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A B S T R A C T

Two simple algorithms based on combining odor concentration differences across time and space along with
information on the flow direction are tested for their ability to locate an odor source in four different odor
landscapes. Image data taken from air plumes in three different regimes and a water plume are used as test
environments for a bilateral (‘‘stereo sampling’’) algorithm using concentration differences across two sensors
and a ‘‘casting’’ algorithm that uses successive samples to decide orientation. Agents are started at random
locations and orientations in the landscape and allowed to move until they reach the source of the odor
(success) or leave the imaged area (failure). Parameters for the algorithm are chosen to optimize success and to
minimize path length to the source. Success rates over 90% are consistently obtained with path lengths that can
be as low as twice the starting distance from the source in air and four times the distance in the highly turbulent
water plumes. We find that parameters that optimize success often lead to more exploratory pathways to the
source. Information about the direction from which the odor is coming is necessary for successful navigation
in the water plume and reduces the path length in the three tested air plumes.
1. Introduction

Olfaction–the ability of animals to detect odors–is the most ancient
sense in animals and is fundamental in allowing them to navigate
towards food, mates, home nests, and away from predators and other
dangers (See Reddy et al. (2022) for a recent review). The ability to
navigate using olfactory cues is crucial for animals in various ecological
contexts, such as foraging, mating, and territoriality, and has impli-
cations for their survival and reproductive success. Animals are able
to gain information about their environment by sensing chemicals in
air and water despite the complex spatial and temporal structures of
turbulent plumes (Crimaldi, 2008; Connor et al., 2018).

Odor plumes contain information, both as to the quality of the
odor, and more importantly for our purposes, about the location of the
source (Boie et al., 2018) and animals have devised many strategies to
utilize this information. One key aspect of olfactory navigation is the
perception and processing of odor cues, which serve as critical signals
for animals to orient themselves in space. Studies have shown that
animals can detect and discriminate different odors with remarkable
sensitivity and specificity (Laska, 2017; Bhattacharyya and Bhalla,
015). Olfactory cues from the environment, such as odor plumes,
an provide valuable information about the location, direction, and
istance of a target or a resource, allowing animals to navigate in
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complex and dynamic environments (Gadenne et al., 2016; Martin
et al., 2011).

Moreover, olfactory navigation involves sophisticated neural pro-
cessing mechanisms that allow animals to integrate and interpret olfac-
tory cues to generate spatial representations and form cognitive maps of
their environment. Experimental studies have revealed the involvement
of specific brain regions, neural circuits, and neurotransmitters in the
processing of olfactory information and the generation of navigational
behaviors (Abraham et al., 2014; Weiss et al., 2008).

Furthermore, behavioral studies have revealed a variety of nav-
igation strategies employed by animals, ranging from simple innate
responses to complex learned behaviors. Animals can exhibit innate
behaviors, such as following odor gradients or utilizing stereotypical
patterns of odor search, as well as learned behaviors, such as associative
learning and memory-based navigation (Bhattacharyya and Bhalla,
2015; Martin et al., 2011).

Animals use numerous algorithms that enable them to locate the
source of an odor in natural and experimental settings which exploit
the spatio-temporal aspects of odor plumes (Vickers, 2000; Baker et al.,
2018). For example, odor plumes widen with distance from the source
so that animals who lose the plume instinctively backtrack downstream
in order to capture the plume (Álvarez-Salvado et al., 2018). Crabs
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exploit the plume shape by combining flow direction with plume edge
detection to locate clam odors in experimental studies (Webster and
Weissburg, 2001). In turbulent flow, the rate of encountering high
concentrations of odorant increases near the source, thus some animals
use the rate of encounters as a guide to an odor source (Rigolli et al.,
2022a; Michaelis et al., 2020; Demir et al., 2020; Park et al., 2016).
Among the simplest algorithms are those which depend on changes
in concentration. Many animals with bilateral body plans use sensors
on either side of the body to compare odor concentration and steer
in the direction of greater odor. This is called tropotaxis or stereo-
olfaction. Sharks (Kajiura et al., 2005), mice (Jones and Urban, 2018),
rats (Rajan et al., 2006), moles (Catania, 2013), flies (Louis et al.,
2008), and even humans (Wu et al., 2020) have all been shown to
use left–right comparison of odors to follow plumes to their source
and to follow odor trails. This ‘‘bilateral’’ strategy has also been used
to guide robots (Gumaste et al., 2020) and can enhance other algo-
rithms (Louis et al., 2008). Sampling a plume at two successive times in
different locations (klinotaxis) is another common strategy that allows
an animal to widen the spatial difference for comparison. Mice (Liu
et al., 2020; Findley et al., 2021), bats (Brokaw et al., 2021), and
moles (Catania, 2013) all employ this type of strategy to move toward
a desired odor source. These relatively simple algorithms (here after
called respectively bilateral and casting) have an advantage of being
computationally simple and thus easy to implement through neural
circuits (see Discussion) and in robotic applications. We want to be
clear that in this paper we are using the term ‘‘casting’’ as a shorthand
name for the strategy in which the agent samples odor by swinging its
sensor alternately from left to right in successive steps. Thus, it is not
the same as the casting by moths and other insects that sweep back and
forth orthogonal to an odor plume.

The algorithms described in the previous paragraph are based pri-
marily on differences in concentration. However, there are a number
of model-based strategies that have been shown to be successful, par-
ticularly in turbulent environments. Perhaps the most well-known of
these is infotaxis (Vergassola et al., 2007) which is especially good
in cases where encounters with odors are rare. This strategy keeps
an internal estimate of the location of the source which is updated
with each sample; cases with either no odor or odor provide useful
information. A recent innovation in search strategies is the finite state
controller (Verano et al., 2023) which compresses memory of past deci-
sions into probabilistic transition between states, while still depending
on sensory inputs. A recent review (Reddy et al., 2022) describes
these probabilistic algorithms as well as algorithms that are based on
concentration differences.

In previous papers (Liu et al., 2020; Hengenius et al., 2021) we
xplored the efficiency and accuracy of bilateral and casting algorithms
n synthetic odor landscapes and in imaged air plumes with fixed pa-
ameters based on observations of mice locating spots (Liu et al., 2020).
n this paper, we further analyze these two algorithms, which use only
ocal (in space and time) concentration information and additionally,
he ambient flow direction to follow diverse plumes in air and water
n order to locate the source of the odors. These plumes differ in the
patiotemporal structure of their odor concentration fields (shown in
etail in Connor et al. (2018) and Ritsch (2019), respectively). That
tructure is quantified in key metrics like the statistical moments of the
oncentration field and the signal intermittency (fraction of time the
ignal is non-zero, related to the intensity of concentration fluctuations
bout the mean (Wilson et al., 1985; Nironi et al., 2015)). These quanti-
ies are local in space, varying with distance from the source both in the
ean flow direction and transverse to the flow (Crimaldi et al., 2002),
nd are important shape parameters describing the spatially-varying
robability distribution function of the concentration field (Yee, 1990;
elani et al., 2014; Nironi et al., 2015) (Gamma-like in diverse tur-
ulent flows). Unique odor landscapes thus encode information about
he source location differently through characteristic spatiotemporal

tructure. The navigational relevance of different structural cues, like c

2 
ntermittency, is an active area of research, including understanding
he neural, behavioral, and physical bases (Liao and Cowen, 2002; Lei
t al., 2009; Michaelis et al., 2020; Gumaste et al., 2024). Navigating
gents are thus presented with unique challenges in which different
anonical search behaviors are likely more well-suited both in different
dor landscapes and with varying distance from the source (Rigolli
t al., 2022b). To appreciate the differences in the air and water plumes
ere, as well as among different plumes within air or water, it is helpful
o consider the physical processes acting on odor packets en route from
ource to sensor and the fluid dynamic parameters involved.
Odor are advected downstream with the mean flow while spreading

ut under the influence of molecular diffusion which acts to destroy
oncentration gradients. Odor diffusivities in air are approximately a
housand times more diffusive than their aqueous counterparts, sug-
esting rapid destruction of odor concentration gradients. However,
ackets are also stretched and folded by fluid dynamic strain arising
rom spatial gradients in the flow field which locally sharpens concen-
ration gradients. The net effect of these competing processes is broadly
eferred to as mixing (Ottino et al., 1990; Roberts and Webster, 2002;
illermaux, 2019) and scale-dependencies arise in turbulent mixing
ecause of the broad range of length and time scales involved (Tay-
or, 1922; Richardson, 1926). This gives rise to the dynamic and
ntermittent characteristics intuitively associated with turbulent odor
lumes.
Mixing produces diverse odor landscapes, and in the broadest terms,

his diversity arises from differences in i. the spatiotemporal struc-
ure of the transporting flow and ii. the nature of the odor source
tself (Murlis et al., 1992, 2000; Cassiani et al., 2020; Crimaldi et al.,
022). In fluid dynamic terms, diversity in plume statistics reflects
ifferences in dimensionless quantities that parameterize the equations
overning describing the flow (continuity and Navier–Stokes equations)
nd odor transport and dispersion (coupled advection–diffusion equa-
ion). These include the Reynolds number Re describing the relative
mportance of inertial and viscous flow effects and Schmidt number
c describing the relative importance of fluid momentum versus odor
iffusivities. Intuitively, the Pèclet number Pe (= ReSc) describes the
elative importance of advective to diffusive scalar transport mecha-
isms. Variations in Re and Pe set the relative importance of molecular
iffusion and fluid dynamic strain acting on odor packets from source to
ensor. These parameters, together with other dimensionless quantities
escribing the configuration of the source (Nironi et al., 2015) (e.g. its
ize relative to large eddies in the flow (Fackrell and Robins, 1982),
ts momentum and buoyancy relative to the transporting flow (Hunt
nd Van den Bremer, 2011), its proximity to solid boundaries (Connor
t al., 2018)) define mixing regimes present both near the source
nd farther downstream. These regimes in turn set the spatiotemporal
tructure of the odor concentration field which encodes exploitable
nformation about the source location. Understanding the physical
rocesses driving the evolution of the concentration field and the fluid
ynamic parameters that broadly set the spatiotemporal structure of
dor signals (Moore and Crimaldi, 2004; Riffell et al., 2008) provides
more unified intuition on optimal olfactory navigation strategies in
iverse naturalistic contexts (Reddy et al., 2022).
To test navigation algorithms in diverse odor landscapes, we used

our experimental plume datasets (three in air and one in water) with
iverse concentration statistics owing to differences in the Reynolds
umber, Schmidt number, and source configuration (see Section 2 and
able A.5). We varied a range of parameters in order to optimize the
uccess in locating the plume and to minimize the total path length to
et to the plume. We show that the two goals (roughly, accuracy versus
peed) need not be in complete opposition and in some plumes can
ven be correlated. We combine either of the two local algorithms along
ith some noise in the heading and a term that depends on the flow
irection and the concentration of the odorant to find parameter sets
hat lead to optimal success and minimal path-length (tortuosity). We

ompare and contrast optimal parameters in the different air plumes
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Fig. 1. (A) Coordinates and variables for the two algorithms. Position in the plane is (𝑋, 𝑌 ) (yellow spot), orientation is 𝜃, forward velocity is 𝑣. 𝑙 is sensor length, 𝜙 is sensor
angle: fixed for bilateral and variable for casting. Air/water flow is from the left. 𝐶 is the concentration at the sensor tip. (B) Concentration sensitive modulation of the bias toward
or away from the direction of the flow (C) Concentration sensitive heading for the casting model.
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as well as the water plume. Finally, we discuss possible strategies
in which the parameters of the algorithms might vary depending on
the circumstances and how these parameters relate exploration and
stability. We also suggest possible neural circuits that could be used
to implement the algorithms.

2. Methods

2.1. Plume datasets

Testbed experimental datasets summarized in Table A.5 were ob-
tained from planar laser-induced fluorescence (PLIF) measurements of
passive scalar plumes made in a low-speed wind tunnel (air) and an
open-channel flume (water). These datasets are described in detail in
the appendix and provided time-resolved scalar (odor) concentration
fields over fields-of-view (FOV) spanning tens to hundreds of odor
source diameters, at sub-millimeter spatial resolutions. Variations in
experimental configurations, including mean flow speed, turbulence
intensity, ambient fluid, and source characteristics (size, injection rate,
proximity to solid boundaries) produced a range of plumes whose
concentration statistics mimic those in naturalistic plumes relevant to
diverse olfactory contexts.

Navigational algorithms were tested in three air plume datasets with
varying mean flow speeds and odor source configurations; experimental
parameters are summarized in Table A.5 for each dataset. Two datasets
featured isokinetic odor releases in a freestream configuration (i.e. on
the tunnel centerline far from solid boundaries) with mean flow speeds
of 5 and 20 cm/s, respectively. The third dataset featured an isokinetic
odor release with a mean flow speed of 10 cm/s in a near-bed config-
uration, where a false floor was placed directly below the release tube
and spanned the full length and width of the test section. All datasets
were collected in segments of 4 min and consisted of 32 400, 18 000,
and 36000 total frames, respectively.

Navigational algorithms were also tested in one water plume dataset
with a mean flow speed of 5 cm/s with an isokinetic odor release in a
freestream configuration through a round tube (0.69 cm diameter). The
dataset was collected in segments of 22 s and consisted of 40 000 total
frames.

2.2. Algorithms

We consider two different types of local algorithms: bilateral search
and temporal comparison (‘‘casting’’). Fig. 1A illustrates the geometry
of the two algorithms. We track three variables, the spatial location at
time step, 𝑛, (𝑋𝑛, 𝑌𝑛), and the heading, 𝜃𝑛. Throughout this paper, we
will use the terms heading and orientation synonymously to mean the
angle 𝜃𝑛 of the agent. Each algorithm has the form:

𝑋 = 𝑋 + 𝛥𝑡 𝑣 cos 𝜃 (1)
𝑛+1 𝑛 𝑛 t

3 
𝑌𝑛+1 = 𝑌𝑛 + 𝛥𝑡 𝑣 sin 𝜃𝑛 (2)

𝜃𝑛+1 = 𝜃𝑛 + 𝛥𝑡 𝑊𝑛 +𝐷𝑛 + 𝜎𝑁(0, 1)
√

𝛥𝑡. (3)

Here, 𝑁(0, 1) is a normally distributed random variable with mean 0
and variance 1 and 𝑣 is the absolute speed of the agent, 𝛥𝑡 is the
sampling time for the plumes; for air plumes, 𝛥𝑡 = 1∕15 seconds and
for the water plumes, it is 1/45 s.

2.2.1. Flow sensitive component
𝑊𝑛 is a component which takes into account the flow direction,

o that it tends to bias the agent either upstream (when an odor is
etected) or downstream (when there is no odor). Since the plume
lways originates at the left (upstream) end of the domain,

𝑛 = 𝐴𝑤

(

1
1 + exp(−𝛾𝑤(𝐶𝑛 − 𝐶𝑤))

− 𝜖𝑤

)

sin 𝜃. (4)

Here, 𝐶𝑛 is a local concentration (the average of the two sensors for
the bilateral algorithm and the concentration at the single sensor for
casting) and 𝐴𝑤, 𝛾𝑤, 𝐶𝑤, 𝜖𝑤 are parameters. If the flow component is
positive, then 𝜃 will be biased toward 𝜋 (upstream and to the left
end of the domain) while if it is negative, 𝜃 will be biased toward
0 (downstream or to the right). This term is illustrated in Fig. 1B.
The parameter 𝐴𝑤 represents the overall strength of the modulation
nd has dimensions of radians/second. 𝐴𝑤 multiplies a second term
that is concentration dependent. The parameter 𝜖𝑤 ≥ 0 determines the
oncentration below which the agent will reverse direction and move
ownstream. The parameters, 𝛾𝑤, 𝐶𝑤 determine the overall shape of the
concentration dependence as shown in the figure.

2.2.2. Bilateral component
𝐷𝑛 is the part of the algorithm that uses either spatial (bilat-

eral) differences in concentration or temporal (casting) differences. The
bilateral algorithm (see diagram) is

𝐷𝑛 = 𝛥𝑡𝛽(𝐶𝑛
𝐿 − 𝐶𝑛

𝑅) (5)
𝐶𝑛
𝐿 = 𝐶(𝑋𝑛 + 𝑙 cos(𝜃𝑛 + 𝜙), 𝑌𝑛 + 𝑙 sin(𝜃𝑛 + 𝜙), 𝑛𝛥𝑡)
𝑛
𝑅 = 𝐶(𝑋𝑛 + 𝑙 cos(𝜃𝑛 − 𝜙), 𝑌𝑛 + 𝑙 sin(𝜃𝑛 − 𝜙), 𝑛𝛥𝑡)

here 𝐶(𝑥, 𝑦, 𝑡) is the concentration (or transformed concentration) at
osition (𝑥, 𝑦) in the plume and time 𝑡 and 𝑙, 𝜙 are the length and angle
rom the midline of the two sensors (See Fig. 1A.) The parameter
describes the sensitivity of the change in heading to the difference
etween the two sensors. Larger values of 𝛽 mean more sensitivity. As

he concentration is normalized, 𝛽 has units of radians/second.
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Fig. 2. The odor landscapes. Log concentrations are shown for clarity. Dashed boxes indicate the sampled starting locations. The scale of the maximal sensor length is shown in
the upper two plots. See text for detailed descriptions.
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2.2.3. Casting component
The casting algorithm chooses an angle, 𝜙𝑛 = (−1)𝑛𝜙𝑚𝑎𝑥𝑈𝑛 where

𝑈𝑛 is a uniformly distributed random number in (0, 1) and updates the
heading:

𝐷𝑛 =
𝜙𝑛

1 + exp(−𝛾𝑐[𝐶𝑛 − 𝐶𝑛−1])
(6)

𝐶𝑛 = 𝐶(𝑋𝑛 + 𝑙 cos(𝜃𝑛 + 𝜙𝑛), 𝑌𝑛 + 𝑙 sin(𝜃𝑛 + 𝜙𝑛), 𝑛𝛥𝑡).

Thus, the new heading will move toward 𝜃𝑛 +𝜙𝑛 if the new concentra-
tion exceeds the previous concentration. The function governing the
degree of motion is illustrated in Fig. 1C. The parameter 𝛾𝑐 determines
ow sensitive the algorithm is to the difference in two successive
amples.

.2.4. Concentration transformation
Because the plume concentrations vary over several orders of mag-

itude, we transform the concentration by applying a simple Hill
unction:

= 𝑐
𝑐 + 𝐶ℎ𝑖𝑙𝑙

(7)

where 𝑐 is the raw concentration (from the plume image) and 𝐶ℎ𝑖𝑙𝑙
is chosen to be the mean concentration over the total set of frames
and plume area. Our previous work on air plumes (Boie et al., 2018)
has shown that this transformation maximizes information about the
location of the plume. Essentially, this shifts the maximal sensitivity to
concentrations that are above the background.

2.3. Simulations

An agent is randomly placed in the domain of the plume image with
an initial heading taken randomly from the interval (𝜋∕2, 3𝜋∕2), that
is, heading upstream. (𝑋0, 𝑌0, 𝜃0) are chosen using Latin hypercube
sampling (McKay et al., 2000). The agent moves at a constant speed
until the stopping criterion is reached. If the agent gets within 𝑅0 pixels
of the source, then the trial is marked as a success and we store 𝑛 the
number of steps. For the three air plumes, 𝑅0 is 5 pixels or 3.75 mm.
For the water plume, 𝑅0 is 10 pixels or 5.8 mm. For the present study,
we employed the Hard fail boundary condition: if (𝑋𝑛, 𝑌𝑛) exits the
image domain, then the simulation ends and it is marked as a failure.
In prior work (Liu et al., 2020; Hengenius et al., 2021), we allowed
4 
for reflecting boundaries to mimic experiments where the agent (in this
case a mouse) is confined in an arena. Here, we only employ the hard
fail, which sets a lower bound for success rate. If the number of frames
is exceeded (3500 for air, 40 000 for water), then the trial is marked
as a failure. To test the efficacy of a given algorithm and parameter
set, we run 𝑁𝑇 trials with the agent started at a random location in a
rectangle around the plume. We track the fraction success, #𝑁𝑠𝑢𝑐𝑐∕𝑁𝑇
and a parameter (#𝑁𝑠𝑢𝑐𝑐 is the total number of successful runs):

𝜒 = 1
𝑁𝑠𝑢𝑐𝑐

∑

𝑗∈{𝑆𝑢𝑐𝑐}

𝑣𝛥𝑡𝑛𝑗
𝑑𝑗

(8)

where 𝑑𝑗 is the initial distance from the plume source of trial 𝑗 and
𝑛𝑗 is the number of steps taken to the source and {𝑆𝑢𝑐𝑐} is the set
f successful runs. The quantity within the sum measures the ratio of
he total distance traveled to the straight-line distance to the source.
his is averaged over successful trials. Thus, 𝜒 is the average ratio of
uccessful path length to the straight-line distance to the source. We
all 𝜒 the tortuosity. Finally, we attempt to find the best parameters
sing Latin hypercube sampling with each parameter constrained to
ome range. We run the parameter sampling, first over a wide range
f parameters (see Tables B.6–B.8) and then, we refine the range of
parameters based on histograms of the parameters that lead to a high
probability of success (depending on the plume, this can be as low
as 20% and as high as 75%). The histograms that are featured in the
results and appendix compare the top 10% and bottom 10% of success
(maximize) or top 10% and bottom 10% of tortuosity (minimize) after
the second round of optimization. Correlations are obtained using the
full data sets after the second round. Throughout the paper we will use
the term initial data to mean the initial heading and spatial location in
the plume.

We remark that all the simulations are done using pixels as the
spatial dimension as this is the form of the data. In the three air plumes,
each pixel represents 0.075 centimeters and in the water plume, 0.058
centimeters.

2.4. Choosing parameters

There are many search and follow strategies that an animal uses
to locate a plume. For example, moths go in increasingly wider paths

transverse to the flow direction in order to capture a plume. Other
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strategies involve Levy flights and correlated random walks. Because
we have set a strict condition for failure (leave the imaged domain),
we have chosen initial starting locations in the interior of the imaged
region (Fig. 2) so that the algorithm has some chance to move around
without exiting the domain. In all the assessments of the algorithms,
we choose locations randomly (using Latin hypercube sampling) from
the rectangular areas shown in Fig. 2 with an initial orientation 𝜃0 ∈
𝜋∕2, 3𝜋∕2] also chosen randomly. Thus the agent is initially oriented
oward the source.
For the bilateral algorithm, in the air plumes, we varied

𝑣, 𝜎, 𝛽, 𝑙, 𝐴𝑤, 𝛾𝑤, 𝜖𝑤}

nd held 𝐶ℎ𝑖𝑙𝑙 = 0.005, 𝐶𝑤 = 0.01 and 𝜙 = 1 constant. In Eq. (4), 𝐶𝑛 is the
verage of the concentration at the two sensors. The water plume data
ets cover a much greater area so that we need to give the algorithm
ore time to find the source and thus it takes much more time to run
series of initial conditions over a range of parameters than for the air
lumes. For this reason, we only varied

𝑣, 𝜎, 𝛽, 𝑙, 𝐴𝑤, 𝜖𝑤}

nd held 𝐶ℎ𝑖𝑙𝑙 = .01, 𝐶𝑤 = 0.4, 𝛾𝑤 = 5, and 𝜙 = 1. The choice
o hold these parameters constant was mainly for convenience and
o limit the total number of parameters varied. The choice for 𝐶ℎ𝑖𝑙𝑙
was approximately the mean concentration over all the grid points. In
particular, in Victor et al. (2019), we showed that the Hill nonlinearity
ith 𝐶ℎ𝑖𝑙𝑙 = 𝐶̄ was nearly optimal for transforming concentrations in
rder to maximize information about location in the air plumes. For
he bilateral algorithm, what matters is the distance between sensors, so
hat since 𝑙 is varied, we have held 𝜙 constant as the distance between
ensors is 2𝑙 sin(𝜙). Finally, we have found that the dependence on flow
irection was not sensitive to 𝛾𝑤 as long as it is not too close to 0 and
ince 𝐶𝑤 and 𝜖𝑤 are like thresholds for determining whether to bias
oward upstream and downstream (see Figure 1), we have chosen to
old 𝐶𝑤 constant.
For the casting algorithm, in the air plumes, we varied

𝑣, 𝜎, 𝛾𝑐 , 𝑙, 𝜙𝑚𝑎𝑥, 𝐴𝑤, 𝛾𝑤, 𝜖𝑤}

nd for the water plumes,

𝑣, 𝜎, 𝛾𝑐 , 𝑙, 𝜙𝑚𝑎𝑥, 𝐴𝑤, 𝜖𝑤}

nd kept 𝛾𝑤 = 5. All the other parameters were fixed as in the
revious paragraph. The ranges of the parameters in the first round of
ptimization were quite broad and in the second round were narrowed
own to cover the ranges in the top 20%–70% success. Specific values
re found in Tables B.6–B.8 in Appendix A.
For each set of parameters we chose 2000 initial conditions taken

rom the regions shown in Fig. 2 using Latin hypercube sampling and
an the algorithm until the agent reaches the source or leaves the
omain. For successful trials we determined the total distance traveled
ivided by the distance from the source (𝜒 , see Eq. (8)). Success rate
nd 𝜒 were averaged over the number of initial conditions for a given
arameter set. We chose a wide range of values for each parameter and
an 1000–2000 parameter sets in each of the four plumes where the
arameters were chosen using LHS. After this initial survey, we looked
t the distribution of parameters that lead to at least 50%–70% success
ate and then used this narrower range to find the optimal parameter
ets. These are the sets of parameters that we analyze.
We have selected parameters that optimize the probability of suc-

ess rather than minimizing tortuosity as our measure of tortuosity is
redicated on there being a successful search. If we optimized for the
traightest paths, it could be possible to have a series of straight paths
imply because the agent was both close to and oriented toward the
ource, with failures to all the other initial data. This would minimize
he tortuosity at the expense of having a low probability of finding the
ource. We obtain a large number of parameter sets that result in high
uccess. We then sort results by both success and tortuosity to see what

arameters are good for both and how the choices differ. b

5 
. Results

.1. Plumes and sample trajectories

We first present results from simulations of the two simple algo-
ithms in air and water. In each of the two algorithms we look at
ne water plume and three air plumes. Fig. 2 shows the log of the
oncentrations for each of the four plumes along with the boundaries
f the initial data and the scale of the sensors for the agent. The
patiotemporal structure of the four plumes are all quite distinctive
wing to differences in the Reynolds number, Schmidt number, and
ource configuration (Table A.5). For example, the relative signal (con-
entration) in the water plume (top left) is sparse and not at all like a
mooth gradient, even close to the source. The slowest air plume (upper
ight) shows a reasonable concentration gradient near the source but
ow odor concentration once you move more than 10 cms from the
eft edge. The air plume that is near the bed (lower left) looks like
stationary plume with a clear gradient. As would be expected in
imple concentration-dependent algorithms, there will be high success
t reaching the source with this plume. Finally, the fastest air plume
lower right) has the advantage that the concentration reaches the far
nd of the domain, but is still complicated in structure and far from a
imple gradient.
Fig. 3 shows example trajectories from each of the two algorithms

red, bilateral and white, casting) in the four different plumes super-
mposed over a single frame of each plume. Each of the algorithms
as the common terms, 𝑊𝑛 (Eq. (4)) and the stochastic component, 𝜎.
etween the two algorithms, (Eqs. (5), (6)), the sensor length, 𝑙 and
he velocity, 𝑣 are common parameters. In these example trajectories,
e have kept all common parameters between the two algorithms the
ame. Within the algorithms, the parameters are the same for each of
he trajectories in the air. In the water plume, in this instance, the
ilateral trajectory is more direct while the casting trajectory makes a
ew loops. In the 5 cm/s air plume the trajectories are similar but here
he bilateral is less direct. In the near bed air plume, trajectories are
lmost indistinguishable. For the 20 cm/s plume the bilateral trajectory
s more tortuous. We will quantify these differences in the ensuing
ections.

.2. Bilateral algorithm

For each of the algorithms we have chosen the parameters as
utlined in the methods. We started with a broad range of values and
hen from those that led to the highest success, we narrowed the range
nd reran the parameter search again.
Fig. 4 shows the ordered success rates of 1000 parameter sets for

he water plume and 2000 sets of parameters for air plumes after the
econd round of optimization using the initial conditions in Fig. 2. The
cattered points show the parameter 𝜒 for the corresponding sets of
arameters. The bilateral algorithm with information about the flow
irection can achieve about 90% success rate at the best parameters in
he water plume with 𝜒 ranging between 2 and 7 for the top performers.
hus, we can achieve good success with a reasonably direct path to the
ource with this simple algorithm. The tortuosity 𝜒 seems to obey the
ame trend in parameter space, that is, better success leads to a shorter
ath.
To quantify the relationships between parameters, success, and

ortuosity, we have computed the correlations between the two metrics
nd the parameters that we varied in the bilateral algorithm. Table 1
hows the correlation between success and 𝜒 for the water plume
s negative which implies that as success goes up, 𝜒 is reduced; the
ame parameters improve both metrics. The 5 cm/s air plume has a
eak positive correlation between success and 𝜒 which implies better
uccess means more tortuosity. However the two faster air plumes have
strong negative correlation between success and tortuosity so that

etter success means a more direct path.
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Fig. 3. Sample trajectories of the two algorithms in each of the plumes. In the case of the air plumes, all parameters are the same for each plume.
Fig. 4. Success rate and 𝜒 over a sample of bilateral parameters for each of the four plumes. Parameter sets are ordered by success rate. 𝜒 is scattered in orange while the success
is in blue.
Table 1
Correlations of the varied parameters with success (S) and with tortuosity (𝜒) for the water (w) and the three air plumes (a5,a10,a20) using
the bilateral algorithm. X denotes no significant correlation (𝑃 > 0.01) In addition, we also note the correlation between success and 𝜒 .
plume v 𝜎 𝛽 l 𝐴𝑤 𝜖𝑤 S 𝜒

w(S) −0.4589 0.2548 −0.1997 0.2000 0.2093 −0.1416 1 −0.1595
w(𝜒) 0.3326 0.7069 0.4030 −0.1798 −0.2368 0.1515 −0.1595 1

a5(S) −0.2588 −0.2011 0.1798 0.3029 −0.3082 0.2798 1 0.0615
a5(𝜒) −0.3180 0.2804 0.1646 0.4911 −0.2470 0.2022 0.0615 1

a10(S) 0.2208 X −0.1618 −0.3547 X X 1 −0.7254
a10(𝜒) −0.2193 X 0.3505 0.5926 −0.0837 X −0.7254 1

a20(S) X X −0.1721 −0.5918 X X 1 −0.7820
a20(𝜒) −0.1099 0.0805 0.4086 0.6056 −0.0840 0.0876 −0.7820 1
6 
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Fig. 5. Best and worst 100 parameters after the second iteration of optimizing parameters. Top: ordered by success; bottom, ordered by 𝜒 for the water plume and the bilateral
algorithm. Arrows denote the best parameters for maximizing success or minimizing 𝜒 .
s
m
d
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Table 1 also shows the correlations of 𝑣, 𝜎, 𝛽, 𝑙, 𝐴𝑤, 𝜖𝑤 with the
success and 𝜒 for the bilateral algorithm in each of the four plumes.
Entries where 𝑃 > 0.01 are denoted with an X. For most of the entries,
𝑃 < 10−4. As the correlation with 𝛾𝑤 was insignificant for the air
plumes, it is not included in the table. Histograms of the parameters
associated with the best and worst success and tortuosity are shown in
the main text and in the appendix in Figs. 5–B.10.

3.2.1. Water plume
The results of the second round of optimization for the water plume

are shown in the histograms in Fig. 5. To get these histograms, we
first order the parameter sets by success. Then we create parameter
distributions for the top 10% and bottom 10% success rates. Then we
reorder according to 𝜒 and again take the best and worst. From this,
we see that slower navigation (smaller 𝑣), more sensitivity to left–
right concentration differences (larger 𝛽), less downstream movement
(smaller 𝜖 ), larger random search (𝜎), longer sensors (𝑙) and greater
𝑤 n

7 
sensitivity to flow direction (𝐴𝑤) are compatible with higher success.
Lower 𝛽, 𝜎 and higher 𝐴𝑤 are all associated with straighter paths to
the source. Indeed, there is a sharp difference in the distribution of
the parameters 𝜎, 𝛽, 𝐴𝑤 to minimize 𝜒 . High values of 𝛽 and 𝜎 lead to
more turning while higher values of 𝐴𝑤 result in more direct paths. The
latter is because large values of 𝐴𝑤 combined with sufficient odorant
concentration push the agent upstream toward the source. One can
think of 𝛽, 𝜎, 𝜖𝑤 as ‘‘exploratory’’ as they tend to cause the agent to
take longer paths and thus visit more of the domain.

In Table 2 we list the parameters which maximize success and
minimize 𝜒 for the bilateral algorithm in the water plumes. The main
differences are 𝑣 and 𝛽. For optimal success move slowly and be
ensitive to small changes in sensor differences while to get there with
inimal twists and turns, move faster and be less sensitive to sensor
ifferences. The minimal tortuosity that we attain is 1.98 and this is
ssociated with 80% success rate. To better explore the statistical sig-

ificance of the parameters associated with success, we chose 100 sets
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Table 2
Optimal parameters for the bilateral algorithm with respect to success rate (𝑆), minimum tortuosity (𝜒) and a weighted average (𝑍 = 𝑆−𝜒∕10)
for the four tested plumes over the parameters.
Plume v 𝜎 𝛽 l 𝐴𝑤 𝜖𝑤 S 𝜒 Z

w(Z) 1.4921 0.2231 35.6274 4.9924 15.1483 0.3637 0.8425 2.0579 0.6367
w(S) 1.3199 0.4782 51.2097 5.0508 15.5188 0.3755 0.9095 5.4425 0.3653
w(𝜒) 2.7088 0.2289 37.5790 4.9860 18.0946 0.4640 0.8065 1.9859 0.6079

a5(Z) 0.4348 0.2337 44.6021 0.6368 5.1158 0.2905 0.9045 1.6409 0.7404
a5(S) 0.4348 0.2337 44.6021 0.6368 5.1158 0.2905 0.9045 1.6409 0.7404
a5(𝜒) 0.8766 0.2622 34.3926 0.5081 7.8874 0.0471 0.6365 1.0741 0.5291

a10(Z) 1.8058 0.2332 43.7649 0.5761 5.8261 0.1169 1.0000 1.0126 0.8987
a10(S) 1.7844 0.2992 31.7736 0.8559 5.7068 0.3562 1.0000 2.2803 0.7720
a10(𝜒) 1.8058 0.2332 43.7649 0.5761 5.8261 0.1169 1.0000 1.0126 0.8987

a20(Z) 0.5129 0.2229 40.0224 0.5346 4.4300 0.1582 0.9475 1.5761 0.7899
a20(S) 0.5129 0.2229 40.0224 0.5346 4.4300 0.1582 0.9475 1.5761 0.7899
a20(𝜒) 1.1515 0.4501 11.4173 0.4882 8.2746 0.0433 0.7330 1.0711 0.6259
w
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of different random initial starting locations and orientations using the
optimal parameters from Table 2. We computed the average success, 𝑆,
tortuosity, 𝜒 and 𝑍 = 𝑆−𝜆𝜒 for each set. The distribution of 𝑆, 𝜒,𝑍 are
iven in Fig. C.15 in Appendix C. They all lie in a very narrow range.

.2.2. Air plumes
The success rates for the air plumes at the optimal parameters

anged from 100% success for the 10 cm/s plume to 90% for the
cm/s and 95% for the 20 cm/s air plumes. The high success rate

or the 10 cm/s plume is due to the diffusive nature of the near bed
low. Despite the fact that the 5 cm/s is barely detectable at the initial
tarting locations (compare the three air panels in Fig. 2), there is still a
igh success rate. Fig. 4 shows that there is a wide range of parameters
ossible to maintain a reasonable success rate; there is significant fall-
ff in success rate only near the last 10% of the parameters for the
cm/s and 10 cm/s flows and success is over 70% for more than half
he parameters for the 20 cm/s flow.
The three air plumes had several common features that are also

lose to the strategies for the water plume. (See the histograms in
igs. B.8–B.10.) Low values of 𝑣, 𝐴𝑤 and high values of 𝛽, 𝜖𝑤 are all
ssociated with success. Interestingly, lower values of 𝑙 are good for
uccess in the 10 cm/s and 20 cm/s air plumes, but higher values of
are better for success in the 5 cm/s plume. We suggest that this is
ikely due to the limited reach of the 5 cm/s plume (c.f. Fig. 2). Bigger
istances between sensors leads to greater concentration differences
nd thus to more turning. The optimal speeds, 𝑣, for the 5 cm/s plume
nd the 20 cm/s plume are all below 1 cm/s compared to those for the
0 cm/s plume which has much larger successful velocities. Low 𝑣, 𝐴𝑤
nd high 𝛽, 𝜖𝑤 are all compatible with more exploratory (less direct)
rajectories. Recall that high values of 𝜖𝑤 lead to reversals away from
he upstream direction and, thus to longer paths. In contrast, given
successful navigation, lower 𝛽, 𝜖𝑤 and higher 𝐴𝑤 are all associated
ith shorter 𝜒 . These trends are quantified in the correlations in
able 1. Parameter distributions for the three air plumes are found in
igs. B.8–B.10 in Appendix A.
The best parameters for each air plume and each metric (success or

ortuosity) are shown in Table 2.

.2.3. Bilateral summary
Despite the complexity of the plumes in air and water, a simple

omparison between two sensors is sufficient to access the plume and
ollow it to the source. For the diffusive like 10 cm/s flow, there
s no tradeoff between path-length and success. The smooth plume
tructure requires little exploration and the plume is rarely lost, thus
t is possible to make a direct path to the source as it will have the
ighest concentration.
The minimal tortuosity in the water plume (1.88) has 80% success

hile the maximal success rate of 90% has 𝜒 = 5.44 so there is quite a
it more exploration needed to get that extra 10% increase in success.

he main differences in parameters are 𝑣 and 𝛽; the velocity associated b

8 
ith the shortest average path is more than twice that of the greatest
verage success and 𝛽 is more than 1/3 smaller when minimizing the
verage path length.
For the 5 cm/s flow, parameters that enhance finding the plume are

ll anti-correlated with those for minimizing the pathlength (Table 1).
ecause the ‘‘reach’’ of the plume is quite small (c.f. Fig. 2), exploration
s much more necessary so that higher 𝛽, 𝑙, 𝜖𝑤 and lower 𝑣, 𝐴𝑤 provide
much greater chance of eventually accessing the plume. Because
xploration is so important for this plume, this could explain why
uccess is associated with higher tortuosity only in this plume as the
ther plumes all have extensive ‘‘reach’’. For initial conditions which
re already in the basin of attraction of the plume, then increasing 𝐴𝑤, 𝑣
nd decreasing 𝛽, 𝑙, 𝜖𝑤 provides for a more direct path.
Lastly, for the 20 cm/s flows, the only parameters that are strongly

orrelated with success at finding the plume are 𝛽, 𝑙. For the best
arameter set, low 𝑣, 𝐴𝑤 give better success at finding the plumes. In
ontrast, higher 𝐴𝑤 and 𝑣 leads to more direct paths.
Looking across the three air plumes, one might ask if there an opti-
al parameter set that gives good success in all three flow conditions.
ince the range of highly successful parameters for the near bed flow
10 cm/s) is quite broad, we will focus on the parameters for the
cm/s and 20 cm/s. In both cases, the optimal parameters are close
o each other (see arrows in the corresponding histograms), thus we
hoose the average of the optimal parameters, yielding 𝑣 = 0.4739 cm/s,
= 0.2283, 𝛽 = 42.31, 𝑙 = 0.5857 cm, 𝐴𝑤 = 4.773, 𝑙𝑜𝑔(𝛾𝑤) = 1.657 and

𝑤 = 0.2244. The result of running these parameters in the three plumes
as 85%, 100%, and 94% success in the 5, 10, and 20 cm/s flows,
espectively. Expanding the initial starting locations from 7.5 < 𝑥 < 22.5
nd |𝑦| < 4.5 to 3.75 < 𝑥 < 12.75 and |𝑦| < 6.375 resulted in 78%,
9%, and 81% respectively for the three flows. Thus, the bilateral
lgorithm (among the easiest to operate in a robot or for an organism
o implement with neural circuitry) can be tuned to successfully find
he source of an odor in a wide range of landscapes. In the discussion,
e will suggest possible neural structures that could implement the
lgorithm.

.3. Casting algorithm

In order to optimize the success (𝑆) of the casting algorithm, Eq. (6),
e varied {𝑣, 𝜎, 𝛾𝑐 , 𝑙, 𝜙𝑚𝑎𝑥, 𝐴𝑤, 𝛾𝑤, 𝜖𝑤}. Recall that 𝛾𝑐 is the sharpness pa-
ameter for the difference in concentrations between successive samples
md 𝛾𝑤 is the sharpness for the dependence of the flow effects on the
oncentration of the sensors. For the water plumes, this is held fixed,
ut was varied in the air plumes.
Fig. 6 shows the ordered success rates of 1000 parameter sets for

he water plume and 2000 sets for each of the air plumes using initial
ata from the regions depicted in Fig. 2. The scattered plots are the
ortuosity, 𝜒 . We can achieve 91% success rate in the water plume with
tortuosity ranging from 4 to 10 in the top 50 performers. As with the

ilateral algorithm, there is a weak but significant negative correlation
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Table 3
Correlations of the varied parameters with success (S) and tortuosity (𝜒) for the water (w) and the three air plumes (a5,a10,a20) using the
casting algorithm. The correlation between S and 𝜒 is also shown.
plume v 𝜎 𝛾𝑐 l 𝜙𝑚𝑎𝑥 𝐴𝑤 𝜖𝑤 S 𝜒

w(S) −0.3020 −0.2713 X X 0.3180 0.1692 −0.0688 1.0000 −0.0741
w(𝜒) 0.1933 0.1774 X X 0.8249 −0.3474 0.1205 −0.0741 1.0000

a5(S) X X 0.1173 −0.1593 0.1757 X X 1 −0.1720
a5(𝜒) −0.1345 X 0.1252 0.2953 0.2760 −0.2167 0.0877 −0.1720 1

a10(S) X −0.0636 0.0594 −0.7101 0.3154 X X 1 −0.0564
a10(𝜒) −0.0688 0.0456 0.1712 0.3282 0.4397 −0.2914 0.0927 −0.0564 1

a20(S) −0.1843 X 0.2027 −0.1823 0.3641 X X 1.0000 0.1248
a20(𝜒) X 0.0263 0.1615 0.4089 0.6247 −0.4588 0.1803 0.1248 1.0000
Fig. 6. Success rate and 𝜒 over a sample of casting parameters for each of the four plumes. Parameters are ordered by success rate and the corresponding values of 𝜒 are shown
in orange.
between success and tortuosity (Table 3 top rows). Indeed, the general
trends in water are nearly identical. The correlations between 𝑆 and 𝜒
in the air plumes have opposite trends for casting and bilateral. There is
a reasonably strong negative correlation between success and tortuosity
for the 5 cm/s air plume using casting whereas there was a weak positive
correlation using bilateral. For the 10 cm/s air plume there is a weak
negative correlation between 𝑆 and 𝜒 and for the 20 cm/s air plume
there is a reasonable positive correlation.

Table 3 also shows the correlations between 𝑆, 𝜒 and the param-
eters, 𝑣, 𝜎, 𝛾𝑐 , 𝑙, 𝜙𝑚𝑎𝑥, 𝐴𝑤, 𝜖𝑤 for each of the four plumes. As with the
bilateral algorithm, there is no significant correlation of any of the
parameters with 𝛾𝑤, so it is not included in the table.

With casting, 𝜙𝑚𝑎𝑥 plays a role similar to 𝛽 in the bilateral algorithm.
Figs. B.11–B.14 in the Appendix show the distribution of parameters for
maximizing success and minimizing 𝜒 for the four different plumes.
We see trends similar to those in the bilateral algorithm; parameters
associated with more turning are good for success and those with less
turning are best for minimizing the path-length.

3.3.1. Water plume
To optimize success, it is best to maintain a low velocity (𝑣), small

noise (𝜎), larger 𝜙𝑚𝑎𝑥, and stronger dependence on flow direction
(𝐴𝑤). Compared to the bilateral algorithm, the optimal velocity for
casting is larger and the noise is smaller. The casting algorithm has
9 
an intrinsically stochastic term (the sampling of 𝜙 is random) so this
may explain the smaller added noise. Since the casting depends on
temporally sequential steps, having a larger velocity provides a greater
spatial separation between the two samples that are compared, so this
may explain the larger trend in optimal velocities. (We will see similar
velocity trends in the air plumes as well.) Both 𝑣 and 𝜙𝑚𝑎𝑥 have fairly
sharp boundaries between the best and worst values. The values of
𝑙, 𝛾𝑐 have no significant correlation with success in the range tested.
Indeed, the optimal length 𝑙 tends to be between 3 and 5 cm for both
algorithms. The optimal 𝜖𝑤 is quite a bit larger for casting than for the
bilateral algorithm; thus when out of the plume the force to go down-
stream is much stronger. There is slightly more dependence on flow
direction (𝐴𝑤) for casting than for the bilateral algorithm. Tortuosity
is minimized with smaller 𝜙𝑚𝑎𝑥 (smaller maximal turns), smaller 𝜎 and
smaller 𝜖𝑤 (less likely to reverse trajectory) as one would intuitively
expect. Parameters that maximize success or minimize tortuosity are
shown in Table 4, The gain in success from 72% to 91% comes at a
cost in 𝜒 going from 1.5 to 8.09 so that there is a large increase in
tortuosity to gain a small percentage in success. We will address this
large discrepancy below.

3.3.2. Air plumes
The maximal success rates for the air plumes ranged from 91% for

the 5 cm/s to 100% and 96% for the 10 cm/s and 20 cm/s plumes
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Table 4
Optimal parameters for the casting algorithm with respect to success rate (𝑆), minimum tortuosity (𝜒) and a weighted average (𝑍 = 𝑆 − 𝜒∕10)
for the four tested plumes over the parameters.
Plume v 𝜎 𝛾 l 𝜙𝑚𝑎𝑥 𝐴𝑤 𝜖𝑤 S 𝜒 Z

w(Z) 1.8818 0.0721 2.9762 4.2812 1.3145 18.5316 0.8016 0.8310 2.1687 0.6141
w(S) 2.2630 0.1727 2.9797 4.4127 2.2262 17.3538 0.8782 0.9155 8.0893 0.1066
w(𝜒) 1.9351 0.0858 2.9710 3.3577 1.0381 18.5042 0.3063 0.7195 1.5000 0.5695

a5(Z) 0.4512 0.3992 2.4120 1.0710 2.0037 4.9125 0.2895 0.8427 1.9756 0.6451
a5(S) 0.8014 0.5402 2.2463 1.1858 2.7718 6.0566 0.3795 0.9127 4.3464 0.4781
a5(𝜒) 0.4229 0.2409 1.0843 0.8618 1.9611 7.6931 0.1527 0.6453 1.1667 0.5286

a10(Z) 0.9608 0.3324 1.7434 0.7387 1.2073 6.9309 0.2356 0.9984 1.0812 0.8903
a10(S) 0.8940 0.2119 1.4007 0.7418 2.0910 5.0481 0.1326 1.0000 1.2004 0.8800
a10(𝜒) 0.9273 0.2929 2.1601 1.1422 0.8504 6.7115 0.1746 0.8996 1.0543 0.7942

a20(Z) 0.5393 0.4620 2.6316 1.4138 1.8405 5.8861 0.1211 0.9024 1.8567 0.7167
a20(S) 1.2660 0.4647 2.5715 1.4437 2.6434 5.8767 0.2929 0.9584 6.7817 0.2802
a20(𝜒) 0.6300 0.7503 1.1372 0.8077 1.7597 7.4962 0.2018 0.7348 1.2486 0.6099
t
𝑙

respectively. Thus, at the optimal choices, casting performs with the
same success rate as does the bilateral algorithm. As with bilateral,
the diffusive character of the near bed 10 cm/s flow assures that
a local gradient seeking algorithm should perform well. Reasonable
success can be found over a broad range of parameters (Fig. 6); the
fall off over parameters is similar to that found with the bilateral
algorithm (compare Fig. 4). With the 20 cm/s flow, the fall off for
asting only occurs for the last 5% of the parameters. The distributions
f parameters for the best and worst runs are shown in Figs. B.12-
B.14. Again as in the bilateral algorithm, slow velocities are necessary
but not sufficient for success. For the 5 cm/s flow, any velocity less
than about 2 cm/s gives over 83% success and with the 20 cm/s flow
the same range of velocities gives at least 93% success. (The top 200
scores give a range of 83%–91%, 100%, and 92%–96% success rates for
5,10, and 20 cm/s flows respectively; the bottom 200 give respectively
0%–65%, 22%–72%, and 5%–71% success.) For the 5 cm/s air plume,
the only parameters that had significant correlation with success are
𝛾𝑐 , 𝑙, 𝜙𝑚𝑎𝑥 with shorter 𝑙 and greater 𝜙𝑚𝑎𝑥 associated with success.
or the 20 cm/s plume, velocity was also significantly (negatively)
orrelated with success. As with the bilateral algorithm, flow direction
oes little to help in success in the air plumes.
For all three of the air plumes, the flow direction 𝐴𝑤 is helpful in

educing the tortuosity as it enables a more direct path to the source.
nlike with success, there is a clear delineation the 𝐴𝑤 histograms
egarding better (smaller) values of 𝜒 . Intuitively, longer sensors (𝑙)
nd wider sampling angle (𝜙𝑚𝑎𝑥) are all associated with larger 𝜒 .
The optimal parameters for the three air plumes are shown in

able 4.

.3.3. Casting summary
As with the bilateral algorithm, the casting algorithm is simple,

et it is able to both access the plume and successfully follow it to
he source with high fidelity with optimal parameters. The extremely
iffusive near bed 10 cm/s air plume is quite easy to navigate and there
s no trade-off between success and minimizing tortuosity.
The minimal tortuosity in the water plume for casting (𝜒 = 1.5) was

uccessful 72% of the time while the most successful set of parameters
𝑆 = 92%) had 𝜒 = 8, so there was a large cost to get the extra 20%
uccess. 𝜙𝑚𝑎𝑥 for optimal success (𝜙𝑚𝑎𝑥 = 2.22) is more than twice the
alue for minimizing 𝜒 (𝜙𝑚𝑎𝑥 = 1.04). Similarly, 𝜖𝑤 is also quite a bit
arger for success than for path-length (𝜖𝑤 = 0.8 for 𝑆 vs 0.3 for 𝜒).
oise 𝜎 also was different between the two optima with lower noise
ssociated with shorter paths and less success. The other parameters are
ot too different. As with the bilateral algorithm, to optimize success,
t is better to ‘‘turn up’’ the exploratory parameters (those that lead
o more changes in heading), 𝜙𝑚𝑎𝑥, 𝜖𝑤, 𝜎. However, if the plume is
cquired, then reduce the exploration to shorten the path length to the
ource.
In the air plumes, shorter 𝑙 is associated both with greater success
nd shorter path lengths in the casting algorithm. This result is similar

10 
o the bilateral algorithm except in the case of the 5 cm/s plume where
is positively correlated with 𝑆. Curiously, of the four plumes tested,
only the 20 cm/s plume shows a positive correlation between success
and tortuosity. Casting is a temporal algorithm which takes samples
frame-by-frame. The higher speed plume will change more between
frames, so it may be that there will be more changes in direction for
casting in this plume; this leads to higher tortuosity in successful runs.

We can ask a question similar to that which we asked about the
bilateral algorithm. Is there a set of parameters that works for all three
flows? If we follow the prescription that was used for the bilateral and
average the optimal parameters for the 5 and 20 cm/s flows, then we
find that we get 95.2% success for the 20 cm/s and 88.4% success for
the 5 cm/s flows using 𝑣 = 1.03 cm/s, 𝜎 = 0.5, log10(𝛾𝑐 ) = 2.4, 𝑙 = 1.31
cm, 𝜙𝑚𝑎𝑥 = 2.70, 𝐴𝑤 = 5.95 and 𝜖𝑤 = 0.320. However, we get only 47%
success for the 10 cm/s flow. Consulting the histograms in Fig. B.13,
we see that these parameters all lie in the highly successful bins except
𝑙 = 1.31 cm. Thus we should shorten 𝑙. Consulting Figs. B.12 and B.14,
we see that shortening 𝑙 should not have too large an effect on the
20 cm/s plume, but will hurt the 5 cm/s plume. We compromise and
pick 𝑙 = 1 cm and in this case obtain 85%, 98%, and 95% success rate
for the 5, 10, and 20 cm/s plumes respectively. Expanding the initial
conditions range (as in above), we obtain 74%, 97%, and 82% success
for the three plumes. Like the simple bilateral algorithm, the casting
algorithm is able to successfully find an odor source with one set of
parameters over a wide variety of odor landscapes.

3.4. Tortuosity vs success

We have focused on two different measures of success: the prob-
ability of finding the source (𝑆) and minimal path length (𝜒). Each
of these has a benefit for the agent. Obviously, if the source is not
found, then there is no benefit at all. On the other hand, if 𝜒 is large,
then the energy cost to get to the source (as well as the time wasted)
may be prohibitive. A natural question is whether there is some type of
compromise between the best success (‘‘accuracy’’) and the straightest
path (‘‘speed’’). For example, in the 20 cm/s air plume, optimizing
casting for success yields a path with 𝜒 = 6.78 with 96% success and
optimizing for minimal 𝜒 (𝜒 = 1.03) has success of about 73%. Thus,
the price for the extra 20% success is a mean pathlength that is over
fivefold longer. One possibility would be to maximize a combination,
say 𝑍 = 𝑆 − 𝜆𝜒 . Here, 𝜆 is a parameter penalizes success, 𝑆 for too
much tortuosity, 𝜒 . We observe that for all the plumes, values of 𝜒 for
success rates above 60% are generally between 1 and 8 and for the
lowest values of 𝜒 (say below 5), the success rate is between 0.5 and
0.9. This suggests choosing 𝜆 ∼ 1∕10 so that the magnitudes of 𝑆 and
𝜆𝜒 are close. This choice of 𝜆 is somewhat arbitrary and is used as
an example. The optimization of parameters depends only on success
for reasons already outlined above. Thus, one could change the value
of 𝜆 to come up with ‘‘best’’ parameters depending on the desire to

maximize success or minimize tortuosity.
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In Tables 2 and 4 we list the optimal parameters for success, 𝜒 , and
for the bilateral and casting algorithms in the four plumes. (Note

hat our initial round of optimization is always based on success and the
cores here use the ranges from that first round of parameter searching.)
or the bilateral algorithm we find a new set of parameters for water
hich reduces the success from 90% to 84% but at the same time more
han halves the tortuosity. For the air plumes the parameters which
aximize 𝑍 lead to parameters that either optimize 𝑆 or 𝜒 . In contrast,
or casting, there are novel sets of parameters for all four plumes. For
he water plume we reduce that optimal success from 92% to 83% but
lso reduce 𝜒 from 8.1 to 2.2, an almost fourfold improvement. At
he minimal 𝜒 = 1.5 for water, 𝑆 = 72%. For the 5 cm/s air plume
e reduce the success from 91% to 84% and halve the tortuosity. In
omparison, the optimal 𝜒 = 1.67 has a success of only 64%. For the
0 cm/s flow we reduce 𝜒 from 6.78 to 1.85 which only reduces success
arginally from 96% to 90%. As expected, we do little to change the
uccess and tortuosity of the near bed 10 cm/s plume as the minimum
and optimal success have pretty similar parameters.

. Discussion and conclusions

In this paper, we compared two simple local algorithms for using
dor cues to navigate to a source in diverse environments. Our main
indings can be summarized as:

• For the gradient-like near-bed plume, either algorithm is success-
ful over a wide range of parameter choices (Figs. 4, 6);

• In general slow agent velocity gives better success rate overall,
but higher velocity reduces tortuosity and leads to a more direct
path;

• Increasing the parameters which affect the heading sensitivity to
concentration differences (𝛽 for the bilateral algorithm and 𝜙𝑚𝑎𝑥
for the casting) lead to greater success rate at the expense of
increased tortuosity;

• Noise in the heading increases the success rate up to a point, but
leads to longer path-lengths;

It is natural to ask if the behavioral correlates of our simple algo-
ithm are observed in animals. In fact, all three parts of our algorithms
ave behavioral correlates in animals. As noted in the introduction,
any animals use bilateral comparisons (tropotaxis) between two sen-
ors to follow trails and odor plumes in both air and water (Kajiura
t al., 2005; Rajan et al., 2006; Catania, 2013). The bilateral algorithm
s a simple implementation of this search strategy. Similarly, orienting
ased on successive odor samples (klinotaxis) is well-known across
any species (reviewed in Martinez (2014), Baker et al. (2018)).
ndeed, neural circuits for C. elegens have been worked out for this
ehavior in the nematode (Izquierdo and Beer, 2013). Thus, the core
lgorithms (‘‘bilateral’’ and ‘‘casting’’) in this study are well supported
y animal behavior.
Another important part of our algorithm (particularly in the water

lume) is the use of the flow direction. Our algorithm has two com-
onents: move upstream when the concentration is sufficiently large
𝐴𝑤, in our model) and downstream if it is not (𝜖𝑤). This is a common
trategy used by many organisms (Cardé and Willis, 2008; Cardé, 2021;
atheson et al., 2022) based on the fact that a odor plume typically gets
ider in the downstream direction and thus, an animal is more likely
o encounter it. Moths use a similar strategy in which they make wider
nd wider loops transverse to the flow direction (Talley et al., 2023).
Animals use a variety of search strategies to navigate in the absence

f odor cues. Among the most common is the correlated random
alk (Bovet and Benhamou, 1988). The parameter 𝜎 used in our model
ontrols the magnitude of the random search.
We have not attempted to fit the parameters in any of our al-

orithms to specific animal search strategies. However, in an earlier
apers, Liu et al. (2020), Hengenius et al. (2021) we used mouse

ehavior to choose parameters such as the sensor length, 𝑙, speed, 𝑣,

11 
nd maximal angles for search, 𝜙𝑚𝑎𝑥, to match the paths of mice seeking
n odor spot.
We found that for plume a10 (air, 10 cm/s, bounded), that parame-

ers that maximized success also lead to low tortuosity (see Tables 2 and
and similarly, those that minimized the tortuosity also lead to high
uccess. This was not the case for plumes a5,a20, and w. For example,
n the water plume (w), the most successful parameter set for casting
91.6%) had 𝜒 = 8 and the parameter set minimizing 𝜒 had a success
ate of only 71%. The concentration in plume a10, is quite smooth in
ime and in space, so that the algorithms have little trouble keeping on
path to the source. Indeed, both algorithms are essentially gradient
limbers and plume a10 is the most gradient like of the tested plumes.
n the other plumes, a5,a10, and w, the algorithms are more likely to
ose the plume. If the plume is lost, then parameters that increase the
ortuosity will increase the chance that the agent will capture the plume
efore it exits the domain. One could view this as a ’’speed-accuracy’’
rade-off; successful strategies need to avoid straight paths to the border
f the domain if they have lost the plume. If we change the ’’boundary
onditions’’, say, to allow the agent to ’’bounce’’ off, then the path to
he source will still be quite long, when the plume is lost as the agent
ust travel to an edge and then turn back. Thus, it plumes where the
oncentration is intermittent, parameter sets that encourage frequent
irection changes will be more successful.
Despite the differences in a5, a10, and a20, for both the bilateral and

asting algorithms, we found that there were parameters which led to
uccessful navigation in all three air plumes, thus, it is not necessary
o change the strategy when the odor landscape changes. By weighting
he success and tortuosity (𝑍), we found parameter sets that had nearly
ptimal success and also small tortuosity (c.f. Tables 2 and 4).
In the water plume, for either algorithm, flow direction was quite

mportant for success. Without any directionality cues, the rate of
uccess was less than 10% (not shown here in the paper). Direction
ues were less important for air plumes, mostly for reducing 𝜒 (See
ables 1 and 3). In the bilateral algorithm, in a5 plume, the correlation
as actually negative between 𝐴𝑤 (the strength of the direction cue)
nd S. The mechanism for this is that, if the agent is near the source
n the streamwise direction, but away from it in the cross-stream, the
irectional cues drive the agent off the right edge of the domain.
Dynamic strategies. All of algorithms kept the parameters fixed for

ach trial, but it is known that animals change their strategies when
hey are far from the odor source. For example Liu et al. (2020) show
hat far from an odor spot, mice cast more widely and then tend to
educe the casting amplitude as they approach the source. This suggests
hat we might be able to improve success with a dynamic strategy.
hat is, near the plume one could use one set of parameters, but away
rom the plume another. This leads to the obvious question of how
o tell if we are near or far from the plume. Our flow component
f the algorithm, is in a sense, a dynamic strategy where we use the
oncentration as a surrogate for whether we are in the plume or not.
𝑤, 𝜖𝑤 only act when the concentration falls within some range. Other
ues of plume proximity are the times between encounters; as the
ource is neared, the encounters become more frequent. As an example
f such a dynamic strategy, we could vary the distance between sensors
either by changing 𝑙 or 𝜙 the angle between them or 𝜙𝑚𝑎𝑥 in the case
f casting). Insects actively change their antennae in order to better
cquire and stay on the plume and mice sniff faster when they detect
n odor (Wachowiak, 2011; Reddy et al., 2022; Crimaldi et al., 2022).
Another clear parameter that would be good for modulation is the
speed of motion, 𝑣. High speeds are good for covering a lot of area
when the plume has not been located, but once locked into the plume,
it is better to move somewhat slowly to avoid overshooting. Thus, a di-
rection for further exploration would be to include some concentration
dependence on, say, the velocity, 𝜙 or 𝜙𝑚𝑎𝑥. For example, when the
concentration is low, it might be better to move faster and make more
turns in order to increase the probability of encountering the plume.

Then once the odor is detected, slow down and turn less.
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Sampling rates. Here we have sampled at every frame in the plume
ata which is reasonable for bilateral, an inherently continuous time
lgorithm. But, for casting, the discrete nature of the algorithm would
ealistically impose some physical limits on the rate of motion of the
ensor. This would not be an issue with a robot, but mice and other
nimals that use klinotaxis (serial sampling), can only move at some
inite speed. Thus, it would be interesting to reduce the sampling rate
nd see how this affects the algorithms. On the other hand, our agents
ave a fixed speed and thus must always move. A fairer strategy for
hese simple algorithms is to stop and sample, make a decision, and
hen move forward at a fixed rate. Choices such as how often to sample
nd how far to move between samples are beyond the present study.
Biological plausibility of the algorithms. Finally, we have ad-

ocated for the utility of these algorithms because they are simple
o implement. Thus, a natural question is: are there plausible neural
ubstrates for these algorithms? Jones and Urban (2018) suggest that
the accessory olfactory nucleus (AON) is a possible site for the inte-
gration of the left and right naris inputs. Indeed, Kikuta et al. (2010)
ound neurons in the AON that respond differentially to ipsilateral and
ontralateral inputs. More recently, Rabell et al. (2017) found that
ON neurons and cross hemispheric connections are necessary for rapid
ource localization by mice. Mechanistic models for deciding the larger
f two stimuli include the well know winner-take-all architecture such
s in models for binocular rivalry (Shpiro et al., 2007). Such algorithms
an amplify small left right differences so that they could possibly
mprove on the simple difference that is used in this paper. We remark
hat in Hengenius et al. (2021), we used (𝐶𝐿−𝐶𝑅)∕((𝐶𝐿+𝐶𝑅)∕2) as the
riving force for bilateral turning; division by the mean concentration
rovides a contrast enhancement that is not in our algorithm. In this
aper, we put our odors through a Hill nonlinearity which greatly
nhances small concentrations. It would be interesting to compare
hich of these performs better.
Temporal comparisons (as used in the casting algorithm) require

ome sort of memory in order to compare changes in the odor con-
entration on a moment-by-moment basis. Neurons in the fly olfactory
obe are sensitive to rapid temporal changes in their inputs (‘‘on’’ and
‘off’’ neurons) (Álvarez-Salvado et al., 2018), so that these could serve
s substrates for making decisions about when one is moving up an
dor gradient. Similarly, Parabucki et al. (2019) have shown that there
re neurons in the olfactory bulb of mice that are sensitive to temporal
hanges on odor concentration. Thus, it seems that at least in short time
cales it is possible to find neural substrates for deciding differences
n concentrations when sampled at different times. Over longer time
cales, in animals like mice, working memory may be necessary and in
his case, a model such as in Machens et al. (2005) would suffice.
In conclusion, we have demonstrated that even simple gradient

etection algorithms using spatial comparisons (tropotaxis, bilateral)
nd temporal comparisons (klinotaxis, casting) can be optimized so
hat they are able to locate odor sources in complex and diverse odor
andscapes in air and water. Unlike global algorithms which require a
patial map of the world, e.g. Vergassola et al. (2007), these types of
lgorithms could be realized in the simplest organisms. There is strong
vidence that many animals use stereo cues and casting strategies for
rail and plume following. This study confirms that they can be tuned
o be successful in a range of dynamic odor landscapes.
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Appendix A. Plume imaging details

A.1. Planar laser-induced fluorescence

Planar laser-induced fluorescence (PLIF) was used to quantify odor
concentration fields by imaging the instantaneous fluorescence signal
of fluorophore-dosed plumes under excitation from focused laser sheets
(Fig. A.7). A passive scalar (odor surrogate) was released from a source
and was transported and mixed by the ambient flow. The imaged
fluorescence intensities were linearly proportional to the excitation
intensity (laser power or pulse energy) and scalar concentration. Time
histories of raw two-dimensional fluorescence images 𝐼𝑁 were ac-
quired and corrected to quantitatively map pixel intensities to relative
(source-normalized) concentration levels 𝐶∕𝐶0 based on the following
algorithm adapted from Crimaldi (2008):

𝐶
𝐶0

= 1
𝑎𝑐

𝐼𝑁 − 𝑏
𝐵 − 𝑏

. (A.1)

Here, 𝑏 is the contribution to 𝐼𝑁 from the combined dark response
nd background illumination present during the experiments. 𝐵 is the
latfield image which maps spatial variations in light sheet (excitation)
ntensity and other non-uniformities due to lens vignette and pixel-
o-pixel gain variations. Normalization by 𝐵 − 𝑏 then quantitatively
orrects for systematic errors owing to several experimental factors
hat produce nonphysical artifacts in the spatiotemporal structure of
he imaged plume fluorescence field. Both 𝑏 and 𝐵 are obtained by
veraging several hundred images of the test section in the appropriate
onfiguration: absent any fluorescence signal but with all other illumi-
ation sources present (𝑏) and with a constant and uniform fluorophore
oncentration field (𝐵). Finally, the calibration coefficient, 𝑎𝑐 , was
sed to normalize concentrations (pixel intensity) based on the source
oncentration at the release point.
While the core PLIF approach used for measuring the air and water

lume datasets was broadly similar, notable differences in fluorophore
roperties in gaseous (Lozano et al., 1992) versus aqueous (Crimaldi,
008) contexts require different excitation sources and imaging con-
igurations. These specificities produced characteristic random (non-
ystematic) errors which set the effective noise floor of the measured
lumes. The primary noise contribution in the air plume datasets,
hich were significantly signal-limited relative to the water plume
atasets, came from shot-to-shot variations in laser pulse energy. For
he water plumes, the dominant noise contribution came from laser
ight reflected by sub-micron dust particles in the flow which was
ot blocked by the camera filter owing to the high angles of light
ncidence necessary in the constrained imaging configuration. For both
atasets, the estimated noise floor in the final postprocessed datasets
as below 1% of the source concentration throughout the FOV. We
riefly summarize other keys aspects of the experimental methods
elow for the air and water plumes, including descriptions of the flow
acility and ambient flow conditions, odor source configurations, and
he PLIF system.
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Table A.5
Summary of experimental configurations and parameters for testbed air and water plume datasets.
Flow and odor release conditions

Identifier Mean flow speed (cm/s) Source location, release Source diameter (cm) Source flow rate (cm/s)
a5: freestream isokinetic, low speed (air) 5 free-stream, isokinetic 0.953 5
a20: freestream isokinetic, high speed (air) 20 free-stream, isokinetic 0.953 20
a10: nearbed isokinetic (air) 10 near-bed, isokinetic 0.953 10
w: freestream isokinetic (water) 5 free-stream, isokinetic 0.69 5

PLIF imaging

Identifier Field-of-view (cm × cm) Spatial resolution (mm/px) Temporal resolution (ms)
a5: freestream isokinetic, low speed (air) 16 × 30 0.74 66.67
a20: freestream isokinetic, high speed (air) 16 × 30 0.74 66.67
a10: nearbed isokinetic (air) 16 × 30 0.74 66.67
w: freestream isokinetic (water) 80 × 146 0.586 22.22

Dimensionless parameters

Identifier Hydraulic diameter Re Mesh Re Source Re Sc
a5: freestream isokinetic, low speed (air) 996 84 32 1.4
a20: freestream isokinetic, high speed (air) 3984 337 127 1.4
a10: nearbed isokinetic (air) 1992 169 63 1.4
w: freestream isokinetic (water) 40 399 N/A 344 2400
Fig. A.7. Experimental configurations used for PLIF measurements of air (a.) and water (b.) plumes.
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.2. Air plumes

Air plume datasets were measured using PLIF in a benchtop low-
peed wind tunnel (see Fig. A.7a) as described in Connor et al. (2018)
y releasing a fluorescent surrogate odor (a neutrally buoyant blend of
aturated acetone vapor) into turbulent flow environments. The tunnel
est section was 1 m long, by 0.3 m tall, by 0.3 m wide and featured
turbulence grid (6.4 mm diameter rods, 25.4 mm mesh spacing) at
he upstream entrance to the test section. Flow was drawn through an
nlet contraction, across the grid, and through a honeycomb conditioner
t the downstream end of the test section by a suction fan that was
sed to vary mean flow speeds. The acetone plumes were released
sokinetically through a 9.5 mm diameter tube on the tunnel centerline
0 cm downstream of the turbulence grid. A 1 mm thick light sheet
as created using beam shaping optics and a cylindrical diverging
ens with a Nd:YAG pulsed laser (266 nm, 70 mJ/image, 15 Hz). The
xcited fluorescence signal of the illuminated plume was imaged using
synchronized high quantum efficiency sCMOS camera with a notch
ilter to block residual green light from lower harmonic outputs of the
aser. Raw fluorescence images were corrected according to Eq. (A.1)

ielding time-stacks of source-normalized odor concentration fields.
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.3. Water plumes

Water plume datasets were measured using PLIF in an open channel
lume as described in Ritsch (2019) by releasing a fluorescent surrogate
dor (an aqueous solution of Rhodamine 6G, R6G) into a turbulent
low environment. (See Fig. A.7b.) The overall flume length was 9 m
nd the imaging test section was the single, central bay measuring
.5 m long, by 0.4 m tall, by 1.25 m wide. Flow was driven in a
losed-loop by a pair of pumps with variable frequency drivers from
downstream receiving reservoir into an upstream head box, then

hrough a series of flow conditioners (gradual contraction transitioning
o the flume cross-section, honeycomb) into the main flume section.
sharp-crested weir downstream was used to control the free surface
levation for a given discharge (volumetric flowrate). The flow depth
as approximately 40 cm, and the R6G plumes were released on the
low cross-section centerline. A 1 mm thick light sheet from a CW
aser (532 nm, 50 W maximum) was created by sweeping the beam
cross the imaging FOV using a scanning mirror (one sweep per image).
he excited fluorescence signal of the illuminated plume was imaged
sing an sCMOS camera with a high-pass filter to block the green light.
aw fluorescence images were corrected according to Eq. (A.1) yielding

time-stacks of source-normalized odor concentration fields.
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Table B.6
Ranges of the varied parameters for the first and second rounds of optimization for the water plume for both the bilateral
and casting algorithms.

Bilateral

𝑣 (cm/s) 𝜎 𝛽 𝑙 (cm) 𝐴𝑤 𝜖𝑤

First round 0.293 0 5 0.293 0 0
7.032 4 100 5.86 20 4

Second round 1.2306 0.2 31 3.3402 14 0.2
4.1606 0.8 62 5.1568 19 0.9

Casting

𝑣 (cm/s) 𝜎 log(𝛾, 𝜖) 𝑙 (cm) 𝐴𝑤 𝜖𝑤 𝜙𝑚𝑎𝑥

First round 0.293 0 4.6052 0.293 0 0 0
7.032 4 6.9078 5.86 20 4 3.1415

Second round 1.758 0.7 4.0943 2.673 11 0 1
5.274 1.7 6.8977 4.981 19 1 2.5
Table B.7
Ranges of the varied parameters for the first and second rounds of optimization for the three air plumes for the bilateral algorithm.

𝑣 (cm/s) 𝜎 𝛽 𝑙 (cm) 𝐴𝑤 log(𝛾𝑤) 𝜖𝑤

First round 0.375 0 1 0.375 0 0 0
4.875 1 60 2.625 10 3 0.5

Second round

5 cm/s 0.375 0 35 0.45 3 0.3 0.072
1.125 0.8 60 0.75 9 1.1 0.31

10 cm/s 1.125 0.1 14.75 0.45 2.9 0.71 0.1
3.975 0.6 46.3 1.125 8.2 2.42 0.4

20 cm/s 0.45 0 7 0.375 4 0 0.05
2.25 0.6 40 1.125 10 1.5 0.25
Table B.8
Ranges of the varied parameters for the first and second rounds of optimization for the three air plumes for the casting algorithm.

𝑣 (cm/s) 𝜎 log(𝛾𝑐 ) 𝑙 (cm) 𝜙𝑚𝑎𝑥 𝐴𝑤 log(𝛾𝑤) 𝜖𝑤

First round 0.375 0 0 0.375 0.5 0 0 0
3.375 1 3 2.625 3 10 3 0.5

Second round

5 cm/s 0.675 0.18 1.06 0.7245 0.89 3.22 0.83 0.09
2.775 0.75 2.52 1.4775 1.39 8.2 2.45 0.37

10 cm/s 0.8025 0.18 0.97 0.642 0.83 2.71 0.63 0.1
3.1725 0.75 2.54 1.464 2.25 8.15 2.39 0.39

20 cm/s 0.45525 0.21 1.03 0.71025 1.51 2.82 0.67 0.1
2.175 0.78 2.57 1.69875 2.73 8.18 2.35 0.39
Appendix B. Algorithm performance details

Parameters were chosen from broad ranges for the first round of
optimization. Starting ranges for air plumes and water plumes were
different due mostly to the difference in domain size. (See Tables B.6,
B.7, B.8). From these, the parameter ranges were narrowed down by
choosing the top 30% success rates. For each of the air plumes and
the water plume, we chose different ranges in order to give the highest
success per plume. These values are also shown in the tables. We then
ran the algorithms on each plume using these parameter ranges and
from these looked at the distribution of parameter values in the top
and bottom 200 for maximizing success or minimizing 𝜒 for the three
air plumes. A similar analysis is done for the top and bottom 100 for
the water plume.

There are four figures for the bilateral algorithm and four for the
casting algorithm. Each figure is for a different plume and divided
into two parts. The top set of histograms considers the success rate
and the bottom set the tortuosity, 𝜒 . For the water plume and the
bilateral (casting) model, histograms are for parameters: 𝑣, 𝜎, 𝛽, 𝑙, 𝐴 , 𝜖
𝑤 𝑤

14 
(𝑣, 𝜎, 𝛾𝑐 , 𝑙, 𝜙𝑚𝑎𝑥, 𝐴𝑤, 𝜖𝑤, respectively). For the air plumes and bilateral
(casting) model, the histograms are for parameters: 𝑣, 𝜎, 𝛽, 𝑙, 𝐴𝑤, 𝛾𝑤, 𝜖𝑤
(𝑣, 𝜎, 𝛾𝑐 , 𝑙, 𝜙𝑚𝑎𝑥, 𝐴𝑤, 𝛾𝑤, 𝜖𝑤, respectively). Note that 𝛾𝑐 , 𝛾𝑤 are presented
in log10 units. A summary of our interpretation of these histograms is
given in the main text.

Appendix C. Distribution of success and 𝝌 in water plumes

Using the optimal parameters taken from Tables 2 and 4 for the
water plume, we generated 100 different sets of initial conditions to
check the sensitivity of our parameter choices to the particular initial
data. Figs. C.15, C.16 show that these measures all lie within a very
narrow range of values so that the parameters that we have chosen for
the algorithms are optimal independent of the initial data used to select
them.
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Fig. B.8. Best and worst 200 parameters after the second iteration of optimizing parameters ordered by success (top) and by 𝜒 (bottom) for the air plume (5 cm/s) and the
bilateral algorithm. (Note that 𝛾𝑤 is in log10 units.).
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Fig. B.9. Best and worst 200 parameters after the second iteration of optimizing parameters ordered by success and by 𝜒 for the air plume (10 cm/s) and the bilateral algorithm.
(Note that 𝛾𝑤 is in log10 units.).
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Fig. B.10. Best and worst 200 parameters after the second iteration of optimizing parameters ordered by success and by 𝜒 for the air plume (20 cm/s) and the bilateral algorithm.
(Note that 𝛾𝑤 is in log10 units.).
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Fig. B.11. Best and worst 100 parameters after the second iteration of optimizing parameters ordered by success and by 𝜒 for the water plume and the casting algorithm. (Note
that 𝛾𝑐 is in log10 units.).
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Fig. B.12. Best and worst 200 parameters after the second iteration of optimizing parameters ordered by success and by 𝜒 for the air plume (5 cm/s) and the casting algorithm.(Note
that 𝛾𝑤 , 𝛾𝑐 are in log10 units.).
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Fig. B.13. Best and worst 200 parameters after the second iteration of optimizing parameters ordered by success and by 𝜒 for the air plume (10 cm/s) and the casting algorithm.(Note
that 𝛾𝑤 , 𝛾𝑐 are in log10 units.).
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Fig. B.14. Best and worst 200 parameters after the second iteration of optimizing parameters ordered by success and by 𝜒 for the air plume (20 cm/s) and the casting algorithm.(Note
that 𝛾𝑤 , 𝛾𝑐 are in log10 units.).
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Fig. C.15. Distribution of success rates, 𝜒 , and 𝑍 for 100 sets of initial data for the optimal parameters in the bilateral algorithm. Top row: using optimal success; middle row:
optimal 𝜒 ; bottom row: optimal 𝑍.
Fig. C.16. Distribution of success rates, 𝜒 , and 𝑍 for 100 sets of initial data for the optimal parameters in the casting algorithm. Top row: using optimal success; middle row:
optimal 𝜒 ; bottom row: optimal 𝑍.
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