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Abstract. Learner models are used to support the implementation of personalization features in Adaptive 
Instructional Systems (AISs; e.g., adaptive sequencing of activities, adaptive feedback), which are 
important aspects of Intelligent Adaptive Systems. With the increased computational power, more 
advanced methodologies, and more available data, learner models include a variety of Artificial 
Intelligence techniques. These techniques have different levels of complexity, which influence 
interpretability and explainability of learner models. Interpretable and explainable learner models can 
facilitate appropriate use of the learner modeling information in AISs, their adoption, and scalability. This 
chapter elaborates on the definitions of interpretability and explainability, describes interpretability and 
explainability levels of different models, elaborates on the levels of explainability to produce needed 
information for teachers and learners, and discusses implications and future work in this aera.  
 

1 Introduction  

Learner models are representations of learners’ knowledge, skills and other attributes that are used by 
Adaptive Instructional Systems (AIS) to support personalization. Personalization features may involve 
adaptive selection of activities and adaptive feedback. Learner models can include information about 
learners’ cognitive and non-cognitive skills [28, 62]. Learner models can be produced based on 
information gathered before learner’s interactions with the AIS and refined as more information about 
the learner is collected as learners interact with the AIS [62]. Learners and other educational stakeholders 
can have access to learner model information [15, 76]. Types of interaction with the learner model and 
purposes for accessing have been studied in the area of Open Learner Modeling (OLM) [77]. OLM 
approaches include the design and use of interfaces to facilitate interaction with learner model 
information. These interactions can include guidance mechanisms (e.g., interaction scripts, negotiation 
approaches) and guidance provided by pedagogical agents or other humans. 

Communicating learning model information to teachers and learners requires knowing their needs 
for assessment information, and the evidence available to support learner model claims. A learner model 
that supports the generation of explanations for various types of end users can facilitate this process. 
Different types of learner modeling approaches (i.e., top-down, bottom-up, hybrid) exhibit different 
affordances and challenges for the generation of explanations for various types of end users [78]. 

Interpretability and explainability of learner models are key concerns in learning and assessment 
contexts, especially considering that making inferences from learning and assessment data is challenging 
due to different sources of noise in learning and assessment data [37]. For example, teachers and students 
may want to know how information maintained by the system is used to support student learning. Also, 
students may be interested in knowing more about how the system calculates their progress. 
Interpretability and explainability can facilitate the adoption of AISs since trust in these systems may 
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increase as teachers and learners better understand why recommendations and decisions by the system 
are made [19, 37, 39, 71, 79]. For example, a learner model that supports interpretability and 
explainability can be deployed to justify the suggested adaptive sequencing of activities and/or the 
information presented in dashboards for teachers and learners as well as to explain the underlying 
mechanisms of pedagogical agents’ interactions (e.g., triggering interactions based on the status of 
cognitive and non-cognitive skills).  

In this chapter, we define interpretability and explainability with respect to the transparency of 
the models and the explanation generated to the end users (e.g., learners and teachers), classify the models 
in terms of their interpretability and explainability, and discuss explainability to teachers and learners. 
We conclude with discussing the implications and future directions.  

2 Interpretability and Explainability  

With the increased computational power, more advanced methodologies, and more available data, more 
Adaptive Instructional Systems (AISs) can now make use of an AI technique called Machine Learning 
(ML) to make predictions, decision-making, and personalization in addition to the symbolic, rule-based 
Artificial Intelligence (AI) techniques [17, 40, 42, 43, 50, 59, 63, 72]. ML algorithms can help with that 
creation of models learned from (big) data and use these models to support decision making by making 
predictions and identifying hidden relationships and patterns in the data. In general, creating ML models 
can be efficient in terms of human-labor and the relative high accuracy that ML models may have. 
However, ML models have a couple of high-risk drawbacks that require careful and thorough processes 
to ensure that their applications do not harm end users.  

The first drawback is related to the quality of the data that are used to train ML models. Because 
the ML models are learning from the data, inaccurate, incomplete, or incompatible datasets (i.e., data 
biases) give rise to biased decisions and predictions [60]. Therefore, to lower the risks to the end users, it 
is important to: a) assess the quality of the data, b) collect data from diverse groups, and d) be transparent 
about the content and characteristics of training data [2, 37, 60].  

The second high-risk drawback is related to the complexity of the algorithms, which is the focus 
of this chapter. A group of ML models that leverages more complex ML algorithms such as deep neural 
networks or deep learning (DL) and large language models (LLMs). DL utilizes artificial neural networks, 
which are algorithms inspired by the structure and function of the human brain at a very high level. The 
input data is processed through multiple layers, where each layer extracts and amplifies specific features 
of the data. Different from other ML algorithms, DL can better handle unstructured data and can perform 
feature extraction automatically with minimal domain knowledge and human effort and with high 
predictive accuracy [4]. However, even if the complex ML models’ prediction accuracy is high, these 
models have a potential to make their decisions based on the correlations between irrelevant features and 
the outcome variable (e.g., see [12] for an ML model that classifies husky vs wolf images based on the 
pixels related to snow rather than the feature of the canine). LLMs work by analyzing and processing vast 
amounts of text data and use DL to understand and generate human-like text predicting the most likely 
next word or phrase based on their training data without necessarily understanding the meaning of the 
text and without necessarily generating output based on facts (i.e., hallucinations) [32]. These models are 
trained on diverse datasets from books, websites, and other written materials to learn language patterns, 
grammar, and context. As a result, LLMs can perform tasks like having dialogs with humans, translating 
languages, summarizing texts, and creating content. LLMs are being employed in different educational 
contexts, such as creating (conversational) intelligent tutoring systems [17, 59], having personalized 
educational dialogs with students [66], classification of algebra errors [43]. Despite their advantages, to 
perform these complex tasks, DL and LLM models include hundreds to billions of parameters and involve 
complex computations, which makes it harder to interpret the models’ inner decision-making process. 
The biases included in the training data combined with a lack of understanding how the AISs make their 
decisions may lead to unreliable, thus untrustworthy systems. Finally, there is work on the use of neural-
symbolic approaches [11, 65, 73] aimed at leveraging the advantages and mitigating the disadvantages of 
both rule-based symbolic and sub-symbolic ML approaches. 

 Although the decisions are not as high stake as in the use case of AI in medical decision-making, 
in the context of education, it is important that learners and teachers have adequate and valid explanations 
about the AIS’s decisions so that they: a) trust the system’s decisions, b) have agency to take an 
appropriate action when they detect an inaccurate or biased prediction, decision, or recommendation (see 
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also [37]). The interpretability and explainability of AI systems are the central focus of the Explainable 
AI (XAI) field (for a historical perspective see [21]). These two terms are closely related and there is no 
consensus on how they are defined [1, 2, 6, 9]. Most ML researchers use these terms interchangeably to 
refer to the degree to which an AI algorithm’s output can be understood by humans (e.g., [1, 38, 48]) 
although there are differences between these two terms as different psychological constructs from the 
perspective of cognitive science (see [13]).  

In the scope of this chapter, we use interpretability of a model as a notion attached to the model’s 
inner decision-making transparency in relation to its expert user (e.g., ML engineers, data scientists). If a 
model’s inner decision-making processes are transparent in a way that experts (e.g., ML engineers, data 
scientists) can understand how the model works, the model’s interpretability is considered as high (see 
Figure 1). These types of ML models are classified as inherently interpretable, “glass-box”, or “white-
box” models. On the other hand, if a model’s inner decision-making processes are hard to comprehend 
by the experts because of their complexity, it is referred as a “black-box” model. The ML models that fall 
in between these two categories are called “grey-box” models [2, 3, 10].  

 
Fig. 1. A figure depicting the notions of interpretability, explainability, and explanation in relation to the model 
transparency and end user* 

 
*The three dots between “glass-box” and “black-box” models represent “grey-box” models.  The bidirectional arrow 
between the end user and explanation depicts that end user can reject or modify the explanation depending on the 
context, which in turn feed into to the model. 

 
On the other hand, we use explainability as a term that encompasses two notions: explainability 

of a model and explainability to the end user. Explainability of a model, which is closely related to the 
interpretability of a model, is a process to apply methods to understand why the ML models make their 
decisions [2]. While interpretability of a model is a more static construct, explainability of a model can 
be a more dynamic construct. For example, “glass-box” models do not necessarily require researchers to 
apply an additional method to understand why they make their decision since how they work is 
transparent. Thus, these types of models have both high model interpretability and explainability (see 
Figure 1). However, “black-box” models are initially have low interpretability and they require applying 
additional methods (i.e., post-hoc methods, see [48]) to be able to increase their model explainability [2, 
48, 55].  

Taking a human-centered approach, in addition to the explainability of a model, in this chapter, 
we discuss another notion under explainability, which is explainability to the end user. Unlike 
explainability of the model which is related to an ML model’s inner workings and the methods to 
understand its decision-making processes, explainability to the end user is a process to generate 
explanations about the model’s decision-making process through external representations (e.g., a graph) 
and/or natural language for end users who are experts or non-experts (e.g., teachers or learners) based on 
their needs so that they can comprehend the explanations and take action to ensure agency. These 
explanations can support human-machine interactions in AISs, better accountability to increase trust in 
these systems (see [37] for a comprehensive XAI-ED framework; see also [15] for an open learner 
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modeling framework). Explainability to the end user includes two-way interactions with the Explanation 
Engine in which end users (e.g., learner or teacher) can interact with it to elicit more information, provide 
context, or reject the explanation provided. With the help of the Explanation Engine, the information 
provided by the end user used as feedback to the model (see two-way arrow between the end user and the 
Explanation Engine and the arrows from the Explanation Engine to the model in Figure 1). Explanation 
Engine is also responsible for not only presenting explanations but also presenting them at the right time 
(see also [18] for lessons learned from ITSs for XAI). Moreover, it may allow end users to have an option 
to turn-on and turn-off the explanations based on their needs. 

In the next section, we provide more information on the interpretability and explainability of 
different types of learner models in AISs.   

3  Interpretability and Explainability of Different Types of Models  

Historically, a variety of approaches have been implemented for modeling learners (see [79]). In addition 
to differences in variables chosen to depict the learner’s knowledge and skills and the context in which 
they were applied, these approaches may include different types of models that have different levels of 
interpretability and explainability. We first present some types of models and their levels of 
interpretability (see Table 1). Subsequently, we provide a brief overview about the methods related to 
increasing the explainability of the “black-box” and “glass-box” models. 

Table 1. Different types of models and their levels of interpretability 

Model 
Types 

Model  
Subtypes 

Interpretability 
Level 

Model  
Label 

Deep Learning Deep Knowledge Tracing (e.g., [23, 51]), 
Graph Neural Networks (e.g., [70]), Large 
Language Models (e.g., [50]) 

Low “Black-
box” 

Machine Learning I 
(Ensemble Methods) 

Random Forest Decision Tree (e.g., [72]), 
XGBoost (e.g., [64]), AdaBoost (e.g., [26]) 

Low “Black-
box” 

Neural-Symbolic 
Learning 

Knowledge Enhanced Graph Neural 
Networks (e.g., [52]), Temporal Learner 
Modeling (e.g., [31]) 
 

Medium “Grey-
box” 

Machine Learning II 
(Fuzzy and 
Probabilistic 
Methods) 

Fuzzy Logic (e.g., [27]), Bayesian 
Knowledge Tracing (e.g., [74]), Naïve 
Bayes (e.g., [44]), Bayesian Learner 
Models (e.g., [20, 53, 84]); Knowledge 
Spaces (e.g., [24, 25]) 

Medium “Grey-
box” 

Machine Learning III 
 

Linear and Logistic Regression (e.g., [67]), 
Generalized Additive Models (e.g., [22]), 
Decision Trees (e.g.,[75]) 

High “Glass-
box” 

Symbolic Cognitive modeling (e.g., [5, 7, 8]), Rule-
based systems (e.g., [33]), Constrained-
Based Learner Models* (e.g., [46])   

High “Glass-
box” 

* Constrained-Based Learner Models have other versions that can be classified as probabilistic or Deep Learning 
(e.g.,[47]). 

As we mentioned above, interpretability and explainability of learner models is essential for 
teachers and learners to better understand why recommendations and decisions are made by the AIS. 
While rule-based, symbolic AI approaches make decisions in a transparent way, the level of human effort 
and content knowledge required to infuse knowledge into these models is extensive. On the other hand, 
although ML models can learn from the data without human involvement in the learning process, human 
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effort and expertise required is also extensive to develop ML algorithms, to provide labels for the training 
data in supervised ML models, and to make sure the ML models learn the correct representation (see [49] 
for human-in-the-loop ML).  

For the “glass-box” ML models, the Explanation Engine can generate global explanations about 
how different features or variables contribute to model’s decisions (see the row Machine Learning III in 
Table 1) without necessarily applying post hoc methods [37]. Therefore, the fidelity of explanations is 
considered high. Although these type of “glass-box” models are considered as inherently interpretable, 
when the number of features is high, it might get harder for humans to understand the decision process. 
On the other hand, the models that have low (i.e., “black-box”) or medium (i.e., “grey-box”) 
interpretability require applying additional methods to move on the explainability axis from low to 
medium or high (see Figure 1). These different types of methods generate different types of explanations 
(see [48] for a comprehensive list of methods). Model-agnostic global methods such as surrogate models 
generate explanations about how different features or variables affect model’s overall behavior by 
learning another interpretable ML model to approximate the outcome of the “black-box” or “grey-box” 
model resulting in low fidelity explanations [2, 37, 48]. In contrast to model-agnostic global methods, 
model-agnostic local methods, such as LIME (Local Interpretable Model-agnostic Explanations [54]) or 
SHAP (SHapley Additive exPlanations [41]), focus on explaining individual predictions, which might be 
particularly useful in AISs where learner-level explanations are necessary and the AISs does not include 
a “glass-box” model. In addition to these types of methods, there are example-based explainability 
methods such as counterfactual explanations [68].  

Although different explainability methods have been introduced to make the “black-box” 
models more explainable, it is important to emphasize that most of these approaches are based on an 
approximation of the model’s behavior; thus, they do not offer high fidelity explanations as inherently 
interpretable models do, and should be used with caution (see also [56–58] for critiques of using post hoc 
methods to make explanations for “black-box” models).  

In the next section, we describe the types of information needs of teachers and learners and 
elaborate on the explainability required to meet those needs.  

4 Explainability to Teachers and Learners  

Teachers and learners interacting with AISs have different types of assessment information needs. Learner 
models can provide the information needed to support learning and teaching processes. As we discussed 
above, Explainability Engines, for example, can be used to generate explanations required to respond to 
teachers’ and learners’ questions (see Figure 1). A variety of external representations can be used to 
provide users with responses to their questions. Researchers in the area of Open Learner Modeling (OLM) 
have explored various types of external representations such as graphical representations, interactive 
reports, dashboards, and the use of pedagogical agents that make use of learner model information to 
provide guidance to users in the exploration of learner models [15, 34, 80, 83]. Table 2 summarizes some 
of the most common assessment information needs of teachers and students and identifies the level of 
explainability required by the learner model to provide such information. 
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Table 2. Assessment information needs of teachers and learners and required level of model 
explainability * 

End User Assessment Information Needs Required  
Level of Model 
Explainability  

Teachers 
 
 
 

Student performance at the individual, sub-group, and class 
levels. 

• What are my students’ strengths and weaknesses? 
• How did the class perform on a task or a group of 

tasks? 
• How does a student’s performance compare to that of 

other students? 
• Progress information at the individual, subgroup, and 

class levels 
• How much progress have my students made towards 

mastery? 
Information that can help inform future teaching. 

• How difficult were the tasks for my students? 
• What were the most frequent errors and 

misconceptions? 
Information that helps understand current performance. 

• Were my students engaged in the task(s)?  
• Did my students try to game the system?  
• How reliable are the knowledge and engagement 

estimates calculated by the system? 
Instructional recommendations.  

• What should I do next to help an individual student 
or the class as a whole? 

Low-Medium 
 
 
 
 
 
 
 
 
 
 

Low-Medium  
 
 

Medium-High 
 

 

Medium-High 

Learners 
 
 

Actionable feedback that they can use to guide their 
learning. 

• What are my strengths and weaknesses?  
• How can I improve? 

Progress and performance information. 
• How much progress have I made towards mastery?  
• How does my performance compare to that of other 

students? 
Evidence supporting assessment claims. 

• What type of information was used to calculate my 
knowledge levels? 

• Can I provide additional evidence to update my 
knowledge levels in the system? 

Low-Medium 
 
 
 

Low-Medium 
 
 
 

Medium-High 

*First two columns are adapted from “Supporting Human Inspection of Adaptive Instructional Systems”, by [76]. 
Copyright by Educational Testing Service, 2019 All rights reserved. 

 
Teacher questions related to student performance at the individual, sub-group, and class levels, 

such as “What are my students’ strengths and weaknesses?”, or related to information that can help inform 
future teaching, such as “How difficult were the tasks for my students?” may require low-medium levels 
of learner model explainability depending on whether the teacher is interested in digging deeper into the 
evidence used to answer these questions. Other questions related to information that helps teachers to 
understand current learner performance, such as “Were the students engaged in the task?” or “How 
reliable are the knowledge and engagement estimates calculated by the system?” may require learner 
models that support medium-high explainability levels since there could be a variety of aspects 
influencing these estimates. Questions that are related to instructional recommendations, such as “What 
should I do next to help an individual student or the class as a whole?” may require predictive models 
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that make use of evidence from various sources. Explanations generated using these types of predictive 
models may require additional user support to help users understand how the data are used to make 
predictions and the limitations of these models. Similarly, in the case of learners, questions related to 
receiving actionable feedback that learners can use to guide their learning, such as “What are my strengths 
and weaknesses?”, or related to their progress and performance, such as “How much progress have I made 
towards mastery?” may require learner models that support low-medium explainability levels based on 
the amount of supporting evidence required by learners. However, questions related to evidence 
supporting assessment claims, such as “What type of information was used to calculate my knowledge 
levels?” or “Can I provide additional evidence to update my knowledge levels in the system?” require 
medium-high explainability levels since they require additional evidence and more sophisticated 
explanations. 

Learner model explainability can benefit from a clear structure connecting claims to supporting 
evidence which may include process and response data. The implementation of an evidence layer can 
facilitate the generation of explanations through external representations, and interaction mechanisms that 
make use of learner model information to support learning and teaching [80]. The implementation of such 
evidence layer can be facilitated by using top-down and hybrid approaches that combine top-down and 
bottom-up approaches to designing learner models with different levels of interpretability and 
explainability (e.g., models that have been created by leveraging Evidence-Centered Design principles 
[45] together with several psychometric models and “big data” processes [82]). However, different 
techniques are explored to improve the explainability of “black-box” learner models resulting from the 
application of bottom-up approaches (e.g., Chain-of-Thought prompt engineering; [69]) and neural-
symbolic or neuro-symbolic approaches for AI models; [29, 30]). These approaches may require a 
considerable amount of human effort to both creating the evidence managing mechanisms and validating 
the results produced by the model [61, 69]. This evidence layer can support the implementation of the 
Explanation Engine, which can offer explainability services in an instructional ecosystem, making a 
positive impact in terms of scalability. Finally, the evidence layer could be conceptually placed to the 
right of the Explanation Engine, between the output of the models feed and the Explanation Engine in 
Figure 1. 

5 Conclusions and Discussion 

As new advances in ML become available and applications of these technologies extend, it is important 
to emphasize the need for interpretable and explainable models in education settings. Below we conclude 
by discussing the implications of improving interpretability and explainability of learner models in the 
context of AISs. 

• An appropriate level of learner model interpretability and explainability is required to support 
trust and adoption of AISs. Understanding how AISs support teaching and learning is an 
important first step in making sure that teachers’ and learners’ expectations are met.  A general 
understanding of how adaptive components of the AIS are implemented and how they are 
intended to support teaching and learning may have a positive effect in adoption of these systems. 
Different levels of interaction with learner models should be supported to answer different types 
of user questions [35, 36]. These levels of interaction require models that support the generation 
of appropriate explanations.  

• The amount of human effort required to create explainable learner models that can respond to 
the needs for information of educational stakeholders can vary. The amount of data required to 
support learner model claims and the mechanisms for evidence identification and aggregation 
can also vary depending on the type of learner modeling approach used [79] and the data 
available to create those models. We expect that as new advances in AI become available, 
learner models will become more useful in supporting human decision making. Privacy, data 
security, and evaluation of learner models in supporting appropriate decision making will 
continue to be areas of interest. 

 
Modeling approaches should support the generation of explanations that consider various levels 

of uncertainty associated with different types of evidence sources and the nature of evidence aggregation 
and accumulation processes. AISs should consider maintaining different views of the learner model to 
capture teachers’ and learners’ perspectives. These perspectives can contribute to interesting negotiation 
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and reflection processes that can have positive instructional value (e.g., knowledge awareness, self-
reflection and self-regulation [14, 15]). In fact, human-in-the-loop approaches can reduce diagnostic 
complexity and provide immediate confirmation when levels of uncertainty are high. Teachers value 
flexibility when interacting with AISs. They appreciate the system handling common cases but be alerted 
on particular cases that may require their attention, so they have the opportunity to override suggestions 
made by the AIS based on additional information about the learner and the learning context that they may 
have [16, 81].  

6 Future work 

Future work involves continue advancing in the development and evaluation of modeling approaches that 
support appropriate use of learner modeling information. Improvements in interpretability and 
explainability of these models contributes to achieving this goal. As more data (e.g., multimodal data) 
and AI technologies to create innovative learner models become available, additional opportunities for 
personalization in education contexts will arise (e.g., through the use of AISs). It is paramount that AI 
systems are designed taking into account the need for user understanding of the benefits and limitations 
of these technologies. We expect that additional work will be done in areas such as human-centered AI, 
data privacy, and data security to support the responsible use of AI. 
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