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Abstract. Learner models are used to support the implementation of personalization features in Adaptive
Instructional Systems (AISs; e.g., adaptive sequencing of activities, adaptive feedback), which are
important aspects of Intelligent Adaptive Systems. With the increased computational power, more
advanced methodologies, and more available data, learner models include a variety of Artificial
Intelligence techniques. These techniques have different levels of complexity, which influence
interpretability and explainability of learner models. Interpretable and explainable learner models can
facilitate appropriate use of the learner modeling information in AlSs, their adoption, and scalability. This
chapter elaborates on the definitions of interpretability and explainability, describes interpretability and
explainability levels of different models, elaborates on the levels of explainability to produce needed
information for teachers and learners, and discusses implications and future work in this aera.

1 Introduction

Learner models are representations of learners’ knowledge, skills and other attributes that are used by
Adaptive Instructional Systems (AIS) to support personalization. Personalization features may involve
adaptive selection of activities and adaptive feedback. Learner models can include information about
learners’ cognitive and non-cognitive skills [28, 62]. Learner models can be produced based on
information gathered before learner’s interactions with the AIS and refined as more information about
the learner is collected as learners interact with the AIS [62]. Learners and other educational stakeholders
can have access to learner model information [15, 76]. Types of interaction with the learner model and
purposes for accessing have been studied in the area of Open Learner Modeling (OLM) [77]. OLM
approaches include the design and use of interfaces to facilitate interaction with learner model
information. These interactions can include guidance mechanisms (e.g., interaction scripts, negotiation
approaches) and guidance provided by pedagogical agents or other humans.

Communicating learning model information to teachers and learners requires knowing their needs
for assessment information, and the evidence available to support learner model claims. A learner model
that supports the generation of explanations for various types of end users can facilitate this process.
Different types of learner modeling approaches (i.e., top-down, bottom-up, hybrid) exhibit different
affordances and challenges for the generation of explanations for various types of end users [78].

Interpretability and explainability of learner models are key concerns in learning and assessment
contexts, especially considering that making inferences from learning and assessment data is challenging
due to different sources of noise in learning and assessment data [37]. For example, teachers and students
may want to know how information maintained by the system is used to support student learning. Also,
students may be interested in knowing more about how the system calculates their progress.
Interpretability and explainability can facilitate the adoption of AISs since trust in these systems may
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increase as teachers and learners better understand why recommendations and decisions by the system
are made [19, 37, 39, 71, 79]. For example, a learner model that supports interpretability and
explainability can be deployed to justify the suggested adaptive sequencing of activities and/or the
information presented in dashboards for teachers and learners as well as to explain the underlying
mechanisms of pedagogical agents’ interactions (e.g., triggering interactions based on the status of
cognitive and non-cognitive skills).

In this chapter, we define interpretability and explainability with respect to the transparency of
the models and the explanation generated to the end users (e.g., learners and teachers), classify the models
in terms of their interpretability and explainability, and discuss explainability to teachers and learners.
We conclude with discussing the implications and future directions.

2 Interpretability and Explainability

With the increased computational power, more advanced methodologies, and more available data, more
Adaptive Instructional Systems (AISs) can now make use of an Al technique called Machine Learning
(ML) to make predictions, decision-making, and personalization in addition to the symbolic, rule-based
Artificial Intelligence (Al) techniques [17, 40, 42, 43, 50, 59, 63, 72]. ML algorithms can help with that
creation of models learned from (big) data and use these models to support decision making by making
predictions and identifying hidden relationships and patterns in the data. In general, creating ML models
can be efficient in terms of human-labor and the relative high accuracy that ML models may have.
However, ML models have a couple of high-risk drawbacks that require careful and thorough processes
to ensure that their applications do not harm end users.

The first drawback is related to the quality of the data that are used to train ML models. Because
the ML models are learning from the data, inaccurate, incomplete, or incompatible datasets (i.c., data
biases) give rise to biased decisions and predictions [60]. Therefore, to lower the risks to the end users, it
is important to: a) assess the quality of the data, b) collect data from diverse groups, and d) be transparent
about the content and characteristics of training data [2, 37, 60].

The second high-risk drawback is related to the complexity of the algorithms, which is the focus
of this chapter. A group of ML models that leverages more complex ML algorithms such as deep neural
networks or deep learning (DL) and large language models (LLMs). DL utilizes artificial neural networks,
which are algorithms inspired by the structure and function of the human brain at a very high level. The
input data is processed through multiple layers, where each layer extracts and amplifies specific features
of the data. Different from other ML algorithms, DL can better handle unstructured data and can perform
feature extraction automatically with minimal domain knowledge and human effort and with high
predictive accuracy [4]. However, even if the complex ML models’ prediction accuracy is high, these
models have a potential to make their decisions based on the correlations between irrelevant features and
the outcome variable (e.g., see [12] for an ML model that classifies husky vs wolf images based on the
pixels related to snow rather than the feature of the canine). LLMs work by analyzing and processing vast
amounts of text data and use DL to understand and generate human-like text predicting the most likely
next word or phrase based on their training data without necessarily understanding the meaning of the
text and without necessarily generating output based on facts (i.e., hallucinations) [32]. These models are
trained on diverse datasets from books, websites, and other written materials to learn language patterns,
grammar, and context. As a result, LLMs can perform tasks like having dialogs with humans, translating
languages, summarizing texts, and creating content. LLMs are being employed in different educational
contexts, such as creating (conversational) intelligent tutoring systems [17, 59], having personalized
educational dialogs with students [66], classification of algebra errors [43]. Despite their advantages, to
perform these complex tasks, DL and LLM models include hundreds to billions of parameters and involve
complex computations, which makes it harder to inferpret the models’ inner decision-making process.
The biases included in the training data combined with a lack of understanding how the AISs make their
decisions may lead to unreliable, thus untrustworthy systems. Finally, there is work on the use of neural-
symbolic approaches [11, 65, 73] aimed at leveraging the advantages and mitigating the disadvantages of
both rule-based symbolic and sub-symbolic ML approaches.

Although the decisions are not as high stake as in the use case of Al in medical decision-making,
in the context of education, it is important that learners and teachers have adequate and valid explanations
about the AIS’s decisions so that they: a) trust the system’s decisions, b) have agency to take an
appropriate action when they detect an inaccurate or biased prediction, decision, or recommendation (see



also [37]). The interpretability and explainability of Al systems are the central focus of the Explainable
Al (XAI) field (for a historical perspective see [21]). These two terms are closely related and there is no
consensus on how they are defined [1, 2, 6, 9]. Most ML researchers use these terms interchangeably to
refer to the degree to which an Al algorithm’s output can be understood by humans (e.g., [1, 38, 48])
although there are differences between these two terms as different psychological constructs from the
perspective of cognitive science (see [13]).

In the scope of this chapter, we use interpretability of a model as a notion attached to the model’s
inner decision-making transparency in relation to its expert user (e.g., ML engineers, data scientists). If a
model’s inner decision-making processes are transparent in a way that experts (e.g., ML engineers, data
scientists) can understand zow the model works, the model’s interpretability is considered as high (see
Figure 1). These types of ML models are classified as inherently interpretable, “glass-box”, or “white-
box” models. On the other hand, if a model’s inner decision-making processes are hard to comprehend
by the experts because of their complexity, it is referred as a “black-box model. The ML models that fall
in between these two categories are called “grey-box” models [2, 3, 10].

Fig. 1. A figure depicting the notions of interpretability, explainability, and explanation in relation to the model
transparency and end user”
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“The three dots between “glass-box” and “black-box” models represent “grey-box” models. The bidirectional arrow
between the end user and explanation depicts that end user can reject or modify the explanation depending on the
context, which in turn feed into to the model.

On the other hand, we use explainability as a term that encompasses two notions: explainability
of a model and explainability to the end user. Explainability of a model, which is closely related to the
interpretability of a model, is a process to apply methods to understand why the ML models make their
decisions [2]. While interpretability of a model is a more static construct, explainability of a model can
be a more dynamic construct. For example, “glass-box” models do not necessarily require researchers to
apply an additional method to understand why they make their decision since how they work is
transparent. Thus, these types of models have both high model interpretability and explainability (see
Figure 1). However, “black-box” models are initially have low interpretability and they require applying
additional methods (i.e., post-hoc methods, see [48]) to be able to increase their model explainability [2,
48, 55].

Taking a human-centered approach, in addition to the explainability of a model, in this chapter,
we discuss another notion under explainability, which is explainability to the end user. Unlike
explainability of the model which is related to an ML model’s inner workings and the methods to
understand its decision-making processes, explainability to the end user is a process to generate
explanations about the model’s decision-making process through external representations (e.g., a graph)
and/or natural language for end users who are experts or non-experts (e.g., teachers or learners) based on
their needs so that they can comprehend the explanations and take action to ensure agency. These
explanations can support human-machine interactions in AlSs, better accountability to increase trust in
these systems (see [37] for a comprehensive XAI-ED framework; see also [15] for an open learner



modeling framework). Explainability to the end user includes two-way interactions with the Explanation
Engine in which end users (e.g., learner or teacher) can interact with it to elicit more information, provide
context, or reject the explanation provided. With the help of the Explanation Engine, the information
provided by the end user used as feedback to the model (see two-way arrow between the end user and the
Explanation Engine and the arrows from the Explanation Engine to the model in Figure 1). Explanation
Engine is also responsible for not only presenting explanations but also presenting them at the right time
(see also [18] for lessons learned from ITSs for XAlI). Moreover, it may allow end users to have an option
to turn-on and turn-off the explanations based on their needs.

In the next section, we provide more information on the interpretability and explainability of
different types of learner models in AISs.

3 Interpretability and Explainability of Different Types of Models

Historically, a variety of approaches have been implemented for modeling learners (see [79]). In addition
to differences in variables chosen to depict the learner’s knowledge and skills and the context in which
they were applied, these approaches may include different types of models that have different levels of
interpretability and explainability. We first present some types of models and their levels of
interpretability (see Table 1). Subsequently, we provide a brief overview about the methods related to
increasing the explainability of the “black-box” and “glass-box” models.

Table 1. Different types of models and their levels of interpretability

Model Model Interpretability =~ Model

Types Subtypes Level Label

Deep Learning Deep Knowledge Tracing (e.g., [23, 51]), Low “Black-
Graph Neural Networks (e.g., [70]), Large box”

Language Models (e.g., [50])

Machine Learning I ~ Random Forest Decision Tree (e.g., [72]), Low “Black-
(Ensemble Methods) XGBoost (e.g., [64]), AdaBoost (e.g., [26]) box”
Neural-Symbolic Knowledge Enhanced Graph Neural Medium “QGrey-
Learning Networks (e.g., [52]), Temporal Learner box”

Modeling (e.g., [31])

Machine Learning I Fuzzy Logic (e.g., [27]), Bayesian Medium “Grey-

(Fuzzy and Knowledge Tracing (e.g., [74]), Naive box”

Probabilistic Bayes (e.g., [44]), Bayesian Learner

Methods) Models (e.g., [20, 53, 84]); Knowledge
Spaces (e.g., [24, 25])

Machine Learning III  Linear and Logistic Regression (e.g., [67]), High “Glass-
Generalized Additive Models (e.g., [22]), box”
Decision Trees (e.g.,[75])

Symbolic Cognitive modeling (e.g., [5, 7, 8]), Rule- High “Glass-
based systems (e.g., [33]), Constrained- box”

Based Learner Models” (e.g., [46])

" Constrained-Based Learner Models have other versions that can be classified as probabilistic or Deep Learning
(e.g.,[47]).

As we mentioned above, interpretability and explainability of learner models is essential for
teachers and learners to better understand why recommendations and decisions are made by the AIS.
While rule-based, symbolic Al approaches make decisions in a transparent way, the level of human effort
and content knowledge required to infuse knowledge into these models is extensive. On the other hand,
although ML models can learn from the data without human involvement in the learning process, human



effort and expertise required is also extensive to develop ML algorithms, to provide labels for the training
data in supervised ML models, and to make sure the ML models learn the correct representation (see [49]
for human-in-the-loop ML).

For the “glass-box” ML models, the Explanation Engine can generate global explanations about
how different features or variables contribute to model’s decisions (see the row Machine Learning III in
Table 1) without necessarily applying post hoc methods [37]. Therefore, the fidelity of explanations is
considered high. Although these type of “glass-box” models are considered as inherently interpretable,
when the number of features is high, it might get harder for humans to understand the decision process.
On the other hand, the models that have low (i.e., “black-box”) or medium (i.e., “grey-box”)
interpretability require applying additional methods to move on the explainability axis from low to
medium or high (see Figure 1). These different types of methods generate different types of explanations
(see [48] for a comprehensive list of methods). Model-agnostic global methods such as surrogate models
generate explanations about how different features or variables affect model’s overall behavior by
learning another interpretable ML model to approximate the outcome of the “black-box” or “grey-box”
model resulting in low fidelity explanations [2, 37, 48]. In contrast to model-agnostic global methods,
model-agnostic local methods, such as LIME (Local Interpretable Model-agnostic Explanations [54]) or
SHAP (SHapley Additive exPlanations [41]), focus on explaining individual predictions, which might be
particularly useful in AISs where learner-level explanations are necessary and the AISs does not include
a “glass-box” model. In addition to these types of methods, there are example-based explainability
methods such as counterfactual explanations [68].

Although different explainability methods have been introduced to make the “black-box”
models more explainable, it is important to emphasize that most of these approaches are based on an
approximation of the model’s behavior; thus, they do not offer high fidelity explanations as inherently
interpretable models do, and should be used with caution (see also [S6—58] for critiques of using post hoc
methods to make explanations for “black-box” models).

In the next section, we describe the types of information needs of teachers and learners and
elaborate on the explainability required to meet those needs.

4 Explainability to Teachers and Learners

Teachers and learners interacting with AISs have different types of assessment information needs. Learner
models can provide the information needed to support learning and teaching processes. As we discussed
above, Explainability Engines, for example, can be used to generate explanations required to respond to
teachers’ and learners’ questions (see Figure 1). A variety of external representations can be used to
provide users with responses to their questions. Researchers in the area of Open Learner Modeling (OLM)
have explored various types of external representations such as graphical representations, interactive
reports, dashboards, and the use of pedagogical agents that make use of learner model information to
provide guidance to users in the exploration of learner models [15, 34, 80, 83]. Table 2 summarizes some
of the most common assessment information needs of teachers and students and identifies the level of
explainability required by the learner model to provide such information.



Table 2. Assessment information needs of teachers and learners and required level of model
explainability *

End User Assessment Information Needs Required
Level of Model
Explainability
Teachers Student performance at the individual, sub-group, and class Low-Medium
levels.

e What are my students’ strengths and weaknesses?
e How did the class perform on a task or a group of
tasks?
o How does a student’s performance compare to that of
other students?
e Progress information at the individual, subgroup, and
class levels
e How much progress have my students made towards
mastery?
Information that can help inform future teaching. Low-Medium
e How difficult were the tasks for my students?
e What were the most frequent errors and
misconceptions?
Information that helps understand current performance. Medium-High
e Were my students engaged in the task(s)?
e Did my students try to game the system?
e How reliable are the knowledge and engagement
estimates calculated by the system?
Instructional recommendations. Medium-High
e What should I do next to help an individual student
or the class as a whole?
Learners Actionable feedback that they can use to guide their Low-Medium
learning.
e What are my strengths and weaknesses?
e How can I improve?
Progress and performance information. Low-Medium
e How much progress have I made towards mastery?
e How does my performance compare to that of other
students?
Evidence supporting assessment claims. Medium-High
e What type of information was used to calculate my
knowledge levels?
e Can I provide additional evidence to update my
knowledge levels in the system?
“First two columns are adapted from “Supporting Human Inspection of Adaptive Instructional Systems”, by [76].
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Teacher questions related to student performance at the individual, sub-group, and class levels,
such as “What are my students’ strengths and weaknesses?”, or related to information that can help inform
future teaching, such as “How difficult were the tasks for my students?” may require low-medium levels
of learner model explainability depending on whether the teacher is interested in digging deeper into the
evidence used to answer these questions. Other questions related to information that helps teachers to
understand current learner performance, such as “Were the students engaged in the task?” or “How
reliable are the knowledge and engagement estimates calculated by the system?” may require learner
models that support medium-high explainability levels since there could be a variety of aspects
influencing these estimates. Questions that are related to instructional recommendations, such as “What
should I do next to help an individual student or the class as a whole?” may require predictive models



that make use of evidence from various sources. Explanations generated using these types of predictive
models may require additional user support to help users understand how the data are used to make
predictions and the limitations of these models. Similarly, in the case of learners, questions related to
receiving actionable feedback that learners can use to guide their learning, such as “What are my strengths
and weaknesses?”, or related to their progress and performance, such as “How much progress have I made
towards mastery?” may require learner models that support low-medium explainability levels based on
the amount of supporting evidence required by learners. However, questions related to evidence
supporting assessment claims, such as “What type of information was used to calculate my knowledge
levels?” or “Can I provide additional evidence to update my knowledge levels in the system?” require
medium-high explainability levels since they require additional evidence and more sophisticated
explanations.

Learner model explainability can benefit from a clear structure connecting claims to supporting
evidence which may include process and response data. The implementation of an evidence layer can
facilitate the generation of explanations through external representations, and interaction mechanisms that
make use of learner model information to support learning and teaching [80]. The implementation of such
evidence layer can be facilitated by using top-down and hybrid approaches that combine top-down and
bottom-up approaches to designing learner models with different levels of interpretability and
explainability (e.g., models that have been created by leveraging Evidence-Centered Design principles
[45] together with several psychometric models and “big data” processes [82]). However, different
techniques are explored to improve the explainability of “black-box” learner models resulting from the
application of bottom-up approaches (e.g., Chain-of-Thought prompt engineering; [69]) and neural-
symbolic or neuro-symbolic approaches for Al models; [29, 30]). These approaches may require a
considerable amount of human effort to both creating the evidence managing mechanisms and validating
the results produced by the model [61, 69]. This evidence layer can support the implementation of the
Explanation Engine, which can offer explainability services in an instructional ecosystem, making a
positive impact in terms of scalability. Finally, the evidence layer could be conceptually placed to the
right of the Explanation Engine, between the output of the models feed and the Explanation Engine in
Figure 1.

5 Conclusions and Discussion

As new advances in ML become available and applications of these technologies extend, it is important
to emphasize the need for interpretable and explainable models in education settings. Below we conclude
by discussing the implications of improving interpretability and explainability of learner models in the
context of AlSs.

e An appropriate level of learner model interpretability and explainability is required to support
trust and adoption of AISs. Understanding how AISs support teaching and learning is an
important first step in making sure that teachers’ and learners’ expectations are met. A general
understanding of how adaptive components of the AIS are implemented and how they are
intended to support teaching and learning may have a positive effect in adoption of these systems.
Different levels of interaction with learner models should be supported to answer different types
of user questions [35, 36]. These levels of interaction require models that support the generation
of appropriate explanations.

e The amount of human effort required to create explainable learner models that can respond to
the needs for information of educational stakeholders can vary. The amount of data required to
support learner model claims and the mechanisms for evidence identification and aggregation
can also vary depending on the type of learner modeling approach used [79] and the data
available to create those models. We expect that as new advances in Al become available,
learner models will become more useful in supporting human decision making. Privacy, data
security, and evaluation of learner models in supporting appropriate decision making will
continue to be areas of interest.

Modeling approaches should support the generation of explanations that consider various levels
of uncertainty associated with different types of evidence sources and the nature of evidence aggregation
and accumulation processes. AISs should consider maintaining different views of the learner model to
capture teachers’ and learners’ perspectives. These perspectives can contribute to interesting negotiation



and reflection processes that can have positive instructional value (e.g., knowledge awareness, self-
reflection and self-regulation [14, 15]). In fact, human-in-the-loop approaches can reduce diagnostic
complexity and provide immediate confirmation when levels of uncertainty are high. Teachers value
flexibility when interacting with AISs. They appreciate the system handling common cases but be alerted
on particular cases that may require their attention, so they have the opportunity to override suggestions
made by the AIS based on additional information about the learner and the learning context that they may
have [16, 81].

6 Future work

Future work involves continue advancing in the development and evaluation of modeling approaches that
support appropriate use of learner modeling information. Improvements in interpretability and
explainability of these models contributes to achieving this goal. As more data (e.g., multimodal data)
and Al technologies to create innovative learner models become available, additional opportunities for
personalization in education contexts will arise (e.g., through the use of AISs). It is paramount that Al
systems are designed taking into account the need for user understanding of the benefits and limitations
of these technologies. We expect that additional work will be done in areas such as human-centered Al,
data privacy, and data security to support the responsible use of Al
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