

Review

Neural circuits for goal-directed navigation across species

Jayeeta Basu^{1,2,3,4,*} and Katherine Nagel ^{1,2,4,*}

Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure – medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects – that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.

Towards a comparative neuroscience of spatial navigation

Navigation is a fundamental and crucial function for survival and sustenance across species. From foraging for food, to escaping from prey, to finding shelter or a mate, all animals need to navigate towards goals in their environment. Studying how brains perform these behaviors has yielded considerable insight into the logic of neuronal computation and the format of internal representations across species. However, direct comparisons between navigation systems across vertebrates and invertebrates have been relatively rare.

When sensory cues directly signal a goal location, navigation can often be accomplished through feedforward sensorimotor pathways. For example, hunting zebrafish can locate their prey using simple retinotectal circuits that transform visual signals into directional movements [1]. Similarly, during courtship, male flies chase female flies using direct visuomotor pathways [2]. In contrast, when the location of a goal is hidden, is related indirectly to sensory cues, or must be remembered or inferred, more complex computations are required. Two ancient structures have been implicated in these spatial computations: (i) the hippocampus/entorhinal cortex of vertebrates, and (ii) the central complex of arthropods. In recent years technological developments such as closed-loop virtual reality, *in vivo* imaging, targeted circuit manipulations, and connectomics have revealed new principles of how information is encoded and processed in both structures, how this information guides behavior, and how learning and plasticity allow each structure to adapt to new environments and contexts. These discoveries suggest both similarities and differences in how vertebrate and invertebrate brains encode space.

In this Review we summarize both classical and recent studies on how the hippocampus and central complex represent information that is crucial for goal-directed navigation. We show how each structure builds representations of the location or orientation of the animal in space and of the

Highlights

The hippocampus of vertebrates and the central complex of insects are both engaged by navigational tasks that require spatial memory or inference.

The hippocampus builds flexible place maps of both real and abstract spaces.

The insect central complex comprises ordered arrays of cells that are well suited to encode and compute with vectors.

Both the hippocampus and central complex feature heading-direction signals based on ring attractor networks, and both structures receive input from partially segregated 'where' and 'what' pathways.

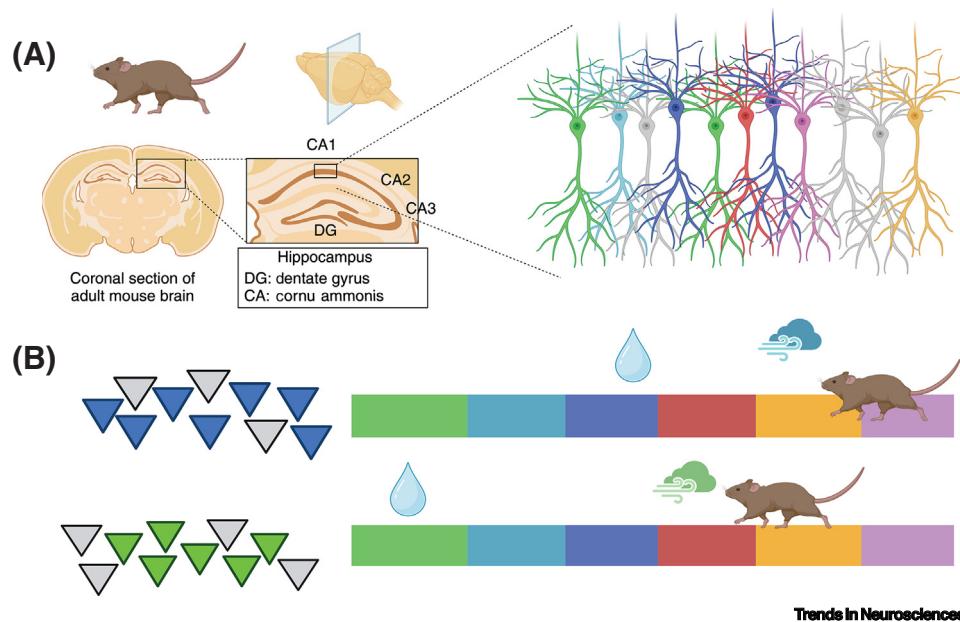
Current understanding of the differences between vertebrate and invertebrate navigational systems might reflect ecological, historical, and methodological differences. Future comparative approaches will help to reveal fundamental relationships between brain circuits and navigational and cognitive abilities across species.

¹Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA

²Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA

³Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA

⁴Center for Neural Science, New York University, New York, NY 10003, USA


*Correspondence:
jayeeta.basu@nyulangone.org (J. Basu)
and
katherine.nagel@nyumc.org (K. Nagel).

location or direction of potential goals. Intriguingly, both structures build representations of global heading by combining external sensory cues with ideothetic self-motion information, through computations consistent with a ring attractor network. Furthermore, both structures receive input from pathways in which 'where' information about the position and movement of the animal through space is at least partially segregated from 'what' information about objects in space and the nature and value of potential goals, rewards, or threats. These similarities, as well as differences in spatial coding, suggest both common solutions and divergent implementations that may allow different types of spatial and cognitive computations across species. Finally, we consider how differences in experimental approaches across organisms might bias our observations and propose more direct experimental and behavioral comparisons across species. We argue that such comparisons can potentially reveal new relationships between neural circuit structure and cognitive capacities.

In the forest of place cells: flexible maps of locations and goals in the hippocampus and entorhinal cortex

The hippocampus has long been considered the epicenter of the spatial navigation system of the mammalian brain. Foundational work in the 1970s capitalized on the technological feat of recording extracellularly from the hippocampus in freely moving rats to reveal the presence of place cells (Figure 1) [3]. Place cells increase their firing at distinct locations of space the rat has explored – called their place fields. The population of place cells has long been hypothesized to form a 'cognitive map' that can be used as a Cartesian reference frame to plan trajectories and solve navigational tasks [4]. One such task is the widely used Morris water maze, in which a swimming rat

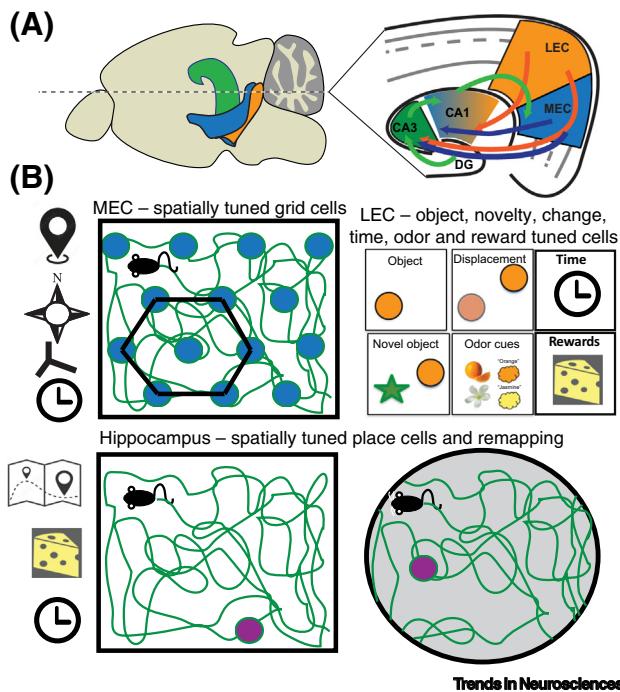
Figure 1. Place cells of the hippocampal formation. (A) Schematic overview showing the mouse hippocampal place cell system. The hippocampus and its subdivisions (DG, CA1, CA2, and CA3) are indicated in a coronal cross-section of the adult mouse brain. CA1 pyramidal neurons show spatially tuned activity characterized by an increase in firing rate as the mouse navigates across distinct locations in space (place fields). In the schematic on the right, the CA1 place cells are color-coded as per their place field locations on the linear track in panel (B). (B) Task-selective place maps emerge to orthogonally represent goal-oriented spatial navigation rules and contexts. In the illustrated spatial navigation task, the mouse probes two distinct odor cues and learns to navigate on the same textured belt to distinct reward locations and operantly lick for sugar water rewards (task design and observations adapted from [26]). Distinct place cell ensembles are activated for the different odor trial types, showing task selective place map representations and remapping based on the reward context. Figure created with [BioRender.com](https://biorender.com).

must find the hidden location of a submerged platform [5]. The finding that lesions to the hippocampus, entorhinal cortex, and subiculum impair learning in this task [5] has lent support to the idea that this system of interconnected areas allows the animal to learn and plan trajectories to remember spatial locations.

Place cells have been observed across many vertebrate species spanning rodents [3], fish [6], birds [7–9], bats [10], monkeys [11,12], and humans [13,14], and are fundamental to how the hippocampus represents spatial information. During free exploration, place cells typically tile the environment evenly, in principle allowing the animal to compute its location from the population of place fields firing at any given time. In freely flying and swimming animals such as birds [15], bats [16,17], and fish [6], 3D space is isotropically encoded to represent both position and heading, but in land-bound animals such as rats, place and grid cells show anisotropic encoding of 3D space [18].

Initially, place maps were often considered to be static and devoid of behavioral contexts or goals. Indeed, place maps appear very early in development, when animals have limited experience in their environment [19]. However, substantial evidence now suggests that place cell activity is experience-dependent [20,21], and serves as a neural correlate for the encoding of spatial memories [22,23]. Place ensembles can be reorganized to generate distinct maps for distinct places [24,25]. Task contexts imposed within the same physical space can also produce distinct place maps. Task-selective place maps representing task context or trial choices, or episodic sequences within the task, emerge as animals learn a multidimensional behavioral task [26–29]. Finally, recent advances in longitudinal imaging in mice have revealed that hippocampal place cell representations in CA1 and CA3 show a large degree of drift over days. On a given day, 70–80% of place cells participating in the spatial representation lose their place tuning, and new cells take their 'place' [30,31]. Imposing behavioral, attentional, or memory demands upon animals by engaging them in structured goal-oriented tasks increases the stability of place maps. This effect of task demands on stability has been observed in bats [32], rats [33], mice [26,34], and humans [23], in support of the cognitive map hypothesis [3].

Although place maps clearly encode the location of the animal in its environment, how the hippocampus represents the location of potential goals is less clear. When a rodent is allowed to forage for a food or water reward, either in an open environment or in virtual reality, the abundance/propensity of place cells in hippocampal area CA1 increases around the reward zones – a phenomenon referred to as over-representation of reward locations [35]. Novel place fields can be formed through the coincidence of reward information with locomotion through a given environment, and these place fields predict the location of the upcoming reward [35–42]. More recently, using a clever honeycomb platform that allowed the experimenters to separate goal computation directly from the trajectory towards the goal, hippocampal place cells were shown to develop 'consinks' – directionally tuned arrays of place fields that collectively point towards the goal location, and move their focus when the goal location changes [43]. Goals might also be encoded outside the hippocampus. For example, recent studies have shown important roles for prefrontal cortex and orbitofrontal cortex in encoding navigational goals [44,45]. Thus, emerging evidence in rodents suggests that neuronal vectors encode goal locations and landmarks within the hippocampus and beyond [46–48]. However, how this information is read out to produce goal-directed movement is currently unclear.


Representations of navigational goals have also been described in vertebrates beyond rodents. In freely flying bats navigating towards a hidden landing platform, a subset of hippocampal neurons developed angular and distance tuning towards the goal, suggesting a type of vector representation of the goal location [49]. Electrophysiology in the hippocampus of homing pigeons freely navigating in a radial arm maze in search of food at different goal locations revealed increased firing in cells at specific

goal locations (goal cells) or on the path between goal locations (path cells) [7,50], as well as lateralization of spatial versus goal coding to neurons in the left versus right hemispheres [51]. Wireless unit recordings from the hippocampus of barn owls, either flying freely between two targets or engaged in a search task to find food among four perches, revealed a variety of spatially modulated neurons, including place cells tuned to in-flight position, trajectory direction, and perching goal locations [8]. High-density electrophysiology recordings from the larger hippocampi of food-caching tufted titmice [9] and chickadees [52] revealed superior place coding with increased sparsity of place activity, as well as specific cache events in barcode-like firing patterns that may allow these birds to meet the specialized ethological demands of food caching. In humans, evidence for goal coding comes from electrophysiology and fMRI studies in the hippocampus and entorhinal cortex during virtual reality navigation [40,53,54]. Although representations of location have been observed in non-human primates during free movement [1,55], more complex codes involving eye and head movements [12], and features of gaze direction and target [56], have also been observed, perhaps reflecting the centrality of visual search in primate navigation.

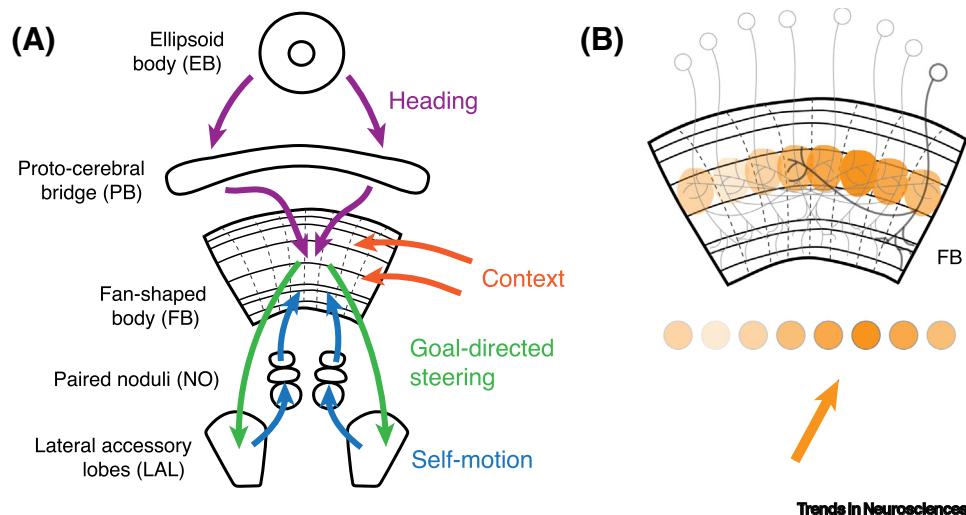
To build these neuronal representations of places and goals, the hippocampus interacts closely and bidirectionally with the entorhinal cortex (Figure 2). The entorhinal cortex is anatomically and functionally divided into medial and lateral parts. The medial entorhinal cortex (MEC) is well established to encode spatial features of the environment. Populated with grid cells [57–62], head-direction cells [63–65], border cells [66], and speed cells [67–69], the MEC produces a flexible code for space that is also shaped by reward locations [70], and can even represent visual space [71]. The MEC receives and integrates multi-sensory information from various sensory cortices, including visual, auditory, and somatosensory cortices [72]. Other cortical areas that are also involved in spatial processing, namely retrosplenial [73–75], orbitofrontal [45,76,77], parietal [78], prefrontal [79], and postrhinal [80,81] cortices, as well as pre- and parasubiculum [82], are connected to the MEC [83,84]. Importantly, MEC receives direct input from the hippocampus (CA1 and subiculum), as well as from the thalamus, medial septum, claustrum, and amygdala – allowing MEC spatial activity to be modulated by mnemonic feedback and brain state-related information.

By contrast, the lateral entorhinal cortex (LEC) [85] appears to specialize in non-spatial information such as odors [86–88], objects [89–92], traces of objects [93], task timing and sequence [94], and novelty [89,90], although this region may also be associated with spatial coding and its modulation [95–97]. Rodent studies have shown that the LEC can code for reward approach, departure, and consumption [98,99], punishments [90,100], associative learning [100–102], and contextual salience [90]. In rats, LEC disruptions impair behavioral performance in novel object recognition memory [89,92] and in an object-based cheeseboard maze spatial learning task, where LEC–dentate gyrus (DG)/CA3 are coupled in slow gamma synchrony [103]. Consistent with these responses, the LEC receives strong input from the olfactory areas, especially the olfactory bulb and piriform cortex [84,104]. The LEC is connected with the emotion-processing and decision-making centers of the brain, namely the amygdala [105] and prefrontal cortex [106]. Thus, although the segregation is not complete, MEC and LEC encode complementary features of the environment, with MEC specializing in spatial information derived from self-motion, and LEC specializing in non-spatial information about potential goals or objects in the environment – a principle that is also observed in the organization of the central complex.

In addition to this segregation, several studies also highlight functional interactions between these two systems. Some activities demand integration of MEC and LEC input and association of spatial and contextual information to render multisensory memory representations. For example, LEC lesions impair rate remapping in CA3 place cells [96] and may help to drive context-dependent remapping [60,91]. By contrast, MEC lesions or input manipulations disrupt place cell precision

Figure 2. Information flow in the vertebrate navigation system. (A) Information flow. (Left) Schematic of the mouse brain showing the topographical relationship between entorhinal cortex, subdivided into medial (blue) and lateral (orange) entorhinal cortices (MEC and LEC, respectively), and the hippocampus (green) in the temporal lobe. (Right) Horizontal cross-section showing direct and indirect information pathways. Direct inputs from the MEC and LEC convey multisensory spatial and context information to each of the hippocampal subfields. MEC and LEC inputs are anatomically segregated along the proximal-distal axis in CA1, but are integrated by the same neurons in CA3 and dentate gyrus (DG). The indirect trisynaptic pathway routes EC information through the DG via the mossy fiber inputs to CA3, and then from CA3 to CA1 via Schaffer collateral inputs. CA1 serves as the major output region of the hippocampus and projects mnemonic spatial and contextual ‘feedback’ information to several cortical areas including the entorhinal cortices. (B) Functional separation between the LEC and MEC showing distinct feature-

selective tuning. MEC neurons code for spatial features including grid position, Cartesian position, boundaries, head angle, and speed. LEC neurons respond robustly to objects, particularly novel objects and their displaced locations, salient cues such as odors or rewards (and punishments), and the temporal structure of tasks. The hippocampal place cell system builds a map of space in which each cell shows selectivity for a particular spatial location (a place field). Whereas grid cells have multiple firing fields, most CA1 neurons show only one. CA1 neurons also show selectivity for rewards, episodic sequences, and learning rules. Changes in context, such as the shape of a room in which navigation occurs, lead to changes in place cell tuning. Such remapping results in reorganization at the ensemble level and the emergence of a new place map.


and stability [36,107], as well as place memory, although only partially [108,109], without significantly affecting the number of place cells *per se*. LEC has also been proposed to encode egocentric information, whereas MEC encodes allocentric information [91].

Building representations of places and goals requires plasticity within the complex circuitry of the hippocampus and entorhinal cortices. Coordinated activity and integration of entorhinal cortex and CA3 inputs to CA1 pyramidal neurons can result in dendritic spikes [90,110] that have been implicated in context-discrimination behavior [90] and context-dependent place cell formation and remapping [37]. Remapping and place cell formation during the learning phases of goal-directed navigation are thought to require non-Hebbian plasticity mechanisms such as input timing-dependent plasticity (ITDP) [90,111,112] and behavioral timescale-dependent plasticity (BTSP) [37,113]. Conversely, Hebbian plasticity such as theta-modulated postsynaptic burst firing [114,115] and experience-dependent strengthening of coincident spatially tuned synaptic inputs [116] have been proposed to drive long-term stabilization of ensemble coding. The clustering of hippocampal place fields near start and goal locations in a virtual water maze has been shown to be consistent with Hebbian plasticity, correlated with task performance and impaired by NMDA receptor blockers [117]. Intracellular recordings from mouse CA1 neurons during a cued two-choice virtual T-maze suggest a model in which trial type-specific inputs are rapidly potentiated by Ca^{2+} plateau potentials to induce task-selective place cells [118]. Thus, multiple forms of plasticity allow the internal representations of the hippocampus and entorhinal cortices to be flexibly linked to external places and sensory inputs.

A head for math: allocentric vector coding in the central complex

In insects, the brain area most closely associated with spatial navigation is the central complex (Figure 3A) – a highly conserved set of interconnected structures in the center of all arthropod brains. Early studies of mutant flies with disrupted central complex morphology showed deficits in visually guided navigation [119]. Whereas normal flies will readily walk back and forth between a pair of stripes, central complex mutants instead showed wandering, looping trajectories, suggesting a high-level deficit in navigation. Genetic silencing of visual neurons in an input pathway to the central complex was shown to disrupt a behavior modeled on the Morris water maze in which flies used distal visual cues to navigate towards a safe location in a heated floor [120]. A role in spatial navigation was further supported by intracellular recordings in locusts, which revealed a 'sky-compass' map of light polarization that could be used for celestial navigation [121]. More recently, 'virtual reality' systems in head-fixed flies have enabled major advances in understanding the functions of the central complex. These systems allow functional imaging and intracellular recording during closed-loop behavior [122–124]. Connectomic reconstructions of these circuits in multiple species have also greatly advanced our understanding of their organization and function [125–127].

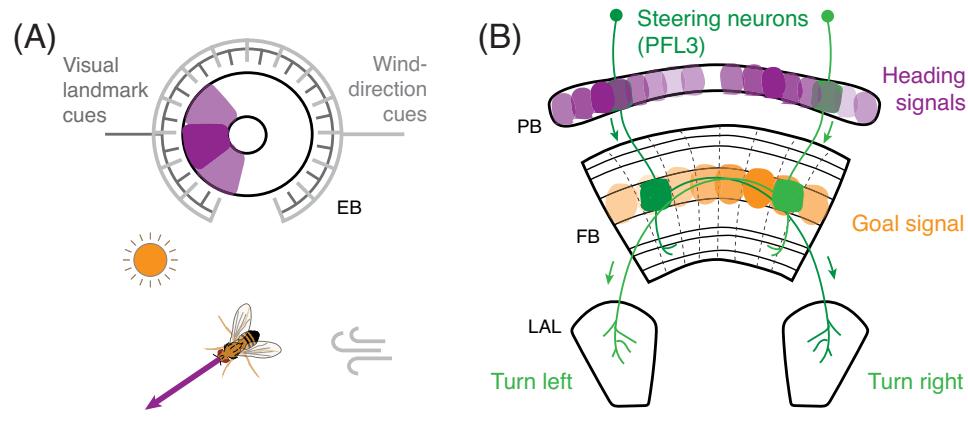
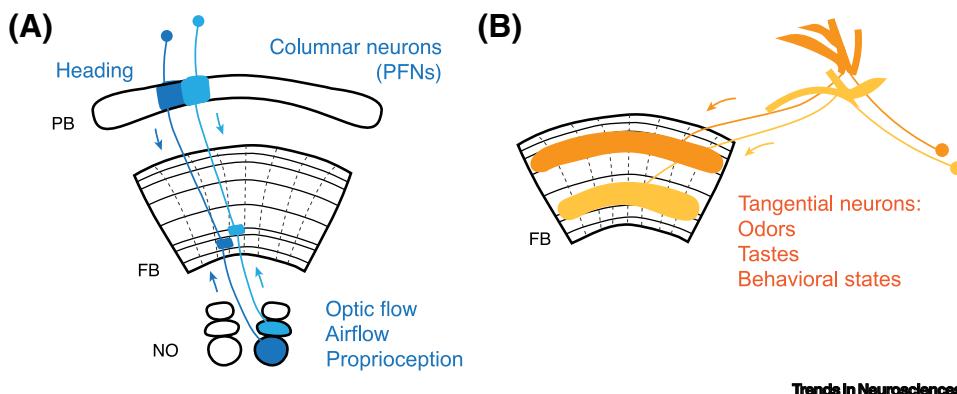

The ordered arrays of genetically related and morphologically similar cells that make up the layers of the central complex appear to be particularly well suited for encoding vectors (Figure 3B) [126,128,129]. In these representations, a bump of calcium activity across the array can represent a vector angle, while

Figure 3. Overview of the insect central complex. (A) Structure of the insect central complex. The ellipsoid body (EB) houses a heading representation that is broadcast to the protocerebral bridge (PB), and then to the fan-shaped body (FB). The fan-shaped body also received self-motion information via the lateral accessory lobe (LAL) and paired noduli (NO). Contextual information enters the fan-shaped body through a separate pathway. The fan-shaped body is thought to generate representations of goals in allocentric coordinates which are read out by neurons projecting back to the lateral accessory lobe to drive goal-directed steering. (B) Vector representations in the central complex. The neuropils of the central complex, such as the fan-shaped body shown here, are composed of ordered arrays of developmentally related neurons that can represent vectors through calcium activity in their processes. The schematic depicts a class of *h*-type local neurons that arborize in two different columns of the fan-shaped body, with a separation of half the fan-shaped body (one neuron is shown in dark bold to clarify its anatomical projections). Like all insect neurons, these have their cell bodies at the exterior of the brain and make arborizations within the structured neuropil of the central complex. Most such populations exhibit sinusoidal patterns of calcium activity (orange) that are restricted to rows of processes. The location of the peak of the sinusoid corresponds to a vector angle, while the intensity of the activity can correspond to vector length (arrow at bottom). Ordered projection patterns across the rows of the fan-shaped body can allow vector summation and rotation.

the intensity of the activity can represent vector length. Connectivity motifs across layers then allow mathematical operations such as vector addition and rotation that directly support spatial computations. The best-understood representation in the central complex is in so-called 'compass neurons' of the ellipsoid body (Figure 4A). This donut-shaped ring of neurons produces a bump of calcium activity whose location on the ring corresponds to the heading of the fly in space [122], similar to head-direction cells that were first described in vertebrates [63,64,130]. Although the bump can lock onto visual landmarks [124,131] or wind direction [132], it can persist in the absence of sensory cues, and also rotates in the dark using proprioception [123]. This global and persistent heading representation is thought to rely on the presence of a ring attractor network [133,134] similar to the ring attractor that was proposed to underlie head-direction encoding in vertebrates [135]. In insects, an anatomical substrate for such a ring attractor has been identified using connectomic reconstruction of the complete connectivity of the ellipsoid body [126,134]. A similar head-direction network has recently been described in the brainstem of zebrafish [136], suggesting that this form of internal representation is a widely shared feature of navigation systems across species.

The global heading signal in the ellipsoid body is then broadcast to a grid-like region called the fan-shaped body (Figure 3A) through a system of columnar neurons [126,128,129,137]. Columnar neurons integrate heading information with optic flow and airflow cues about self-motion to form a vector representation of the movement of the animal through space [125,128,129,137,138]. By summing these vectors, a pair of recent studies showed that the fly can translate egocentric sensory cues into an allocentric representation of its traveling direction in a 2D plane [128,129]. In principle, this traveling direction signal could be integrated [125] to produce a homing vector that would allow an insect to return directly to its nest, as has been observed in desert ants [139]. A recent theoretical study proposed a model in which two vectors – one pointing towards a 'home' point and one towards a goal – could be used to encode not only direction but also the location of a goal in 2D space using a highly


Figure 4. Heading and steering systems of the central complex. (A) The compass system of the ellipsoid body. Compass neurons (also known as EPG neurons, top) arborize in tiles of the ellipsoid body. A bump of calcium activity across this array represents the heading of the fly relative to visual and mechanosensory landmarks (bottom) and rotates when the fly rotates. Inhibitory ring neurons (gray, top) carry sensory information about visual landmarks and wind direction to the compass system. Anti-Hebbian plasticity between ring neurons and compass neurons that is gated by rotational movement allows the fly to learn new mappings between sensory cues and heading direction. Two copies of the ellipsoid body heading signal are transmitted to the protocerebral bridge, one to each side (see panel B). (B) Steering system of the central complex. PFL3 neurons (green) receive input from both the protocerebral bridge and the fan-shaped body and output to descending neurons in the lateral accessory lobe that can drive left or right turns. The anatomy of these neurons allows them to compare the heading representation in the protocerebral bridge (purple) with a goal signal in the fan-shaped body (orange) and drive turning until these two are aligned. Abbreviations: EB, ellipsoid body; FB, fan-shaped body; LAL, lateral accessory lobe; PB, protocerebral bridge.

efficient vector code [140]. Thus, representations of space in the central complex appear to be built around allocentric movement direction vectors rather than more flexible place maps, although both insect and rodent navigation systems allow for the computation of navigational direction vectors [43,49,141,142].

Like the hippocampus, the central complex also appears to generate internal representations of goals (Figure 4B). This idea was first proposed theoretically, based on connectomic studies [125]. Noting the structured connectivity pattern of one set of columnar output neurons, it was suggested that these neurons could compare the compass neuron heading signal to a second bump of activity that represents an allocentric goal. Through their precise connectivity and projection patterns to the left and right steering centers, these neurons could translate this allocentric comparison into an egocentric steering signal to drive the animal toward a goal. Two recent studies have made recordings from these output neurons – known as PFL3 neurons – and found strong support for this theory [143,144]. In addition, a second population of columnar neurons called PFL2 was shown to have 'anti-goal' activity that drives the fly to turn when it faces opposite to its intended goal [143]. Several recent studies have found evidence supporting goal representations in the fan-shaped body. One study using extracellular recording in monarch butterflies found a population of neurons whose preferred direction rotated when the butterfly was trained to adopt a new goal direction with respect to the sun, but not when the animal rotated its heading [145]. In another study, sparse activation of a set of local neurons in the fan-shaped body was shown to produce a reproducible heading with respect to a wind direction cue [146]. Most recently, elegant two-photon laser activation of a bump in a different set of fan-shaped body local neurons was shown to drive orientation in specific allocentric directions depending on the location of the bump [144]. Thus, rapidly emerging evidence in insects suggests that goal directions can be stored as bumps of activity in local neurons of the fan-shaped body. A diversity of different local neuron types provides a potential substrate for computing, storing, and selecting between multiple goals [147].

A striking similarity between the organization of the central complex and the hippocampus, is the presence of distinct 'where' and 'what' pathways. The fan-shaped body can be thought of as a grid composed of vertical columnar neurons and horizontal tangential neurons. Columnar neurons of the fan-shaped body, called PFN neurons (Figure 5A), encode spatial features such as heading and self-movement [125,128,129,137,138,148]. PFNs receive a heading input in the protocerebral bridge and a sensory input from a region called the noduli. The noduli relay different types of self-motion cues – optic flow, airflow, and proprioception – from a premotor center called the lateral accessory lobe [125,126,128,129,137,138]. This self-motion information has been proposed to provide the input to hypothesized path-integration circuitry in the fan-shaped body [125,128,129,140]. Thus, the columnar neuron pathway, that receives both heading input from the protocerebral bridge and self-motion information from the noduli and lateral accessory lobe, might be thought of as analogous to the MEC which likewise carries a diverse range of self-motion cues, derived from multiple modalities, to the navigation center [149,150].

By contrast, tangential neurons of the fan-shaped body (Figure 5B) map nearly all regions of the fly brain onto different horizontal layers of the fan-shaped body [151]. Although recording data from these neurons remain sparse, the available evidence suggests that these primarily encode non-spatial information such as odorants [146], tastants [152], and behavioral states [152–155], although optic flow information has been observed in a few tangential neurons [156]. Activation of tangential neurons can drive navigational behaviors such as upwind running [146], whereas silencing of tangential neurons can bias flies between exploration and exploitation of a food source [154]. Thus, tangential neurons may allow flies to select the most appropriate goals based both on external sensory cues such as food odor and on internal states such as hunger.

Figure 5. Input pathways to the fan-shaped body. (A) Columnar input neurons of the fan-shaped body (PFN neurons) carry heading and self-motion information. Each neuron receives a heading signal from the protocerebral bridge and one or more sensory inputs from the paired noduli related to self-motion: optic flow, airflow, or proprioception. Fan-shaped body columnar neurons form a vector representation of self-motion that can be used to compute allocentric traveling direction within the fan-shaped body through vector summation. (B) Tangential neurons of the fan-shaped body carry predominantly non-spatial context cues such as odorants, tastants, and behavioral states. Activation of tangential neurons can alter navigation behavior, presumably by regulating the activity of different goal-encoding local neurons. Abbreviations: FB, fan-shaped body; NO, paired noduli; PB, protocerebral bridge.

Many fan-shaped body tangential neurons are anatomically downstream of the mushroom body [157, 158] – an associative learning center with a well-established role in learning the valence of olfactory stimuli through the sequential activation of odor-encoding Kenyon cells and reward- or punishment-encoding dopamine neurons [159]. This same valence-learning circuitry has been proposed to subserve visual route learning by allowing an insect to associate a visual pattern encoded by visual Kenyon cells with a dopaminergic reward signal related to being on track toward a goal [160–162]. Consistent with this model, mushroom body lesions have been shown to impair visually guided navigation in several insect species [163–165]. Emerging models thus suggest that the mushroom body and the central complex may work together to support navigation, with the mushroom body providing information about which sensory cues (odors or visual panoramas) are attractive or aversive, and the central complex translating these valence signals into spatially oriented steering commands [166–168]. Distinct neural pathways also carry information directly from the mushroom body to premotor centers such as the lateral accessory lobe and might subserve direct translation of valence information into egocentric navigational commands [169–170].

As in the hippocampus and entorhinal cortex, diverse forms of plasticity appear to be crucial for tethering the representations in the central complex to changing features of the outside world. Plasticity in the central complex has been most closely investigated in the compass neuron system where the heading bump can flexibly tether to different visual or mechanosensory features of the external world (Figure 4A). Recording and imaging studies suggest that inputs to the compass system represent a rich array of visual features and synapse uniformly onto the entire array of compass neurons [124, 126, 131, 171, 172]. Anti-Hebbian plasticity between these neurons allows the fly to learn a stable mapping between environmental features and the location of the heading bump [124, 131]. Intriguingly, this plasticity is itself gated by the behavior of the fly. A specific dopamine neuron monitors angular velocity and gates plasticity when the fly is actively rotating [173]. This system allows the compass system to learn a reliable mapping without drifting during periods of straight walking. Thus, similar to the hippocampal place-field system, the fly compass system combines both intrinsic dynamics that enforce a 'bump' structure and plasticity that allows this representation to flexibly tether to features of the outside world. Understanding the diversity of

such plasticity mechanisms will help to explain how brains are able to so rapidly learn and deploy new information in the service of goal-directed behavior.

Concluding remarks

Experiments to date suggest that the hippocampus and central complex contribute to similar behaviors. Both are engaged when the animal must make a spatial inference about the location of a goal. For example, hippocampal place fields aggregate near reward sites when rats learn the location of hidden rewards in a cheeseboard maze, but not when those sites are marked by prominent visual cues [35]. Similarly, the fly compass system is required for a fly to adopt a fixed offset orientation from the sun, but is not necessary for orienting directly to a visual landmark [123,174]. These observations suggest that both structures play an important role in spatial inference – allowing the animal to estimate the location of a goal that it cannot perceive directly and continuously. However, representational differences between the hippocampus and the central complex suggest that vertebrates and invertebrates adopt distinct computational strategies to perform this type of inference. In the hippocampus, a highly flexible place code allows the animal to rapidly learn new locations even in abstract 'spaces' such as those of auditory or olfactory features [175,176]. Thus, the hippocampal coding scheme may underlie many higher cognitive abilities observed in humans and other vertebrates. By contrast, the simpler vector code in the insect central complex may allow sophisticated spatial computations – such as path integration [139] and inferring new routes between rewards [177] – with very small numbers of neurons [178,179]. Studies directly comparing spatial representations across diverse species, and linking these to species-specific behavioral capabilities [9,145,180], as well as computational investigations of the relationship between internal spatial representations and navigation task performance [181,182], will provide deeper insight into the relationship between neural representations, neural circuit architecture, and behavior (see [Outstanding questions](#)).

One challenge in interpreting differences across species is that rodents and insects have generally been studied in different paradigms using different tools. Like the proverbial elephant, differences in hippocampal and central complex coding might reflect to some extent the different tools that scientists have used to look at them, and not real differences in these complex 'beasts'. In rodents, spatial navigation and learning were initially studied in freely moving animals equipped with head-mounted electronics for extracellular recordings. The small enclosures they explored may have facilitated the discovery of a place code as the animal often crosses the same location via different paths. Such freely moving recordings are currently not possible in the fruit fly *Drosophila*, but can be performed in many larger insects such as cockroaches [183] and butterflies [145]. Extracellular recording studies in larger insects might complement current work in the fruit fly to provide insights into spatial coding during natural movement through complex 3D environments. In parallel, connectomic reconstruction of tiny insect brains has revealed exquisite and largely unanticipated precision of the connections between groups of neurons [125–127]. Models and findings for how the central complex translates egocentric to allocentric coordinates and back have been largely driven by connectomic data [128,129,143,144]. Extending these approaches to larger vertebrate tissues [136,184] will undoubtedly lead to new discoveries.

Acknowledgements

K.N. was supported by National Institutes of Health (NIH) grants R01DC107979, RF1NS127129, and National Science Foundation (NSF) 2014217 (Neuronex Odor2Action). J.B. was supported by NIH grants R01NS109994, R01NS109362, RM1NS132981, and R01MH122391, and by the AARG-D-NTF Program of The Alzheimer's Association. We thank Drs György Buzsáki and Jason Moore for helpful discussions on topics covered in this review article.

Outstanding questions

To what extent do the differences in spatial representations between the hippocampus and central complex reflect different experimental approaches rather than different biologies?

Can navigational abilities be directly compared across diverse species? How do these abilities relate to the underlying circuit structures? Do different spatial representations in the hippocampus and central complex support different behavioral capabilities?

Do invertebrates show place-like representations? Where might these be encoded, and are they similar to or different from those described in vertebrates?

How are goals represented in vertebrate and invertebrate navigation systems? How many different types of goal representation are there? Are these representations similar or different across these two systems? Are the circuits that translate goals into actions similar or different across species?

To what extent are spatial and non-spatial representations segregated or integrated in the input streams to vertebrate and invertebrate navigation centers? What is the function of segregating spatial and non-spatial representations?

How is movement through 3D space encoded in both vertebrate and invertebrate systems?

What are the cellular and plasticity mechanisms underlying goal coding and learning of goal-directed behaviors in vertebrates and invertebrates?

Declaration of interests

The authors declare no competing interests.

References

1. Semmelhack, J.L. *et al.* (2014) A dedicated visual pathway for prey detection in larval zebrafish. *eLife* 3, e04878
2. Ribeiro, I.M. *et al.* (2018) Visual projection neurons mediating directed courtship in *Drosophila*. *Cell* 174, 607–621
3. O'Keefe, J. and Burgess, N. (2017) The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. *Brain Res.* 34, 171–175
4. Best, P.J. *et al.* (2001) Spatial processing in the brain: the activity of hippocampal place cells. *Annu. Rev. Neurosci.* 24, 459–486
5. Morris, R.G.M. *et al.* (1982) Place navigation impaired in rats with hippocampal lesions. *Nature* 297, 681–683
6. Burt de Perera, T. *et al.* (2016) The representation of three-dimensional space in fish. *Front. Behav. Neurosci.* 8, 40
7. Hough, G.E. and Bingman, V.P. (2004) Spatial response properties of homing pigeon hippocampal neurons: correlations with goal locations, movement between goals, and environmental context in a radial-arm arena. *J. Comp. Physiol. A* 190, 1047–1062
8. Agarwal, A. *et al.* (2023) Spatial coding in the hippocampus and hyperpallium of flying owls. *Proc. Natl. Acad. Sci. U. S. A.* 120, e2212418120
9. Payne, H.L. *et al.* (2021) Neural representations of space in the hippocampus of a food-caching bird. *Science* 373, 343–348
10. Ulanovsky, N. and Moss, C.F. (2011) Dynamics of hippocampal spatial representation in echolocating bats. *Hippocampus* 21, 150–161
11. Courellis, H.S. *et al.* (2019) Spatial encoding in primate hippocampus during free navigation. *PLoS Biol.* 17, e3000546
12. Mao, D. *et al.* (2021) Spatial modulation of hippocampal activity in freely moving macaques. *Neuron* 109, 3521–3534.e6
13. Ekstrom, A.D. *et al.* (2003) Cellular networks underlying human spatial navigation. *Nature* 425, 184–188
14. Maoz, S.L. *et al.* (2023) Dynamic neural representations of memory and space during human ambulatory navigation. *Nat. Commun.* 14, 6643
15. Flores-Abreu, I.N. *et al.* (2014) Three-dimensional space: locomotor style explains memory differences in rats and hummingbirds. *Proc. Biol. Sci.* 281, 20140301
16. Yartsev, M.M. and Ulanovsky, N. (2013) Representation of three-dimensional space in the hippocampus of flying bats. *Science* 340, 367–372
17. Finkelstein, A. *et al.* (2015) Three-dimensional head-direction coding in the bat brain. *Nature* 517, 159–164
18. Hayman, R. *et al.* (2011) Anisotropic encoding of three-dimensional space by place cells and grid cells. *Nat. Neurosci.* 14, 1182–1188
19. Farooq, U. and Dragoi, G. (2019) Emergence of preconfigured and plastic time-compressed sequences in early postnatal development. *Science* 363, 168–173
20. Mehta, M.R. *et al.* (1997) Experience-dependent, asymmetric expansion of hippocampal place fields. *Proc. Natl. Acad. Sci. U. S. A.* 94, 8918–8921
21. Mehta, M.R. *et al.* (2002) Role of experience and oscillations in transforming a rate code into a temporal code. *Nature* 417, 741–746
22. Robinson, N.T.M. *et al.* (2020) Targeted activation of hippocampal place cells drives memory-guided spatial behavior. *Cell* 183, 1586–1599.e10
23. Miller, J.F. *et al.* (2013) Neural activity in human hippocampal formation reveals the spatial context of retrieved memories. *Science* 342, 1111–1114
24. Colgin, L.L. *et al.* (2008) Understanding memory through hippocampal remapping. *Trends Neurosci.* 31, 469–477
25. Alme, C.B. *et al.* (2014) Place cells in the hippocampus: eleven maps for eleven rooms. *Proc. Natl. Acad. Sci.* 111, 18428–18435
26. Zemla, R. *et al.* (2022) Task-selective place cells show behaviorally driven dynamics during learning and stability during memory recall. *Cell Rep.* 41, 111700
27. Wood, E.R. *et al.* (1999) The global record of memory in hippocampal neuronal activity. *Nature* 397, 613–616
28. Wood, E.R. *et al.* (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. *Neuron* 27, 623–633
29. Wirth, S. *et al.* (2017) Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation. *PLoS Biol.* 15, e2001045
30. Ziv, Y. *et al.* (2013) Long-term dynamics of CA1 hippocampal place codes. *Nat. Neurosci.* 16, 264–266
31. Hainmueller, T. and Bartos, M. (2018) Parallel emergence of stable and dynamic memory engrams in the hippocampus. *Nature* 558, 292–296
32. Liberti III, W.A. *et al.* (2022) A stable hippocampal code in freely flying bats. *Nature* 604, 98–103
33. Kentros, C.G. *et al.* (2004) Increased attention to spatial context increases both place field stability and spatial memory. *Neuron* 42, 283–295
34. Kinsky, N.R. *et al.* (2020) Trajectory-modulated hippocampal neurons persist throughout memory-guided navigation. *Nat. Commun.* 11, 2443
35. Dupret, D. *et al.* (2010) The reorganization and reactivation of hippocampal maps predict spatial memory performance. *Nat. Neurosci.* 13, 995–1002
36. Bittner, K.C. *et al.* (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. *Nat. Neurosci.* 18, 1133–1142
37. Bittner, K.C. *et al.* (2017) Behavioral time scale synaptic plasticity underlies CA1 place fields. *Science* 357, 1033–1036
38. Grienberger, C. *et al.* (2017) Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells. *Nat. Neurosci.* 20, 417–426
39. Battaglia, F.P. *et al.* (2004) Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. *J. Neurosci.* 24, 4541–4550
40. McNaughton, B.L. *et al.* (2006) Path integration and the neural basis of the 'cognitive map'. *Nat. Rev. Neurosci.* 7, 663–678
41. Frank, L.M. *et al.* (2000) Trajectory encoding in the hippocampus and entorhinal cortex. *Neuron* 27, 169–178
42. Nyberg, N. *et al.* (2022) Spatial goal coding in the hippocampal formation. *Neuron* 110, 394–422
43. Ormond, J. and O'Keefe, J. (2022) Hippocampal place cells have goal-oriented vector fields during navigation. *Nature* 607, 741–746
44. Ito, H.T. *et al.* (2015) A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation. *Nature* 522, 50–55
45. Basu, R. *et al.* (2021) The orbitofrontal cortex maps future navigational goals. *Nature* 599, 449–452
46. Bicanski, A. and Burgess, N. (2020) Neuronal vector coding in spatial cognition. *Nat. Rev. Neurosci.* 21, 453–470
47. Lian, Y. *et al.* (2023) Learning the vector coding of egocentric boundary cells from visual data. *J. Neurosci.* 43, 5180–5190
48. Barry, C. *et al.* (2006) The boundary vector cell model of place cell firing and spatial memory. *Rev. Neurosci.* 17, 71–98
49. Sarel, A. *et al.* (2017) Vectorial representation of spatial goals in the hippocampus of bats. *Science* 355, 176–180
50. Hough, G.E. (2022) Neural substrates of homing pigeon spatial navigation: results from electrophysiology studies. *Front. Psychol.* 13, 867939
51. Siegel, J.J. *et al.* (2006) Lateralized functional components of spatial cognition in the avian hippocampal formation: evidence from single-unit recordings in freely moving homing pigeons. *Hippocampus* 16, 125–140
52. Chettih, S.N. *et al.* (2024) Barcoding of episodic memories in the hippocampus of a food-caching bird. *Cell* 187, 1922–1935
53. Ekstrom, A.D. *et al.* (2018) *Human Spatial Navigation*, Princeton University Press
54. Tsitsiklis, M. *et al.* (2020) Single-neuron representations of spatial targets in humans. *Curr. Biol.* 30, 245–253

55. Hazama, Y. and Tamura, R. (2019) Effects of self-locomotion on the activity of place cells in the hippocampus of a freely behaving monkey. *Neurosci. Lett.* 701, 32–37

56. Piza, D.B. *et al.* (2024) Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. *Nat. Commun.* 15, 4053

57. Deshmukh, S.S. *et al.* (2010) Theta modulation in the medial and the lateral entorhinal cortices. *J. Neurophysiol.* 104, 994–1006

58. Fyhn, M. *et al.* (2004) Spatial representation in the entorhinal cortex. *Science* 305, 1258–1264

59. Hafting, T. *et al.* (2005) Microstructure of a spatial map in the entorhinal cortex. *Nature* 436, 801–806

60. Neunuebel, J.P. *et al.* (2013) Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. *J. Neurosci.* 33, 9246–9258

61. Sargolini, F. *et al.* (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. *Science* 312, 758–762

62. Stensola, H. *et al.* (2012) The entorhinal grid map is discretized. *Nature* 492, 72–78

63. Taube, J.S. *et al.* (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. *J. Neurosci.* 10, 420–435

64. Muller, R.U. *et al.* (1996) Head direction cells: properties and functional significance. *Curr. Opin. Neurobiol.* 6, 196–206

65. Giocomo, L.M. *et al.* (2014) Topography of head direction cells in medial entorhinal cortex. *Curr. Biol.* 24, 252–262

66. Solstad, T. *et al.* (2008) Representation of geometric borders in the entorhinal cortex. *Science* 322, 1865–1868

67. Kropp, E. *et al.* (2015) Speed cells in the medial entorhinal cortex. *Nature* 523, 419–424

68. Hinman, J.R. *et al.* (2016) Multiple running speed signals in medial entorhinal cortex. *Neuron* 91, 666–679

69. Diehl, G.W. *et al.* (2017) Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. *Neuron* 94, 83–92

70. Butler, W.N. *et al.* (2019) Remembered reward locations restructure entorhinal spatial maps. *Science* 363, 1447–1452

71. Killian, N.J. *et al.* (2012) A map of visual space in the primate entorhinal cortex. *Nature* 491, 761–764

72. Witter, M.P. *et al.* (2017) Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with some comparative notes. *Front. Syst. Neurosci.* 11, 46

73. Mitchell, A.S. *et al.* (2018) Retrosplenial cortex and its role in spatial cognition. *Brain Neurosci. Adv.* 2, 2398212818757098

74. Alexander, A.S. and Nitz, D.A. (2017) Spatially periodic activation patterns of retrosplenial cortex encode route sub-spaces and distance traveled. *Curr. Biol.* 27, 1551–1560

75. Vedder, Lindsey C. *et al.* (2017) Retrosplenial cortical neurons encode navigational cues, trajectories and reward locations during goal directed navigation. *Cereb. Cortex* 27, 3713–3723

76. Wikenheiser, A.M. *et al.* (2021) Spatial representations in rat orbitofrontal cortex. *J. Neurosci.* 41, 6933–6945

77. Feierstein, C.E. *et al.* (2006) Representation of spatial goals in rat orbitofrontal cortex. *Neuron* 51, 495–507

78. Nitz, D.A. (2006) Tracking route progression in the posterior parietal cortex. *Neuron* 49, 747–756

79. Sauer, J.F. *et al.* (2022) Topographically organized representation of space and context in the medial prefrontal cortex. *Proc. Natl. Acad. Sci. U. S. A.* 119, e2117300119

80. Burwell, R.D. and Hafeman, D.M. (2003) Positional firing properties of posterior cortex neurons. *Neuroscience* 119, 577–588

81. LaChance, P.A. *et al.* (2019) A sense of space in posterior cortex. *Science* 365, eaax4192

82. Kesner, R.P. and Giles, R. (1998) Neural circuit analysis of spatial working memory: role of pre- and parasubiculum, medial and lateral entorhinal cortex. *Hippocampus* 8, 416–423

83. Maguire, E.A. *et al.* (2006) Navigation around London by a taxi driver with bilateral hippocampal lesions. *Brain* 129, 2894–2907

84. Witter, M. *et al.* (2000) Anatomical organization of the parahippocampal-hippocampal network. *Ann. N. Y. Acad. Sci.* 911, 1–24

85. Bilash, O.M. *et al.* (2023) Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. *Cell Rep.* 42, 111962

86. Xu, W. and Wilson, D.A. (2012) Odor-evoked activity in the mouse lateral entorhinal cortex. *Neuroscience* 223, 12–20

87. Leitner, F.C. *et al.* (2016) Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex. *Nat. Neurosci.* 19, 935–944

88. Bitzenhofer, S.H. *et al.* (2022) Rapid odor processing by layer 2 subcircuits in lateral entorhinal cortex. *eLife* 11, e75065

89. Wilson, D.I. *et al.* (2013) Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory. *Hippocampus* 23, 1280–1290

90. Basu, J. *et al.* (2016) Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. *Science* 351, aaa5694

91. Wang, C. *et al.* (2018) Egocentric coding of external items in the lateral entorhinal cortex. *Science* 362, 945–949

92. Kuruvilla, M.V. *et al.* (2020) Lateral entorhinal cortex lesions impair both egocentric and allocentric object-place associations. *Brain Neurosci. Adv.* 4, 2398212820939463

93. Tsao, A. *et al.* (2013) Traces of experience in the lateral entorhinal cortex. *Curr. Biol.* 23, 399–405

94. Tsao, A. *et al.* (2018) Integrating time from experience in the lateral entorhinal cortex. *Nature* 561, 57–62

95. Beer, Z. *et al.* (2013) Spatial and stimulus-type tuning in the LEC, MEC, POR, PrC, CA1, and CA3 during spontaneous item recognition memory. *Hippocampus* 23, 1425–1438

96. Lu, L. *et al.* (2013) Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. *Nat. Neurosci.* 16, 1085–1093

97. Save, E. and Sargolini, F. (2017) Disentangling the role of the MEC and LEC in the processing of spatial and non-spatial information: contribution of lesion studies. *Front. Syst. Neurosci.* 11, 81

98. Issa, J.B. *et al.* (2024) Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward. *Nat. Neurosci.* 27, 536–546

99. Bowler, J.C. and Losonczy, A. (2023) Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation. *Neuron* 111, 4071–4085

100. Lee, J.Y. *et al.* (2021) Dopamine facilitates associative memory encoding in the entorhinal cortex. *Nature* 598, 321–326

101. Igarashi, K.M. *et al.* (2014) Coordination of entorhinal–hippocampal ensemble activity during associative learning. *Nature* 510, 143–147

102. Li, Y. *et al.* (2017) A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. *Nat. Neurosci.* 20, 559–570

103. Fernández-Ruiz, A. *et al.* (2021) Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. *Science* 372, eabf3119

104. Luskin, M.B. and Price, J.L. (1983) The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. *J. Comp. Neurol.* 216, 264–291

105. Guthman, E.M. *et al.* (2020) Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition. *eLife* 9, e50601

106. Hisey, E. *et al.* (2023) A Ventromedial prefrontal-to-lateral entorhinal cortex pathway modulates the gain of behavioral responding during threat. *Biol. Psychiatry* 94, 239–248

107. Jacob, P.Y. *et al.* (2020) Medial entorhinal cortex lesions induce degradation of CA1 place cell firing stability when self-motion information is used. *Brain Neurosci. Adv.* 4, 2398212820953004

108. Hales, J.B. *et al.* (2014) Medial entorhinal cortex lesions only partially disrupt hippocampal place cells and hippocampus-dependent place memory. *Cell Rep.* 9, 893–901

109. Kitamura, T. *et al.* (2017) Engrams and circuits crucial for systems consolidation of a memory. *Science* 356, 73–78

110. Kamondi, A. *et al.* (1998) Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. *J. Neurosci.* 18, 3919–3928

111. Basu, J. *et al.* (2013) A cortico-hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow. *Neuron* 79, 1208–1221

112. Dudman, J.T. *et al.* (2007) A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. *Neuron* 56, 866–879

113. Milstein, A.D. *et al.* (2021) Bidirectional synaptic plasticity rapidly modifies hippocampal representations. *eLife* 10, e73046

114. Epszttein, J. *et al.* (2010) Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. *Science* 327, 474–477

115. Lee, D. *et al.* (2012) Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. *Science* 337, 849–853

116. Cohen, J.D. *et al.* (2017) Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. *eLife* 6, e23040

117. Moore, J.J. *et al.* (2021) Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation. *Nature* 599, 442–448

118. Zhao, X. *et al.* (2022) Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus. *Neuron* 110, 96–108

119. Strauss, R. and Heisenberg, M. (1993) A higher control center of locomotor behavior in the *Drosophila* brain. *J. Neurosci.* 13, 1852–1861

120. Ofstad, T.A. *et al.* (2021) Visual place learning in *Drosophila melanogaster*. *Nature* 474, 204–207

121. Heinze, S. and Hromberg, U. (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. *Science* 315, 995–997

122. Seelig, J.D. and Jayaraman, V. (2015) Neural dynamics for landmark orientation and angular path integration. *Nature* 521, 186–191

123. Green, J. *et al.* (2017) A neural circuit architecture for angular integration in *Drosophila*. *Nature* 546, 101–106

124. Fisher, Y.E. *et al.* (2019) Sensorimotor experience remaps visual input to a heading-direction network. *Nature* 576, 121–125

125. Stone, T. *et al.* (2017) An anatomically constrained model for path integration in the bee brain. *Curr. Biol.* 27, 3069–3085

126. Hulse, B.K. *et al.* (2021) A connectome of the *Drosophila* central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. *eLife* 10, e66039

127. Sayre, M.E. *et al.* (2021) A projectome of the bumblebee central complex. *eLife* 10, e68911

128. Lyu, C. *et al.* (2022) Building an allocentric travelling direction signal via vector computation. *Nature* 601, 92–97

129. Lu, J. *et al.* (2022) Transforming representations of movement from body-to-world-centric space. *Nature* 601, 98–104

130. Taube, J.S. (2007) The head direction signal: origins and sensory-motor integration. *Annu. Rev. Neurosci.* 30, 181–207

131. Kim, S.S. *et al.* (2019) Generation of stable heading representations in diverse visual scenes. *Nature* 576, 126–131

132. Okubo, T.S. *et al.* (2020) A neural network for wind-guided compass navigation. *Neuron* 107, 924–940

133. Kim, S.S. *et al.* (2017) Ring attractor dynamics in the *Drosophila* central brain. *Science* 356, 849–853

134. Turner-Evans, D.B. *et al.* (2020) The neuroanatomical ultrastructure and function of a biological ring attractor. *Neuron* 108, 145–163

135. Skaggs, W. *et al.* (1995) A model of the neural basis of the rat's sense of direction. *Adv. Neural Inf. Proces. Syst.* 7, 173–180

136. Petrucco, L. *et al.* (2023) Neural dynamics and architecture of the heading direction circuit in zebrafish. *Nat. Neurosci.* 26, 765–773

137. Ishida, I.G. *et al.* (2023) Neuronal calcium spikes enable vector inversion in the *Drosophila* brain. *BioRxiv*, Published online November 28, 2023. <https://doi.org/10.1101/2023.11.24.568537>

138. Currier, T.A. *et al.* (2020) Encoding and control of orientation to airflow by a set of *Drosophila* fan-shaped body neurons. *eLife* 9, e61510

139. Müller, M. and Wehner, R. (1988) Path integration in desert ants, *Cataglyphis fortis*. *Proc. Natl. Acad. Sci.* 85, 5287–5290

140. Goulard, R. *et al.* (2023) Emergent spatial goals in an integrative model of the insect central complex. *PLoS Comput. Biol.* 19, e1011480

141. Lever, C. *et al.* (2009) Boundary vector cells in the subiculum of the hippocampal formation. *J. Neurosci.* 29, 9771–9777

142. Alexander, A.S. *et al.* (2020) Egocentric boundary vector tuning of the retrosplenial cortex. *Sci. Adv.* 6, eaaz2322

143. Westeinde, E.A. *et al.* (2024) Transforming a head direction signal into a goal-oriented steering command. *Nature* 626, 819–826

144. Mussels Pires, P. *et al.* (2024) Converting an allocentric goal into an egocentric steering signal. *Nature* 626, 808–818

145. Beetz, M.J. *et al.* (2023) Neural representation of goal direction in the monarch butterfly brain. *Nat. Commun.* 14, 5859

146. Matheson, A.M. *et al.* (2022) A neural circuit for wind-guided olfactory navigation. *Nature Commun.* 13, 4613

147. Honkanen, A. *et al.* (2019) The insect central complex and the neural basis of navigational strategies. *J. Exp. Biol.* 222, jeb188854

148. Shiozaki, H.M. *et al.* (2020) A multi-regional network encoding heading and steering maneuvers in *Drosophila*. *Neuron* 106, 126–141

149. Campbell, M.G. and Giocomo, L.M. (2018) Self-motion processing in visual and entorhinal cortices: inputs, integration, and implications for position coding. *J. Neurophysiol.* 120, 2091–2106

150. Mallory, C.S. *et al.* (2021) Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals. *Nat. Commun.* 12, 671

151. Kandimalla, P. *et al.* (2023) Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex. *J. Comp. Physiol. A* 209, 679–720

152. Sareen, P.F. *et al.* (2021) A neuronal ensemble encoding adaptive choice during sensory conflict in *Drosophila*. *Nat. Commun.* 12, 4131

153. Donlea, J.M. *et al.* (2014) Neuronal machinery of sleep homeostasis in *Drosophila*. *Neuron* 81, 860–872

154. Goldschmidt, D. *et al.* (2023) A neuronal substrate for translating nutrient state and resource density estimations into foraging decisions. *BioRxiv*, Published online July 19 2023. <https://doi.org/10.1101/2023.07.19.549514>

155. Flores-Valle, A. and Seelig, J.D. (2022) Dynamics of a sleep homeostat observed in glia during behavior. *BioRxiv*, Published online July 7, 2022. <https://doi.org/10.1101/2022.07.07.499175>

156. Weir, P.T. and Dickinson, M.H. (2015) Functional divisions for visual processing in the central brain of flying *Drosophila*. *Proc. Natl. Acad. Sci.* 112, E5523–E5532

157. Li, F. *et al.* (2020) The connectome of the adult *Drosophila* mushroom body provides insights into function. *eLife* 9, e62576

158. Scaplen, K.M. *et al.* (2021) Transsynaptic mapping of *Drosophila* mushroom body output neurons. *eLife* 10, e63379

159. Cognigni, P. *et al.* (2018) Do the right thing: neural network mechanisms of memory formation, expression and update in *Drosophila*. *Curr. Opin. Neurobiol.* 49, 51–58

160. Ardin, P. *et al.* (2016) Using an insect mushroom body circuit to encode route memory in complex natural environments. *PLoS Comput. Biol.* 12, e1004683

161. Le Mœl, F. and Wystrach, A. (2020) Opponent processes in visual memories: a model of attraction and repulsion in navigating insects' mushroom bodies. *PLoS Comput. Biol.* 16, e1007631

162. Wystrach, A. *et al.* (2020) Rapid aversive and memory trace learning during route navigation in desert ants. *Curr. Biol.* 30, 1927–1933

163. Mizunami, M. *et al.* (1998) Mushroom bodies of the cockroach: their participation in place memory. *J. Comp. Neurol.* 402, 520–537

164. Buehlmann, C. *et al.* (2020) Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. *Curr. Biol.* 30, 3438–3443

165. Kamhi, J.F. *et al.* (2020) Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian *Myrmecia* ants. *Curr. Biol.* 30, 3432–3437

166. Collett, M. and Collett, T.S. (2018) How does the insect central complex use mushroom body output for steering? *Curr. Biol.* 28, R733–R734

167. Goulard, R. *et al.* (2021) A unified mechanism for innate and learned visual landmark guidance in the insect central complex. *PLoS Comput. Biol.* 17, e1009383

168. Sun, X. *et al.* (2021) How the insect central complex could coordinate multimodal navigation. *eLife* 10, e73077

169. Rayshubskiy, A. *et al.* (2020) Neural control of steering in walking *Drosophila*. *BioRxiv*, Published online April 5, 2020. <https://doi.org/10.1101/2020.04.04.024703>

170. Feng, K. *et al.* (2024) A central steering circuit in *Drosophila*. *BioRxiv*, Published online July 2, 2024. <https://doi.org/10.1101/2024.06.27.601106>

171. Omoto, J.J. *et al.* (2017) Visual input to the *Drosophila* central complex by developmentally and functionally distinct neuronal populations. *Curr. Biol.* 27, 1098–1110

172. Sun, Y. *et al.* (2017) Neural signatures of dynamic stimulus selection in *Drosophila*. *Nat. Neurosci.* 20, 1104–1113

173. Fisher, Y.E. *et al.* (2022) Dopamine promotes head direction plasticity during orienting movements. *Nature* 612, 316–322

174. Giraldo, Y.M. *et al.* (2018) Sun navigation requires compass neurons in *Drosophila*. *Curr. Biol.* 28, 2845–2852

175. Aronov, D. *et al.* (2017) Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. *Nature* 543, 719–722

176. Bao, X. *et al.* (2019) Grid-like neural representations support olfactory navigation of a two-dimensional odor space. *Neuron* 102, 1066–1075

177. Manning, A. (1956) Some aspects of the foraging behaviour of bumble-bees. *Behaviour* 9, 164–200

178. Noorman, M. *et al.* (2022) Accurate angular integration with only a handful of neurons. *BioRxiv*, Published online May 25, 2022. <https://doi.org/10.1101/2022.05.23.493052>

179. Dan, C. *et al.* (2024) A neural circuit architecture for rapid learning in goal-directed navigation. *Neuron* 112, 2581–2599

180. Yang, C. *et al.* (2024) A population code for spatial representation in the zebrafish telencephalon. *Nature* <https://doi.org/10.1038/s41586-024-07867-2>

181. Vijayabaskaran, S. and Cheng, S. (2022) Navigation task and action space drive the emergence of egocentric and allocentric spatial representations. *PLOS Comput. Biol.* 18, e1010320

182. Singh, S.H. *et al.* (2023) Emergent behaviour and neural dynamics in artificial agents tracking odour plumes. *Nat. Mach. Intell.* 5, 58–70

183. Martin, J.P. *et al.* (2015) Central-complex control of movement in the freely walking cockroach. *Curr. Biol.* 25, 2795–2803

184. Kuan, A.T. *et al.* (2024) Synaptic wiring motifs in posterior parietal cortex support decision-making. *Nature* 627, 367–373