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Abstract

Stellar flares are short-duration (< hours) bursts of radiation associated with surface magnetic reconnection events.
Stellar magnetic activity generally decreases as a function of both the age and Rossby number, R0, a measure of the
relative importance of the convective and rotational dynamos. Young stars (<300Myr) have typically been
overlooked in population-level flare studies due to challenges with flare-detection methods. Here, we select a
sample of stars that are members of 26 nearby moving groups, clusters, or associations with ages <300Myr that
have been observed by the Transiting Exoplanet Survey Satellite at 2 minute cadence. We identified 26,355 flares
originating from 3160 stars and robustly measured the rotation periods of 1847 stars. We measure and find the flare
frequency distribution slope, α, saturates for all spectral types at α∼−0.5 and is constant over 300Myr.
Additionally, we find that flare rates for stars tage= 50–250Myr are saturated below R0< 0.14, which is consistent
with other indicators of magnetic activity. We find evidence of annual flare rate variability in eleven stars,
potentially correlated with long-term stellar activity cycles. Additionally, we crossmatch our entire sample with the
Galaxy Evolution Explorer and find no correlation between flare rate and far- and near-ultraviolet flux. Finally, we
find the flare rates of planet-hosting stars are relatively lower than comparable, larger samples of stars, which may
have ramifications for the atmospheric evolution of short-period exoplanets.

Unified Astronomy Thesaurus concepts: Pre-main sequence stars (1290); Optical flares (1166); Stellar rotation
(1629); Stellar activity (1580); Time series analysis (1916)

1. Introduction

Stellar flares are the radiation component of magnetic
reconnection events (Benz & Güdel 2010). Such events are
readily seen on the Sun (Carrington 1859; Lu & Hamilton 1991;
Fletcher et al. 2011), particularly during the maximum in the
solar cycle (Webb & Howard 1994). Solar flares can be used as
proxies for magnetic activity occurring on other stars
(Feigelson & Montmerle 1999; Berdyugina 2005; Kowalski
et al. 2010; Feinstein et al. 2022b). Additionally, these short-
duration flaring events can have significant ramifications on the
evolution of short-period extrasolar planets (France et al. 2016;
Günther et al. 2020; Chen et al. 2021). While stellar flares are
typically not spatially resolvable, they do lend themselves to
characterization via spectroscopic and photometric signatures.
Spectroscopic characterization of stellar flares informs our
understanding of nonthermal processes affiliated with such
events such as coronal mass ejections (Argiroffi et al. 2019;
Vida et al. 2019), proton beams (Orrall & Zirker 1976;
Woodgate et al. 1992), and accelerated electrons (Osten et al.
2005; Smith et al. 2005).

Photometric observations of stars are more readily available
now with exoplanet transit discovery missions and allow us to
statistically characterize flare rates and energies at optical/near-
infrared wavelengths. Observations of M dwarfs with the Sloan
Digital Sky Survey revealed a correlation between the flaring
fraction of stars with height above the galactic plane, a proxy
for age (Kowalski et al. 2009; Hilton et al. 2010). More
recently, NASA’s Kepler, K2, and the Transiting Exoplanet
Survey Satellite (TESS) missions have provided a wealth of
stellar variability data in addition to their primary objective of
detecting transiting exoplanets. Flares can be identified within
time-series photometry by a sharp rise and subsequent
exponential decay in flux, with the latter corresponding to the
cooling rate (Kowalski et al. 2013). Kepler (Borucki et al.
2010) provided long-baseline high-cadence observations used
to identify stellar flares. There have been extensive studies of
flares in Kepler data, from the statistics of superflares on solar-
type stars (e.g., Notsu et al. 2013; Shibayama et al. 2013;
Maehara et al. 2015; Okamoto et al. 2021) to low-mass stars
(e.g., Hawley et al. 2014; Silverberg et al. 2016). Davenport
et al. (2019) found that flare activity decreased with increasing
rotation period for 347 GKM stars. However, the flare
frequency distribution (FFD) slope did not vary significantly
as a function of age. As a caveat, the ages of the stars in this
study were determined based on their rotation periods, relying
on the assumption that gyrochronology alone accurately ages
stars.
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K2 provided 70 days of baseline observations for a handful of
young stars in groups such as Upper Scorpius, Pleiades, Hyades,
and Praespe clusters. Ilin et al. (2019, 2021) analyzed flares from
K and M stars in these clusters and found that the overall flare
activity decreased as a function of age. Moreover, this relation-
ship was steeper for more massive stars in the sample. Paudel
et al. (2018) surveyed 10 M6–L0 dwarfs observed with K2 and
found the L0 dwarfs had significantly shallower FFDs than the
M dwarfs. They found that, on average, young targets (defined
by the tangential velocity of the star) exhibited more flares
overall. More recently, TESS (Ricker et al. 2015) has provided
near-all-sky photometric observations at 30minute cadence or
less. This observing strategy has allowed for more detailed
studies of young stellar flares from nearby, dispersed young
moving groups and associations. These data permit detailed
studies of individual stars, for example characterizing eight
superflares (Ef> 1034 erg) on the young star AB Doradus over
∼60 days of continuous observations (Schmitt et al. 2019), as
well as statistical studies of flares across a range of spectral types
and ages (Doyle et al. 2020; Feinstein et al. 2022b; Pietras et al.
2022; Yang et al. 2023b).

The 11 yr solar activity cycle represents a change in the
magnetic activity of the Sun and manifests itself in a variety of
observables including increases in the total number of sunspots
(Clette et al. 2014; Kilcik et al. 2014), flares, and coronal mass
ejections (Crosby et al. 1993; Webb & Howard 1994; Lin et al.
2023), and an increase in the total solar irradiance (Lean 1987).
Insights into the long-term activity cycles of other stars have
been limited to photometric and spectroscopic monitoring (Saar
& Brandenburg 1999). Lehtinen et al. (2016) collected
16–27 yr of B- and V-band photometry for 21 young active
solar-type stars. They found evidence of long-term stellar
activity cycles in 18 targets for which µ -P P Rrot cycle 0

1, where
Prot is the rotation period, Pcycle is the period of the stellar
activity cycle, and R0 is the Rossby number. Additionally, 50 yr
of spectroscopic observations of HD 166620 from the Mount
Wilson Observatory and Keck revealed both a ∼16 yr
periodicity in emission from the core of the Ca II H and K
lines (Oláh et al. 2016) and evidence that this star entered a
grand minimum (Baum et al. 2022). A more complete review
of the state of stellar activity cycles can be found in Jeffers et al.
(2023) and Işık et al. (2023).

In addition to photometric and spectroscopic observations,
solar flares trace the length of the solar activity cycle. The high-
cadence observations from Kepler (4 yr baseline) and TESS
(currently 5 yr baseline) provide sufficient data for searches of
stellar activity cycles from the variations in stellar flare rates.
Davenport et al. (2020) demonstrated that the flare rate and
FFDs of GJ 1234 has not changed appreciably over 10 yr of
observations with both Kepler and TESS. On the other hand,
Scoggins et al. (2019) found that the M3V star KIC 8507979
showed a clear decline in flare rate and change in FFD over 4 yr
of Kepler observations. While it is not expected to find flare
rate and distribution variations in all stars given detection
limitations, KIC 8507979 demonstrates the ability to study
long-term flare variability as a potential tracer for stellar
activity cycles.

The paper is presented as follows. In Section 2, we describe
our sample and stellar flare and rotation period identification
methods. In Section 3, we present our FFD fits as a function of
the stellar age, Teff, and R0. In Section 4, we present evidence
of flare rate changes over the 5 yr TESS baseline in eleven

young stars, likely correlated with long-term stellar activity
cycles. In Section 5, we search for correlations in flare rates
with far-ultraviolet (FUV) and near-ultraviolet (NUV) observa-
tions from Galaxy Evolution Explorer (GALEX) and place the
flare rates of young planet-hosting stars in the context of our
broader sample. We conclude in Section 6. We provide
additional figures and tables in the Appendix.
This paper was written using the showyourwork! open-

source software package. The objective of showyourwork! is to
improve the reproducibility and transparency of scientific
research by compiling the manuscript and figures simulta-
neously. All of the data in this work is hosted on GitHub10 and
Zenodo at doi:10.5281/zenodo.11205821. At the end of every
caption figure in this manuscript, there is a GitHub icon (✎),
which links to the Python script used to create that figure.

2. TESS Light Curve Characterization

Here, we provide an overview of the methodology used in
this paper. Specifically, we describe the sample selection in
Section 2.1, TESS light curve analysis in Section 2.2, flare
identification in Section 2.3, flare fitting parameters in
Section 2.4, flare quality checks in Section 2.5, and stellar
rotation period measurements in Section 2.6.

2.1. Sample Selection

A primary goal of this paper is to measure the relationship
between the flare rates and ages of stars. We are particularly
interested in this dependency for young stars with ages
4� tage� 300Myr. To this end, we used the MOCA database
(J. Gagné et al. 2024, in preparation)11 to identify 26 nearby,
aged, young moving groups, associations, and open clusters
from which we created our sample of stars. The final targets
were required to be: (i) confirmed members, (ii) high-likelihood
candidate members, or (iii) candidate members. Membership in
these groups has been primarily determined using kinematic
information from Gaia (Gaia Collaboration et al. 2016, 2018).
The membership status is determined by the probability that
BANYAN-Σ assigns based on how well the kinematics of the
target matches with the kinematics of the group (Gagné et al.
2018b). These rather stringent cuts resulted in a catalog of
30,889 stars across 26 associations. We summarize the sample
and ages for each association (and therefore star) in Table 1.

2.2. TESS Light Curves

We crossmatched our MOCA database sample with the
TESS Input Catalog (TIC) based on their Gaia Data Release
2 R.A. and decl.; we required that the distance between the
target and the nearest TIC target was within <1″. We
downselected our sample to stars that have been observed
with TESS at 2 minute cadence. This ensures that we are able
to temporally resolve and accurately measure the properties of
flares for each of these stars (Howard & MacGregor 2022).
This process provided a final sample of 6824 unique targets.

These targets have each been observed at a 2 minute cadence
between TESS Sector 1 and Sector 67; Sector 67 was the latest
available sector at the time that this analysis was performed. In

10 The GitHub is hyperlinked in the showyourwork! stamp at the top of the first
page of this manuscript, and can also be found here: https://github.com/
afeinstein20/young-stellar-flares.
11 https://mocadb.ca/
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Figure 1, we show the distribution of the on-sky positions,
ages, and effective temperatures, Teff, of the final sample.
Because many of the groups are located at or near the ecliptic
poles, many of our targets were observed over multiple TESS
sectors. We use Teff as our stellar characterization metric over
the standard Må because ∼600 stars in our sample lack mass
information in the TIC. The entirety of the available data
yielded 17,964 light curves processed by the Science Proces-
sing Operations Center (SPOC) pipeline (Jenkins et al. 2016),
which can be accessed on MAST at 10.17909/t9-nmc8-f686
(MAST Team 2021). Our sample has an average of three light
curves per target (although with significant spread across
targets). We downloaded all light curves using lightkurve
(Barentsen et al. 2019). For our analysis, we used the SPOC-
processed SAP_FLUX.

2.3. Flare Identification

Once we downloaded the light curves for each target, we
performed the following procedure to identify stellar flares. We
implemented the machine-learning flare-identification methods
presented and described in Feinstein et al. (2020b). This
method relies on the similar time-dependent morphologies of
all flare events. These flare profiles can generally be described
as a sharp rise followed by an exponential decay in the white-
light curve. This identification technique implements the
convolutional neural network (CNN) stella (Feinstein
et al. 2020b), although other architectures have been explored
for flare identification (e.g., Vida & Roettenbacher 2018). The
CNN was trained on a by-eye validated catalog of flares from
TESS Sectors 1 and 2 with 2 minute data (Günther et al. 2020).

There are several benefits to using the CNN for stellar flare
identification. Primarily, the CNN is insensitive to the stellar
baseline flux because it is trained to search only based on flare
morphology. It is therefore relatively insensitive to the absolute
flux levels, so long as the inherent noise does not overwhelm
the signal itself. An additional benefit is that rotational
modulation peaks—which are themselves driven by stellar
heterogeneities—are not accidentally identified as flares. This
holds true for stars with rotation periods, Prot> 1 day. This is
especially advantageous for our sample of young stars, which
readily exhibit rotational modulation in their light curves.
Based on these advantages, the final compiled sample of

flares is unbiased toward low-amplitude/low-energy flares. It is
important to note that these low-energy events are typically not
identified in traditional sigma-outlier identification methods
(e.g., Chang et al. 2015; Vasilyev et al. 2022). While significant
developments have been achieved to better model and detrend
stellar variability (e.g., Bicz et al. 2022), these methods can be
computationally intensive The stella CNN models calculate
the probability that a data point in a light curve is associated
with a flaring event. Specifically, it takes the light curve (time,
flux, flux error) as an input and returns an array with values of
[0, 1], which are treated as the probability a data point is (1) or
is not (0) part of a flare. We ran every light curve through 10
independent stella models and averaged the outputs to
ensure that our statistics were accurate. We note that in this

Table 1
Adopted Ages of Each Young Stellar Population and Number of Stars per

Group, Nstars

Population Age (Myr) Nstars References

AB Doradus -
+133 20

15 88 (1)
Blanco 1 -

+137.1 33
7.0 428 (2)

Carina 45 ± 9 94 (3)
Carina-Musca 32 35 (4)
Chamaeleon 5 424 (5)
Columba 42 126 (3)
Greater Taurus Subgroup 5 8.5 56 (4)
Greater Taurus Subgroup 8 4.5 122 (4)
Lower Centaurus Crux 15 761 (6)
MELANGE-1 -

+250 70
50 19 (7)

Octans 35 ± 5 64 (8)
Pisces Eridanis 120 219 (9)
Pleiades -

+127.4 10
6.3 1421 (2)

α Persei -
+79 2.3

1.5 625 (2)
IC 2602 system -

+52.5 3.7
2.2 160 (2)

NGC 2451A 48.5 59 (4)
Oh 59 162.2 62 (10)
Platais 9 50 124 (11)
RSG2 126 145 (12)
Theia 301 195 437 (10)
Theia 95 30.2 230 (10)
TW Hydrae 10 24 (3)
Upper Centaurus Lupus 16 ± 2 696 (6)
Upper Scorpius 10 106 (6)
Vela-CG4 33.7 299 (4)

Total 6824

Note. Age references: (1) Gagné et al. (2018a); (2) Galindo-Guil et al. (2022);
(3) Bell et al. (2015); (4) Kerr et al. (2021); (5) Luhman (2007); (6) Pecaut &
Mamajek (2016); (7) Tofflemire et al. (2021); (8) Murphy & Lawson (2015);
(9) Curtis et al. (2019); (10) Kounkel et al. (2020); (11) Tarricq et al. (2021);
(12) Röser et al. (2016).

Figure 1. Top: distribution of the selected sample across the sky and colored
by the adopted age of the association (see Table 1). The all-sky coverage by
TESS has unlocked new populations of stars to observe. We take advantage of
this observing strategy to measure flare rates across 26 different nearby young
moving groups, clusters, and associations. Bottom: distribution of adopted
effective temperatures, Teff [K] for stars in our sample. We include all stars with
Teff � 6000 K. ✎
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processing, the CNN ignores 200 minutes before and after any
gaps in the data. Therefore, any flares which occur during these
times are not identified. From by-eye vetting of ∼300 light
curves, we found two flares within the first 200 minutes of the
orbital gaps. Therefore, we estimate �120 flares are missed in
our catalog.

The stella code groups individual points with the
predictions per data point when identifying a single flare
event. We modified this stage of identification slightly from the
original flare-identification method. Specifically, we identified
all data points with a probability of being associated with a
flare of P> 0.75. Any data points that were within four
cadences of each other were considered to be a single flare
event. We did not consider any potential flares that had three or
fewer points with P> 0.75. This method rejects single-point
outliers which can be assigned high probabilities of being
flares. We assigned the probability of the whole flare event as
the probability of the peak data point.

2.4. Modeling Flare Properties

Flares are well-described in light curves as a sudden increase
in flux followed by an exponential decay. We used the analytic
flare model, Llamaradas Estelares, which was presented in
Tovar Mendoza et al. (2022),12 to fit and extract parameters of
flares in all of the light curves of our sample. This model builds
upon the model presented in Davenport et al. (2014).
Specifically, it includes the convolution of a Gaussian with a
double exponential model in the flare profile.

The analytic model robustly accounts for physically
motivated flare features. Specifically, it can incorporate the
flare (i) amplitude, (ii) heating timescale, (iii) rapid cooling
phase timescale, and (iv) slow cooling phase timescale. We
implemented a nonlinear least squares optimization to fit the
flare peak time (tpeak), FWHM, and the amplitude (A) of each
flare in the sample. We note that there are several other
physically motivated flare models that could be used, such as
those presented in Gryciuk et al. (2017), Pietras et al. (2022),
and Yang et al. (2023a); these models include using two
profiles to fit the impulsive and late phases of the flare. We
combine the model with a second-order polynomial fit to a
1.2 hr baseline before and after the flare during only the fitting
stage. This was implemented in order to account for any slope
due to rotational modulation and therefore was particularly
relevant for the rapid rotators (Prot< 2 days).

We calculated the equivalent duration, ED, of the flare by
integrating the quiescent-normalized flare flux with respect to
time. We calculate the flare energy, Eflare, using,

( )= E L A sED . 1flare

In Equation (1), Lå is the luminosity of the star and s is a
scaling factor defined as ( ) ( )= l ls B T B Teff flare , where Bλ(T) is
the Planck function. We assume that the flare temperature is
9000 K (Hawley & Fisher 1992; Hawley et al. 1995), although
recent NUV flare observations suggest this may be an
underestimation (Kowalski et al. 2019; Berger et al. 2023;
Brasseur et al. 2023).

2.4.1. Comparison of Flare Models

Tovar Mendoza et al. (2022) demonstrated that the flare
model works well for flares with amplitudes �2 (i.e., double
the baseline flux). However, other works such as Pietras et al.
(2022) have demonstrated that a double-flare profile better fits
high-energy flares. To quantify how well the Llamaradas
Estelares model works, we refit and calculate the χ2 for a
subset of high-amplitude flares (A� 0.4) using Equation (3) in
Pietras et al. (2022), a double-peak flare model, which is:

⎜
⎟

⎛⎝ ⎡⎣⎢ ⎤⎦⎥ ⎡⎣⎢ ⎤⎦⎥⎡⎣⎢ ⎤⎦⎥ ⎡⎣⎢ ⎤⎦⎥⎞⎠
( ) ( ) ( )

( ) ( ) ( )

òt
t
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=
- - -

+
- - -

t
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t B

C
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D

A
t B

C
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D

dt
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0
1
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2

1
2

1

2
2

2

2
2

2

where A is related to the amplitude of the flare, B relates to the
total energy released during the flare, C relates to the timescale
of the flare, D is related to the decay timescale, τ is the time of a
given cadence, and t is the time to integrate over. The
subscripts 1 and 2 indicate which flare variables are associated
with the first and second flare profile. We refit 900 high-
amplitude flares following Equation (2). We plot the results of
this refitting in Figure 2.
Broadly, we find the flare model from Tovar Mendoza et al.

(2022) and Pietras et al. (2022) to fit the majority of the high-
amplitude flares equally as well (Figure 2(A)). We highlight
several examples where one model fits better than the other in
Figures 2(B)–(E), and cases where both profiles fit the data
equally as well in Figures 2(F)–(G). Flares that prefer the
Llamaradas Estelares model tend to have a more accurately fit
flare amplitude. Flares that prefer the double-peak model tend
to have an extended decay timescale, which is better fit by the
addition of a secondary flare. Flares that are fit equally well by
both models tend to have a better fit to the amplitude in the
Llamaradas Estelares model, but a better fit to the decay
timescale in the double-peak flare model.

2.5. Flare Quality Checks

The stella CNNs were trained on data from TESS Sectors
1 and 2. However, the noise properties are variable across
sectors in TESS data. The CNNs are therefore unable to
accurately account for and capture this variation when
operating in different sectors. Moreover, the original CNNs
were only trained on a sample of 1228 stars. This training
sample does not necessarily encapsulate a sufficient distribu-
tion of variable star types, such as eclipsing binaries, RR
Lyraes, and fast rotators with Prot< 1 day (Lawson et al. 2019),
which results in the CNNs not being able to properly
distinguish these temporal features from flares. We therefore
apply additional quality checks to ensure our flare sample has
little to no contamination from other sources.
Specifically, we removed flares from our sample that did not

satisfy one or more of the following criteria:

1. The amplitude of the flare must be >0.01, the same limits
set by Feinstein et al. (2020b).

2. The flare amplitude must be at least twice the standard
deviation of the light curve 30 minutes before and
45 minutes after the flare. This ensures that the feature
is not a sharp noise artifact.12 https://github.com/lupitatovar/Llamaradas-Estelares
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3. The fitted flare model parameters must be physically
motivated: FWHM> 0; A> 0; ED> 0.

4. The flare parameters must be σA< 0.5 and s < 0.01tpeak .

We find that flares are often simply mischaracterized
noise when the errors on the first and fourth criteria are
larger than the cutoffs. These quality checks highlight the
need to continuously update machine-learning models,
especially when looking at data with varying instrumental
systematics.

As a final check, we performed an exhaustive by-eye
verification of flares from light curves for stars with flare rates,

> 1day−1. These stars generally tend to have Teff> 5000 K
and TESS magnitudes <8. Therefore, their light curves are
dominated by sharp noise, which stella often mischarac-
terizes as flares. As a final cut, the sample only includes events
that have a probability P� 98% of being a true flare. After

performing these additional checks, we obtain a robust final
flare sample of 26,355 flares originating from 3160 stars
(Figure 3).

2.6. Measuring Rotation Periods

In addition to understanding flare statistics across young
stars, we measure the rotation periods, Prot, of stars in our
sample. We then search for correlations between Prot and
Rossby number, R0. Seligman et al. (2022) demonstrated that
stars with low Rossby numbers R0< 0.13 exhibit shallower
FFD slopes. These shallower slopes are caused by an excess of
high-energy flares compared to lower-energy flares.
In order to perform this, we describe how we measure stellar

rotation periods from the TESS light curves. To this end, we
used michael,13 an open-source Python package that robustly
measures Prot using a combination of traditional Lomb–Scargle
periodograms and wavelet transformations. michael mea-
sures Prot using the eleanor package, which extracts light
curves from the TESS Full-Frame Images (FFIs; Feinstein et al.
2019).

Figure 3. High-level summary of the demographics of flares in our sample.
Top: the number of flares identified compared to the number of stars in each
nearby young moving group, cluster, or association. A linear relationship is
expected. Bottom: distribution of measured TESS energies and equivalent
durations of flares in our sample, colored by the probability of the flare as
identified with stella. ✎

Figure 2. Comparison fits between the Llamaradas Estelares single-peak model
from Tovar Mendoza et al. (2022) and the double-peak flare model from Pietras
et al. (2022) for flares with A � 0.4. Top (A): comparison in the χ2 between the
best-fit model for 900 flares. A one-to-one line is plotted in peach to guide the
eye. Across this sample of high-amplitude flares, there is good agreement
between the fits for these two distinct models. Bottom: comparison in best-fit
models for a subset of flares. The best-fit Llamaradas Estelares model is plotted
in blue; the best-fit double-peak model is plotted in orange. We highlight
examples where the double-peak flare model has the better fit (B), (C), the
Llamaradas Estelares flare model has the better fit (D), (E), and where the
models perform equally as well (F), (G). We note that there is no correlation
between the flare amplitude and the preferred model. ✎

13 https://github.com/ojhall94/michael
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We ran michael on all stars in our samples from which
flares were identified. The estimated rotational periods were
subsequently vetted by eye with the michael diagnostic
plots. This vetting was implemented to ensure that the
measured Prot was not a harmonic of the true Prot or from an
occulting companion. This led to robust measurements of
rotation periods for 1847 stars in total. Additionally, we
identified 17 eclipsing binaries or potentially new planet
candidates.

3. Flare Rates of Young Stars

In this section, we use the previously described methodology
to estimate the flare rates of the young stars in our sample. We
implement three main steps in this analysis. First, we perform
the standard FFD fitting of a power law to the distribution of
flare energies described in Section 3.1. Next, we fit the
relationship between R0 and flare rates in Section 3.2. Finally,
we fit a truncated power law to the distribution of flare
amplitudes in Section 3.3 to identify correlations between R0
and flare distributions.

The number of stars and flares in each association varied
greatly (Figure 3). This was primarily caused by the limited
number of stars that had been observed at 2 minute cadence in
TESS. We therefore did not measure FFD properties as a
function of the association. Instead, we group stars by Teff and
average adopted association age.

We define the following spectral-type bins by Teff:

1. M stars below the fully convective boundary (Teff= 2300–
3400 K),

2. early-type M stars (Teff= 3400–3850 K),
3. late K stars (Teff= 3850–4440 K),
4. early K stars (Teff= 4440–5270 K),
5. G stars (Teff= 5270–5930 K).

We did not include any stars hotter than Teff> 5930 K. These
hot stars generally exhibit light curves dominated by noise in

the TESS observations. Additionally, we grouped stars in the
following age space: 4–10Myr (including Upper Scorpius and
TW Hydrae), 10–20Myr, 20–40Myr, 40–50Myr, 70–80Myr,
120–150Myr, and 150–300Myr. We note that there is a gap in
age from 50 to 70Myr, which could be expanded with the
identification of more associations in this age range.

3.1. Standard Power-law Fits

We fit the stars' FFD slopes, approximated as a power law,
using the Teff and age bins described above. Flares were binned
into 25 bins in log space from 1027 to 1035 erg. The FFD has a
notable turnover energy, Eturnover, when our detection method is
incomplete due to the low amplitude of those flares. The FFD
slope is often fit to flares with energies E� Eturnover. We
perform our fits following the same methodology. This
turnover in the FFD cannot be accurately modeled with a
power law. We present our FFDs as a function of Teff and age
in Figure A1; points that were fit to measure the FFD slope are
presented in black, while the full FFD is presented in gray. We
present our best-fit results in Table A1.
We fit the FFD using the Markov Chain Monte Carlo

(MCMC) method implemented in emcee (Goodman &
Weare 2010; Foreman-Mackey et al. 2013). Specifically, we
fit for the slope, α, y-intercept, b, and an additional noise term,
f. This noise term accounts for an underestimation of the errors
in each bin. We initialized the MCMC fit with 300 walkers and
ran our fit over 5000 steps. We discarded the first 100 steps
upon visual inspection, after which the steps were fully burned
in. The measured FFD slopes, α, are presented in Figure 4. We
approximate the error on the slope as the lower 16th and upper
84th percentiles from the MCMC fit.
Overall, we measure a shallower FFD for stars of all masses

at tage< 300Myr. A shallower FFD indicates there are more
high-energy flares. The measured FFD slopes are shallower
than those measured using smaller samples of young stars.
Jackman et al. (2021) fit the three FFDs for M3–M5, M0–M2,

Figure 4.Measured flare frequency distribution slopes, α, as a function of the stellar effective temperature, Teff, and age. We measured these FFDs with respect to flare
energy. We find that the FFD slopes as a function of the energy are consistent with α = −0.6 to −0.2 for stars <300 Myr in TESS observations. A shallower FFD
slope is indicative of more high-energy flares. We present all measured FFDs in the Appendix and all measured slopes and errors in Table A1. We find the shallowest
slopes for stars Teff = 3400–4440 K, with a range from α = −0.44 to −0.22. We do not include the results for stars Teff = 3850–4440 K and tage = 20–40 Myr as this
bin contained only six stars with detected flares. We present the average results of measured FFD slopes for the Hyades, Pleiades, and Praesepe clusters from Ilin et al.
(2021) as black squares. We present the results of measured FFD slopes for all TESS primary mission targets in white circles (Feinstein et al. 2022b) as “field-age.”
We discuss what drives the difference between our sample and Ilin et al. (2021) in Section 3.1. ✎
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and K5–K8 stars younger than 40Myr that had been observed
with the Next Generation Transit Survey. They measured
slopes of 0.94± 0.04, 0.69± 0.05, 0.82± 0.14 per bin, which
each contained �120 flares. It is also worth noting that the
slopes measured here are based on up to an order of magnitude
more flares per fit. Our sample also has a longer temporal
baseline, allowing for the occurrence of more high-energy
flares. Accumulating more high-energy flares in the FFD, if
such events occur, will result in a shallower FFD slope. TESS
flare statistics for main-sequence stars have indicated steeper
FFDs (Feinstein et al. 2022b). Therefore, the FFDs presented
here are not strictly impacted by longer observations but are the
result of more high-energy flares on young stars.

There is a 1–3σ discrepancy between the FFD slope
measured in Ilin et al. (2021) and the work presented here at
ages ∼120Myr (α ranges from −1.32± 0.19 to−0.91± 0.18,
depending on the Teff bin). Ilin et al. (2021) used the K2
30 minute light curves for their analysis, compared with our
TESS 2 minute light curves. Additionally, our sample has ∼2×
the number of stars and ∼7× the number of flares as in Ilin
et al. (2021). First, we test if these discrepancies are driven by
differences in sample binning. We reevaluate the FFDs
assuming the Teff bins presented in Table 3 of Ilin et al.
(2021). We find α remains consistent with our presented values
to within ∼1σ of the nearest temperature bin. Second, we
reevaluate the FFDs assuming the total number of flares fit in
Ilin et al. (2021). We draw nfit (last column in Table 3 of Ilin
et al. 2021) flares from our sample 100 times without
replacement, refit the FFD, and take the average FFD slope
from that subsample of flares to our results. We find α remains
consistent with our presented values to ∼2σ. We note that in
most cases nfit,Ilin et al. (2021)< nfit,this work. Therefore, the
increased disagreement in α could be due to smaller sample
sizes.

Additionally, we test if the difference in α is driven by the
cadence differences between K2 (30 minutes) and TESS
(2 minutes). We bin all of the flares in our sample down to a
30 minute cadence, refit for flare A and ED, and recalculate the
flare energy. We refit the FFD for this altered sample and
measure FFD slopes consistent with ∼1σ with those presented
in this work. Therefore, the discrepancy seen here is not driven
by observational differences between K2 and TESS.

Finally, we test if the differences are driven by the range of
energies that are fit. The CNN-based flare-detection algorithm
has previously been demonstrated to be less biased against
lower-energy flares. Like this work, Ilin et al. (2021) fit the
FFD across flare energies that are not affected by a reduced
efficiency in the low-energy flare detection, E� Eturnover. In
energy space, these fits begin between Ef= 1032−33 erg,
compared to our fits which begin between Ef= 1031−32 erg
(Appendix). When we limit our sample to Ef� 1032.5 erg, we
find the FFD slopes become steeper and more consistent with
the values of α presented in Ilin et al. (2021). Therefore, the
difference in α between this work and Ilin et al. (2021) for stars
with tage= 120–150Myr is driven by the lower-energy flares,
with which we are more complete with TESS than K2.

3.2. Flare Rate Dependence on Rossby Number

The Rossby number, R0, is a parameter that incorporates
several properties that are known to affect the stellar dynamo,
such as the rotation period and stellar mass. In the context of
stellar dynamo the Rossby number indicates the dominance of

the convective versus rotational dynamo. It is defined as
R0= Prot/τ, where τ is the convective turnover time. We
convert our measured rotation periods to R0, approximating τ
following the prescription in Wright et al. (2011). We equate
the flare rates, , for individual stars as

⎜ ⎟⎛⎝ ⎞⎠ ( )å=
=


t

p
1

. 3
i

N

i
obs 1

In Equation (3),  is the flare rate in units of day−1, tobs is
the total amount of time a target was observed with TESS, and
pi is the probability that flare i is a true flare as assigned by
stella. We compare the calculated R0 to measured flare rates
for all stars with measured Prot. The results are presented in
Figure 5.
From these results, we are able to evaluate the dependence of

the flare rate on age, spectral type, and R0. We split the sample
between stars younger and older than 50Myr. This age roughly
correlates to the age at which GKM stars turn onto the main
sequence. The flare rate of stars younger than 50Myr slightly
decreases with increasing R0. However, there is a significant
amount of scatter in this relationship.
As can be seen by comparing the upper and lower panels in

Figure 5, the flare rate dependence on the Rossby number is
most evident in older, more massive stars between 50 and
250Myr. There is minimal evolution in both the average flare
rate and R0 between the two samples for M stars. For K stars,
R0 evolves more dramatically during the first 250Myr while
the scatter in the flare rate decreases. For G stars, the scatter in
R0 decreases and the average flare rate across the sample
decreases. We present a compiled histogram for all stars in our
sample in the right column of Figure 5.
To better understand this trend for the GKM sample, we fit

three functions to the flare rate Rossby number parameter
space: (i) a constant value, (ii) a single power law, and (iii) a
piecewise function consisting of a constant value and a power
law. We computed the χ2 between each of these fits and the
data. For (iii), we fit for where the R0 turnover should occur
by computing the χ2 across a range of R0= [0.09, 0.18]. We
weighted the data points based on the density of points
in a given bin (Figure 5). For 4.5–50 Myr old stars, the
distribution is best fit with a single power law with slope
m=− 0.102± 0.018 and y-intercept b=− 0.660± 0.017.
For stars 50–250 Myr, the distribution is best fit with a
piecewise function of the form:

⎧⎨⎩ ( )=
>


*


C R
R R

0.136
10 0.136.

4b m
0

0 0

In Equation (4),  is the flare rate, C= 0.269± 0.007,
m=−0.612± 0.039, and b=−1.113± 0.035. The location
of the turnover is consistent with what has been measured in
other observations of magnetic saturation for partially and fully
convective stars (e.g., LX/Lbol; Wright et al. 2018).
With a sample of 851,168 flares detected in both Kepler 1 and

30minute cadence data, Davenport (2016) searched for a
relationship between Rossby number and relative flare lumin-
osity. This work determined that the relationship could be fit by
a broken power law, with a break at R0= 0.03 and a slope of
m∼−1 dominating higher R0. However, a single power law is
slightly preferred over the broken power law. While the metrics
used between Davenport (2016) and this paper are different, both
suggest a saturation in flares for stars with low R0. Additionally,
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Medina et al. (2020) found a broken-power-law relationship
between R0 and the flare rate for flares with Ef> 3.16× 1031 erg,
corresponding to the completeness threshold of their sample.
Medina et al. (2020) analyzed light curves of 419 low-mass
(Må= 0.1−0.3Me) main-sequence stars in the solar neighbor-
hood observed by TESS. They found that the flare rate saturates
at ( ) = -  -log 1.30 0.08 for R0< 0.1 and rapidly declines
for R0> 0.1. Yang et al. (2023b) analyzed 7082 stars with
measured Prot observed during TESS sectors 1–30 and found a
broken power law described the relationship between ΔFlare/Lå
for M dwarfs, with a break between R0= 0.1–0.13, which is
consistent with this work. While there are differences in sample
selection between our work and previous studies, all are
consistent with flare rate saturation for stars with low R0 and a
steep drop-off in flare rate for stars with higher R0> 0.1.

3.3. Truncated Power-law Fits

We search for evidence of variations of the FFDs as a
function of the flare amplitude versus Rossby number, R0. This
is motivated by the data presented in Seligman et al. (2022). In
that work, they modeled flares driven by magnetic reconnection
events driven by rotational forces as well as convective
dynamo. Seligman et al. (2022) found that stars with R0< 0.13
exhibited shallower FFD slopes than stars with R0� 0.13 to
several sigma significance. The differences in the FFDs were
indicative of relatively more high-energy flares than low-
energy flares. This was interpreted as evidence of a more
dominant rotational dynamo compared to the convective
dynamo, which preferentially produced longer magnetic braids
in the stellar coronae.

In this subsection, we test this theory with a much larger
sample of stars (1847 instead of 807 stars). We fit the
distributions separated by the fitted R0 presented in
Section 3.2. In order to perform the fits, we follow the
prescription described in greater detail in Seligman et al.

(2022). Here, we provide a brief summary of the prescription.
Specifically, we fit a truncated power-law distribution of the
form,

( )µ a- - *dp dA A e . 5A AT

In Equation (5), A is the amplitude of the flare, A* is a flare
amplitude cutoff parameter and αT is the slope, rather than α.
We fit the slopes using the MCMC method implemented in
emcee (Goodman & Weare 2010; Foreman-Mackey et al.
2013). We used the log-likelihood function in Seligman et al.
(2022) and fit for A* and αT. We initialized the MCMC fit with
200 walkers and evaluated the fit over 5000 steps. The first
1000 steps were discarded upon visual inspection. The results
are presented in Figure 6.
We find that stars with R0� 0.136 have a best-fit slope of

αT= 1.076± 0.020, while stars with larger R0 have a best-fit
slope of αT= 1.604± 0.040. This result agrees with the results
presented in Seligman et al. (2022). This is not the first instance
we have seen a correlation in FFDs as a function of R0.
Candelaresi et al. (2014) noted that faster-rotating stars have
higher superflare rates derived from Kepler data. The spectro-
scopic survey presented in Notsu et al. (2019) found that the
maximum flare energy decreased as Prot, and consequently R0,
increased. Mondrik et al. (2019) identified flares across 2226
stars observed with MEarth and found an increase in the flare
rate between stars with low R0< 0.04 and stars with
intermediate R0= (0.04, 0.44), and a subsequent decrease in
the flare rate for stars with high R0> 0.44. While our bins of
stars by R0 are not as fine as those presented in Mondrik et al.
(2019), the correlation in ΔR0 remains consistent.

4. Evidence for Stellar Cycles from Variable Flare Activity

The Sun undergoes an 11 yr solar cycle during which it
oscillates between high and low magnetic activity. This
magnetic cycle manifests in a variety of observables. One of
the primary indicators of the solar cycle is a stark change in the

Figure 5. Comparison of Rossby Number, R0, and flare rate for young GKM stars. For the younger sample (top row; tage = 4.5–50 Myr), we find no correlations
between flare rate and R0. For the slightly older sample (bottom row; tage = 50–250 Myr), we find no change in the average flare rate for M stars. For K and G stars, we
start to see some evolution in this relationship. For K and G stars, we see that as R0 increases, the average flare rate decreases. This could indicate that as stars spin
down, their flare activity also begins to decline. We find that for the full GKM sample of stars (bottom row, rightmost column), the relationship between R0 and flare
rate is best fit by a broken power law, with a turnover at R0 = 0.136. For the younger full sample (top row, rightmost column), we find this relationship is best fit by a
single power law. The histograms are colored by number of stars in each bin. ✎

8

The Astronomical Journal, 168:60 (18pp), 2024 August Feinstein et al.

https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/prot_histograms.py


flare rate; this rate can vary by more than an order of magnitude
between Solar maxima and minima (Webb & Howard 1994).
Moreover, the energetics of the flares that are produced on the
solar surface vary dramatically over the course of the solar
cycle (Bai & Sturrock 1987; Bai 2003). Direct and indirect
evidence of the solar cycle has also been observed in radio flux,
total solar irradiance, the magnitude and geometry of the
magnetic field, coronal mass ejections affiliated with flares,
geomagnetic activity, cosmic ray fluxes, and radioisotopes in
ice cores and tree rings. For a recent review, see Hath-
away (2015).

While other stars should also experience activity cycles like
the Sun, they are more difficult to measure. Constraints on stellar
cycles have predominantly relied on long-baseline variations in
stellar photometry, typically observed at cadences that cannot
resolve stellar flares (see recent reviews by Işık et al. 2023;
Jeffers et al. 2023). However, tracing stellar cycles via stellar
flares may be more reliable, as flares are a direct consequence of
magnetic activity. Scoggins et al. (2019) explored measuring the
stellar cycle length of KIC 8507979, a star in the Kepler field
that was observed for 18 90 day quarters. Scoggins et al. (2019)
found the flare rate decreased over each quarter, which could
be fit by Lfl/LKp=(−9.96± 3.94)× 10−2× tyr+ (2.43± 0.11),
where tyr is the time in years, and Lfl/LKp is a parameterization of
the Kepler flare rate (Lurie et al. 2015).

4.1. Flare Observables from the Sun

Here, we explore observables from solar flares between 2002
and 2018 in the Reuven Ramaty High Energy Solar Spectro-
scopic Imager (RHESSI; Lin et al. 2002) flare catalog.14 The
RHESSI mission observes the Sun across a wide range of
X-ray energies, from 3 keV to 17MeV, with high temporal and
energy resolutions as well as high signal sensitivity. Such a
wide energy range enables the ability to explore both the
thermal and nonthermal emission observed during flare events.
Over 16 yr of operations, over 100,000 solar flares have
been observed and characterized in RHESSI data. These

observations covered the second half of Solar Cycle 23 and the
beginning of Solar Cycle 24. We use the publicly available
RHESSI flare catalog to determine metrics that would be most
useful when searching for evidence of stellar cycles. One
potential issue with this analysis is that the hard X-ray (HXR)
observations from RHESSI and white-light observations from
TESS may not be directly correlated. However, there is a close
spatial and temporal correspondence between HXR and white-
light flares on the Sun (Fletcher et al. 2007; Krucker et al. 2011;
Kleint et al. 2016). In particular, Namekata et al. (2017)
demonstrated the difference in spatially resolved flares as
observed with RHESSI HXR and the Solar Dynamics
Observatory/Helioseismic and Magnetic Imager (HMI) white
light. In some examples, the HMI white-light emission is seen
to last longer than the HXR, indicating the white-light emission
is related to nonthermal electrons.
However, other examples of simultaneous HXR and white-

light flare observations in Namekata et al. (2017) show similar
flare durations. Therefore, we take the HXR solar flares with
energies between 25 and 50 keV as likely representative of
solar white-light flares and are a comparable sample to our
TESS sample. First, the total number of flares detected in the
25–50 keV bandpass varied by 650 flares from the solar
maximum in 2002 to the solar minimum in 2008. This
variation correlates to a change in flare rate from 1.81 to
0.02 flares day−1 on average. Second, the FFD changes
between solar minimum and maximum because the frequency
of the highest-energy flares decreases. Finally, the total flare
luminosity relative to the total luminosity correlates with the
stellar cycle. This is defined by Lurie et al. (2015) as

( )x
º



L
L t

, 6flare flare

exp

where L flare is the total luminosity emitted by flares, Lå is the
luminosity of the star, xflare is the sum of the equivalent duration
of all flares observed, and texp is the exposure time of the
observations. These results for the Sun are presented in the
leftmost column of Figure 7.

4.2. Quantifying Flare Activity Over 5 yr of TESS Observations

The TESS Extended Missions have provided a five-year
baseline that we can use to search for evidence of stellar cycles.
This is a comparable baseline to Kepler, although with sparser
sampling. We search for evidence of stellar cycles within our
sample of fast rotators. Our sample contains 108 stars that have
been observed for tobs� 200 days across five years. We search
for evidence of changes in the stellar magnetic activity by
looking for correlations in (i) variations in the total luminosity
emitted in flares (ii) the total flare rate per year and (iii) annual
changes in the FFD. We group our observations by the year in
which the observations were taken, even for the cases where
the star was not continuously observed throughout that year
(e.g., Sectors 1–26 are Year 1, Sectors 27–55 are Year 2, and
Sectors 56–67 are Year 3).
We searched our 108 candidates by eye for correlations in

the aforementioned criteria. The correlations are categorized
into the following four options: (i) Positive: Ef,max and the total
number of flares has increased over five years; (ii) Negative:
Ef,max and the total number of flares has decreased over five
years; (iii) Trough: Ef,max and the total number of flares was
greater in the first and third years observed with a minimum in

Figure 6. Flare frequency distributions, as a function of the flare amplitude, for
stars with R0 � 0.12 (red) and stars with R0 > 0.12 (black). We present the
best-fit model and the best-fit values of the model slope and normalization
factor in the legends. Our sample of R0 � 0.12 includes 13,132 flares from 800
stars; our sample of R0 > 0.12 includes 5603 flares from 747 stars. We find the
stars with smaller Rossby numbers have shallower slopes, consistent with
more, high-energy flares and a more dominant rotational dynamo (Seligman
et al. 2022). ✎

14 https://hesperia.gsfc.nasa.gov/rhessi3/data-access/rhessi-data/flare-list/
index.html
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the second year; (iv) Peak: Ef,max and the total number of flares
was fewer in the first and third years observed with a maximum
in the second year.

From these three observables, we identified eleven stars
which all display evidence of scenario Peak, with the exception
of one star displaying evidence of scenario Negative, which is
presented in Figure 7. These stars are TIC 142015852,
235056185, 260351540, 270676943, 272349442, 308186412,
339668420, 350559457, 391745863, 393490554, and 452357
628. Our sample includes seven early-type M stars, two late K
stars, one early K star, and one G star. TIC 272349442 is a
candidate member of TW Hydrae (tage= 10± 3Myr), TIC
142015852, 270676943, 308186412, 339668420, 350559457,
and 452357628 are candidate members of Carina (tage=
45± 9Myr), TIC 235056185 and 260351540 are candidate
members of IC 2602 (tage=52.5± 2.95Myr), and TIC
391745863 and 393490554 are candidate members of the AB
Doradus Moving Group (tage= 133± 12.5Myr).

We report the measured x tflare exp and flare rates across all
three years, as presented in Figure 7 in Table A2. Across our
sample, we find the largest change in flare parameters in TIC
235056185, which has a ( )xD =tlog 1.1410 flare exp and
D = 0.5. Additionally, we see some targets (e.g., TIC
350559457) become very flare quiet, going from = 0.2
day−1 to = 0.05 day−1, which is obvious when visually
inspecting the light curve. For stars showing the Peak scenario,
we find that the years before and after the peak do not
necessarily return to the same value of x tflare exp and ,
although it does for some stars.

4.3. Flare Recovery per TESS Year

The majority of stars identified with evidence of stellar
cycles exhibit the Peak scenario. To determine if this is
astrophysical or driven by some unknown instrumental
systematic, we perform an injection-recovery test on this
subsample of stars. Injection-recovery tests are used to address
biases in our detection method. Injection-recovery tests are
typically not recommended for machine-learning detection
techniques (Feinstein et al. 2020b). However, we perform them

because these are some of the first results of searching for
evidence of stellar cycles via flare activity.
We inject a total of 50 flares into each sector of data for our

eleven stars. We draw the amplitude of our flares from a
Gaussian distribution centered at a 3% increase in flux, with a
standard deviation of 1%. We do not inject flares with
amplitudes below 0.5%. We used the Llamaradas Estelares
flare model. We fit a line between flare amplitude and FWHM
from our new catalog to extract an appropriate FHWM for any
given amplitude. We added additional noise to the FHWM, as
the relationship between amplitude and FWHM exhibits scatter
similar to the distribution of flare energy and ED shown in
Figure 3. Once the flares were injected, we followed the steps
outlined in Sections 2.3–2.5 to identify these injected flares.
We considered a flare recovered if the tpeak is within

15 minutes of the injected tpeak. We are able to recover 93% of
flares with A� 3% and 80% of flares with A< 3%. This is
consistent with previous results using this flare-identification
method (Feinstein et al. 2020b). We note that there is a steep
drop-off in flare recovery rate at Tmag> 13, with average
recovery rates dropping from 90% to 70%. The variation in
recovery rates between years observed by TESS ranges from
1% to 8% across all eleven targets. There is no correlation
between recovery rate, x tflare exp and flare rate, with the
exception of TIC 142015852 and 339668420. We find an 8%
increase between Years 1 and 2 and a 3% decrease between
Years 2 and 3 in the recovery rate for TIC 142015852.
Additionally, we find a 1% increase between Years 1 and 2 and
a 2% decrease between Years 2 and 3 in the recovery rate for
TIC 339668420. An 8% change in the recovered flare rate
correlates to ( )xD =t 0.09flare exp , assuming ED= 1 minute,
and aD = 0.03. These estimates are smaller than the annual
variations seen in flare statistics for these two stars, leading us
to conclude that these variations are astrophysical.

4.4. Observing Peaks in Stellar Flare Activity

In Section 4.3 we demonstrated that 10 out of 108 stars with
>200 days of observations exhibited Peak behavior in their
variability patterns and found no bias in flare detection as a
function of the year. This is approximately what we would

Figure 7. Comparison of three flare-driven metrics in searching for evidence of stellar cycles. Each column contains information for the Sun (left), followed by TIC
142015852, 269797536, 270676943, and 278825715. The top row shows trends in the fractional luminosity emitted in flares, xºL L tfl TESS flare exp (Lurie
et al. 2015). The second and third rows show the calculated flare rate and cumulative FFD, respectively. For the Sun, we used the RHESSI X-ray flare catalog and
binned the flares per year from 2002 February to 2014 February. The Sun shows clear trends in x tflare exp and flare rate over the 12 yr solar cycle. The cumulative FFD
shows that (i) the overall number of flares decreases, which can be seen in the flare rate as well and (ii) the high-energy flare end of the distribution decreases. A
quadratic polynomial is plotted to help guide the eye. It is important to note that these fits do not provide constraints on the length of potential stellar cycles in these
stars due to the limited baseline obtained with TESS thus far. We present the measured flare rates and fractional luminosity emitted for each star in Table A2.
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expect to find for an unbiased sample. Our analysis requires a
large number of bright flares to be observable to characterize
the stellar cycle. Therefore, our sample of objects should be
biased toward stars that are undergoing a local maximum,
rather than a local minimum, in their activity cycle.

It is not clear what the length of the activity cycles are for
stars other than the Sun. For this order of magnitude estimate,
we therefore assume that the activity cycles of all stars in our
sample are similar to that of the Sun. This approximation is
valid if the length of stellar cycles on average is not more than
an order of magnitude different than that of the Sun. By
observing N∼ 108 stars for a τ∼ 5 yr baseline, assuming that
each has a P∼ 10 yr activity cycle, we would expect that
during that time period, τ/PN∼ 50 stars should experience a
peak in their stellar cycle during the observations. Moreover,
our analysis will only be sensitive to activity cycles if there is
not only a peak but also lower activity in the year before and
after the peak. Therefore, the number of stars that we would
expect to identify that have a peak in Year 2 should be τ/PN/
3∼ 16. Therefore, we would expect to identify ∼16 stars
exhibiting a peak in their activity cycle during these
observations, which is similar to what we have found.

However, it is likely that there is a variety of lengths of
stellar cycles in our population and the exact correspondence
between the number found and the number estimated is simply
a manifestation of the crude order of magnitude approximation
that we employed rather than an exact correspondence.
Nevertheless, this represents tentative detections of peaks in
stellar activity cycles and that on average the length of these
cycles is not an order of magnitude different than that of
the Sun.

The results presented here are consistent with those
presented in previous studies of magnetic activity cycles in
young stars. Oláh et al. (2016) analyzed 29 stars from the
Mount Wilson survey, which had ∼36 yr of Ca II H and K
monitoring. Roughly 16 stars in this sample have constrained
ages of <1 Gyr via gyrochronology. This sample of stars has
Prot= 18.1± 12.2 days and magnetic activity cycles of
Pcyc= 7.6± 4.9 yr. There is significantly more dispersion in
the young stellar cycle lengths than for the older stars. Oláh
et al. (2016) concluded that young stars show more complex
interannual variations in magnetic activity. While stars age,
magnetic braking will increase the rotation of the star. Once
this process has occurred, the magnetic activity cycle becomes
more well-behaved, as seen in the Sun.

We apply the relationship between ( )Plog 1 rot and ( )P Plog cyc rot
described in Oláh et al. (2016) to estimate the activity cycles
in our sample. 10 of our 11 candidates have measured
Prot= 0.41–5.22 days. Using the best-fit slope of 0.76± 0.15,
we estimate the Pcyc= 0.81–1.49 yr. Strong evidence of
shorter activity cycles than ∼3 yr may be missed by the sparse
annual sampling from TESS. Redesigning the next TESS
extended mission to stare at the northern and southern ecliptic
poles continuously for two years, instead of alternating poles,
may help resolve these shorter activity cycles, if present.

4.5. Validating Stellar Activity Cycles

The stars presented in this work present examples that stellar
activity cycles could be identified by characterizing stellar
flares and measuring flare rates. In addition to flare rates, it
would be beneficial to conduct detailed spectroscopic follow-
up of these candidates. For example, detailed monitoring of

Ca II H and K lines for these targets could reveal if their activity
cycles are similar to that seen from the flare rates.
Unfortunately, our candidates are located too far south to have
been included in the Mount Wilson HK project, which aimed to
understand stellar chromospheric activity on a variety of
timescales (Wilson 1968). Monitoring the overall XUV
luminosities of these targets could provide additional insights
into the variability of the targets. Additionally, more contin-
uous time-series photometry of these targets would provide
more stringent constraints on the flare variability for these
targets. While long time-series photometry, such as that
achieved with TESS and Kepler are ideal, more sparse but
consistent photometric monitoring for stellar flares may provide
useful additional supplemental data to TESS observations. This
is especially true for the times when TESS is observing in the
opposite ecliptic hemisphere.
The TESS FFIs allow for the creation of light curves for

objects in ∼95% of the sky (e.g., Feinstein et al. 2019). During
its primary mission (2018 July–2020 July), the TESS FFIs were
taken every 30 minutes. During its first extended mission (2020
July–2022 September), the FFI cadence was decreased to
10 minutes. Now, during its second extended mission (2022
September–2025 September), the FFI cadence was again
decreased to 3 minutes. At 3 minutes, we can more accurately
identify and resolve the structure of stellar flares (Howard &
MacGregor 2022). A detailed search of flare variability for stars
in the TESS FFIs may provide a more statistical view of how
flare rates change on long timescales, and if they can yield
insights into stellar activity cycles.

5. Discussion

5.1. Correlations with Far- and Near-ultraviolet Flux

The stellar X-ray coronal emission is known to be a tracer of
overall magnetic activity. Therefore, it should theoretically
depend on the dynamo of the star, and on observable
parameters that are related to the dynamo such as the rotational
period. Empirical evidence indicates that there are distinct
saturated and nonsaturated regimes for coronal X-ray emission
from main-sequence stars. Specifically, stellar X-ray luminosity
surveys have revealed that the saturation limit depends on the
stellar rotation period. Namely, there is no evolution in LX/Lbol
for stars with Prot< 10 days (Pizzolato et al. 2003). The
rotation period is a good predictor of the X-ray luminosity for
stars with longer Prot.
The FUV and NUV emission is another tracer of magnetic

activity. Younger, more active stars display excess luminosity
in both of these wavelengths (Shkolnik 2013). We use archival
observations from the GALEX (Martin et al. 2005) to search
for trends in FUV/NUV saturation and flare rate saturation,
similar to the established X-ray trends. GALEX provides broad
FUV photometry from 1350 to 1750Å and NUV photometry
from 1750 to 2750Å. We crossmatch our target stars with the
GALEX catalog following the sample selection methods
outlined in Schneider & Shkolnik (2018). Specifically, we
search using a 10″ radius around the coordinates of each target
in our sample. We include targets with no bad photometric
flags (e.g., fuv_artifact or nuv_artifact==0) as
defined in the catalog. It is recommended by the GALEX
documentation to exclude any objects with these flags
associated. Additionally, we exclude targets with measured
magnitudes brighter than 15, which marks the saturation limit

11

The Astronomical Journal, 168:60 (18pp), 2024 August Feinstein et al.



for both the FUV and NUV photometers (Morrissey et al.
2007). Based on these thresholds, we find that 462 stars in our
sample have NUV photometry and 139 stars have FUV
photometry.

We investigate whether the saturation of the flare rate and
FUV/NUV emission are correlated with the derived R0 in each
star. We present our results comparing the FUV and NUV flux
and the measured flare rate and Rossby number in Figure 8. We
present the measured FUV/NUV flux normalized by the
J-band flux, which acts as an activity indicator. In theory, the
bolometric luminosities should be a better normalization factor
than the J-band flux. However, the majority of stars in our
sample do not have bolometric luminosity measurements.
Therefore, we keep the normalization to fJ while assessing
FUV/NUV correlations for the larger statistical sample.

While there is tentative evidence of trends between the flare
rate and the Rossby number (see Section 3.2), there is
inconclusive evidence that the normalized FUV and NUV flux
follow this trend. We note that the number of stars in our
sample that have GALEX FUV measurements is small
(Nstars= 139) and therefore might not be representative of the
broader population. It is worth noting that the NUV flux traces
the photosphere for many of these stars, as opposed to the
X-rays that trace coronal emission. Additionally, the FUV still
has contributions from the photosphere for G stars. Therefore,
it is possible that the lack of a correlation between the regimes
identified for X-ray emission is due to the fact that the UV is
tracing different stellar atmospheric regions that are not
associated with the magnetic activity.

The FUV and NUV flux from GALEX is a superposition of
many different emission lines. These lines trace various regions
of the stellar atmosphere ranging from the corona to the
photosphere depending on their formation temperatures. It is
possible that the blending of lines produces a lack of correlation

between the FUV/NUV flux, R0, and the flare rate. Spectro-
scopic observations of targets with R0 which span the transition
out of the saturated regime may reveal a stronger relationship
between these parameters. Pineda et al. (2021) reported evidence
of a broken-power-law relationship between R0 and FUV
emission lines for ∼20 stars observed with the Space Telescope
Imaging Spectrograph on the Hubble Space Telescope.
Depending on the emission line analyzed, Pineda et al. (2021)
found a saturated regime for R0< 0.18–0.24, with a steep drop-
off for higher R0. Additionally, Loyd et al. (2021) evaluated the
relationship between FUV emission lines and R0 for 12 Tucana-
Horologium (tage= 40Myr), 9 Hyades (tage= 650Myr), and
7 field-aged (tage= 2–10 Gyr) M stars. They found a saturated

( ) = - -
+Rlog 0.87610 0 0.061

0.037, which is consistent with the X-ray
flux and R0 relationship.
The ROentgen Survey with an Imaging Telescope Array

(eROSITA) instrument (Predehl et al. 2007, 2021) on the
Russian Spectrum-RG mission is an all-sky X-ray survey from
∼0.2 to 8 keV. The synergies between eROSITA and TESS are
already being explored. Magaudda et al. (2022), used
the measured LX from eROSITA and Prot/R0 from TESS for
704 M dwarfs to reconfirm the known X-ray activity relation-
ship. It is possible that these combined data may show a clearer
relationship between R0 and flare rate in the X-ray than shown
here in the FUV/NUV (Figure 8).

5.2. Flare Rates of Young Planet Host Stars Versus
Comparison Sample

The all-sky observing strategy of TESS has revealed a new
population of young transiting exoplanets. Characterization of
the environment of these planets is crucial to understanding
their subsequent evolution. Specifically, the stellar environment
can impact how these young planets evolve into their mature
counterparts.
It is unclear whether stellar flares are beneficial or

detrimental to the habitability of exoplanets. It is possible that
stellar flares can trigger the development of prebiotic chemistry
(Rugheimer et al. 2015; Airapetian et al. 2016; Ranjan et al.
2017; Rimmer et al. 2018). On the other hand, stellar flares and
affiliated coronal mass ejections can permanently alter atmo-
spheric compositions (Chen et al. 2021). This alteration may
increase the amount of atmospheric mass stripped during the
early stages of planet evolution (Feinstein et al. 2020b).
Therefore, understanding the environment of young transiting
exoplanets can provide insight into their evolution.
To this end, we compare the measured flare rates of young,

planet-hosting stars to a statistical sample of stars with similar
ages and Teff that do not have confirmed short-period planets.
Specifically, we measured the flare rates of planet-hosting stars
with ages <300Myr, comparable to the ages of our primary
sample. We followed the methods outlined in Section 2 to
detect and vet flares for the planet-hosting stars.
For our comparison sample, we considered stars with ages

±30Myr of the planet-hosting star and Teff± 1000 K. For each
of the stars in the control samples, we calculated the flare rate
following Equation (3). We present the flare rates of planet-
hosting stars and a comparable sample of stars in Figure 9 and
report the measured rates in Table 2. For the control samples,
we report the median flare rate and the lower 16th and upper
84th percentiles.
Flare rates are slightly diminished for the majority of planet-

hosting stars compared to the control sample. This could be

Figure 8. Calculated FUV (left) and NUV (right) GALEX flux for stars in our
sample normalized by the stellar J-band flux. There is no obvious correlation
between the fractional NUV/FUV flux and the measured flare rate or Rossby
number. The top row shows GKM stars <50 Myr; the bottom row shows GKM
stars �50 Myr. M stars are shown as circles, K stars as triangles, and G stars as
squares. We note that fNUV traces the photosphere of G, K, and massive M
stars, and therefore may not be the best comparison bandpass when looking for
trends in magnetic activity. ✎
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interpreted as evidence that the presence of planets inhibits
magnetic reconnection events and activity, or that the presence
of flares biases transit-detection algorithms. However, for all
cases where the flare rates are diminished in the presence of a
short-period planet, the difference between the flare rates is
within 1σ and not statistically significant.

There are a handful of cases where stars hosting short-period
planets exhibit drastically higher flare rates. The most dramatic
case is for the 23Myr AU Mic (Jeffries & Oliveira 2005; Malo
et al. 2014; Mamajek & Bell 2014), where the flare rate is more
than an order of magnitude higher than in the control sample.

AU Mic and its transiting planets are generally considered as a
benchmark laboratory for understanding the impact of stellar
activity on young exoplanet atmospheres. The system hosts an
extended debris disk (Kalas et al. 2004; Liu 2004; Metchev
et al. 2005) along with two short-period transiting planets
(Plavchan et al. 2020; Martioli et al. 2021; Gilbert et al. 2022).
It is worth noting that this flare rate is consistent with that
measured by Feinstein et al. (2022a) and Gilbert et al. (2022),
and is not attributed to star-planet interactions (Ilin &
Poppenhaeger 2022). In addition to this, HIP 67522, DS Tuc
A, and TOI 451 all exhibit higher flare rates than the
comparison sample. Colombo et al. (2022) analyzed the phase
dependence of the flares on DS Tuc A with respect to both the
stellar and planetary phase and found no strong evidence of
star-planet interactions with DS Tuc Ab.
It is unclear what differentiates the planet-hosting systems

with higher flare rates from the control sample. France et al.
(2018) and Behr et al. (2023) found that planet-hosting stars are
less active than an equivalent control sample of field-age stars
in the UV. In Figure 9 the color of the points corresponds to the
effective temperature of the star. It appears that the flare rates of
the planet-hosting stars compared to the control sample are
randomly distributed with respect to the effective temperature
of the star. It is possible that there is a small age effect: the
systems with higher flare rates are some of the youngest planet-
hosting stars: HIP 67522 is 17± 2Myr, AU Mic is 22± 3Myr,
DS Tuc is 45± 4Myr, and TOI 451 is 120± 10Myr. There is
a slight preference for the younger systems to exhibit elevated
flare rates, but this is marginal evidence at best. Future
observations of these systems with elevated flare rates may
reveal what causes this feature.

6. Conclusions

In this work, we present the first measured flare rates for
stars <300Myr using TESS 2 minute cadence observations.
We identified 26,355 flares from 3160 stars (Figures 1 and 3).
The results of our work are summarized as follows:

1. We measured the FFD slope, α, for samples of flares
binned by age and Teff. We find α saturates at
α=−0.6 to−0.2 for stars younger than 300Myr and
declines after that age (Figure 4). This is the first evidence
that flare rates saturate across spectral types, as do other
tracers of stellar magnetic activity.

2. We measured rotation periods for 1847 stars and found
that the relationship between flare rate and Rossby
number, R0, is best described as a piecewise function
with a turnover at R0= 0.136 for stars tage> 50Myr
(Figure 5). Additionally, we find that stars with
R0� 0.136 have a shallower FFD than stars with
R0> 0.136, which is evidence of a more dominant
rotational dynamo compared to the convective dynamo
(Figure 6); this is consistent with results presented in
Seligman et al. (2022).

3. We searched for evidence of FUV/NUV flux saturation
as a function of R0, similar to what is seen in the X-ray,
by crossmatching our sample with the GALEX catalogs.
We find no correlation between the FUV and NUV flux
with flare rate (Figure 8). The NUV (and for the G-type
stars, the FUV) flux traces the photosphere for many of
the stars in our sample, unlike the X-ray which traces the
corona. Spectrally resolved NUV and FUV observations

Figure 9. Comparison of flare rates from young planet host stars with respect to
a comparable sample with respect to age [Myr] and Teff [K]. Circles represent
the flare rate of the host star (name along the x-axis); vertical bars represent the
lower 16th and upper 84th percentiles for the comparable sample. The majority
of young planet host stars have comparable flare rates to the lower end of the
comparison sample. A handful of hosts have more flares, including HIP 67522,
AU Mic, DS Tuc A, and TOI 451. We find no correlation with the spectral type
or age which may indicate why these host stars are relatively flare quiet. The
measured flare rates are presented in Table 2. ✎

Table 2
Young Planet Host Flare Rates

Host Name Age Flare Rate Comp. Sample N
(Myr) (day−1) Flare Rate (day−1)

TOI 1227 11 ± 2 0.008 -
+0.065 0.042

0.074 168
HIP 67522 17 ± 2 0.169 -

+0.081 0.043
0.099 368

AU Mic 22 ± 3 2.218 -
+0.104 0.066

0.188 590
V1298 Tau 23 ± 4 0.022 -

+0.116 0.07
0.107 300

HD 109833 27 ± 3 0.000 -
+0.077 0.039

0.097 415
KOI-7913 36 ± 10 0.031 -

+0.152 0.094
0.165 312

KOI-7368 36 ± 10 0.029 -
+0.116 0.071

0.107 285
DS Tuc 45 ± 4 0.420 -

+0.104 0.061
0.104 281

TOI 942 -
+50 20

30 0.040 -
+0.092 0.049

0.146 120
TOI 451 120 ± 10 0.128 -

+0.059 0.03
0.136 204

HIP 94235 -
+133 20

15 0.020 -
+0.048 0.028

0.094 165
TOI 1860 133 ± 26 0.008 -

+0.049 0.026
0.108 207

TOI 1807 180 ± 40 0.013 -
+0.06 0.038

0.11 53
HD 18599 -

+200 70
200 0.000 -

+0.033 0.02
0.066 22

TOI 2076 204 ± 50 0.000 -
+0.083 0.041

0.122 55
HD 110082 -

+250 70
50 0.000 -

+0.088 0.045
0.045 2

Note. N is the total number of stars used to calculate the comparable sample
flare rate. We highlight host stars with flare rates higher than those in the
comparison sample.
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where the chromospheric emission lines can be isolated
may be a more promising means of investigating this
connection. Future synergies between eROSITA and
TESS may reveal such relationships as well.

4. We compared the flare rates of planet-hosting young stars
with a comparable sample with tage= tage,host± 30Myr
and Teff= Teff,host± 1000 K. We find that the majority of
planet-hosting stars are flare inactive relative to a larger
population of similar stars (although not to a statistically
significant level), with the exception of HIP 67522,
AUMic, DS Tuc, and TOI 451 (Figure 9).

5. We searched for evidence of long-term stellar cycles by
evaluating changes in flare rates and FFDs over five years
of TESS observations. We identified 10 candidates that
show potential evidence of local maxima in their stellar
cycle, and one candidate that shows a decline in flare
activity (Figure 7). We determine that these maxima are
not due to flare-detection biases via injection-recovery
tests. While we are unable to obtain stellar cycle
timescales from three data points, these results highlight
the insights flares can bring to understanding stellar
dynamos for targets with more TESS observations (e.g.,
stars in the continuous viewing zones) and the use of
future TESS extended missions.
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Appendix
Supplemental Material

In this appendix, we present all of our best-fit slopes and
intercepts for various FFDs fit throughout this work. The fits
outlined in Section 3.1 are included. We present the FFDs as a
function of the energy in Figure A1 and the best fit parameters
in Table A1. A hundred random draws from our MCMC fitting
to these distributions are shown as orange lines. We fit each
distribution with E> 1029 erg, which roughly represents the
turnover in each distribution. We do not fit the slope for
Teff= [3850–4440]K at 20–40Myr due to our limited sample
size (six stars in total). We provide the measured fractional
luminosity and flare rate for our sample of eleven stars
which show tentative evidence of stellar activity cycles in
Table A2.
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Figure A1. FFDs for subgroups of stars, clustered by age and effective temperature, Teff. Flares were sorted into 25 bins in log space from 1027 to 1035 erg. We fit the
FFD from the turnover in the binned flares, likely a result of low-energy flares missed by the flare-detection algorithm. The bins used to fit the FFD are shown in black,
while all bins are shown in gray. We ran an MCMC fit to these distributions with a simple power law; 100 random samples from these fits are overplotted in orange.
We fit distributions with >3 bins. The best-fit slopes from these fits are presented in Figure 4.
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Table A1
Best-fit Slope and Normalization Parameters for Stars of Different Temperatures and Ages

Teff (K) Age (Myr) αE saE βE sbE nE,fit NE

2300–3400 4–10 −0.516 0.074 14.514 2.409 731 96
10–20 −0.336 0.031 8.296 0.973 1183 166
20–40 −0.499 0.058 13.564 1.858 526 75
40–50 −0.397 0.045 10.248 1.400 3358 111
70–80 −0.383 0.083 10.244 2.685 341 102

120–150 −0.657 0.097 18.757 3.161 3797 615
150–300 −0.341 0.063 8.799 2.029 295 60

3400–3850 4–10 −0.206 0.025 4.536 0.821 397 44
10–20 −0.345 0.038 8.768 1.199 474 43
20–40 −0.405 0.054 10.890 1.741 194 17
40–50 −0.408 0.037 10.770 1.182 1420 43
70–80 −0.432 0.075 11.893 2.471 291 77

120–150 −0.525 0.062 14.557 1.998 1185 167
150–300 −0.339 0.058 8.683 1.904 262 56

3850–4440 4–10 −0.221 0.040 4.884 1.314 207 34
10–20 −0.350 0.016 8.998 0.545 480 65
20–40 −0.202 0.077 4.425 2.492 51 6
40–50 −0.379 0.062 9.873 1.982 175 11
70–80 −0.455 0.102 12.498 3.347 63 25

120–150 −0.419 0.046 11.010 1.494 684 116
150–300 −0.323 0.029 8.026 0.929 247 39

4440–5270 4–10 −0.348 0.031 8.850 1.014 112 25
10–20 −0.408 0.043 10.914 1.417 558 111
20–40 −0.440 0.033 11.635 1.075 250 29
40–50 −0.331 0.089 8.325 2.893 202 30
70–80 −0.390 0.085 10.152 2.749 122 37

120–150 −0.375 0.029 9.593 0.930 572 111
150–300 −0.560 0.126 15.056 3.951 115 35

5270–5930 4–10 −0.271 0.049 6.280 1.586 166 44
10–20 −0.419 0.055 11.266 1.820 195 67
20–40 −0.465 0.035 12.377 1.149 636 58
40–50 −0.479 0.054 13.071 1.780 347 36
70–80 −0.337 0.083 8.416 2.656 57 27

120–150 −0.450 0.045 11.977 1.460 236 62
150–300 −0.305 0.081 6.826 2.598 64 22

Note. nE,fit is the number of flares fit per bin; NE is the number of stars in each bin.

Table A2
Evidence of Stellar Cycles from Variable Flare Properties

TIC log ( )x t10 flare exp  (day−1)
Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

142015852 0.61 1.26 0.69 0.31 0.58 0.38
270676943 1.26 1.28 0.55 0.72 0.71 0.43
272349442 0.80 1.10 0.93 1.98 2.03 1.86
308186412 1.54 2.00 1.43 0.95 0.99 0.93
391745863 1.49 1.56 1.33 0.38 0.44 0.37
393490554 1.79 1.88 1.77 0.97 1.42 1.17
452357628 1.03 1.58 1.21 0.80 0.87 0.80
235056185 0.73 0.89 −0.41 0.74 0.61 0.24
260351540 1.09 0.78 0.46 0.24 0.15 0.09
339668420 0.30 0.83 0.37 0.28 0.53 0.16
350559457 1.15 1.38 −0.19 0.20 0.21 0.05
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