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ABSTRACT

A method for active learning of hyperspectral images (HSI) is
proposed, which leverages time-evolving diffusion processes
on graphs to determine query points and propagate their labels
to the full data set. Initially, a diffusion process is defined on
a graph in which each HSI pixel is a node, with edge con-
nection strength scaling with the distance between pixels in
the spectral domain. At each stage of the iterative sampling
process, queried labels are used to update the underlying dif-
fusion matrix by weakening edges between points in different
classes, thereby infusing the intrinsic representation encoded
in the diffusion matrix with revealed label information. The
proposed method, Learning by Evolving Nonlinear Diffusion
(LEND), combines robust performance with the mathematical
tractability of diffusion geometry, leading to superior labeling
accuracy with fewer labeled samples compared to a baseline
in which the underlying matrix is not iteratively updated. Ex-
periments on the Salinas A HSI demonstrate the effectiveness
and efficiency of LEND.

Index Terms— active learning, semisupervised learning,
hyperspectral imaging, diffusion geometry

1. INTRODUCTION

Machine learning has provided revolutionary new tools for
remote sensing [1, 2, 3], but state-of-the-art methods often re-
quire huge labeled training sets. In particular, supervised deep
learning methods can achieve near-perfect labeling accuracy
on high-dimensional hyperspectral images (HSI), provided
large collections of labeled pixels are available [4]. However,
the practicality of these methods may be limited in settings
when data is collected at a pace that exceeds human ability to
generate corresponding labeled training data.

In order to account for this, methods that require only a
very small number of labels are needed [5]. Typically, in a
supervised scheme, labeled points are split into training and
testing sets. However, this approach is often impractical, as
obtaining sufficient labels for both training and testing can
be costly, especially in hyperspectral imaging (HSI). The ac-
tive learning regime is particularly attractive for HSI labeling
problems [6, 7, 5, 8, 9, 10, 11, 12]. In active learning, an algo-
rithm is provided with an unlabeled dataset, and the algorithm

iteratively queries points for labels. The goal of query selec-
tion is to maximize the efficiency of labeling under a given
budget. Two primary strategies include hypothesis space re-
duction, which aims to quickly converge to an optimal clas-
sifier by choosing influential points, and cluster exploitation,
which focuses on sampling in complex regions while avoiding
redundant labeling in homogeneous areas [9]. Our proposed
method aligns with the second strategy, utilizing the geometry
of data to identify key points for labeling. By leveraging the
diffusion geometry of the data, our method robustly handles
high-dimensional, non-linear, and noisy data. This enhances
the selection of impactful query points, improving classifica-
tion accuracy with fewer labeled samples.

We propose a new active learning method for HSI pixel
labeling called Learning by Evolving Nonlinear Diffusion
(LEND). LEND iteratively refines labels using the Learning
by Active Nonlinear Diffusion (LAND) algorithm [13, 6].
LEND updates the diffusion matrix by weakening edges be-
tween different classes (as per labels given by LAND), and
recomputes a diffusion-based embedding at each update.
This process acts as a method of denoising the diffusion
eigenmaps, achieving superior classification accuracy with
fewer labeled samples. By learning an accurate representa-
tion of the data, LEND is better informed on how to query
for labels. Experiments on the Salinas A HSI demonstrate the
effectiveness and efficiency of LEND and show significant
improvements in labeling accuracy over the existing active
learning method LAND [6].

The rest of the paper is organized as follows. In Section 2,
we review related works in active learning for HSI and discuss
diffusion geometry and LAND [6]. Following that we outline
LEND in Section 3 and provide empirical results in Section
4.

2. BACKGROUND

Before delving into our proposed method, we will review
similar approaches to active learning for HSI and discuss pre-
requisite details regarding diffusion geometry and LAND.

Overview of Active Learning for HSI: Active learning is a
learning paradigm where the user selects the training data [5].
The underlying idea is that a few informative training sam-
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ples can be sufficient for training an algorithm and achieving
accurate results. This framework has been applied in remote
sensing for HSI image classification [6, 14, 15, 16, 17, 18].
A group of methods known as deep clustering aim to learn
data features and perform clustering simultaneously, demon-
strating strong empirical results [19, 20, 21]. For HSI images,
multiple studies have used different deep learning architec-
tures to extract essential features for downstream tasks such
as classification [16, 17, 22, 18, 23, 15]. In contrast to deep
learning methods, our algorithm’s embedding scheme enjoys
interpretability and efficient computational complexity. Re-
cent works have used a variational autoencoder to extract fea-
tures from the data, and then use diffusion eigenmaps to ex-
tract features once again, and then run an inference procedure
to classify the data [15].

The main idea in this paper is that the active learning
process depends on the representation and geometry of the
data as highlighted in LAND and its unsupervised analogue
Learning by Unsupervised Nonlinear Diffusion (LUND) [14].
We seek to learn a low-dimensional, nonlinear manifold the
data lies on. By approximating a metric on this manifold, we
can calculate certain test statistics (detailed in [6]) to identify
modes in the data. After calculating said modes, we itera-
tively label the data using the manifold’s metric.

Background on Diffusion Geometry and LAND: We repre-
sent hyperspectral images as X = {xi}ni=1 ⊂ RN where the
pixels are points in RN and N is the number of spectral bands.
Define NNk(xi) as the set of k-nearest neighbors of xi in X
under the ℓ2 metric. Let W ∈ Rnxn be the weight matrix
with Wij = exp(−∥xi − xj∥22/σ2), xj ∈ NNk(xi) with σ
denoting a scale parameter. With this, the notion of the degree
of xi naturally follows as deg(xi) :=

∑
xj∈X Wij . To define

a random walk on X , normalize W to form the n × n tran-
sition matrix P with Pij = Wij

/
deg(xi) [24]. It is shown

in [24] that P admits a spectral decomposition {(λℓ,Ψℓ)}nℓ=1

where without loss of generality 1 = λ1 ≥ |λ2| ≥ · · · ≥ |λn|.
Let π be the stationary distribution of P , i.e. π = πP . The
diffusion distance at time t between xi, xj ∈ X is defined

as Dt(xi, xj) =
√∑n

k=1(pt(xi, xk)− pt(xj , xk))2
1

π(xk)
=√∑n

ℓ=1 λ
2t
ℓ (Ψℓ(xi)−Ψℓ(xj))2 [24]. Note that t tells us

how long the diffusion process runs. In this paper, we use
t = 30 for experiments as it allows for the process to run
long enough that it reveals structure in the data without de-
stroying it. Diffusion distances measure how far away are
two points by capturing how different their respective transi-
tion probabilities are to other points. So if their random walks
are similar, the two points are close to each other in diffusion
space.

A fundamental aspect of our active learning algorithm is
to use diffusion distances on X to identify points to query for
labels. LAND uses a kernel density estimator (KDE) and dif-
fusion geometry [24, 25] for this task. The KDE is defined as

p(x) =
∑

y∈NNk(x)
exp(−∥x− y∥22/σ2

0) with σ0 denoting a
scale parameter. We use 500 nearest neighbors and σ0 equals
the mean of the nonzero pairwise distances across the dataset.
For x ∈ X , let

ρt(x) =

 min
p(y)≥p(x),x̸=y

Dt(x, y), x ̸= argmax
z

p(z),

max
y∈X

Dt(x, y), x = argmax
z

p(z),

be the nearest neighbor in diffusion space of higher density
[6]. The maximizers of Dt(x) = p(x)ρt(x) are queried for
labels [6]. The maximizers are in high density regions and far
from other points in diffusion space, so they can be thought
of as modes of the data set. These labels are then propagated
to other data points by proceeding from high to low density
and assigning each unlabeled point the same label as its Dt-
nearest neighbor of higher density that is labeled; see [6] for
a detailed explanation. An intuitive way to visualize the algo-
rithm is to imagine the modes (see Figure 1) diffusing out into
low density regions labeling points that haven’t been labeled
yet.

Fig. 1: Query points shown in red on the nonlinear two moons
dataset.

3. PROPOSED ALGORITHM

We propose an active learning algorithm, LEND, that uses
a density-based diffusion embedded scheme to improve the
diffusion map used to estimate the structure of the data, ulti-
mately improving our low-dimensional estimation of the data
and the points we query for labels (as determined by Dt(·)).

Our model operates through an alternating algorithm,
switching between estimating the underlying diffusion map
and classifying the data. Initially, we utilize the LAND spec-
tral classification scheme [6]—described in Algorithm 1 —to
obtain preliminary labels. Using these labels, we strategically
weaken edges in the diffusion map and restart the labeling
process.

In both LEND and LAND, we construct the diffusion
graph using a sparse weight matrix W . We achieve this by
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selecting the 100 nearest neighbors of each point based on
the ℓ2 (Euclidean) metric and assigning weights to the edges
using the Gaussian kernel. This step is crucial for effective
edge weakening, as it allows the removal of a single edge to
potentially disconnect two clusters.

LEND—detailed in Algorithm 2—operates through an al-
ternating algorithm that switches between estimating the un-
derlying diffusion map and classifying the data. Initially, we
utilize the LAND spectral classification scheme to obtain pre-
liminary labels. Using these labels, we weaken edges in the
diffusion map between points of different estimated labels and
restart the labeling process with the new diffusion map.

Two key parameters in our LEND algorithm are J and
α. The parameter J determines the number of classification-
diffusion estimation iterations. We start our first iteration of
LAND at the total budget minus J to avoid exhausting all our
queries at the beginning. This approach allows us to continu-
ously query from the start to the end of the list of Dt(·) max-
imizers or limit our queries to the points budgeted for each
iteration.

In our implementation, we query all points budgeted for
a given iteration and use those for inference. Importantly,
we experimentally found that this approach does not exceed
the allocated budget. If one aims to query K points, it can
sometimes be beneficial to provide the algorithm with slightly
fewer than K points initially. By allowing the algorithm to
freely query all budgeted points at each iteration, it ultimately
queries a total of K points. This approach operates under the
assumption that early maximizers of Dt(·) remain consistent.
An alternative procedure could involve continuously querying
points until the budget is exhausted.

The parameter α controls the scaling of edges between
points in different classes. A higher α provides resilience
against early misclassifications, allowing the algorithm to
make use of the information from LAND’s predictions, even
if they are initially inaccurate. This balance helps in lever-
aging the evolving information to refine the diffusion map
progressively, enhancing the overall classification accuracy
through the iterative process.

4. EXPERIMENTAL RESULTS

We demonstrate the accuracy of LEND experimentally on the
Salinas A HSI [26]. We implement both LAND and LEND
in Python using Numpy and Scipy 1. The (full) Salinas scene
was captured over Salinas Valley, California. The image has a
spatial resolution of 3.7-meter pixels and contains 224 spec-
tral bands. The ground truth has 16 classes. We consider
the Salinas A dataset, which is a 6-class subset of the Salinas
dataset. Figure 2 shows a low-dimensional visualization of
the data and the ground truth labels. The performance of the
algorithm is assessed using overall accuracy, defined as the

1https://github.com/kabirst11/LEND

Algorithm 1: Learning by Active Nonlinear Diffu-
sion (LAND)

Input: {xi}ni=1 (Unlabeled Data); {p(xi)}ni=1

(Kernel Density Estimate); P (Diffusion Matrix); t
(Time Parameter); B (Budget); O (Labeling Oracle);
Output: Y (Labels)

1: Compute {(λℓ,Ψℓ)}Mℓ=1, the spectral decomposition
of P .

2: Compute {ρt(xi)}ni=1.
3: Compute Dt(xi) = p(xi)ρt(xi).
4: Sort the data in order of decreasing Dt value to

acquire the ordering {xmi
}ni=1.

5: for i = 1 : B do
6: Query O for the label L(xmi) of xmi .
7: Set Y (xmi) = L(xmi).
8: end for
9: Sort X according to p(x) in decreasing order as

{xℓi}ni=1.
10: for i = 1 : n do
11: if Y (xℓi) = 0 then
12: Y (xℓi) = Y (zi),

zi = argmin
z

{Dt(z, xℓi) | p(z) >

p(xℓi) and Y (z) > 0}.
13: end if
14: end for

Algorithm 2: Learning by Evolving Nonlinear Dif-
fusion (LEND)

Input: {xi}ni=1 (Unlabeled Data); {p(xi)}ni=1

(Kernel Density Estimate); P (Diffusion Matrix); t
(Time Parameter); B (Budget); O (Labeling Oracle);
J (Number of Iterations); α (Scale at which to
weaken edges)
Output: YJ (Labels)

1: Initialize diffusion matrix P1 = P .
2: Initialize matrix B
3: for j = 1 : J do
4: Yj = LAND(Pj ,Budget = B − (J − j))

(Other parameters are default, hidden for space)
5: Evaluate B according to Yj , Bik = 1

if Yj(xi) = Yj(xk) and α otherwise
6: P̂j+1 = B ⊙ Pj (Entry wise multiplication,

to weaken all edges between all points in different
classes)

7: Normalize rows of P̂j+1 so they sum to 1, denote
this as Pj+1.

8: end for

ratio of correctly estimated labels to total number of labels
after aligning via the Hungarian algorithm.
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Fig. 2: The 83× 86 Salinas A HSI data consists of 6 classes. Left:
the sum of all spectral bands. Right: the ground truth.

The Salinas A HSI dataset, sized 83 x 86 x 224, is repre-
sented as a point cloud of 7138 x 224. In LEND we exhibit
98% accuracy with a budget of 12, almost an 11% improve-
ment on LAND with the same budget and with other param-
eters set the same; see Figures 3 and 4 for comprehensive re-
sults. We see moreover very fast convergence to near-perfect
accuracy with LEND, compared to LAND. For our experi-
ments we use J = 3 and α = 0.75. Both J, α were cho-
sen by a binary search. This choice of J gave the algorithm
enough labels to start with so that the inference procedure is
informative while leaving enough room in the budget to pick
better query points in subsequent iterations. This choice of
α is larger because it ensures weak accuracy early on doesn’t
cause premature, complete edge deletion.

Fig. 3: Comparing the performance of LAND and LEND on Sali-
nas A.

Complexity and run time: LAND has time complexity
O(CNN + nKNN + nlog(n)) where CNN is the cost of
computing all KNN nearest neighbors [6]. LEND is essen-
tially LAND plus calculating the matrix B after each iteration,
which has O(n2) operations, so the complexity of LEND is
O(CNN + nKNN + nlog(n) + n2). All simulations were

Fig. 4: Comparing the predictions given by LAND and LEND on
Salinas A, with a budget of 12 labels.

run on a 2019 MacBook Pro, with 8 GB of memory and a
Quad-Core Intel i5 processor. LAND takes about 49 seconds
to run and LEND takes about 2 minutes 51 seconds. LEND
has to perform a spectral decomposition J times, every time
P is updated and put into LAND, for this reason it is slower
than LAND, scaling at a rate linear in J .

5. CONCLUSIONS AND FUTURE DIRECTIONS

The proposed active learning algorithm, LEND, provides a
substantial improvement over LAND in the low query regime.
We use LAND’s inference procedure to self-correct the dif-
fusion matrix, thereby giving us a better representation of
the data and improving which points we query for labels.
In future work, we seek to create a more principled way of
enforcing budget constraints in Algorithm 2. We also seek to
study how inference can inform adding edges to the graph and
create a data model where these inference-informed diffusion
constructions are most useful. Moreover, understanding the
impact of α is a topic of interest, and we expect larger α to be
more appropriate in the case the preliminary LAND labeling
is poor.
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