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Abstract

Natural Language Processing (NLP) tools can score students’ written explanations, opening
new opportunities for science education. Optimally, these scores offer designers opportunities to
align guidance with tested pedagogical frameworks and to investigate alternative ways to
personalize instruction. We report on research, informed by the Knowledge Integration (KI)
pedagogical framework, using online Authorable and Customizable Environments (ACEs), to
promote deep understanding of complex scientific topics. We study how to personalize guidance
to enable students to make productive revisions to written explanations as students conduct
investigations with models, simulations, hands-on activities, and other materials. We describe
how we iteratively refined our assessments and guidance to support students to revise their
scientific explanations. We discuss how we explored hybrid models of personalized guidance
that combine NLP scoring with opportunities for teachers to continue the conversation.
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Introduction

Natural Language Processing (NLP) tools can score students’ written explanations with
pedagogically inspired rubrics (e.g. Kubsch et al., 2022; Linn et al., 2014; Zhai et al., 2020),
expanding opportunities to scaffold student learning and investigate personalized guidance. We
can score student written responses. The challenge is to make optimal use of the scores. We
report on how we iteratively refined our instructional designs, informed by the Knowledge
Integration (KI) pedagogy, to deepen student understanding of science. We describe how our
recent investigations using NLP scores in units designed using an Authorable and Customizable
Environment (ACE) can amplify teacher guidance and improve student ability to revise their
scientific explanations.

Transforming Education with Technology

Starting in the 1970’s, with the advent of the personal computer, there were widespread claims
that technology would transform education (e.g. Darrach, 1970). However, most initial uses of
technology in education mimicked the functionality of existing educational materials, often
implementing a transmission model of education, rather than exploiting the affordances of
emerging technologies (Linn, 2003). The first computers available in schools supported
programming in BASIC or LOGO and offered designers limited resources for creating
applications (Friedler et al., 1990; Mandinach, et al., 1986). In 1980 Seymour Papert laid out a
perspective on constructivism and described the potential of teaching students to program in
LOGO in Mindstorms (Papert, 1980). Many warned about the widening digital divide in
educational opportunity as computers became available to students whose families could afford
them (e.g., Linn, 2003; Lockheed & Frakt, 1984).

With increased access to more powerful computers for education, designers extended efforts to
align innovations with pedagogical frameworks. One group created cognitive tutors primarily for
mathematics and computer science guided by ACT* theory (Anderson, 1996), later
incorporating the Knowledge, Learning and Instruction (KLI) pedagogy (Koedinger et al., 2012;
Van Lehn, 2011). These tutors sought to achieve the same level of proficiency as typical
instruction, in topics such as algebra, geometry, and LISP programming, while shortening the
instructional time needed (Anderson et al., 1995). Empirical studies showed that students were
learning skills in production-rule units and that the best tutorial interaction style was one in which
the tutor provides immediate feedback, consisting of short and directed error messages. The
cognitive tutors were effective in detecting and correcting student errors while students solved
problems and they became commercial products (Koedinger & Aleven, 2016).

In science, many investigators built on constructivist pedagogy (e.g., Cognition and Technology
Group, 1991; Gerard et al., 2015a; Inhelder & Piaget, 1987) with the goal of supporting inquiry
learning. These groups designed technology-enhanced environments designed to promote
self-directed learners who could plan a series of investigations (e.g., Lieberman & Linn, 1991).

In this paper we illustrate how the constructivist pedagogy, Knowledge integration, informed our
use of NLP to design assessments and guidance. The Kl pedagogy emerged from longitudinal
and experimental studies of science and computer science instruction, designed to use



innovative technologies to improve student outcomes and teacher success (Clancy & Linn,
1999; Linn & Clancy, 1992; Linn, 1995; Linn & Hsi, 2000; Mokros & Tinker, 1987). It draws on
research showing that students typically have multiple, incomplete, and fragmented ideas about
scientific phenomena (diSessa, 2000; Smith et al., 1994). The Kl pedagogy focuses on
supporting students to analyze their own ideas, discover new insights into the phenomena,
distinguish among these ideas, and reflect on their investigations (Linn & Eylon, 2011).

Authorable and Customizable Environments (ACEs) for Inquiry
Science

Authorable and Customizable Environments (ACEs) that supported students to construct
understanding emerged in the 1990s and enabled designers to scaffold science learning
(Quintana et al., 2004). Rather than emulating typical textbooks, ACE design was informed by
constructivist frameworks that emphasized inquiry learning (e.g., Linn & Eylon, 2011). ACEs
were designed by partnerships of teachers, computer scientists, discipline experts, and learning
scientists (e.g. Konings et al., 2014; Kyza & Agesilaou, 2022; Shear et al., 2004; Slotta & Linn,
2009). Partnerships included Concord Consortium (Concord.org, Molros & Tinker, 1987 ),
Go-Lab (hitps://www.golabz.eu/, Dedong, et al., 2021), PhET (https://phet.colorado.edu/,
Weiman et al, 2008), STOCHASMOS (Kyza et al., 2007) and the Web-based Interactive
Science Environment (WISE, htips://wise.berkeley.edu; Linn & Eylon, 2011). Many ACEs are
free and open source, encouraging teachers and researchers to create experimental activities.

ACEs log student work and include scaffolds to guide students, making them potentially ideal for
leveraging NLP tools. Further, ACEs take advantage of interactive visualizations of scientific
phenomena including models or simulations and real time data collection, as well as creating
ways to support hands-on investigations (Smetana & Bell, 2012). Studies of designs using
inquiry to illustrate complex ideas in specific disciplines showed the value of using visualizations
in Chemistry (Linn et al., in press) and other science disciplines (McElhaney et al., 2015). Many
advocated combining virtual and hands-on activities to capitalize on the strengths of each
format (de Jong et al., 2013). Many ACEs also feature collaborative tools (Ke & Hoadley, 2009;
Matuk & Linn, 2018) and aspects of Learning Management Systems (LMS). ACEs can
incorporate varied assessments including engineering designs (McBride et al., 2016), concept
maps (Ryoo & Linn, 2012), and written explanations for complex questions (Tansomboon et al.,
2017).

Researchers have been investigating ways to personalize guidance in ACEs taking advantage
of logs of student interactions and responses to assessments (e.g. Gerard et al., 20153;
Puntambekar & Hibscher, 2005). Materials delivered by ACEs are often easy to use in
experimental designs. They can support personalized instruction for each student as well as
random assignment of students to conditions. Partnerships have built and tested multiple
activities that are used by 1000s of teachers today. The major finding from a wide range of
studies using ACEs is that inquiry learning is facilitated by personalized guidance and that
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teachers benefit from tools to amplify their efforts to guide their students (e.g., Furtak et al.,
2012).

Most ACEs are supported by systems such as WISE that are themselves open source and
available on GitHub (https://github.com/WISE-Community). Materials delivered by ACEs are
often easy to use in experimental designs. They can support personalized instruction for each
student as well as random assignment of students to conditions. Embedded assessments
enable teachers to monitor student progress during learning and to use student work when
planning customizations (e.g., Wiley et al., in press).

As NLP tools have been incorporated into ACEs, the field has also begun to address issues of
privacy, algorithmic bias, ethics, and equity (e.g. Higgs & Vahkil, 2019). For example, it is
essential to develop NLP scoring algorithms with students who have the same cultural
background as the students who will use the materials. The advances in ACEs support the
possibility of transforming education with seamless school to home solutions.

The WISE ACE and KI Pedagogy

Reviews show the advantage of using pedagogies such as Kl to guide the design of ACEs,
assessments, guidance, and tools for teachers (Donnelly et al., 2014; Krajcik & Mun, 2014; Linn
Donnelly, & Gerard, in press; Reiser et al., 2021). The WISE ACE offers tools that support
designers to implement Kl processes (Linn, Clark, & Slotta, 20). WISE elicits student ideas in
multiple ways, often by posing dilemmas such as, “How do animals get energy from the sun?”
Or by asking students to make predictions about a complex situation such as predicting the
temperature within a car sitting in the sun on a snow-covered road. To discover ideas students
often use models, virtual experiments, or hands-on investigations such as using a temperature
probe to measure the temperature of objects in the room and comparing the measured
temperature to how the object feels. To distinguish ideas, students might conduct virtual
experiments by varying the amount of CO2 in the atmosphere, conduct hands-on experiments
with temperature probes to compare the insulating properties of cups made of different
materials, or use the Idea Basket to compare their explanations to those of their peers (e.g.,
Matuk & Linn, 2018). To reflect on their ideas students might write essays, make concept maps,
or sort materials by some property. The WISE ACE logs all the students’ activities and can
provide real-time personalized guidance based on student responses.

Kl Assessments

Kl assessments are embedded in WISE instruction, including as pretests and posttests. They
may feature designing experiments using a virtual system (McBride et al, 2016), making a
concept map (Ryoo & Linn, 2012), or writing explanations of complex situations where they link
ideas with evidence (e.g.,Tansomboon et al., 2017; Vitale, Appleaum, & Linn, 2019). Kl rubrics
analyze student explanations for promising ideas, links between ideas justified by evidence, and
multiple links between ideas (see example question and rubric in Table 1). Rather than
rewarding only the right answer, Kl rubrics reward students for sorting out their disparate ideas
and using evidence to justify the ideas they incorporate into their explanations.
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WISE units have always featured explanation items, due to their value in developing
understanding. Generating explanations is more effective than answering multiple choice
questions during learning (Richland et al., 2007). Research shows that generation items are
also better predictors of long term retention than recall items, even for straightforward material
(Bertsch et al., 2007). Further, a comparison of multiple choice and Kl items covering the same
material showed that Kl items were better than multiple choice at discriminating between high
and low scorers; they also captured nuances of progress more effectively (Lee et al., 2011).

Nevertheless, most science assessments use multiple choice questions that require recall of
details and some form of problem solving (e.g. Third International Mathematics and Science
Assessment, PISA) often informed by an information processing pedagogy (e.g., Anderson,
1996). This has led to extensive classroom practice on Multiple Choice factual questions that
are often embedded in textbooks. It sends a message to teachers that recall is a major
component of science learning. Yet, little of this information is retained as indicated by many
assessments of adults. Further, investigations of public understanding of science consistently
reveal weak and fragmented understanding of crucial science concepts (e.g., Weber & Stern,
2011).

Table 1: Kl Rubric and Automated Guidance for “Cancer” explanation in a Mitosis unit.

Item Prompt: Humans have a control mechanism that regulates cell division. When that control mechanism is
broken, cells are allowed to divide out of control. As we have seen, this can lead to cancer. Now that we have
successfully completed our investigation, let's use what we know to design a new drug to treat cancer. Which
phase of mitosis would you have your drug target to stop cancer growth? [MC - NOT scored]. Explain the effect
your drug would have on the different parts of the cell in that phase, and how this would help keep cancer growth
under control.

Key Ideas

Describes a cell organelle or phase to be affected by the medicine
e Ways students might say this: “My drug would make the spindle fibers not be able to grow”
Explains how the medicine will disrupt the function of/action related to the organelle
e  Function of OR action for an organelle (e.g.chromosomes carry genetic info (function) OR chromosomes
are pulled apart (related action)
e Ways students might say this: “keeping cancer cells' chromosomes from being pulled into equal portions
of each new cell.”
Mentions need for medicine to stop cell division/cancer growth
e  Controlling cancer cell growth; Stopping cell division; Stopping cells from splitting; Stopping X from
making new cells
e Ways students might say this: “if you stop the chromosomes from dividing then there wouldn't be any
new cell”
Side effects of drug treatment and their cause.
e Brings together ideas “stops cell division” + “but will stop good and bad cells (or cancerous and
non-cancerous or normal and bad)”
e Ways students might say this: “cancer drugs target any cell that is dividing, which means cuts heal
slower, hair may not grow back.”

Score | Criteria Student Examples Kl Guidance

1 Off Task: IDK Think about mitosis. What phase of
Writes text, does not answer mitosis will your drug target and
question WHY? Look at the phases in Step 2.5.

Then, write a new description of your
drug below.
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2 Irrelevant/Incorrect
Incorrect/nonnormative ideas
Vague response

3 Partial Link
Any ONE of the three key
ideas is correctly explained.
OK to mention additional,
incorrect ideas.

4 Full Link
Any TWO of the three key
ideas are correctly explained
and linked.

5 Complex Links
All THREE key ideas are
correctly explained and
linked.

Although teachers would like to score each students’ work, this is difficult in middle school when

it would help the cancer cells
stop growing because the
cells would die.

my drug would either freeze or
burn the cell at their point
where the cell multiplies

| would stop this phase
because if you stop the
spindle fibers, the
chromosomes just float
around and the cell can't
reproduce.

This phase is the beginning of
cell division. If you stop the
cell from duplicating the
chromosomes, the cell will not
divide.

Think about mitosis. What phase of
mitosis will your drug target and
WHY? Look at the phases in Step 2.5.
Then, write a new description of your
drug below.

Good start - you are moving in the
right direction. Now, add details about
what function of the cell is important to
stop and WHY. Watch the phases in
Step 2.6 to gather ideas. Then, write a
new description of your drug below.

Great work! Now, think about side
effects - how will your drug affect the
body? Check out Step 3.2 to gather
some ideas. Then, write a more
detailed description of your drug
below.

Nice thinking! Now, think about the
rate of cell division in different parts of
the body. Where in the body will your
drug have the greatest impact? Check
out Step 1.4 to gather some ideas.
Then, write a more detailed
description of your drug below.

teachers often have six science classes per day each with 30 students. Teachers report
spending up to 10 minutes per student writing personalized guidance when teaching an online

inquiry unit - or 5 hours per class (Gerard et al., 2015). Developing NLP to score student written

responses initially involves a big commitment to collect and annotate the data, and build the
model. Once developed, the NLP models can be used for many students as long as the new
students resemble the students whose responses were used for training (Liu et al., 2014).

NLP Scoring

Our partnership uses c-raterML™, a tool developed by our collaborators at the Educational

Testing Service (ETS) to score explanations for Kl. The c-raterML system uses natural language

processing methods to automatically score student written essays for Kl. The system scores
each student essay based on a 5-point knowledge integration rubric that rewards students for
using evidence to make links among scientifically normative ideas. For example, as shown in
Table 1, craterML assesses the degree to which students link ideas about cell organelle
functions, the phases of mitosis, and health impacts from interrupting cell division, to explain
how a drug they have designed will slow the spread of cancer.

craterML works by building a model of the linguistic features evident in human-scored student
explanations at each knowledge integration score level. To build the human-scored data set, we
collect over 1000+ student responses to the prompt from students in schools with demographics
similar to those who will use the NLP-based guidance. This is done by working in sustained



partnership with teachers who are using the web-based curriculum units in which the
explanation prompts are embedded. Two humans use the Kl rubric to reach inter-rater reliability.
They then score at least 1000 student written explanations to the prompt. c-raterML forms a
statistical model based on its analysis of the given human scored data set. The c-raterML™
scoring has demonstrated satisfactory agreement with human scoring for constructed response
items in inquiry science, meaning they demonstrated a sufficient quadratic-weighted kappa
(Kow) (Liu et al., 2014; Liu et al., 2016; Riordan et al., 2020). The quadratic-weighted kappa
coefficient indicates the percentage of score agreement between the automated score and the
human-assigned score, beyond what is expected by chance. It uses a range from -1 to 1 in
which -1 indicates poorer than chance agreement, 0 indicates pure chance agreement, and 1
indicates perfect agreement (Fleiss & Cohen, 1973). Models that result in a coefficient above
.75 in testing on a novel data set of student responses are deemed sufficient for use in
instruction. This level of agreement is equivalent to rater agreement between typical trained
humans.

The resulting NLP models can be deployed in the WISE units. They enabled our partnership to
score Kl explanation items that ask students to generate their ideas instead of using multiple
choice items that often rely heavily on recall of information and knowledge of advanced
vocabulary to differentiate among responses. Establishing Kl scores is the first step. A big
question is how best to use the scores.

Kl essays and NLP tools have the potential to amplify the guidance of teachers by strengthening
the guidance that ACEs can offer students (e.g., Gerard et al., 2015b). The WISE ACE has
incorporated NLP and Machine Learning (McBride et al., 2016). In the next section we illustrate
how our partnership has iteratively refined personalized guidance for science phenomena such
as thermodynamics, photosynthesis, and plate tectonics.

Design Research: Personalized Guidance for Revision

We report on the results from the design research conducted by our partnership to find effective
ways to use NLP scores to promote productive revision of scientific explanations. We conducted
multiple iterations of the guidance across many WISE units on varied topics in middle school
classrooms (see Table 2). We use mixed methods including quantitative methods to analyze
both comparison studies and pre/post studies and qualitative methods in observational and
interview studies.

Partnership

Our partnership had many participants who met regularly at school site meetings, professional
development workshops, and on-campus seminars. Each partner contributed to the outcomes
and respected the expertise of the others. We partnered with teachers and their students in over
12 participating middle schools. Partners included the computer scientists and software
designers who created the WISE ACE and refined it to incorporate NLP scoring into a set of 12
units on topics including mitosis, photosynthesis, chemical reactions, thermodynamics, plate
tectonics, and global climate change. Partners also included learning science researchers,
psychometricians, and professional developers. We partnered with experts in NLP at ETS in



Princeton. The partners each conduct design research consisting of iterative refinement of
guidance for revision with the goal of using NLP tools to personalize guidance for students and
to help teachers guide their students to revise their ideas (e.g., Linn et al., in press; Wiley et al.,
in press). This work is both informed by the Kl pedagogy and intended to strengthen the Ki
pedagogy. These studies have enabled us to refine our Kl assessments, rubrics, instructional
frameworks, professional learning tools, and the WISE ACE.

In partnership meetings we analyzed the results of each study and discussed ways to improve
the personalized guidance, drawing on the Kl pedagogy and related research. We focused on
guiding students to revise their explanations based on research showing that generating
explanations is a powerful way to build student understanding of their experimental
investigations (e.g., Krist, 2020), and that productive revision can deepen student
understanding (Berland et al., 2016; Hayes & Flower, 1986). This also aligns with the reported
value of explanation in laboratory science as supported by ethnographic studies of scientific
communities (e.g., Latour, 1987). We recognized that revision is difficult to motivate and often
superficial (Crawford et al., 2008; Freedman et al., 2016).

Assessments of Revision

We used embedded explanations requiring knowledge integration scored by Kl rubrics that
reward students for linking ideas with evidence, reinforcing self-directed learning and knowledge
building (e.g., Scardamalia & Bereiter, 2006). We scored the initial response using NLP and
assigned guidance. We then scored the resulting revision in several ways. First, we noted
whether the student revised their response. Then we scored the revised response using the Kl
rubric. In addition, in later studies we analyzed the nature of the revisions students made
including noting whether students tacked on ideas, paraphrased their initial ideas, made
grammatical improvements, or revised their reasoning.

In some studies we use a pretest/posttest Kl revision item to assess student progress in revision
across the unit. The Kl revision items asked students to write an explanation, gave the student
guidance, and asked the student to revise their response. Since most 5 to 12 day units had one
NLP item, we did not expect the limited opportunity for revision during the unit to have a big
impact on the Kl Revision items between pretest and posttest.

Guidance Designs

We designed guidance to encourage students to build on their insights and observations in
conjunction with new information, following the KI pedagogy. Students responding to Ki
guidance can use resources in the unit to find the evidence they need to determine which ideas
are most useful and valid. As shown in Table. Kl Rubric and Guidance, the guidance included a
prompt with a link to visit relevant evidence within the unit. Rather than relying on authorities,
the guidance encourages students to gain appreciation for relying on evidence to refine their
knowledge. Ultimately KI guidance promotes cumulative understanding. Students who become
better at KI become able to evaluate new arguments and see if they align with the evidence
available to them.



In this paper we synthesize our design research studies to illustrate how taking advantage of
emerging NLP technology and analyzing the impact of each revision is strengthening our
understanding of personalized guidance. Each iteration of the instruction led to insights into the
factors contributing to productive revision and to ways that personalized guidance can amplify
the impact of teachers during inquiry instruction.

Initial Studies: Comparing Guidance Designs for K

In our initial studies, we developed adaptive knowledge integration (Kl) guidance for students’
written arguments using craterML (Linn et al., 2014; See Table 1). The goal of the guidance was
to prompt productive revision of student ideas. We designed the adaptive Kl guidance to align
with the Kl pedagogy. It built on the current student answer and was intended to enable the
student to move to the next level of the KI rubric. It included 4 parts: (1) Acknowledgement of
the students’ current ideas, (2) a question about the key missing or non-normative idea, (3) a
suggestion to revisit related evidence in a dynamic visualization, and (4) a prompt asking the
student to use the evidence they’'ve gathered to generate an improved response (see Figure 1).

In our four initial studies, we found that the adaptive Kl guidance was more effective in
improving students’ knowledge integration abilities, relative to other types of guidance typically
used in middle school classrooms (Table 2, Rows A-D). We compared KI guidance to simulated
teacher guidance (e.g. Redo. What does increased carbon dioxide do to global temperature?),
generic guidance (e.g. Go back and review the visualization to improve your answer), and
specific guidance (e.g. Light energy transformed into kind of energy). Studies of the
logged revisions and student navigation indicated that in comparison to the other forms of
guidance, the Kl guidance was more likely to support students to revisit specific evidence in the
unit when revising, and to integrate a new idea into their initial response.

Table 2: Classroom Studies of NLP-based Kl Guidance for Student Written Explanations.
A-D Initial Studies in italics; E-H: Refinement of Guidance; I-J: Teacher Alerts; K-M:
Modeling Revision with the Annotator.

Citation Study Design & Impact on Item Revision | Impact on Pre/post Prior

Topic Revision Knowledge

Interaction

A: Kl vs Simulated KI more effective No difference in Kl gains No interaction
Tansomboon Teacher between conditions. detected
et al.. (2015). Guidance, 1 round
AERA — Students who integrated

Global Climate an idea (normative or

Change (GCC) non-normative) when

revising during instruction
made greater pre-post
gains than students who
made superficial revisions



B: Gerard et
al.. (2015b).
Ed Psych
Study 1

C: Gerard et
al. (2015b). Ed
Psych Study 2

D: Gerard et
al. (2017).
ESERA

E: Vitale et al.
(2016).

F: Gerard &
Linn. (2016b).
AERA

Teacher assigned
Kl v. Teacher
assigned Generic,
1 round

Mitosis,

Chemical
Reactions

Kl Automated v. KI
Teacher assigned,
1 round

Cell Respiration

Kl v. Simulated
Teacher guidance,
1 round

Photosynthesis

Kl v. Specific
guidance, 2
rounds

GCC

Kl Guidance -
Revision Rubric
Categories, 1
round

Photosynthesis

KI more effective than
generic guidance across
contexts

No effect for accuracy of
NLP

No difference in Kl gains

No effect for accuracy of
NLP

Took teachers 1-2 minutes
to assign guidance for
each student

No difference in Kl gains
between conditions.

With KI guidance, more
likely to integrate ideas
when revising

Slight advantage for
specific guidance during
instruction, not significant

Sig gains with Kl guidance

High prior students are
more likely to integrate
ideas when revising - low
prior likely to add
disconnected ideas.

No difference between
conditions.

No difference between
conditions

Greater pre/post gains for
low prior knowledge with
Kl guidance

Low prior students who
integrated an idea
(normative or
non-normative) when
revising made greater
pre-post gains than
students who did not
integrate when revising.

Advantage of Kl guidance
for pre to post gains on
essay item, and delayed
posttest; Correlation
between time spent
revisiting visualization and
pre/post gains

Students who integrated
ideas when revising made
greater pre/post gains in
School A.

No diff in School B (73% in
School B did not revise at
all)

n/a

n/a

Kl more
effective for low
prior on pre-post
gains

No interaction
detected

High prior
students more
likely to
integrate ideas
when revising.



G:
Tansomboon
et al. (2017).
IJAIED - Study
1

H:
Tansomboon
etal. (2017).
IJAIED —
Study 2

I: Gerard &
Linn (2016).
JSTE

J: Gerard et al.
(2019). IJCSCL

K: Gerard et
al. (2016).
ICLS

L: Gerard &
Linn (2022).
Computers &
Education

Student name +
Transparent Kl v.
Typical Kl
guidance, 2 rounds

Thermodynamics

Kl Planning v. KIi
Revisiting
Guidance, 2
rounds

Thermodynamics

Kl + Teacher
Alerts v. Kl, 2
rounds

Photosynthesis

Teacher adaptive
Kl + teacher
alerts v. 2 rounds
of Kl guidance for
low prior

[Conditions did not
hold in classroom
study - only 2 pairs
received a teacher
alert]

Plate Tectonics

Annotator + Kl
Kl, 2 rounds

Photosynthesis

Kl 2 rounds v.
Annotator + Kl

Transparent more
effective.

[No difference between
students who engaged in 1
round versus 2 rounds of
revision suggesting
indication of progress did
not impact outcomes.

No sig. gains in revision.

Students in revisit more
likely to revisit evidence;
Students in planning more
likely to make substantial
revisions

Kl + Teacher alerts more
effective for low prior
knowledge in School A [no
difference in School B]

Sig. revision gains.

Teacher gave different
guidance to low v. high,
built on adaptive KI
guidance.

Teacher checked in with
each group, high rate of
revision

Annotator + Kl made
greater revision gains

Annotator + Kl more
effective on revision gains;
Annotator + Kl resulted in
more integrated revisions

No difference between
conditions.

Transparent more effective
for low prior knowledge,
sig higher scores at
posttest

No difference between
conditions.

Greater pre/post gains for
Kl + Teacher alerts for low
prior knowledge in School
A, than 2 rounds KiI
guidance

[no difference in School B]

Sig pre/post gains

Annotator + Kl greater pre
to post gains; Annotator +
Kl greater revision gains

on posttest revision essay

Students who made
integrated revisions when
revising, made greater pre
to post test gains

Annotator + Kl greater
revisions on posttest Kl
revision item

No interaction
detected on
embedded;
Transparent
more effective
for low prior on
pre/post

No interaction
detected

Kl + Teacher
Alerts more
effective for low
prior knowledge

n/a

High prior
students more
likely to
integrate ideas
when revising
on Kl revision
item.

Annotator + Kl
more effective
for low prior on

10



Photosynthesis, embedded and

Plate Tectonics Kl revision item
M: Linn & Annotator + KI, 2 | Annotate own explanation | Both conditions revise, Fictitious
Gerard (in rounds vs. Annotate fictitious gain on Ki revision item; student
press) This student explanation Annotate fictitious student | condition
Paper greater revisions created more

unique labels.

Refinement of Guidance

The initial studies established that our Kl guidance was as effective as guidance from
experienced teachers and more effective than typical guidance or completion guidance. In our
refinement studies we sought to improve on the initial designs (Table 2, rows E-H).

Specific Guidance. We explored the role of Kl versus Specific guidance where students were
told the right answer (Vitale et al., 2016). Consistent with other research on learning, we found
that specific guidance was as effective as Kl guidance during instruction and that Kl guidance
was more effective than specific guidance for promoting durable understanding as measured by
a delayed posttest (Richland et al., 2007).

Types of Revisions. We analyzed the types of revisions students made and found that they
were often superficial. Students added ideas rather than thoroughly integrating the new
information (Tansomboon et al., 2017). These findings are consistent with related research on
writing and revision. When given feedback from teachers or peers, using technology tools such
as collaborative Google Docs, students most often make minimal or superfluous changes to
their science explanations (Freedman et al., 2016; Sun et al., 2016; Zheng et al., 2015; Zhu et
al., 2020). Learners tend to make changes to spelling and grammar rather than to revise for
meaning (Bridwell, 1980; Fitzgerald, 1987; Strobl et al., 2019; Zhu et al., 2020).

Transparency about Guidance. Some students did not recognize that the guidance was
personalized and dismissed it (Tansomboon et al., 2017). Students’ uncertainty about whether
the guidance was personalized is consistent with beliefs about computers when the study was
conducted. To help students appreciate that the guidance was personalized to their ideas we
made the NLP process more transparent. We added student names to the guidance. We
explained how the computer read their response, compared their response to the responses
from 1000s of other students of the same grade level, and then selected guidance to address
their distinct science ideas. We found that the transparent guidance condition led to greater
rates of revision particularly for students who initially displayed low prior knowledge
(Tansomboon et al., 2017). This extended prior research suggesting that when students are
challenged, they are more likely to engage and persist if they perceive the guidance they
receive as connected to their reasoning (Shute, 2008). We altered the KI guidance interface to
always provide transparent guidance.

Reflection on Refinements. Analyzing the overall effectiveness of guidance in these
refinement studies, we noted that although the Kl guidance helped many students to integrate
new evidence into their explanations and strengthen the links among their ideas, there were
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limitations. Many students still struggled to use the guidance to revise their arguments--only
about half of the students were able to make productive revisions (Gerard et al., 2016). In one
study, over 50% of students who received automated guidance either did not revise their
answers or only made surface-level changes without adding a new idea (Tansomboon et al.
2015). In addition, integrating new ideas when revising was most challenging for students who
initially displayed low prior knowledge (Gerard & Linn, 2016b). This resonates with prior
research findings that when confronted with contrasting evidence, students tend to ignore the
evidence and restate their own perspective, consistent with confirmation bias (Clark & Chase,
1972; Hottecke & Allchin, 2020). Further, in student interviews conducted during guidance
studies, some students reported that they preferred their teacher’s guidance over the automated
Kl guidance because their teacher gave feedback that was specific to their response.

Combining Teacher and Personalized Guidance

To address the challenges faced by low prior knowledge students we tried alerting teachers to
guide students who were stuck (Table 2, rows I-J). The partners decided on the conditions
under which they wanted alerts. Typically, teachers wanted alerts when students made two
attempts at revision without any progress or continued to express vague ideas (level 2 on Ki
rubric). We designed alerts which showed up on the students’ computer screen. Teachers could
see the alert as they circled the classroom. Students could keep working while the alert showed
on their screen, and the teacher could come to talk with the student about the item (Gerard &
Linn, 2016a). We found that the alerts led to gains in one school and not in the other school,
suggesting that the process needed fine tuning.

Analyzing Revision Strategies and Modeling Revision

Our initial analysis of the nature of student revisions suggested the need for deeper
understanding of how students were envisioning revision. We systematically investigated how
students were revising their science writing based on the Kl guidance, and what kinds of
revisions to science arguments led to building coherent, long term science understanding (see
Figure 1). To characterize how students revised their science writing based on the Kl guidance,
we analyzed students’ writing in their initial and revised explanations and identified what
changes, if any, students made to their writing (e.g. Gerard et al., 2016; Tansomboon et al.,
2017).

In this coding process we noticed qualitatively different patterns in the kinds of revisions
students were making after they received Kl guidance. Specifically, some students made
integrated revisions while others tacked on ideas or did not revise at all. Those who integrated
ideas when revising during instruction, were also making greater pre to post test gains (Gerard,
& Linn, 2016a; Tansomboon et al., 2015). We developed an emergent coding scheme that
captured the patterns we observed: those who integrated new ideas when revising their writing,
those who integrated redundant ideas or paraphrased what they had said initially, those who
added new but discrete ideas, and those who made no changes at all (see Figure 1; Gerard &
Linn, 2022). In coding students’ writing revision strategies, we evaluated only the changes in
the students’ science writing, not the scientific accuracy of the change. Consistent with the Ki

12



pedagogy, we hypothesized that making connections among ideas would be a more productive
learning strategy than accumulating more discrete ideas or not refining the ideas at all.

We found that the type of revision strategy impacted learning outcomes (Tansomboon et al.,
2017; Gerard et al., 2016). For example, in one study students wrote a short essay in a
photosynthesis unit and received one round of KI guidance. We coded students’ initial and final
(after receiving the guidance) short essays in the unit, and student responses on pre/post test
short essay items using knowledge integration rubrics. We found that students who integrated
ideas when revising their essay during instruction made greater pre to posttest gains on the
short answer items than those students who added ideas when revising on the essay activity
during instruction, or those who chose to make no changes at all. The difference in pre/post test
gains between those who integrated ideas and those who did not, was significant on the Energy
Story pre/post item (Integrated n=181, M=.81, SD=1.16; Did Not Integrate n=159, M=.43,
SD=.96; t(338)=3.19, p=.002). These results suggested that the students who made no attempt
to integrate ideas lacked a model of the revision process.

Figure 1: Type of Revision Response to Kl Guidance (Gerard & Linn 2022).

Description Initial Response Revised Response [bold italics is revised ideal)
No Revision

Heat goes up into the atmosphere  Heat goes up into the atmosphere where the density

then cools down then goes back is higher then cools down then goes back down into
Integrated New down into earths core and repeats  earths core where it is less dense and repeats the
the process. process.
Connects new
idea(s) to initial
ideas. The new idea The heat makes it less dense, as it flows away from
builds on what was The heat makes it less dense, as it the heat source it becomes less dense. It comes back
stated in initial flows away from the heat source it  down to the heat source after being in circulation. The
response, by becomes less dense. It comes back reason it goes from top to bottom is because it
elaborating, down to the heat source after being looses its density as it goes to the bottom. When it
extending, or in circulation. looses its density it gets lighter and floats to the
contrasting. top. When it gets heavier it sinks to the bottom.

The process is ongoing.

The bottom of the lamp is hot like The bottom of the lamp is hot like the core. The blob is
the core. The blob is like the like the convection currents. At the bottom the blob is
convection currents. At the bottom  heated becoming less dense floating to the top. At the
the blob is heated becoming less top it becomes less dense and goes back down. Like

Integrated dense floating to the top. At the top  the convection current in goes up and goes back
Redundant it becomes less dense and goes down.
back down.

Adds an idea that

repeats initial idea or

paraphrases; does

not add new science | think a lava lamp works by the | think a lava lamp works by the heat in the lamp

idea. heat in the lamp causing the blobs  causing the blobs to go up word and then the density
to go up word and then it gets more increases and then when the blobs go down it gets
dense and then when the blobs go  less dense.
down it gets less dense.
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The heat from the lava lamp makes When it's too hot at the bottom, it goes up, gets
the blobs less and causes it to too cold, and goes back down, like a cycle.
move easily. It's similar bc in earth's

mantle it slowly comes out like a

lava lamp

Disconnected New

Writes entirely new
response. Or, adds
new idea with no edit
to initial response,
that does not connect
to initial idea(s).

We think that the blob of colored We think that, the blob of colored fluid goes up

fluid goes up because of heat and  because of heat and density. Heat makes density

density. Heat makes density less less dense and density is what brings up the fluid.

dense and density is what brings up There is also more density on the top with low

the fluid. heat and less density on the bottom and high heat
on the bottom.

The Annotator. The challenge that integrating ideas posed for students suggested that some
students were not sure what revision looks like. We designed the Annotator (See Figure 2) to
provide students with an interactive model of integrated argument revision. The Annotator asks
students to help a fictitious student make decisions about revision by placing premade labels on
the students’ response. The student also has the opportunity to author their own labels to guide
the revision. An initial study of the Annotator showed that combining one round of adaptive Ki
guidance with one round of the Annotator was more effective in promoting integrated revision,
especially for students who initially expressed “unintegrated ideas” and hence had received low
Kl scores (1 to 2), than providing multiple rounds of adaptive Kl guidance (Gerard & Linn,
2022).

These findings documented the importance of providing a model of the revision process,
especially for low prior knowledge students. When learners had the opportunity to select and
place labels on the response of another student, they were more likely to revise their own
response. Indeed, students often remarked that they were using the same strategy they used to
choose a label when revising their own explanation. For example, one student reflected on their
use of the Annotator in the Plate Tectonics unit: “This way [the Annotator] gets your brain on
what you need, like what she [fictional peer in Annotator] does not have...Placing the labels was
useful [to revising in the next step] bc it had many things i didn’t think about.” Another student
reflected on their use of the Annotator in the Photosynthesis unit: “/ realized | needed to expand
more what | wrote.” Another student expressed: “It helped set up a structure for my writing. |
went back to our writing and thought about those questions.” Across the student interviews,
across unit contexts, students reported how their experience using the Annotator helped them to
notice gaps in their explanation, or to recognize a new idea they held to strengthen the links in
their explanation.

An Experiment: Peer versus Self Annotator

To better understand the mechanisms underlying the benefit of the Annotator and to continue to
refine the Annotator with a focus on fostering self-directed learning in revision we designed a
version where students annotated their own response. We hypothesized that placing the
pre-authored labels onto the explanation was the central mechanism promoting integrated
revision. It (a) modeled for the student the process of distinguishing which key ideas in an
explanation are missing by evaluating the response using the ideas in the labels and (b)
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modeled how to link new ideas with existing ideas by determining where to place the labels onto
the written response. It appeared that students could then apply this approach to their own
explanation when using the Kl guidance. To test this idea, we designed an iteration of the
Annotator to support the student to annotate their own explanation - rather than a fictional peer’s
- with pre-authored labels. We conjectured that this may increase students’ sense of autonomy
and hence self-directed learning in the revision process while also promoting integrated
revision.

We studied the impact of the self- and peer-annotations in an unpublished study. Students were
asked to place pre-written labels on sections of an explanation to suggest areas for change or
improvement. They were also given the opportunity to make self-constructed labels. The
pre-written labels were designed to elicit evidence central to explaining the phenomenon that is
most often missing in student explanations.

For example, an explanation prompt embedded in a unit on Plate Tectonics asks students to
explain how Mt. Hood was formed (given a photograph of Mt. Hood on the Pacific coast). A
pre-written label in the Annotator for a fictional peer’s response to the Mt.Hood explanation,
says “Think about plate density. Check out the graph in Step 2.5”, since many students leave
out this idea and it is central to understanding how the plates interact. Selecting the relevant
labels and placing them in the written response encourages distinguishing of ideas in the
response and in the labels, and the integration of new and prior knowledge, rather than novice
practices of tacking on disconnected information. We compared this new version of the
Annotator intended to strengthen student agency in revision to the initial Annotator design
involving peer annotation. We hypothesized that instantiating the student’s own essay in the
Annotator would encourage students to view their essay as a scientific product and attend more
carefully to each expressed idea, the connections among them, and possible gaps. Flower and
Hayes (1980) showed that when students succeeded in analyzing the structure and argument of
their essay, they were capable of making valuable revisions to their reasoning. (See Figure 2.)

Figure 2: Annotator tool to support revision. Students move pre-written labels to suggest
ways an explanation can be improved. Students can also create their own labels.
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Students Annotate Fictious Peer Explanation

o
M Sara’s Mountain Range Explanation

s Add evid bout
The mountain range was formed because two sisievdnie
plates on top of Earth’s crust moved against each E";ffp‘;“‘st“e o
other.

The oceanic plate collided with the continental Add details about
plate how the plates

interact. Check out
the animation in
Step 2.6

As they collided it made a mountain.

Students Annotate Their Own Explanation

Add New Label

The mountain range near the seacoast was probably formed with continental oceanic. The oceanic
crust goes under the continental crust. The continental crust then erupts magma from the bottom to

to the top. Then, as the lava cools, it turns in to rocks, and mountains. Thm!‘ sboutplats
density. Check out
the graph in Step
25!

Think about how the
plates interact.
Check out the

animation in Step
2.6

Methods. 5 teachers from 3 schools and their 678 7th-grade students participated. All students
used the WISE Plate Tectonics unit (wise.berkeley.edu). For two activities embedded in the
Plate Tectonics unit, all students wrote an explanation. Each prompt called for students to
connect ideas about plate boundary interactions and convection to explain volcano formation.
After writing their argument, when students moved to the next step, they were randomly
assigned using the WISE branching technology to one of two conditions: (a) annotate their own
argument or (b) annotate a peers’ argument.
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In the Peer-annotator version, an explanation by a fictitious peer named Sara was pre-loaded in
the Annotator (Table 3). A peer explanation was selected at a Kl level 3, to reflect a common
student idea and missing evidence, making it generative for critique. The labels were
pre-designed to be personalized to Sara’s explanation, meaning that they elicited evidence
which would link to an existing idea in the explanation. The pre-designed labels asked: (a) Add
evidence about plate density. Check out the graph in Step 2.5, and (b) Add details about how
the plates interact. Check out the animation in Step 2.6. The instructions also encouraged
students to write their own label if they have another comment.

In the Self-annotator version, the student’s written explanation was automatically imported into
the Annotator (Table 4). The same pre-designed labels as in the ‘Peer-Annotator' version
appeared to the right of their explanation. While the labels were personalized to Sara’s
explanation, the labels raised key concepts that were general enough that we hypothesized one
or both of the labels could likely be applied to improve most student written explanations.

In both conditions, students used labels to address gaps or inaccuracies in the explanation;
revised their own work; and then had one opportunity to receive personalized Kl guidance for
their explanation and revise again. Students completed a pretest and a posttest before and after
the unit with an item that called for students to write and revise. All students’ written arguments
were scored using 5-point knowledge integration rubrics that reward students for scientifically
accurate links among ideas.

Findings. Use of the Annotator to Critique Arguments. We analyzed the students' annotations
from one teacher in each of the three schools. Students were better able to identify and
remedy gaps with scientifically accurate suggestions when annotating a fictional peer’s
explanation than when annotating their own. Student annotations in the peer-annotator
condition were scored significantly higher, than those in self-annotator condition
[Peer-annotator, M=2.03, SD=1.03; Self-annotator, M=1.33, SD=1.15; t(282)=5.47, p<.0001].

Students reported that the peer-annotator enabled them to gather new ideas. As one student
stated: “/ like revising the classmates and ours was hard to revise because we’re the ones who
made them”. Another student commented, “/ reviewed Sara's and so then | just added a
sentence [to mine] because it gave me more information and then | put that into my own words”.
As seen in Table 3, the student added a new idea to their explanation about plate density after
prompting the fictional peer Sara to consider this same idea. Teachers echoed the student
perspective, noting that students were more likely to critique a peer’s explanation than their own
as they presume their own response is correct, and particularly for students with initially vague
ideas, they may also be uncertain of what criteria to use to evaluate their own explanation.

In both Annotator conditions, students were given two pre-authored labels to use in annotating
the argument, and they were also instructed to create their own new label if they identified an
additional gap in the argument. Students in the peer-annotator condition were significantly more
likely to create new labels during annotation (33% of students), than students in self-annotator
condition (18%) [X?(1)=7.36, p=.007]. For example, in Table 3, the student created a new label
“add evidence about how the plates move differently from in 2.1”, prompting the fictional peer to
consider how oceanic and continental plates interact differently than two continental plates
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colliding. We coded the type of label students generated as either (a) general (e.g. add more),
(b) add a new idea (e.g. what about convection currents?), or (c) fill a gap to clarify the
mechanism (e.g. why does heat cause molecules to become less dense?). In both conditions,
students primarily generated labels focused on filling a gap to clarify the mechanism in the
explanation [peer-annotator, 72% of labels; self-Annotator, 68%)]. Taken together, the analyses
suggest that annotating a fictional peer’s explanation may lead to greater student engagement
in evaluating the ideas in a scientific argument, and in generating mechanistic ideas to

strengthen the argument.

Table 3: Peer-Annotate Condition, Example of Student Writing, Annotation and Revision.

Event

Initial explanation

They place the labels where
Sara should add the
suggested ideas. They also
add their own label
encouraging the student to
distinguish how this type of
plate interaction, is different
from the interactions that
occur at a transform boundary
and divergent boundary, as
explored in Step 2.1

After annotating Sarah’s
explanation, they revised their
explanation. They added a
new idea to their explanation
that they had previously
recognized was missing in
Sara’s explanation, based on
their placement of the labels.

The student then received
adaptive Kl guidance for
their explanation.

They further revise their
explanation, clarifying the
plate interactions due to their
differing densities.

Student Work

Initial: The mountain range was probably formed by the Oceanic crust and
Continental crust push against sediment that goes up. That sediment then
turns into a mountain.

0‘5' ) |
ké Sara’s Mountain Range Explanation

The mountain range was formed because
plates on top of Earth’s rroved against each
other.

Add evidence about
plate density.
Check out the graph
in Step 2.5

The oceanic plate collided with the continental
plate.

Add details about
Add evidence about how the plates
how the plates move

differently from

As they collided itk

interact. Check out
the animation in
Step 2.6

ntain,

Revised 1: The mountain range was probably formed by the Oceanic crust and
Continental crust push against sediment that goes up. They push becuase
one is more dense then the other,one goes under the continental crust.
That sediment then turns into a mountain.

Adaptive Kl Guidance: Elliott, add details to your explanation. How does the
density of the two plates affect their movement? Check out for a hint. Then,
expand your explanation.

Final explanation: The mountain range was probably formed by the Oceanic
crust and Continental crust push against sediment that goes up. They push
because one is more dense ,the oceanic crust goes under the continental
crust,pushing the continental crust up. The crust then forms a
mountain.

Table 4: Self-Annotate Condition, Example of Student Writing, Annotation and Revision.
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Event

Writes explanation mid-way
through the Plate Tectonics
unit

The student’s explanation is
imported into the Annotator,
with pre-authored labels on
the side. In this case the
labels hence are well
aligned to gaps in the
student’s explanation. They
place the labels in their
explanation to indicate
where to make a link to
evidence.

After the student annotated
their own explanation, they
incorporated a new idea to
strengthen the link between
plate density and
subduction.

The student then received
automated Kl Guidance
level 5

The student continued to
clarify the role of density in
plate movement.

Student Work

Initial Explanation: This mountain range near the seacoast was probably
formed with continental oceanic. The oceanic crust goes under the continental
crust. The continental crust then erupts magma from the bottom to the top.
Then, as the lava cools, it turns into rocks, and mountains.

This mountain range near the seacoast was probably formed with continental oceanicglhe oceanic

crust goes under the continental crus@dhe.continental crust then erupts magma from the BQttom to

Think about plate
density. Check out
the graph in Step
255

the top. Then, as the lava cools, it turns into rocks, and mountains.

Think about how the
plates interact.
Check out the
animation in Step
2.6

Revised explanation after using the annotator. “This mountain range near
the seacoast was probably formed with continental oceanic. The crust push
into each other. The oceanic crust goes under the continental crust. This is
because the oceanic crust is denser than the continental crust, so the
oceanic crust subducts under the continental crust. The continental crust
then erupts magma from the bottom to the top. Then, as the lava cools, it turns
into rocks, and mountains.”

Sam, nice thinking! Look over your explanation to be sure it addresses the
density of the plates and how they interact. Revise your explanation as much
as you think is needed.

Final explanation. This mountain range near the seacoast was probably
formed with continental oceanic. The crust push into each other, causing the
oceanic crust goes under the continental crust. The oceanic crust is denser
than the continental crust. Denser things sink, so that's why the oceanic
crust went under the continental crust. The continental crust then erupts
magma from the bottom to the top. Then, as the lava cools, it turns into rocks,
and mountains.

Embedded Revision Gains. Students used the guidance to significantly improve their
explanations in the revision activity in both guidance conditions [AnnotatePeer Gain, M=.40,
SD=.67, t(216)=8.76, p<.0001; AnnotateOwn, M=.37, SD=.68, t(218)=7.95, p<.0001]. Students
made significant revision gains after using the Annotator in the first round of revision, and
smaller gains in the second round of revision after receiving the Kl guidance [AnnotatePeer (1st
round) M=.27, SD=.65; (2nd) M=.13, SD=.61; AnnotateOwn, (1st) M=.30, SD=.65; (2nd) M=.07
SD=.57]. There was no main effect for the condition, suggesting that both critiquing a peer and
one’s own argument can strengthen student explanation writing and revising.

Pre to Post Test Gains. Students in both conditions made significant pre to post test gains
[Gains: AnnotatePeer M=.56, SD=.88; AnnotateOwn M=.47, SD=.80] with no main effect for

condition.
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Discussion. Revising explanations is central to the iterative process of knowledge building in
science yet it is unfamiliar and challenging to most learners (Berland et al., 2016; Mercier &
Sperber, 2011). We created the peer-annotator to model the process of revising. We designed
labels personalized to the response and also enabled students to write their own labels. We
created the self-annotator to directly allow students to annotate their own response by using
the labels or writing their own.

Our findings suggest that students benefit from a model of revision that helps them discern key
science practice such as distinguishing criteria to critique a scientific argument. Students wrote
more labels in the peer than the self condition, suggesting that the personalized labels in the
peer annotator modeled revision. The peer annotator was more effective than the self condition
for promoting revision of students’ initial response. Students reported that they were more likely
to gather new ideas that they could then apply to their own explanation.

This also suggests that students in the self-annotate condition did not see the pre-authored
labels as helping them to identify new ideas to incorporate into their response. An important
difference between the conditions was the design of personalized pre-authored labels for the
fictional peer’s explanation. The labels for the self-annotation condition were the same as in the
peer-annotator condition and hence not personalized to the student’s response.

This raises a question about the design of the Annotator. One question concerns the labels.
Would students benefit from labels personalized to the response they are annotating? Can we
use NLP to design personalized labels for students’ own responses? Would using an NLP
model to identify pre-authored labels for the students’ own explanation enhance the
self-annotator condition? Personalizing the labels may support students to (a) see how the
model of revision is aligned to their ideas and hence elicit greater engagement in the revision
process - building on Tansomboon et al, (2017), and (b) help the student distinguish between
their ideas expressed in their explanation and those suggested by the personalized labels to
determine what evidence to pursue fill a gap or clarify a link, to create a more coherent
explanation.

A second question concerns the limitation of the model of revision in the Annotator. Do students
need a model of the metacognitive processes of considering alternatives for revision? How
could we design an annotator or another tool that enables students to diagnose that they need
to distinguish among their ideas rather than tack another idea on to the explanation? Perhaps
we can design a Metacognitive Annotator to engage students in distinguishing among possible
revisions, some that tack on ideas and others that integrate evidence.

Discussion: Using NLP to Improve Personalized Guidance

Advances in NLP offer designers new opportunities to improve instruction. In our work, we were
guided by the Kl pedagogy as well as the insights of expert teachers to test and refine
personalized guidance for Kl items. We initially focused on moving students to the next level of
the Kl rubric. In our initial studies, we were able to approximate the guidance of expert teachers.
And, like expert teachers, the personalized automated guidance had impacts and limitations.
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The guidance significantly improved responses to the Kl items. Kl guidance was more effective
than specific guidance, leading to durable understanding as measured by a delayed posttest.

Some of the limitations resulted from the automated nature of the guidance. Students prefer the
guidance of their teachers, often saying that their teachers were more likely to provide the right
answer. They suspected the automated guidance was not personalized. By being transparent
about how automated guidance was designed, we were able to reduce distrust and increase the
impact of automated guidance.

Some of the limitations aligned with prior research. Revision is difficult and superficial revisions
are common. Our guidance had these same limitations. To make progress, we combined
automated guidance with alerts to teachers about students who were struggling. This process
has promise. We have initiated a line of work involving teacher dashboards that responds to
teacher interest in more nuanced information about their students than simply an alert. They
would like information about the whole class as well as about the needs of individual students
so they can target their guidance to the needs of each student (Wiley et al., in press).

We also did a detailed analysis of the types of revisions students made and identified additional
opportunities to improve personalized guidance. Some students did not have a clear
understanding of the nature of revision. We designed the Annotator to model revision. The
Annotator was helpful, especially for students who started with low prior knowledge and
therefore were likely to lack a model of revision. To explore ways to improve the Annotator, we
compared the situation where students annotated the response of a peer to a condition where
they annotated their own explanation. We found that students, as anticipated, had difficulty
annotating their own responses, consistent with work on the limitations of metacognition. An
important difference between the conditions was that students placed a personalized
pre-authored label to annotate the peer explanation. We identified some directions for future
work on a self-annotator. For example, we hypothesize that an NLP model to identify
pre-authored labels for the students’ own explanation would enhance the self-annotator
condition. We will also explore ways to design a MetaCognitive Annotator.

Design Research: Reflection

Emergent technologies offer educators opportunities to improve instruction. Finding optimal
uses of these technologies often takes many design iterations. The iterations are informed by
deliberations of the design research partners; analysis of the logged data that provides detailed
insights into the interaction between student thinking, guidance, and revision; and reflection on
the way results align with the underlying pedagogy. This paper reports on ways that NLP tools
have been refined to improve student learning. The results show that personalized guidance
aligned with the Kl pedagogy emphasizing rewarding students to integrate their ideas has
advantages for long term retention as well as the development of self-directed learners. This
aligns with other work on self-directed learning (e.g., Scardamalia & Bereiter, 2006).

This design research illustrates how partnership refinement of guidance can improve student
learning. By combining the expertise of each partner we were able to gain insight into ways to
promote revision. We were inspired by the excellent guidance provided by expert teachers. We
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benefited from the insights of psychometricians to design Kl items that require students to
generate arguments and that measure how students respond to personalized guidance with Ki
revision items. We refined the adaptive guidance that both promotes revision and encourages
self-directed exploration of scientific evidence by conducting whole partnership reflections at
professional development workshops (e.g. Gerard et al., 2022b). We were able to realize often
nascent ideas when the software designers brought prototypes of the Annotator, new designs
for discussion tools, and refinements to the interactive models to partnership meetings. We
worked closely with the NLP designers to clarify the strengths and limitations of early models
and improve accuracy (e.g., Riordan et al., 2020).

This design research tested forms of personalized guidance informed by Kl pedagogy and
strengthened our understanding of Kl pedagogy as a result. By analyzing the ways that students
respond to requests to integrate their ideas, this research revealed opportunities for refining Kl
design recommendations. We found that students often had no experience evaluating and
revising science explanations, emphasizing the need for engaging students in finding gaps in
their arguments. This resonates with earlier work on metacognitive reasoning and Kl (e.g. Linn
et al., 2004). We found that students often chose to tack on an idea rather than to distinguish it
from their other ideas. This finding resonates with other studies of Kl that revealed the need for
more emphasis on distinguishing ideas (e.g. Gerard et al., 2020; Ryoo & Linn, 2012; Vitale et
al., 2019).

NLP technology has the potential to amplify the role of the teacher by providing automated
guidance to students and identifying the learners who would most benefit from teacher
guidance. Building on the ways that successful teachers guide students, we show how NLP
tools implemented in ACEs can strengthen science instruction. Initially, we diagnosed student
performance using a Kl rubric and designed guidance intended to enable the student to revise
their explanation and achieve the next level of the rubric. This was helpful but many students
floundered or did not revise at all. Based on observations of how teachers interact with
individual students, we can envision the potential of hybrid models of personalized guidance
that combine NLP scoring with opportunities for teachers to continue the conversation.
Guidance embedded in the unit can encourage the student to strengthen the links between
different pieces of evidence to explain a phenomenon. The guidance may also serve as a
conversation starter between teacher and student or student and peer thus combining
automated and human guidance. Building on the findings from studies combining adaptive Ki
guidance with a teacher alert, that alerts the teacher in real-time to students whose explanation
was scored by the NLP below a set threshold, hybrid models optimize referrals to peers,
teachers, or an alternative approach such as a computer-student dialogue. Our current work
takes advantage of new NLP models designed to identify specific ideas rather than Kl levels
and could support these types of dialogues (Gerard et al., 2022a).

This design research program illustrates the process of iterative design and the ways it has
benefitted student learning. Many challenges remain. As we noted initially, NLP can provide
scores for student work, the challenge is figuring out what to do with the scores.
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