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ABSTRACT

Hyperspectral images (HSI) capture rich information of large
spatial scenes, yet generating labeled training data can be
expensive and time-consuming. Unsupervised clustering of
HSI allows for segmentation in the absence of labels and is
an important problem in processing rapidly collected HSI. In
order to accurately cluster noisy and high-dimensional HSI,
meaningful data representations that capture latent intrinsic
structure must be developed. We propose to leverage regu-
larized dictionary learning in Wasserstein space to efficiently
and accurately cluster HSI by modeling HSI pixels as proba-
bility distributions. We characterize pixels as similar if they
can be synthesized as entropic Wasserstein barycenters with a
common set of learned reference distributions. Our approach
learns representations that preserve the geometry of the space
of HSI spectra and our barycentric coding spectral cluster-
ing algorithm, which leverages these learned features, shows
promise on benchmark HSI data.

Index Terms— Hyperspectral imaging, unsupervised
clustering, dictionary learning, Wasserstein space, optimal
transport

1. INTRODUCTION

Hyperspectral images (HSI) capture material reflectance over
a wide span of spectral wavelengths, which generates pow-
erful and discriminatory data on the scene surveyed via air-
borne or spaceborne instruments. When large quantities of
labeled training data are available, supervised machine learn-
ing methods such as support vector machines [1], random
forests [2], and deep learning [3] provide tools to accurately
label the material class of pixels in an HSI. However, the col-
lection of labeled HSI pixels is often expensive and time-
consuming, particularly when the regions surveyed are re-
mote from large human settlements. The difficulty in gen-
erating training data has motivated semisupervised and unsu-
pervised learning methods for HSI that require few or no la-
beled training data points to provide a material segmentation
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map of the scene [4]. The challenge of learning in these low-
label settings is compounded by the high dimensionality of
HSI (typically over 100 spectral recordings per pixel), which
problematizes classical statistical learning approaches.

In this paper, we approach the problem of clustering high-
dimensional hyperspectral images through a novel method
based on representation learning in the Wasserstein space,
which models data as probability measures and makes com-
parisons between data points using entropic Wasserstein
distances [5]. Unlike Euclidean or graph-based approaches
to comparing HSI pixels, our Wasserstein approach crucially
leverages the geometry of the HSI pixels by first performing
nonlinear dictionary learning of HSI spectra in Wasserstein
space, then performing spectral clustering on the learned
coefficients. Promising empirical results are shown on the
Salinas A HSI, which suggests the viability of our Wasser-
stein dictionary learning approach to HSI clustering.

The remainder of this paper is organized in the following
manner. In Section 2, we overview HSI clustering methods
before providing the necessary background on data analysis
in Wasserstein space. In Section 3, we provide a detailed
discussion of our approach to HSI clustering via Wasserstein
dictionary learning. Section 4 demonstrates the efficacy of
our approach on the Salinas A HSI, and we conclude and lay
out directions for future research in Section 5.

2. BACKGROUND

Given HSI pixels {;;}™, C R, unsupervised clustering al-
gorithms produce labels {y; }?_; with each y; lying in in the
label set {1,2,..., K} corresponding to K classes or mate-
rial types present in the image; typically K is a user input
though it may be learned. This is done without any training
labels, and typical methods explain the geometric and statisti-
cal patterns in the dataset {; }7_; to infer clusters [6]. Anim-
portant class of clustering approaches that have had success in
labeling HSI scenes are graph-based approaches called spec-
tral clustering [7, 8], which leverage the structural properties
of a latent data graph to determine internally coherent and
externally well-separated clusters [9, 10, 11, 12]. For some
metric d : RP x RP — Rsq, we define a graph weight ma-
trix W € R™*" with edge weight between p; and u; given
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by Wi; = exp(—d(u;, p1;)*/0?) for some tuning parameter
o? > 0o that W;; is large if and only if d(u;, y¢;) is small; al-
ternatively, W can be set as a k-nearest neighbors graph with
respect to the metric d for some suitable k. Natural commu-
nity structure in the associated graph can be learned by an-
alyzing the lowest frequency eigenvectors of the normalized
graph Laplacian L := [ — D~Y/2WD~1/2 where D e Rnxn
is the dlagonal degree matrix with D;; := e 1 Wiy for all
1 =1,...,n; see [13]. In the typical spectral clustering set-
ting, k -means is run on the k eigenvectors of L with the small-
est eigenvalues [8].

A crucial question when running spectral clustering is,
what is an appropriate metric d [14, 15]? We propose to
learn representations of HSI in Wasserstein space so that pix-
els with similar geometry will be represented similarly and
then consider the usual Euclidean distance on these represen-
tations. To learn good representations, we consider dictionary
learning in the Wasserstein space of probability distributions
as follows. Let AP := {(z1,...,2p) € RP | Y20 _ o4 =
1,2, > 0, Vk} be the space of probability distributions in
RP. Given p,v € AP, define IT(pu,v) C AP*D as the set
of couplings between p and v, that is the collection of m €
RZ;P such that Vj, Y12, my; = v;, and Vi, Y1 mi; =
;. Suppose p, v are supported on a common set of points
{bp}P_, C R; this will be the case for HSI spectra from a
common scene. For p > 1, the entropic p-Wasserstein dis-
tance [16] between p and v is

D D

> (mrelbr—be|P+empe log(mie))

k=1 (=1
ey

where € > 0 is a regularization parameter. The solution 7*
to (1) aligns the mass in distribution g with that in v in an
efficient way (first term) while ensuring the mass is smoothly
distributed (second term); for a detailed discussion of entropic
optimal transport, we refer to [5] and [17].

For a set of m distributions {I/j} *, C AP and a vector
of weights w € A™, we define the entropic p-Wasserstein
barycenter [18, 19, 20, 21] to be

= arg min E ’lUJ

HEAD j=1

WP (u,v):= min
et V) L Cin

Bary ({1} ) () @)

Figure 1 shows m = 2 probability distributions: v a uniform
distribution on [20, 80] with small support added to make it
bounded away from 0 over the domain considered; and 5 ~
Laplace(140,4). We show the corresponding family of lin-
ear mixtures (1 — t)uy + tuo and a family of entropic 2-
Wasserstein barycenters corresponding to weights (1 —t¢,¢) €
A2 fort € {0,.05,.1,.15,...,.95,1}. The entropic Wasser-
stein barycenters smoothly deform one unimodal distribution
to another, unlike the linear mixtures which generate bimodal
intermediate distributions.

Given observed probability distributions {y;}? ; (inter-
preted in our context as HSI pixels after an approprlate nor-
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Fig. 1. (Top) A nearly uniform distribution and a Laplace dis-
tribution, represented by their densities. (Bottom) Left: linear
mixture. Right: entropic Wasserstein barycenters. While lin-
ear mixtures show bi-modal behavior, entropic Wasserstein
barycenters show geometry preservation. In particular, all
intermediate distributions are uni-modal, just like the gener-
ating distributions. We note that the entropic regularization
causes some smoothing of the two distributions, which could
be mitigated by decreasing e at the cost of an increase in run-
time.

malization), we can learn meaningful representations useful
for spectral clustering via a learning scheme that finds proba-
bility distributions {;}" ; and weights {w; }}"_; C A™ such
that each data point p; is close to an entropic barycenter with
reference measures {1/]} * , and weights w;. Specifically, we
solve the following regularlzed Wasserstein dictionary learn-
ing problem [22, 23]:

({V }j 1,{’LU }z 1) (3)

—agmin >0 WL Bary (i wi)os)
{VJ}J 11{“’L}L 14=1
+PZZW P (is v5),

=1 j=1

where p > 0 is a regularization parameter that balances the
two terms. This non-convex optimization problem tries to re-
construct each observation well as a entropic barycenter (first
term), subject to a locality regularizer that promotes repre-
senting using nearby atoms (second term). This program can
be approximately optimized using first-order methods that
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jointly optimize the atoms and weights. For more compre-
hensive information on the optimization, we refer the reader
to [22] and [23].

We now proceed to a detailed discussion of how to ap-
proximately solve (3) and utilize the learned coefficients for
spectral clustering.

3. CLUSTERING HYPERSPECTRAL IMAGES IN
WASSERSTEIN SPACE

Given HSI pixels {y; }" 1 to cluster, we first solve (3) to ac-
quire coefficients {w;}? ;. Intuitively, if two pixels u; and
5 have similar coefficients w; and w;, then they use similar
learned atoms in their barycentric reconstructions. This im-
plies meaningful similarity of the original data points them-
selves via similarity of the learned coefficients. In the context
of linear signal processing, this observation is the basis for a
range of clustering methods [24, 25, 26], and we apply it in
the context of Wasserstein dictionary learning. Specifically,
we consider the metric d(u;, it5) = ||w; — w;||2 as the metric
for spectral clustering. Our overall approach to barycentric
coding spectral clustering (BCSC) therefore has two compo-
nents: first, learn weights via approximately solving (3), sec-
ond use the learned weights via the metric |jw;
spectral clustering.

The key idea for approximately solving (3) is to consider
the loss function

G({v; ;néla{wi}?:la{ﬂi}?él) =

Z <(Bary {Vj}j 13 W;), 14;) “4)
+pzz wil ;W (i, vj).-
=1 j=1

and to use automatic differentiation to iteratively update the
weights {w; }}'; and atoms {v;}; we note that the train-
ing data {y;}? , is fixed in the learning process. The basic
procedure is to: (i) initialize the weights {w;}}_; uniformly
at random from A™ and the atoms via Wasserstein k-means
over the training data (ii) iteratively update via automatic dif-
ferentiation on G. This is outlined in Algorithm 1.

In order to perform our optimization over arbitrary matri-
ces a € R™P 3 € R"™™ instead of {vitji {witie,
which are constrained to be non-negative and sum-to-1,
we use the softmax change of variables function o(a) =
(vi|va] .. | vm)  and o(B) = (wy |wa | ... | wy) "
where o acts row-wise on a matrix and on a vector as:

exp(x1) exp(zy,)
a(xl,...,mn):( - ey —m )
> i1 exp(7;) > i1 exp(x;)

Once weights {w;}™_; have been learned, they are used
for spectral clustering. The overall approach we call barycen-

tric coding spectral clustering (BCSC) and is detailed in Al-
gorithm 2. In order to improve runtime, a random sample of
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Algorithm 1: Geometric Wasserstein Dictionary
Learning

1: Input: HSI spectra: {y;}7_, C RP; Wasserstein
parameter: p; entropic regulanzatlon €; locality
regularization: p; number iterations: L; number of
atoms: m.
Normalize each pixel y; to lie in AP,
Initialize variables a(?) € Rm*N = g0) ¢ gnxm,
fork < 1,...,Ldo
Yy = o(@®), {w )i,
Compute the objective function
Loss = G({ry" 1y {wP Yy {pu}iy).
7. Compute the gradients with automatic differentiation:
loss.backward().

8  Update a® 3"

a(B©).

ALl

9: end for
10: Output: Learned atoms: {v;}7"; « o(a®); learned
weights: {w;}™_; « o(3%).

pixels can be used for learning weights and spectral clustering
based on this spectral information and all remaining points
can be labeled via spatial inpainting. Specifically, the 10 ¢!
spatial labeled nearest neighbors of each unlabeled pixel are
computed and the majority label among those labeled pixels
is used for the unlabeled pixels.

Algorithm 2: Barycentric Coding Spectral Cluster-
ing (BCSC)

1: Input: {y;}? ,: HSI pixels; N: number of pixels for
which to solve (3); number of nearest neighbors for
graph: N N; K: number of clusters

2: Select a random subset of size N among the {y;} ; to
train on, call them {i; }}¥ 1

3: Run Algorithm 1 on {/;} ; to learn barycentric
weights {w; } N, ¢ A™.

4: Run K-means on the K lowest frequency eigenvectors
of the symmetric normalized Laplacian associated to the
N N-nearest neighbors graph with respect to
d(pi, prj) = ||wi — wil|2, to acquire labels {F}

5. Assign the n — N unlabeled pixels labels via majority
vote among the 10 ¢! spatial nearest neighbors that are
among the {7} ;; call the resulting inpainted labels

{yl}zzl
6: Output: Cluster labels: {y;}1

Code implementing Algorithms 1 and 2 using the Python

OT library [27] and all experiments are public'.

"https://github.com/fullenbs/WDL_HSI
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Fig. 2. Left: Salinas A spectra. Right: Salinas A ground truth;
white classes are unlabelled.

4. EXPERIMENTAL CLUSTER ANALYSIS OF
SALINAS A

The Salinas A hyperspectral image was generated in 1998 by
the AVIRIS sensor. The imaged scene is an agricultural region
in Salinas Valley, CA, USA. It consists of 224 spectral bands
ranging from 380-2500 nm across 224 bands. There are 6 ma-
terial classes in the image: broccoli greens; corn green weeds;
and romaine lettuce at 4 different growth times, namely 4, 5,
6, and 7 weeks. The full scene is 83 x 86, totaling 7138 pixels;
see Figure 2 for an image of Salinas A spectra and its spatial
ground truth with unlabeled pixels colored in white.

We run Algorithm 2 using 1002 randomly selected pix-
els (167 for each of the 6 labeled material classes) to run the
full Algorithm 1 on, followed by spatial inpainting for the
rest. Figure 3 shows the results before and after inpainting.
To quantitatively assess the performance of Algorithm 2, we
use overall accuracy (OA) as a metric. Overall accuracy is the
total number of correctly labeled pixels divided by the total
number of pixels in the ground truth. To compute this, we
utilize the Hungarian assignment algorithm to match cluster
labels with the ground truth labels. We perform 10 experi-
ments with different random samples of 1002 training pixels,
and achieved an average OA of .75 before inpainting. Results
were bimodal, with results either in the mid 80s or mid 60s;
representative examples are in Figure 3. In this experiment,
parameters p = 1, ¢ = .1, p = .001, NN = 25, L = 400,
and m = 32 were used.

5. CONCLUSIONS AND FUTURE WORK

This paper presented a novel method for HSI clustering based
on Wasserstein dictionary learning and spectral clustering.
The learned coefficients provide a useful, dimension-reduced
representation of the original HSI that captures intrinsic ge-
ometric information as parametrized by entropic Wasserstein
barycenters.

The impact of the random training set is significant in the
performance on Salinas A, and increasing the robustness of
the dictionary learning approach to both noise and outliers
is a topic of ongoing work. The key idea of using learned

Ay =
LT

e g

(b) OA = 65% before inpainting.

Fig. 3. In (a), a result with OA 86% before inpainting and
84% after, which is competitive with state-of-the-art graph-
based methods for HSI clustering [28]. The only major error
is in splitting the bottom right cluster, which is a common
error in unsupervised clustering of Salinas A. In (b), we see a
less competitive result, achieving 65% OA before inpainting.
Inpainting lowers accuracy further to 53%.

barycentric coefficients for downstream labeling tasks need
not be constrained to unsupervised learning. Indeed, these
features are natural and interpretable for semisupervised
learning paradigms. Extending our approach in this direction
is a topic of ongoing research. Note, the errors in Figure 3
(a) are mostly due to the bottom right class being incorrectly
split. This could be corrected with a few carefully chosen
training labels via active learning [29]; developing a crite-
ria for which pixels to query for labels based on the learned
atoms and coefficients will be pursued in future work. Fur-
ther, we aim to compare the proposed algorithm with NMF
employing simplex constraints [30] and the Wasserstein NMF
algorithm proposed in [31]. In this paper, having optimized
our algorithm on partial random samples, we propagated la-
bels via nearest neighbours using the ¢; metric. Considering
that the weights in our framework are distributions, we plan
to investigate using the Wasserstein distance between these
weights for inpainting.
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