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ABSTRACT

We present a novel active learning method for hyperspectral
images based on representation learning in Wasserstein space.
We perform regularized Wasserstein dictionary learning in
the space of hyperspectral pixels, then leverage the learned
barycentric coefficients to embed the high-dimensional spec-
tra into a low-dimensional space. Sampling in the low-
dimensional space leads to high-quality labels that propagate
accurately to the remaining pixels in the data. Our method
achieves a high level of accuracy with very few training
labels, suggesting its utility for hyperspectral image classifi-
cation in the active labeling setting.

Index Terms— representation learning, Wasserstein
space, active learning, semisupervised learning

1. INTRODUCTION

Hyperspectral images (HSI) capture reflectances over a wide
range of wavelengths, which allows the gathering of useful
information via aerial and spaceborne instruments. However,
collecting labeled HSI data is expensive and time-intensive,
which motivates the development of semisupervised and un-
supervised learning methods that can label images with little
to no labeled training data. The difficulty of learning repre-
sentations in these contexts in which training data is not plen-
tiful is compounded by the high-dimensional nature of HSI;
typical sensors record reflectances over hundreds of spectral
bands.

In this paper, we approach the problem of labeling hy-
perspectral pixels through an active learning approach based
on representation learning in Wasserstein space. Each pixel
is represented as a probability measure and pixels are com-
pared using entropic Wasserstein distances [1]. Our approach
captures the geometry of each pixel by performing dictionary
learning of spectra in Wasserstein space. We then carry out an
active labeling algorithm combining the learned coefficients
with the (unnormalized) mass of each pixel. Promising re-
sults on the Salinas A HSI are shown, indicating the viability
of our approach to active learning.

The remainder of this paper is organized as follows. In
Section 2, we overview semisupervised and active learning

methods before providing background on data analysis in
Wasserstein space. In Section 3, we discuss our approach
to cluster-based active learning via Wasserstein dictionary
learning for HSI. Section 4 showcases our approach on the
Salinas A HSI [2], and then we discuss directions for future
work in Section 5.

2. BACKGROUND

Background on Semisupervised and Active Learning:
Given HSI pixels {µi}ni=1 ⊂ RD with D corresponding to
the number of spectral bands in the image, we aim to learn
the labels {yi}ni=1 corresponding to the material class in the
scene the pixels belongs to. Semisupervised learning assumes
that a small number of labeled pairs (µj , yj) are known in
addition to the full unlabeled dataset {µi}ni=1. Deep learning
[3, 4], graph-based approaches [5], and SVM-based methods
[6] have demonstrated their use for semisupervised labeling
of hyperspectral images.

Active learning is a particular form of semisupervised
learning that assumes no labeled pairs (µj , yj) are known
initially. Instead, the active learning algorithm leverages the
unlabeled data to determine a list of points—selected by an
algorithm-specific criteria—to query for labels. By doing
so, the algorithm can use a small number of labeled points
to generate meaningful insights. Nonlinear diffusion [7, 8],
Bayesian methodologies [9, 10], neural networks [11], and
SVMs [12] have all seen use for active learning of HSI.

Background on Representation Learning in Wasserstein
Space: We propose to learn a representation of each pixel
in Wasserstein space and leverage the learned representations
for both querying labels in active learning and propagating
the queried labels to the remainder of the data set. To do so,
we utilize nonlinear dictionary learning in Wasserstein space
[13, 14]. Let ∆D := {(x1, . . . , xD) ∈ RD |

∑D
k=1 xk =

1, xk ≥ 0, ∀k} be the discrete D-dimensional probability
simplex. Given µ, ν ∈ ∆D, define Π(µ, ν) ⊂ ∆D×D as
the set of couplings between µ and ν, the collection of π ∈
RD×D

≥0 such that ∀j,
∑D

i=1 πij = νj , and ∀i,
∑D

j=1 πij = µi.
Suppose µ, ν are associated to a common set of spectral wave-
lengths {bk}Dk=1 ⊂ R; this will be the case for HSI spectra
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from a common scene. For p ≥ 1, the entropic p-Wasserstein
distance [15] between µ and ν is

W p
p,ϵ(µ, ν) := min

π∈Π(µ,ν)

D∑
k=1

D∑
ℓ=1

(πkℓ|bk−bℓ|p+ϵπkℓ log(πkℓ))

(1)
where ϵ > 0 is a regularization parameter. The solution π∗

to (1) couples µ to ν efficiently and smoothly; for a detailed
discussion of entropic optimal transport, we refer to [1, 16].
For a set of m distributions {νj}mj=1 ⊂ ∆D and a vector
of weights w ∈ ∆m, we define the entropic p-Wasserstein
barycenter [17, 18, 19] to be

Bary({νj}mj=1;w) := argmin
µ∈∆D

m∑
j=1

wjW
p
p,ϵ(µ, νj). (2)

Given observed probability distributions {µi}ni=1 (in our
context HSI pixels after normalization so that they lie in ∆D),
we can learn meaningful representations useful for semisu-
pervised learning by finding probability distributions {νj}mj=1

and weights {wi}ni=1 ⊂ ∆m such that each data point µi

is close to an entropic barycenter with reference measures
{νj}mj=1 and weights wi; this may be thought of as extract-
ing coefficients via unmixing in Wasserstein space. Specifi-
cally, we solve the following regularized Wasserstein dictio-
nary learning (WDL) problem [13, 14, 20]:

({ν∗j }mj=1, {w∗
i }ni=1) (3)

= argmin
{νj}m

j=1,{wi}n
i=1

n∑
i=1

W p
p,ϵ(Bary({νj}mj=1;wi), µi)

+ρ
n∑

i=1

m∑
j=1

[wi]jW
p
p,ϵ(µi, νj),

where ρ > 0 is a regularization parameter that balances the
two terms. This non-convex optimization problem aims to
reconstruct each observation as an entropic barycenter (first
term), subject to a locality regularizer that promotes repre-
senting using nearby atoms (second term). This program can
be approximately optimized using first-order methods that
jointly optimize the atoms and weights; for details, we refer
the reader to [13, 14].

In Figure 1, we compare the effectiveness of non-negative
matrix factorization (NMF) [21] to WDL in representing the
underlying geometry of the space. Two spectra from the Sali-
nas A HSI (see Section 4) are used as the underlying atoms.
We use these spectra to create entropic Wasserstein barycen-
ters with interpolating weights from (1 − t, t) ∈ ∆2 for t ∈
{0, 0.02, ....0.98, 1} with ϵ = 0.001. The WDL parameters
of note for this example are ϵ = 0.001 and ρ = 0.

3. SEMISUPERVISED LEARNING ALGORITHM

Our approach has two steps: first, given HSI pixels {µi}ni=1,
learn coefficients {wi}ni=1 via approximately solving (3); sec-
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(a) HSI spectra (left) and Wasserstein barycenters (right)
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(b) NMF components (left) and reconstructions (right)
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(c) Learned WDL atoms (left) and reconstructions (right)

Fig. 1. Unmixing result for a mixture created from HSI spec-
tra. The second row contains the learned NMF components
and reconstructions, and the third row contains the learned
WDL atoms and reconstructions. NMF reconstructions fail to
capture the smooth transformation from one atom to the other,
while WDL interpolates meaningfully between the atoms.

ond, use the weights in combination with information about
the unnormalized spectra to determine which points to query
to label the rest of the pixels. Since Algorithm 1 requires the
input data to be probability measures, we must normalize µi

by its ℓ1 norm. However, with this step, we lose informa-
tion about the scale of the spectra. See how in Figure 2, the
spectra reaching higher measured reflectances appear closer
to the rest of the spectra when normalized. If two pixels µi

and µj have similar learned coefficients wi and wj , then the
normalized spectral signatures are similar, which potentially
indicates the same groundtruth class. By incorporating the
scale of the spectra into our approach, we prevent the issue
with normalization presented in Figure 2.

Concretely, our approach has two steps: first, learn
weights via approximately solving (3), second use the weights
in combination with information about the unnormalized
spectra to determine which points to query to label the rest of
the pixels. The key idea for approximately solving (3) is to
use automatic differentiation to iteratively update the weights
{wi}ni=1 and atoms {νj}mj=1; we note that the training data
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{µi}ni=1 is fixed in the learning process. The basic procedure
is to: (i) initialize the weights {wi}ni=1 uniformly at random
from ∆m and the atoms via Wasserstein K-means over the
training data (ii) iteratively update via automatic differenti-
ation on G. This is outlined in Algorithm 1, where G is the
right hand side of (3).

Algorithm 1: Geometric Wasserstein Dictionary
Learning

1: Input: HSI spectra: {µi}ni=1 ⊂ RD; Wasserstein
parameter: p; entropic regularization: ϵ; locality
regularization: ρ; number iterations: L; number of
atoms: m.

2: Normalize each pixel µi to lie in ∆D.
3: Initialize variables α(0) ∈ Rm×N , β(0) ∈ Rn×m.
4: for k ← 1, . . . , L do
5: {ν(k)j }mj=1 ← σ(α(0)), {w(k)

i }ni=1 ← σ(β(0)).
6: Compute the objective function

loss← G({ν(k)j }mj=1, {w
(k)
i }ni=1, {µi}ni=1).

7: Compute the gradients with automatic differentiation:
loss.backward().

8: Update α(k),β(k).
9: end for

10: Output: Learned atoms: {νj}mj=1 ← σ(α(k)); learned
weights: {wi}ni=1 ← σ(β(k)).

Since {µi}ni=1 is constrained to be a probability measure,
we use the softmax function σ to extend GeoWDL to data that
cannot fit that form. For a vector (x1, x2, ....xn) the softmax
is defined as:

σ(x1, . . . , xn) :=

(
exp(x1)∑n
i=1 exp(xi)

, . . . ,
exp(xn)∑n
i=1 exp(xi)

)
.

We define the mass of µi as φi := ∥µi∥1, before nor-
malization to carry out Algorithm 1. We then define new
weights {w̃i}ni=1 ⊂ Rm+1 which are w̃i := (wi, φi). We
then renormalize w̃i by ℓ1 norm to avoid numerical issues.
Since φi ≫

∑m
i wi, no normalization often results in the

non-mass terms being irrelevant, with the learned embedding
resembling one similar to TSNE embeddings of already low-
dimensional data.

From here, we use t-stochastic neighbors embedding
(TSNE) to map {w̃i}ni=1 from Rm+1 to R2. TSNE is a widely
used nonlinear dimensionality reduction technique for visu-
alizing high dimensional data capable of also representing
clusters present in the higher dimensional space [22]. After
utilizing TSNE, the embedding is clustered using K-means
with a greater number of clusters than known or anticipated
to exist in the data. For a given cluster, we query for the labels
of the N closest labeled points (ηi, yi) to the centroid, which
is a total of NK points. Each pixel in that cluster is labeled
with the most common label among the queried points. The
overall active labeling algorithm is detailed in Algorithm 2.

We will refer to steps 10 and 11 of Algorithm 2 as spa-
tial relabeling and inpainting, respectively. Spatial relabeling
changes the labels of pixels that are likely to be mislabeled by
the active learning process. Given a pixel (ηi, yi) where yi is
learned, spatial relabeling first finds the 10 ℓ1 labeled spatial
nearest neighbors of ηi. If among these neighbors, the num-
ber of pixels that are labeled with yi is less than or equal to 1,
yi is relabeled to the most frequent label among its 10 nearest
neighbors. Both steps are based on the idea that spatially, pix-
els with common labels are grouped together. This may not
hold for all HSIs, but is reasonable in the context of Salinas
A and farming related imagery.

Algorithm 2: Wasserstein Dictionary Active Learn-
ing

1: Input: Number of pixels: P ; WDL weights: {wi}Pi=1;
number of clusters: K; queries per cluster: N .

2: Append mass of {µi}Pi=1 to make new coefficients
{w̃i}Pi=1 ⊂ Rm+1

3: Normalize {w̃i}Pi=1 to lie in ∆m+1 and get a 2d TSNE
embedding of coefficients.

4: On the embedding, run K-means with K clusters.
5: for i← 1, . . . ,K do
6: Find the N closest labeled points within the

embedding to the centroid of cluster i.
7: Determine the most frequent label, y among those

points.
8: All pixels in cluster i are labeled with y
9: end for

10: Relabel any pixel that has at most 1 of its 10 nearest ℓ1

neighbors with the same label to the most common label
among them.

11: Label all remaining unlabeled pixels by the most
common label among its 10 nearest ℓ1 neighbors.

12: Output: Learned labels {yi}ni=1
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Fig. 2. Left: Spectra before normalization. Right: Spectra
after normalization.

4. EXPERIMENTAL RESULTS

The Salinas A hyperspectral image was captured in 1998 by
the AVIRIS sensor. The scene is an agricultural region in Sali-
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Fig. 3. Left: TSNE embedding pre K-means of Algorithm 2,
where colors correspond to ground truth label. Red pixels are
unlabelled. Right: Salinas A ground truth; white pixels are
unlabelled.
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Fig. 4. Left: Learned labels with OA of 93%, Right: Post
inpainting accuracy of 99%. K = 8, N = 1

nas Valley, CA, USA. It consists of 224 spectral bands ranging
from 380-2500 nm. The 6 classes in the image are: broccoli
greens; corn green weeds; and romaine lettuce at 4 different
growth times, namely 4, 5, 6, and 7 weeks. The full image is
83 × 86; see Figure 2 for the spectra of a random sample of
Salinas A pixels, and see Figure 3 for the spatial groundtruth
of Salinas A. To carry out our experiment, we randomly sam-
pled 2000 pixels from the full image, then ran Algorithm 1 to
learn representations in Wasserstein space. We use m = 32,
L = 400, ϵ = 0.08, and ρ = 0.0001. For further discus-
sion on WDL parameters and clustering results, we refer the
reader to [23, 24]. We then run Algorithm 2 to learn labels,
and use overall accuracy (OA) as a metric, namely the num-
ber of correctly labeled pixels divided by the total number of
labeled pixels. Since the sample data consists of labeled and
unlabeled points, OA only considers initially labeled pixels
in its calculations. We also calculate an OA for before and
after spatial inpainting/relabeling. We only carry out spatial
inpainting on pixels with ground truth labels, but it can be eas-
ily extended to the whole image. The results we show are for
K = 8 and N = 1, but code for experiments across a wide
variety of parameters are public1. Experimentally, spatial re-
labeling never caused a decrease in accuracy. The increase is
generally around 4 − 5%, though varies significantly. How-
ever, spatial relabeling performs better generally at higher ini-
tial OAs.

1https://github.com/fullenbs/WDL-active-learning
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Fig. 5. Left: Learned embedding OA of 82%. Right: Post-
relabeling/inpainting accuracy of 85%. K = 8, N = 1

Due to the non-convex cost function in TSNE, embed-
dings vary across different runs [22], which ultimately im-
pacts the results of Algorithm 2. Figure 5 is another example
embedding resulting from the same data as in Figure 3. Over
a run of 20 trials and excluding spatial relabeling/inpainting,
at K = 8 and N = 1, Algorithm 2 achieved an average ac-
curacy of 85% with a standard deviation of 5%; the variance
in results is due to the use of TSNE. As K increases, average
accuracy increases and the standard deviation decreases. At
K = 20 and N = 1, the average accuracy was 89.7% with a
standard deviation of 1.6%. When including spatial relabel-
ing and inpainting, OA for K = 8 and N = 1 goes to an
average of 93.1% with a variance of 6.8%. For K = 20 and
N = 1, OA average accuracy rises to 96.3% with a standard
deviation of 2.8%.

5. CONCLUSION AND FUTURE WORK

This paper demonstrates a new semisupervised approach for
HSI clustering based on representations of pixels in Wasser-
stein space. These coefficients provide a useful representation
of hyperspectral images in a lower dimensional space which
we utilize in our clustering scheme.

The non-convex nature of TSNE has an outsized impact
on OA of our results. Developing a robust methodology that
utilizes TSNE or another technique such as UMAP that mini-
mizes variance across different runs of Algorithm 2 is an area
of ongoing work.
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