be imposed to generate interpretable and useful atoms
and weights. While well-studied [14, 15], approaches to
HSI unmixing based on a linear reconstruction model (i.e.,
approximating true pixel µi via a linear combination of the
{zj}mj=1) may fail to capture intrinsic geometry for even sim-
ple datasets. See for example Figure 2 (b) and (c) for an
illustration of how two linear approaches for unmixing —
principal component analysis (PCA) and nonnegative matrix
factorization (NMF) — may fail to efficiently represent a
family of translated and rescaled Gaussians.

Our approach abandons the linear unmixing model and
considers a novel approach to HSI unmixing based on op-
timal transport [13] between probability measures. Let
∆D := {(x1, . . . , xD) ∈ RD |

∑D
k=1 xk = 1, xk ≥ 0, ∀k}

denote the probability simplex in RD. For two probability
distributions µ, ν ∈ ∆D, let Π(µ, ν) ⊂ ∆D×D denote the
space of couplings between µ and ν, namely the non-negative
matrices π ∈ RD×D such that ∀j,

∑D
i=1 πij = νj , and

∀i,
∑D

j=1 πij = µi. We suppose µ, ν are supported on a
common set of points {bk}Dk=1 ⊂ R. For p ≥ 1, the entropic
p-Wasserstein distance [16] between µ and ν is

W p
p,ϵ(ν, µ) := min

π∈Π(µ,ν)

D∑
k=1

D∑
ℓ=1

(πkℓ|bk−bℓ|p+ϵπkℓ log(πkℓ)),

(1)
where ϵ > 0 is a regularization parameter. At an intuitive
level, the solution π∗ to (1) transports the mass in distribu-
tion µ with that in ν in a distance-minimizing manner (first
term) while ensuring the mass is smoothly distributed (second
term); see [13] and [17] for a thorough overview of the com-
putational and theoretical aspects of entropic optimal trans-
port, respectively.

We can now define a notion of averaging with respect to
entropic p-Wasserstein distance, namely entropic Wasserstein
barycenters [18, 19, 20, 21]. For a set of m probability distri-
butions {νj}mj=1 ⊂ ∆D and a vector of weights w ∈ ∆m, we
define the entropic p-Wasserstein barycenter to be

Bary({νj}mj=1;w) := argmin
µ∈∆D

m∑
j=1

wjW
p
p,ϵ(µ, νj). (2)

Figure 1 shows m = 2 Gaussians ν1 ∼ N (50, 5), ν2 ∼
N (130, 10) as well as a family of linear mixtures (1 −
t)ν1 + tν2 and a family of entropic 2-Wasserstein barycen-
ters corresponding to weights (1 − t, t) ∈ ∆2 for t ∈
{0, .02, .04, . . . , .98, 1}. Unlike the linear mixtures, the
barycenters smoothly deform from one Gaussian to another.
In fact, the associated path of probability measures is related
to geodesic paths in the space of probability measures [22].

Given observed probability distributions {µi}ni=1 (in-
terpreted in our context as HSI pixels after normalization
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Fig. 1. Left: two Gaussian distributions, represented by their
densities. Middle: linear mixtures of these two Gaussians,
showing bi-modal behavior. Right: Barycenters of the two
Gaussians, showing geometry preservation; in particular, en-
tropic 2-Wasserstein barycenters of Gaussians remain Gaus-
sian [20].

so they lie in ∆D), we can perform unmixing via a learn-
ing scheme that finds probability distributions {νj}mj=1 and
weights {wi}ni=1 ⊂ ∆m such that each data point µi is close
to an entropic barycenter with reference measures {νj}mj=1

and weights wi. Specifically, we solve the following regular-
ized Wasserstein dictionary learning problem [23, 24]:

({ν∗j }mj=1, {w∗
i }ni=1)

= argmin
{νj}m

j=1,{wi}n
i=1

n∑
i=1

W p
p,ϵ(Bary({νj}mj=1;wi), µi) (3)

+ρ
n∑

i=1

m∑
j=1

[wi]jW
p
p,ϵ(µi, νj),

where ρ > 0 is a regularization parameter. This formulation
generalizes linear unmixing models by (i) replacing linear re-
construction with entropic Wasserstein barycenter reconstruc-
tion and (ii) penalizing the use of non-local atoms in the re-
constructions. A linear formulation of (3) was considered in
[11] and shown to be effective for unsupervised clustering of
HSI.

The non-convex optimization problem (3) tries to recon-
struct each observed data point well as a barycenter (first
term), subject to a locality regularizer that promotes repre-
senting using nearby atoms (second term). This program can
be approximately optimized using first-order methods that
jointly optimize the atoms and weights; we refer to [23] and
[24] for details. Our focus is on learning meaningful atoms
for HSI unmixing via solving (3) as described in Section 3.
We note that our approach differs from existing approaches to
HSI unmixing that leverage entropic optimal transport [25],
in that our synthesis model for combining atoms is non-linear,
based on entropic Wasserstein barycenters.

3. THE WASSERSTEIN HYPERSPECTRAL
UNMIXING (WAHU) ALGORITHM

We consider HSI pixels as probability distributions and solve
(3) to learn generators that reconstruct the observed data well
under the Wasserstein barycenter synthesis model. The ap-
proach is laid out in Algorithm 1. The key idea for approxi-
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mately solving (3) is to consider the loss function

G({νj}mj=1, {wi}ni=1, {µi}ni=1) :=
n∑

i=1

W p
p,ϵ(Bary({νj}mj=1;wi), µi) (4)

+ρ
n∑

i=1

m∑
j=1

[wi]jW
p
p,ϵ(µi, νj),

and to use automatic differentiation to iteratively update the
weights {wi}ni=1 and atoms {νj}mj=1; we note that the training
data {µi}ni=1 is fixed in the learning process. First, we initial-
ize the weights uniformly at random from ∆m and the atoms
with k-means++ [26] in Wasserstein space over the training
data. From these initializations, we iteratively update via au-
tomatic differentiation on G.

Algorithm 1: Wasserstein Hyperspectral Unmixing
(WaHU)

1: Input: HSI spectra: {µi}ni=1 ⊂ RD; Wasserstein
parameter: p; entropic regularization parameter: ϵ;
locality regularization parameter: ρ; # iterations: L;
number of atoms: m

2: Normalize each pixel µi to lie in ∆D.
3: Initialize variables α(0) ∈ Rm×N , β(0) ∈ Rn×m.
4: for k ← 1, . . . , L do
5: {ν(k)j }mj=1 ← σ(α(0)), {w(k)

i }ni=1 ← σ(β(0)).
6: Compute the objective function

loss← G({ν(k)j }mj=1, {w
(k)
i }ni=1, {µi}ni=1).

7: Compute the gradients with automatic differentiation:
loss.backward().

8: Update α(k),β(k).
9: end for

10: Output: Learned atoms: {νj}mj=1 ← σ(α(k)); learned
weights: {wi}ni=1 ← σ(β(k)).

In order to perform our optimization over arbitrary matri-
ces α ∈ Rm×D,β ∈ Rn×m instead of {νj}mj=1, {wi}ni=1

which are constrained to be non-negative and sum-to-1,
we use the softmax change of variables function σ(α) =
(ν1 | ν2 | . . . | νm)⊤ and σ(β) = (w1 | w2 | . . . | wn)

⊤

where σ acts row-wise on a matrix and acts on a vector
(x1, x2, . . . , xn) as:

σ(x1, . . . , xn) :=

(
exp(x1)∑n
i=1 exp(xi)

, . . . ,
exp(xn)∑n
i=1 exp(xi)

)
.

Code implementing Algorithm 1 using the Python OT library
[27] as well as all experiments in Section 4 is publicly avail-
able1.

1https://github.com/fullenbs/WDL_HSI

4. EXPERIMENTS ON SYNTHETIC AND REAL HSI

To demonstrate the efficacy of WaHU for HSI unmixing, we
consider two datasets: synthetic Gaussians and real Salinas A
spectra. We contrast our method with two classical unmixing
methods: PCA, which puts no positivity constraints and seeks
only to minimize ℓ2 reconstruction error; and NMF, which
enforces non-negativity constraints on atoms and weights.

Synthetic Gaussian Data: We compare WaHU on synthetic
Gaussian data in Figure 2. The training data is the same as
in the right plot in Figure 1. As we see in Figure 2 (b), PCA
learns atoms that are not probability distributions, owing to
the lack of positivity constraints. We see in Figure 2 (c) that
while NMF learns positive atoms that resemble the shapes of
the true atoms (albeit they are off by a translation), the recon-
structions are poor owing to the underlying additive linear re-
construction model. Such a model cannot adequately account
for the particular form of intrinsic low-dimensionality in this
data, namely that all observed Gaussians are smooth defor-
mations between two reference Gaussians (more precisely,
that they all lay near the geodesic between the generating
reference measures in Wasserstein space). On the other hand
as seen in Figure 2 (d), WaHU not only learns decent approx-
imations to the generating atoms, but reconstructs the data
faithfully. For this experiment, parameters p = 2, ϵ = .001,
ρ = 0, m = 2, and L = 400 were used for WaHU.

Salinas A Data: Salinas A is a hyperspectral image cap-
tured by the AVIRIS sensor in 1998 of an agricultural re-
gion in Salinas Valley, CA, USA. It ranges from 380-2500
nm across 224 bands. While the full scene is 83 × 86, to-
taling 7138 pixels, we randomly sample 1002 pixels (167 for
each of the 6 labeled material classes) for our unmixing ex-
periments. Figure 3 shows unmixing results with m = 4,
which allows for easy visualization and contrast with PCA
and NMF. As with the synthetic data, PCA fails to even pre-
serve the non-negativity of the training data. NMF learns
non-negative atoms as expected, albeit none resemble the ob-
served training points. WaHU learns suitable atoms that in-
deed resemble typical observations in the data, owing to the
use of the locality regularizer in (3). We note that all meth-
ods learn atoms that, with respect to their associated synthesis
models (linear for PCA and NMF and nonlinear for WaHU),
reconstruct the training data well, albeit PCA and NMF ap-
pear more affected by outlier pixels than WaHU. In particular,
WaHU yields smoother reconstructions. In this experiment,
parameters p = 1, ϵ = .05, ρ = .01, m = 4, and L = 400
were used.

5. CONCLUSIONS AND FUTURE WORK

We established a novel unmixing paradigm for hyperspectral
images based on optimal transport, specifically entropic p-
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(a) Gaussian atoms (left) and synthetic Gaussian data (right).
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(b) PCA atoms (left) and reconstructions (right).
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(c) NMF atoms (left) and reconstructions (right).
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(d) WaHU atoms (left) and reconstructions (right).

Fig. 2. Unmixing results for Gaussian mixtures. PCA and
NMF fail to capture the smooth deformations of the pair of
Gaussians. This is because a linear synthesis model is ineffi-
cient for this data.

Wasserstein distances and barycenters. By capturing smooth
variations between data understood as probability measures,
more efficient and interpretable learning is achieved com-
pared to linear benchmarks. In the future, we will consider
an unmixing formulation in terms of unbalanced optimal
transport [28, 29] that allows us to consider spectra without
the need to force them to be probability measures. While this
paper has focused on the question of learning good atoms,
the learned weights wi ∈ ∆m provide efficient features for
downstream learning tasks (e.g., pixel classification and scene
segmentation [30, 31, 12, 32]) that may allow for the curse of
dimensionality to be broken when m ≪ D. Developing uses
of the weights in supervised and unsupervised labeling tasks
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(a) Salinas spectra for training.
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(b) PCA atoms (left) and reconstructions (right).
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(c) NMF atoms (left) and reconstructions (right).

0 50 100 150 200
Band number

0.00

0.01

0.02

Re
fle

ct
an

ce

0 50 100 150 200
Band number

0.000

0.005

0.010

0.015

0.020

0.025

Re
fle

ct
an

ce

(d) WaHU atoms (left) and reconstructions (right).

Fig. 3. Unmixing results for Salinas A spectra. PCA, NMF,
and WaHU all reconstruct well with respect to their respective
synthesis models, but only WaHU learns atoms that resemble
the training data.

will be pursued in future work.
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