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ABSTRACT
Recent years have seen great success of large language models
(LLMs) in performing many natural language processing tasks with
impressive performance, including tasks that directly serve users
such as question answering and text summarization. They open
up unprecedented opportunities for transforming information re-
trieval (IR) research and applications. However, concerns such as
halluciation undermine their trustworthiness, limiting their actual
utility when deployed in real-world applications, especially high-
stake applications where trust is vital. How can we both exploit the
strengths of LLMs and mitigate any risk caused by their weaknesses
when applying LLMs to IR? What are the best opportunities for us
to apply LLMs to IR? What are the major challenges that we will
need to address in the future to fully exploit such opportunities?
Given the anticipated growth of LLMs, what will future informa-
tion retrieval systems look like? Will LLMs eventually replace an
IR system? In this perspective paper, we examine these questions
and provide provisional answers to them. We argue that LLMs
will not be able to replace search engines, and future LLMs would
need to learn how to use a search engine so that they can interact
with a search engine on behalf of users. We conclude with a set of
promising future research directions in applying LLMs to IR.
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1 INTRODUCTION
Recent years have seen great success of large language models
(LLMs) [1, 6, 19, 21, 24] in performing many natural language pro-
cessing tasks with impressive performance, including tasks that
directly serve users such as question answering and text summa-
rization [1]. While statistical language models have been applied
to information retrieval (IR) since many decades ago [25], these
new LLMs go far beyond traditional language models in their rep-
resentation learning capacity, which enabled them to both under-
stand natural language semantically and generate fluent meaningful
natural language text. Moreover, as the model size increases, the
performance continues to be further improved with GPT-4 achiev-
ing quite impressive performance on many tasks [1]. Furthermore,
a foundation model can be fine-tuned with instructions or very
few examples to perform many different tasks [27]. They can also
perform in-context learning and learn from human feedback [6].

As a new generation of intelligent techniques, LLMs open up
unprecedented new opportunities for transforming information
retrieval research and applications. Indeed, there has already been a
rapid growth of research on using LLMs for IR as shown in the large
number of references (231 references) cited in a recent survey of this
topic [26] and many influential papers in this area (e.g., [10, 16, 20]).

The existing work on applying LLMs to IR, however, has mostly
focused on applying LLMs to improve the current search engines.
The survey [26] classified most existing work into four directions,
corresponding to using LLMs to improve query rewriters, retrievers,
rerankers, and readers, respectively. However, the existing work has
paid little attention to the important question about how the LLMs
would impact the future of IR in the long run. An exception is a
recent report [2] co-authored by a large group of authors, where the
authors provided a systematic discussion of the future applications
of LLMs to IR and suggested a framework including collaboration of
an IR system, an LLM, and human users. However, it is a high-level
framework, mostly fitting the current search paradigm without a
detailed technical vision.

In this paper, we extend the previous work by taking a more
forward-looking perspective to examine the long-term impact of
LLMs on IR research and applications with consideration of the
future growth of LLMs and attempt to develop a detailed technical
vision for IR research to best exploit strengths of LLMs. Specifi-
cally, we aim to address the following questions: 1) How can we
both exploit the strengths of LLMs and mitigate any risk caused by
their weaknesses when applying LLMs to IR? (Concerns such as
halluciation undermine the trustworthiness of LLMs, limiting their
actual utility when deployed in real-world applications, especially
high-stake applications where trust is vital. ). 2) What are the best
opportunities for us to apply LLMs to IR, both for improving the
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current generation search engines and for developing the next-
generation search engines? 3) What are the major challenges that
we will need to address in the future to fully exploit such opportu-
nities? 4) Given the anticipated growth of LLMs, what will future
information retrieval systems look like? Will LLMs eventually re-
place an IR system?

We examine all these questions and provide provisional answers
to them. We discuss technical ideas about using LLMs to improve
the current search engines and develop next-generation search
engines. We argue that LLMs will not be able to replace search
engines in the future; instead, the future LLMs would need to learn
how to use a search engine so that they can interact with a search
engine on behalf of users. The future IR systems will likely be
intelligent agents powered by LLMs to provide personalized task
support in an interactive way. We conclude the paper with a set of
promising future research directions in applying LLMs to IR.

2 OVERVIEW OF LLMS FOR IR
In this section, we provide a high-level overview of the opportu-
nities and challenges in applying LLMs to IR. We start with an
analysis of the new opportunities brought to us by the LLMs as
compared with the traditional language models (LMs).

2.1 LLMs vs. Traditional LMs
To understand the strengths and weaknesses of the LLMs and the
unique opportunities they bring to IR research and applications, it
is useful to make a comparison between the LLMs and the tradi-
tional language models such as n-gram language models or topic
models [5, 17, 25].

Traditional LMs generally have interpretable parameters. For
example, a unigram LM has parameters corresponding to word
probabilities, which would allow us to interpret and understand the
topic captured by such a model. For example, a model that gives
words such as “sport" and “football" the highest probabilities would
suggest a sports-related topic. Similarly, a mixture language model
such as PLSA [13] or LDA [5] has parameters that represent word
distributions for multiple topics as well as probabilities of topic
coverage in each document. The interpretability of traditional LMs
enables such models to be used to analyze text data to obtain an
interpretable semantic representation of text, which can be poten-
tially shown to a user for editing, improvement, or verification.

In contrast, the parameters of the neural network of an LLM
are non-interpretable; at least, it would be impossible to interpret
individual parameter values in any meaningful way. Thus while an
LLM is able to “understand" text to generate an internal semantic
representation of text, the representation itself does not have mean-
ing and thus cannot be shown to a human user in any meaningful
way, nor can a human interact with such a representation to edit,
improve, or verify it.

However, the benefit of interpretability of traditional LMs is at
the cost of their limited expression power. Indeed, due to sparseness
of data, we cannot estimate an n-gram LM accurately if 𝑛 is very
large. As a result, we tend to stay with a very low-order of n-gram
LM. Indeed, in IR, unigram LMs are often used and higher-order
n-gram LMs have not really outperformed unigram LMs that much,
presumably due to the inaccurate estimate of the higher-order LMs.

In contrast, the LLMs seek a latent vector representation of words
(embedding vectors) so that the latent representation can be used to
predict values of parameters in a traditional language model, thus
leading to a more generalizable language model.

Consider, for example, a bigram model 𝑝 (𝑢 |𝑣), where 𝑢 and 𝑣 are
two words. With a traditional LM, we would need to at least observe
the pairwise combinations of all the words in our vocabulary in
the training data in order to estimate such a model; indeed, to
accurately estimate all those probabilities, we need to observe many
times of occurrences of each combination. According to the Zipf’s
law, however, this generally would not happen in any naturally
generated text data since most words would occur rarely, let alone
combinations of two words.

Neural LMs break this limitation by attempting to model the
relation between the two words 𝑢 and 𝑣 based on their embedding
vector representation. That is, we no longer treat a word as a “black
box" as we did in the traditional LM. This turns out to be quite
powerful since it enables us to infer the probability of 𝑝 (𝑢 |𝑣) even
if we do not observe combinations of (𝑢, 𝑣) in the data. The intuition
behind this is that it could use the general context of word 𝑢 and
that of 𝑣 to infer how likely 𝑢 would follow 𝑣 . For example, if 𝑢′ is a
synonym of 𝑢, they would occur in similar contexts and thus their
embedding vector representation would be similar. Thus, even if
we do not observe (𝑢′, 𝑣), as long as we observe (𝑢, 𝑣),we could still
infer 𝑝 (𝑢′ |𝑣) based on 𝑝 (𝑢 |𝑣).

Note that this kind of inference must be done in an ad hoc
way with a traditional LM using smoothing, but can be achieved
naturally in an LLM via learning multiple layers of hidden rep-
resentation in a deep neural network, where similar contexts are
mapped to similar latent representations, enabling extrapolation
when predicting a word based on a context.

The comparison shows that LLMs are in general much more
powerful than the traditional LMs from the perspective of language
modeling. The multi-layer latent vector representation naturally
performs all the needed smoothing in a traditional LM. The latent
representation can be regarded as some level of understanding of
the semantics of text data by LLMs, which also explains why they
can perform so well on many tasks. However, the major limitation
of LLMs as compared with traditional LMs is that their parameters
are not interpretable, making it hard to directly improve them via
human feedback, nor can a user examine those parameters to obtain
any understanding of the content to be analyzed.

Another difference between LLMs and traditional LMs is that the
LLMs are typically trained with massive amounts of data, includ-
ing not just natural language text but also other semi-structured
data such as software code and tables. Large Multimodality LMs
can be even trained with multimodality data including text and
images. Moreover, many machine learning techniques can be ap-
plied to improve LLMs, including self-supervised (unsupervised)
learning [9], supervised learning (fine-tuning) [27], instruction tun-
ing [18], reinforcement learning from human feedback (RLHF) [7],
and in-context learning [6].

As a result, a single foundation LLM can be instructed/trained
to perform multiple tasks, including particularly conversations
with a user using natural language, thus directly enabling question
answering and conversational IR.
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The general opportunities provided by the LLMs include the
following:
Conversational User-System Interaction: Being able to under-
stand natural language enables conversational user-system interac-
tion for any system. Specifically, an LLM can understand a user’s
natural language instruction, so a user can potentially interact with
any system using natural language sentences (e.g., chat), which can
then be translated into well defined instructions that the system
can understand.
Text Generation andConversation: Being able to generate fluent
natural language enables many text-generation tasks that would
otherwise be infeasible. As a specific example, an LLM can conduct
natural language conversations.
Learning to Perform New Tasks: Fine-tuning (with instructions)
further enlarges scope of applications since we can potentially fine-
tune with any tasks that we are interested in. Code-training can
often further enhance their capacity [23].

It is worth noting that as we further fine-tune and train a foun-
dation LLM, the LLM would behave increasingly as an intelligent
agent that can autonomously finish a task (e.g., answering questions
of users). As an agent, however, an LLM suffers from the possibility
of hallucination, i.e., generating text that is not true. This can be
regarded as the inevitable cost paid while a neural LM attempts
to generalize based on the learned representation of context, i.e.,
hallucination is a symptom of "over generalization." Note that over
generalization is sometimes beneficial (e.g., when an LLM is asked
to write a poem), but in many other cases such as serving users
with information and knowledge, hallucination would inevitably
undermine their trustworthiness. To make the situation worse, the
LLMs cannot really explain the reasoning behind the generation
of a certain text, making it even harder to address the problem of
hallucination, significantly limiting their utility, especially for high-
stake applications such as medical information when reliability of
the generated information is crucial.

From IR perspective, another major limitation of LLMs is their
lack of access to the most current information. For example, it
would not know today’s weather or any news article published five
minutes ago. While theoretically speaking, an LLM can be updated
frequently to address this problem, in practice, it is generally infea-
sible to do so, thus they alone are not sufficient to serve users and
a search engine or database system is still needed to support access
to real-time information.

2.2 Improvement of Current Search Engines
Despite their lack of understanding of natural language, the current
search engines are already quite useful and are used daily by many
users. The success of the search engine industry has much to do
with the optimization of AI-human collaboration; indeed, as an
assistive AI system, a search engine provides clear value to a user
by helping a user find relevant documents (information) from a
large collection of documents such as the Web. A search engine can
augment a user’s intelligence in the sense that a user with access
to a search engine would be able to make better decisions than one
without access to a search engine (the former would appear to be
more intelligent).

Most search engine users have adapted to the intelligence level
of a search engine in order to collaborate with a search engine

effectively. Thus although a search engine can only respond to a
keyword query without being able to answer their questions as
ChatGPT can do, the users are used to entering keyword queries
and reformulating their queries. Of course, if a system could answer
a user’s question directly (and reliably), the user would prefer such
a question-answering system to a search engine. Indeed, when a
user used a search engine initially, they might have the tendency
to type in a question instead of a keyword query, but after realizing
that a search engine does not really understand a question and
treats a question as a set of keywords, the user would adapt to the
search engine by using just keyword queries.

When a user’s query is a popular query and the search engine
has already received some feedback about the query from previous
users, the search engine would generally work well and the users
are generally satisfied with such a query-based interaction. Where
the users are not satisfied is when the search engine could not
answer their queries satisfactorily even after the user reformulates
a query multiple times. Such “difficult" queries are often long-tail
queries, meaning that not many users have this kind of information
need. There are many such somewhat unique queries and they
generally follow a distribution with a long tail.

A common reason why this happens is when the user has a
vocabulary gap, i.e., the user does not know well about the relevant
content and thus cannot predict what kind of words would be
used in a relevant document. Unfortunately this scenario is quite
common as when a user has a need for some information, it is
generally because the user is not so familiar with the topic (or
otherwise, they would not need to search in the first place). Specific
examples include medical search or E-Com search with a need for
a product with complex specification.

Unclear/vague information needs (e.g., buying a gift) may also
lead to challenges for a search engine to effectively serve its users.
In such a scenario, a user would benefit from receiving diversified
search results and support in learning about each option so as to
refine a vague information need into a more specific one.

The current search engines are also limited in the following
aspects: They cannot understand a user’s intent accurately. They
cannot help users digest search results. They only support limited
interactions (users have limited ways to express their information
need).

All the limitations discussed above can be potentially addressed
by leveraging LLMs: 1) LLMs can understand natural language well
and thus can easily bridge vocabulary gap by suggesting alterna-
tive words to use in a query or facilitating matching of different
words that are semantically related (i.e., support semantic match-
ing). 2) LLMs can be used to clarify a user’s intent or help a user
clarify/refine the intent (e.g., using a dialogue with a user). 3) LLMs
can be prompted to summarize search results from any perspective
that is suitable for a user. 4) LLMs can be leveraged to support con-
versational search, thus enabling a user to express an information
need more accurately and in a more informative way.

2.3 LLMs for Next-Generation Search Engines
With the conversation capacity of an LLM and their capacity of
answering questions directly, the next-generation search engine
can potentially provide much more effective information service to
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a user by supporting question answering and search together in a
conversational manner.

Question answering is often the most efficient way to satisfy a
user’s information need, and the LLMs can answer many questions
correctly and concisely based on the information in the training
data. However, due to the concern of hallucination, a user would
generally expect to see the original source of information that
supports an answer. Unless an LLM can remember all the sources,
we would likely need a search engine to find the sources that can
support an answer. This means that the LLM needs to learn how
to use a search engine, or otherwise, the user would have to do
search in order to verify an answer. Thus even if we make an LLM
the major agent to interact with a user via question answering, it
would still need to collaborate with a search engine.

In other cases, a user may want to primarily use a search engine.
For example, when a user’s information need is exploratory, the
user’s need may be better satisfied by using a search engine. In such
a case, an LLM can enhance a search engine inmanyways, including
conducting a dialogue with the user to clarify the information need.

Thus in general, the next-generation search engines would likely
integrate question answering with search and support conversa-
tional search. The traditional retrieval models are virtually all de-
signed based on the probability ranking principle, and thus all
support ranking of documents. As we move toward the era of con-
versational search, we would need a new kind of retrieval models
that can enable conversational clarification of a user’s information
need. Such a retrieval model needs to be interpretable so that a
user can be involved in the loop of clarifying information need and
optimizing ranking of documents. We will propose an interpretable
and explainable probabilistic matching model for this purpose later
in this paper.

3 IMPROVING CURRENT SEARCH ENGINES
There has already been much work on using LLMs to improve cur-
rent search engines. The survey [26] provides an excellent review
of the existing work. While the results from existing work are gen-
erally positive, they do not necessarily generate the biggest impacts
that are possible with LLMs. Below we provide a slightly different
framework to discuss some of the best opportunities for applying
LLMs to improve the current search engines, where the LLMs can
be expected to make significant impact on improving the utility of
a search engine.

Our perspective is based on the ideal query hypothesis [14], which
states that for any given information need, there exists a perfect
query [15] that would allow a retrieval system to rank all the rele-
vant documents above the non-relevant ones. While such a perfect
query might not actually exist, it is generally possible to uniquely
identify a relevant document by just using a highly effective query
that contains a few terms that occur together in the target (relevant)
document but not in other documents. Such a query would enable
a user to see at least one relevant document on the top of search
results. From here, a user could provide feedback or additional
queries to retrieve additional relevant documents as needed.

An important implication of the ideal query hypothesis is
that a keyword-based search engine (i.e., a current search engine
with a basic retrieval function such as BM25) can be quite effective
if the system can help a user construct an ideal query, and users

would likely be satisfied with such a search engine; the search
system would also be highly efficient since it can leverage inverted
index to enable search to be done efficiently. Thus, one of the best
opportunities for LLMs to improve the current search engines is for
them to be used to help a user construct an ideal query, especially
since LLMs can be assumed to have little vocabulary gap and thus
able to formulate an effective query.

With this perspective, we now briefly discuss how LLMs can
address multiple limitations of the current search engines.

3.1 LLMs for Bridging Vocabulary Gap
In general, the vocabulary gap can be bridged in three ways: 1) ex-
pand a query to include terms that can match those in a document
relevant to the query; 2) expand a document to include terms that
might be used in queries to which the document is relevant; 3) keep
both the query and document unchanged, but allowmatching of dif-
ferent words that are semantically associated. The three strategies
are complementary and can thus be combined potentially.

LLMs can be directly used (via either prompting or fine-tuning)
to perform query expansion and document expansion. This would
exploit the capacity of text generation of LLMs directly. Semantic
matching can be achieved by fine-tuning LLMs to assess relevance
of document to a query. The general idea would be similar to many
neural ranking models [12], where both the query and document
would be mapped to embedding vectors, whose similarity can then
be computed to assess relevance.

3.2 LLMS for Clarifying User Intent
When a user’s intent is not clear (e.g., an ambiguous query word),
the returned top results likely contain results matching different
intents (e.g., mixed senses of the ambiguous word). In such a case,
LLMs can be used to generate clarification questions about a user’s
query based on the top-ranked results. For example, LLMs can be
asked to analyze the top results to identify multiple senses of a
word and generate a question such as "Did you mean jaguar as an
animal or a car?". LLMs can further be used to interpret a user’s
answer and improve query formulation.

When a user’s intent is vague due to lack of knowledge, LLMs
can teach the user relevant knowledge for refining a query during
the search time. For example, the user may be provided with a link
described as "learn more about X", clicking on which would trigger
a conversation of the user with an LLM. In general, LLMs can be
quite useful to support user learning during a search session [8].

3.3 LLMs for Search Result Summarization
Instead of having users interact with the current unstructured col-
lection of search results, LLMs can be used to directly summarize
search results with consideration of the user’s query (i.e., query-
focused summarization). LLMs can also support question answering
in the context of search results to enable users to digest search re-
sults flexibly and gain relevant information. If the search results are
summarized, the summary can serve naturally as a starting point
for a conversation with a user, allowing a user to ask additional
questions and be engaged with a conversation.

In general, LLMs can help a user learn during search, thus opti-
mizing human-AI collaboration by increasing human intelligence.
Once a user gains sufficient knowledge, the user would be able
to formulate an effective query, which would allow the current
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search engine (even without improvement) to serve the user with
satisfactory results.
3.4 LLMs for Conversational Feedback
From the perspective of AI-human collaboration, it makes sense to
leverage human intelligence as much as we can [4], which for IR
means to enable a user to naturally provide feedback and explain
why the user is not satisfied with the current search results. For
example, a user can be allowed to explain why they like or dislike
a particular document, and use an example document to elaborate
information need. LLMs can be leveraged to enable users to provide
conversational feedback. For example, a user may be allowed to
say "I like this document because it is about X," where ’X’ is a topic
description, and LLMs can be used to reformulate a query based
on this feedback accordingly. In general, with LLMs, a user would
be able to express the information need using complex natural
language sentences as well as provide feedback in a particular
search context where specific search results can be referred to
provide detailed feedback.

3.5 Summary
In sum, LLMs can be exploited naturally to enhance a current search
engine significantly by enabling a user to express information need
using potentially complex natural language sentences and collab-
orating with them to interactively formulate an effective (ideal)
query, which can then be executed using a regular search engine
to generate satisfactory results to a user without increasing the
complexity of search. They can also be used to facilitate users to
efficiently digest relevant information via adaptive summarization
of search results and enhance a user’s knowledge by answering
their questions. Finally, they can be used to understand a user’s
feedback in context, thus improving query reformulation. All these
improvements can be mapped to the general human-IR-LLM inter-
action framework proposed in [2] as specific ways to realize the
interactions.

However, while these applications of LLMs would lead to more
interactions with users, including even natural language conversa-
tions, they cannot effectively address the key challenge in search,
i.e., modeling relevance in detail and accurately; indeed, without
an interpretable and explainable model for modeling relevance in
detail, no conversation between a system and a user would likely
lead quickly to accurate matching of a user’s information need
with documents in the collection. In order for this to happen, the
conversationmust be conducted around amore detailed model of rel-
evance. This can be achieved by developing a general interpretable
and explainable matching model for IR as we will discuss in the
next section. Since a system built based on such a new model is
likely dramatically different from the current search engines, we
would view this as the next generation search engines, which will
be discussed in the next section in detail.

4 NEXT-GENERATION SEARCH ENGINES
The most important and difficult challenge in IR applications is how
to serve a user when the user could not formulate effective queries.
In such a case, we would need to understand in detail exactly what
the user is looking for. The key question is: what are exactly the
criteria of relevance for this user? How to use conversations or

interactions with a user to naturally clarify the relevance criteria
is a key technical challenge since this requires formalization of
relevance in some way. We propose an interpretable probabilistic
matching model for formalization of relevance based on model-
ing multiple attributes of both information needs and information
items (documents). The decomposition of relevance matching into
attribute matching enables more detailed attribute-level feedback
about the search results, which can be used to directly improve
relevance matching and support conversational clarification of a
user’s intent.

4.1 Explainable Probabilistic Retrieval Model
The proposed model is illustrated in Figure 1. Formally, we frame
the problem as one to determine whether there is a match between
an information item 𝐼 from source 𝑆 and a query 𝑄 from user 𝑈 in
context𝐶 , where context𝐶 could potentially include many environ-
mental factors that may affect search such as the time or location
of the search. That is, we would like to estimate the probability
𝑝 (𝑀𝑎𝑡𝑐ℎ |𝑄,𝑈 ,𝐶, 𝐼, 𝑆). We intentionally use the term “Match" in-
stead of “Relevance" to emphasize the multiple dimensions of the
matching criteria and avoid the typical (narrow) interpretation of
topical relevance as the main retrieval criterion. Functionally, how-
ever, we could rank items based on probability of matching in the
same way as probability of relevance. We also show that similar
users and similar items can both be potentially leveraged to improve
estimate the matching probability, though we would not explore it
in this paper.

If we estimate such a probability directly without further de-
composition, we can rank items but would not be able to support
any meaningful conversation with a user in order to clarify the
intent or obtain detailed feedback. Our idea is thus to decompose
the matching of an item with a query into matching of multiple
attributes of each.

First, we assume that an item can be characterized by multiple
attributes𝐵1, ..., 𝐵𝑚 and the attribute values of an item 𝐼 from source
𝑆 are characterized by a set of probabilities {𝑝 (𝐵𝑖 |𝐼 , 𝑆)}, where
𝑖 = 1, ...,𝑚. For example, if the item is a product, 𝐵𝑖 could be the
price or weight, and 𝑝 (𝐵𝑖 |𝐼 , 𝑆) could represent the actual price or
weight of the particular item 𝐼 (we use probability because not all
attribute values are known, thus there is uncertainty). Similarly, if
the item is a news article, 𝐵𝑖 could be a topic category or date of
the article, and 𝑝 (𝐵𝑖 |𝐼 , 𝑆) may represent the actual topic or date of
the particular article 𝐼 .

Analogously, we assume that a user 𝑈 ’s information need 𝑁

is also characterized by multiple attributes 𝐴1, 𝐴2, ..., 𝐴𝑛 , and the
preferred attribute values are modeled by a set of probabilities
{𝑝 (𝐴𝑖 |𝑁 )}. In general, attributes 𝐴𝑖 and 𝐵𝑖 are different (thus caus-
ing vocabulary gap), though they may also overlap. For example, if
the query is about finding a laptop, 𝑝 (𝐴𝑖 |𝑁 ) could be the preferred
price or weight (which likely overlap with 𝐵𝑖 ), but 𝐴𝑖 could also
be “whether a laptop is suitable for travel" (which is unlikely di-
rectly matching any 𝐵𝑖 ). Note that the information need 𝑁 is not
observed, and given 𝑁 , the preferred attribute values are assumed
to not depend on the 𝑄 , 𝑈 , or 𝐶 , thus 𝑁 fully characterizes the
user’s information need as expressed in the query 𝑄 in context 𝐶 .
Under this assumption, we would also need to infer the information
need based on the query, i.e., estimate 𝑝 (𝑁 |𝑄,𝑈 ,𝐶).
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Figure 1: An Interpretable Probabilistic Information Retrieval Model

With such an attribute-based model for both information need
and item representation, we can now define matching at the level
of attributes as follows
𝑝 (𝑀𝑎𝑡𝑐ℎ |𝑄,𝑈 ,𝐶, 𝐼, 𝑆) = ∑

𝑁 𝑝 (𝑁 |𝑄,𝑈 ,𝐶)𝑝 (𝑀𝑎𝑡𝑐ℎ |𝑁, 𝐼, 𝑆)
𝑝 (𝑀𝑎𝑡𝑐ℎ |𝑁, 𝐼, 𝑆) = ∑

𝐴

∑
𝐵 𝑝 (𝐴|𝑁 )𝑝 (𝐵 |𝐼 , 𝑆)𝑝 (𝑀𝑎𝑡𝑐ℎ |𝐴, 𝐵)

The first equation captures the intuition that matching with a query
means matching with the information need expressed by the query
and considers the uncertainty about the information need 𝑁 . The
second equation further defines the matching of an item with an
information need as matching of their respective attributes. With
this decomposition, we see that the whole retrieval model is based
on the following specific models:
1) Need InferenceModel (NIM): 𝑝 (𝑁 |𝑄,𝑈 , 𝑆) captures how likely
the information need is 𝑁 given that user 𝑈 presents query 𝑄 in
context 𝐶 .
2) Need Attribute Model (NAM): 𝑝 (𝐴|𝑁 ) represents the infor-
mation need in detail based on the preferred attribute values.
3) Item Attribute Model (IAM): 𝑃 (𝐵 |𝐼 , 𝑆) represents the item in
detail based on the (inferred) attribute values of item 𝐼 .
4) Attribute Matching Model (AMM): 𝑝 (𝑀𝑎𝑡𝑐ℎ |𝐴, 𝐵) models
how likely attribute 𝐵 (of an item) would match with (i.e.,satisfy)
attribute 𝐴 of an information need.
A major advantage of this model is that it can provide a meaningful
explanation of why an item is retrieved for a user. Assuming that
all the attributes 𝐴𝑖 and 𝐵𝑖 are interpretable, we would be able
to explain why an item is retrieved by identifying the matching
attributes that contributed most to the matching probability (e.g.,
the attribute 𝐵𝑖 of this item (e.g., laptop weight) matches with the
attribute 𝐴𝑖 of your information need (e.g., "laptop suitable for
travel")).

Moreover, with such an interpretable explanation, a user could
clarify any misinterpretation of the user’s intent by providing feed-
back explicitly on 𝑝 (𝑁 |𝑄,𝑈 ,𝐶) or 𝑃 (𝐴|𝑁 ), enabling meaningful
conversations that can lead to improvement of the component mod-
els, thus the overall search results.

Theoretically speaking, if we can estimate all these component
models accurately, we would be able to match items with a user’s

information need perfectly. In reality, however, it remains quite
challenging to estimate all these models accurately. However, LLMs
could be leveraged to estimate all of them.
4.2 LLMs for Model Estimation
4.2.1 Need Inference Model (NIM): p(N|Q, U, C). The estimate of
NIM first requires us to define an ontology of user information
need. This can be, e.g., product catalog, or any other meaningful
taxonomy. LLMs can be prompted to create such an information
ontology in advance. For example, an LLM may suggest different
types of products, which may be more refined than the product
types maintained in an E-Com search engine.

Next, given the query, an LLM can be prompted to directly sug-
gest the possible intent/need of the user.

4.2.2 Need AttributeModel (NAM): p(A|N). The attributes can often
be obtained from the inferred need 𝑁 behind a query. For example,
if a query is about a product, the inferred product type (e.g., laptop)
may directly suggest attributes such as weight, screen size, and
price, either based on the attribute information from a product
collection or by using LLMs.

LLMs can be easily prompted to suggest preferred values of an
attribute. We show an example of prompting ChatGPT to estimate
the attribute “screen size" for the query “laptop for travel" in Fig-
ure 2. The results from ChatGPT included multiple sizes with an
explanation of each: 13.3”, 14”, 11-12”, 15” or larger.

There are a few interesting observations here: First, the original
query has a vocabulary gap since laptop descriptions (specifications)
unlikely match a word such as “travel", but ChatGPT could bridge
this vocabulary gap by inferring the preferred attribute values,
which in this case overlap with item attributes and thus can be
directlymatchedwith item attributes. Second, the uncertainty about
the preferred attribute values provide a basis for conversational
clarification of a user’s intent. It also suggests that the results should
be diversified and use a user’s feedback to further clarify the intent.

4.2.3 Item Attribute Model (IAM): p(B|I, S). IAM can generally
be inferred based on the text descriptions of item 𝐼 . For example,
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Figure 2: An example of estimating NAM using ChatGPT

product specification can be used to extract specific attribute values.
In the case of a news article, information extraction or text analysis
can be used to extract interesting attribute values such as the major
topic or date. In all these cases, LLMs can be exploited to enhance
an existing method or generate attribute values directly for an item.
Thus LLMs can also be used to fill in missing values or augment
attribute set with additional attributes that may better reflect a
user’s perspective (e.g., "suitable for travel" may be added to a
laptop with low weight).

4.2.4 Attribute Matching Model (AMM): p(Match|A,B). Once at-
tributes 𝐴 and 𝐵 are clearly defined, LLMs can often be prompted
to provide an estimate of whether 𝐴 matches 𝐵 as well as an ex-
planation. As an example, consider a query/need about a laptop
with two attributes values: (weight=“light”; use =“travel”) and some
specific laptop products. We prompted ChatGPT to estimate the
match of the attributes. The results show that ChatGPT indeed can
provide a quite meaningful estimate with explanation.

Specifically, in Figure 3, we see that ChatGPT is quite confident to
say there is a match, i.e., 𝑃 (𝑀𝑎𝑡𝑐ℎ = 1|𝐴 = “𝑡𝑟𝑎𝑣𝑒𝑙”, 𝐵 = “𝑤𝑒𝑖𝑔ℎ𝑡 :
3𝑙𝑏”), whereas in Figure 4, it would be less certain when estimating
𝑃 (𝑀𝑎𝑡𝑐ℎ = 1|𝐴 = “𝑡𝑟𝑎𝑣𝑒𝑙”, 𝐵 = “𝑤𝑒𝑖𝑔ℎ𝑡 : 4𝑙𝑏”). What is interesting
is that it has given specific explanation regardingwhy it is uncertain,
which provides useful context to generate clarification questions
to ask the user about their preferences, thus supporting conversa-
tional search/feedback. In Figure 5, we see that ChatGPT could use
its knowledge to accurately estimate 𝑃 (𝑀𝑎𝑡𝑐ℎ |𝐴 = “𝑡𝑟𝑎𝑣𝑒𝑙”, 𝐵 =

“𝑏𝑎𝑡𝑡𝑒𝑟𝑦 : 1ℎ𝑜𝑢𝑟”), where there is a larger vocabulary gap, thus re-
quiring additional knowledge for estimate the matching here. Once
again, ChatGPT can be leveraged to engage with users to further
clarify their needs. Such conversational clarification of intent is
enabled by the proposed decomposition of matching into matching
at the attribute level, which is necessary in order to effectively help
a user whose query does not work well.

4.3 Explainable NN Matching Model
Interestingly, the proposed probabilistic model can also be imple-
mented efficiently as a completely interpretable neural network
model as shown in Figure 6. Such an interpretable matching neural
network (MNN) would take user𝑈 , context𝐶 , and query𝑄 as input
at the bottom and attempt to predict (generate) an item 𝐼 as output
on the top. Different from an ordinary neural network, both the

Figure 3: Estimating AMM 𝑃 (𝑀𝑎𝑡𝑐ℎ |𝐴 = “𝑡𝑟𝑎𝑣𝑒𝑙”, 𝐵 = “𝑤𝑒𝑖𝑔ℎ𝑡 :
3𝑙𝑏”) using ChatGPT

Figure 4: Estimating AMM 𝑃 (𝑀𝑎𝑡𝑐ℎ |𝐴 = “𝑡𝑟𝑎𝑣𝑒𝑙”, 𝐵 = “𝑤𝑒𝑖𝑔ℎ𝑡 :
4𝑙𝑏”) using ChatGPT

Figure 5: Estimating AMM 𝑃 (𝑀𝑎𝑡𝑐ℎ |𝐴 = “𝑡𝑟𝑎𝑣𝑒𝑙”, 𝐵 = “𝑏𝑎𝑡𝑡𝑒𝑟𝑦 :
1ℎ𝑜𝑢𝑟”) using ChatGPT

nodes and edges in an MNN are interpretable as clearly explained
in Figure 6. If we pass information from bottom to top using such
an MNN, we would be able to obtain a score for each 𝐼𝑖 w.r.t. 𝑈 , 𝑄 ,
and 𝐶 equivalent to our probabilistic model, i.e., the score would
be equivalent to 𝑝 (𝑀𝑎𝑡𝑐ℎ |𝑄,𝑈 ,𝐶, 𝐼𝑖 , 𝑆) (we omitted the source 𝑆 in
the MNN illustration). This means that we can train the proposed
probabilistic model in an end-to-end manner similarly to training a
neural network by using search log data as training data.

However, one concern of this kind of training is that the data
may be sparse, thus we would suffer the same problem as the tra-
ditional LM. To address this issue, there are two strategies. One
is to leverage LLMs to estimate or improve the estimate of all the
component models as we have already discussed, thus not neces-
sarily or not solely relying on search log data. The other is to use
the MNN as a “backbone" of a neural network and expand it by
replacing each node with potentially a set of neurons and each edge
with a a sub-neural network (i.e., an edge connecting 𝑋 to 𝑌 can be
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Figure 6: Probabilistic Model as an Interpretable Matching Neural Network (MNN)

replaced by a sub-neural network with 𝑋 as input and 𝑌 as output).
This way, we would have an interesting neural network with better
interpretability than an ordinary neural network while also allow-
ing us to take advantage of the capacity of representation learning
with a deep neural network (it may be related to neurosymbolic
architecture [11]).

5 LLMS AS USERS OF SEARCH ENGINES:
TOWARDS INTELLIGENT AGENTS

It is reasonable to expect the LLMs to become even stronger as
more data and human users/tasks are used for training them and
newer human brain-like architectures may be developed to improve
their reasoning capacity. How would this impact IR research and
applications in the long run? What would future IR systems look
like? Will LLMs eventually replace IR systems (completely)? In
this section, we attempt to address these questions with a vision
for future IR systems, which we believe would be personalized
task agents that would leverage search engines as well as LLMs as
supporting technologies to help a user finish a task [22].

In Figure 7, we illustrate this vision. Along the X-axis, we show
that the current generation LLMs are mostly non-explainable, but
in the future, we will likely see more explainable LLMs with human-
like neurosymoblic architectures, and finally, we may have more
autonomous LLMs that do not rely on humans to design their
reward (objective) functions as they can potentially learn them
from interacting with users and the task environment. Based on
this vision, it would be reasonable to expect that the IR systems
would also evolve accordingly, which we show on Y-axis.

Specifically, since the current LLMs are non-explainable, their
trustworthiness would limit their utility in directly serving users
(e.g., hallucination problem), thus in general, a good strategy for
using the current LLMs is to use them as component or support tech-
nologies for an existing system such as a search engine (thus LLMs
are “below" existing technologies). As the LLMs become explainable
and more trustworthy, we can anticipate LLMs to serve users more
directly. At that point, the existing IR technologies would likely
become support technologies for LLMs (thus LLMs are “above"
existing technologies). However, the integration of them would
likely be loose and humans would have to design a framework for

them to interact since the LLMs are not autonomous. Finally, as
we have more autonomous LLMs, they will likely be able to learn
how to use existing tools such as a search engine or any other
tools automatically, thus we will likely have autonomous intelli-
gent agents powered by LLMs that can “absorb" all the technologies
including search engines, database systems, and other tools in the
task environment.

On the surface, this analysis might appear to suggest that IR
systems (search engines) would be eventually replaced by LLMs.
This, however, is not true.What we propose is that IR systemswould
evolve into more autonomous and more intelligent task agents that
would be able to use search engines on behalf of users.

Indeed, we argue that LLMs would unlikely be able to replace
search engines. This is because they generally cannot have easy
access to the newest information available unless they can use a
search engine. For example, ChatGPT would not be able to answer a
question about any event that has happened today, simply because
it has not been trained/provided with such information. While the-
oretically, it might be possible for ChatGPT to be updated every
minute, in practice, it is infeasible. Given this limitation, the only
way to allow ChatGPT to serve users with the most recent informa-
tion is for it to use a search engine. Thus search engines will always
be needed. However, in the future, it is possible that users would
interact with LLMs (more accurately, agents powered by LLMs),
which then would use a search engine as needed on behalf of the
user.

Since the future LLMs would be used in such an environment
that search engines are assumed to be available, they would need to
be trained with a different objective than what has been used today
so that they would be discouraged from “wasting" parameters to
memorize the data or information that can be easily retrieved by
using a search engine and encouraged to use their parameters to
learn more sophisticated knowledge/information that cannot be
easily provided by a search engine.

The scenario is similar to a closed-book exam vs. open-book
exam. When we use a current LLM to solve a problem, it is similar
to a closed-book exam since the model must solve the problem
without consulting any external source. In order to serve users
with the most up-to-date information, however, those LLMs must

488

D
ow

nloaded from
 the A

C
M

 D
igital Library on A

pril 8, 2025.



Large Language Models and Future of Information Retrieval: Opportunities and Challenges SIGIR ’24, July 14–18, 2024, Washington, DC, USA

Figure 7: Future of LLMs and IR

adopt an open-book model, i.e., invoking a search engine as needed
in real-time when helping a user finish a task. In general, future
intelligent task agents would need to learn how to use various tools
effectively, particularly a search engine. Just as students would not
memorize data when preparing for an open-book exam (since they
can easily look at the data as needed), future LLMs would also
need to be trained more intelligently to not waste parameters to
memorize the data and information that they can easily obtain by
using a search engine (at running time). This could be achieved
by minimizing the errors given by a hybrid system where an LLM
would be combined with other tools such as a search engine to
collaboratively minimize the loss function; for example, the agent
can use reinforcement learning to learn a policy about when to use
a search engine or another tool.

From IR research perspective, we need to address special chal-
lenges associated with building search engines to serve AI agent
users instead of human users (e.g., the sequential browsing assump-
tion made about human users is unlikely valid for an AI user). Also,
AI agents, powered by LLMs, generally have much less vocabulary
gap than human users, thus they can be expected to formulate
effective keyword queries, which means that it might be sufficient
for a search engine to just support keyword search and that com-
plex ranking algorithms including neural ranking algorithms [12]
might become less critical or even unnecessary considering their
computational complexity.

6 SUMMARY AND FUTURE RESEARCH
In this paper, we addressed various questions about how the LLMs
can be applied to IR and how they will impact IR research and
applications in the long run. We suggested multiple ways for LLMs
to improve the current generation search engines and proposed
an interpretable probabilistic retrieval model to enable conversa-
tional search in the next generation search engines, which can be
implemented as an interpretable neural network. Finally, we argue
that search engines will not be replaced by LLMs, but future LLMs
would need to learn how to use search engines in real time when
serving users.

We conclude the paper with a list of interesting questions for
future research: 1) How can we leverage LLMs for bridging vo-
cabulary gap? How can we use LLMs to effectively and efficiently
support query reformulation and document expansion/annotation?
2) How can we leverage LLMs for summarizing search results in
an interactive way (e.g., generating navigable summary)? 3) How
can we leverage LLMs for interactive clarification of query intent
and user task? 4) How can we fine-tune LLMs with search log data
to effectively learn representation of relevance (reasoning with
relevance)? How can we systematically leverage LLMs to estimate
the component models in the proposed explainable probabilistic
model? 5) How can we leverage LLMs to support question answer-
ing with knowledge provenance? 6) How can we support question
answering with up-to-date information and knowledge? 7) How
can we support question answering without hallucination or with
support for interactive verification of answers? 8) How can we
use LLMs to build realistic user simulators for both evaluating and
training interactive task agents [3]? 9) How can we use LLMs to
model user tasks? 10) How can we use LLMs to build personalized
conversational task agents that can continuously learn from task
environment (e.g.,increase its skills of using a search engine) over
time? Future research progress in these directions would enable
effective use of LLMs for both improving the current search engines
and developing next generation search engines.
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