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Abstract 
Natural Language Processing (NLP) tools can score students’ written explanations, opening 
new opportunities for science education. Optimally, these scores offer designers opportunities to 
align guidance with tested pedagogical frameworks and to investigate alternative ways to 
personalize instruction. We report on research, informed by the Knowledge Integration (KI) 
pedagogical framework, using online Authorable and Customizable Environments (ACEs), to 
promote deep understanding of complex scientific topics. We study how to personalize guidance 
to enable students to make productive revisions to written explanations as students conduct 
investigations with models, simulations, hands-on activities, and other materials. We describe 
how we iteratively refined our assessments and guidance to support students to revise their 
scientific explanations. We discuss how we explored hybrid models of personalized guidance 
that combine NLP scoring with opportunities for teachers to continue the conversation. 
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Introduction 
Natural Language Processing (NLP) tools can score students’ written explanations with 
pedagogically inspired rubrics (e.g. Kubsch et al., 2022; Linn et al., 2014; Zhai et al., 2020), 
expanding opportunities to scaffold student learning and investigate personalized guidance. We 
can score student written responses. The challenge is to make optimal use of the scores. We 
report on how we iteratively refined our instructional designs, informed by the Knowledge 
Integration (KI) pedagogy, to deepen student understanding of science. We describe how our 
recent investigations using NLP scores in units designed using an Authorable and Customizable 
Environment (ACE) can amplify teacher guidance and improve student ability to revise their 
scientific explanations.  

Transforming Education with Technology 
Starting in the 1970’s, with the advent of the personal computer, there were widespread claims 
that technology would transform education (e.g. Darrach, 1970). However, most initial uses of 
technology in education mimicked the functionality of existing educational materials, often 
implementing a transmission model of education, rather than exploiting the affordances of 
emerging technologies (Linn, 2003). The first computers available in schools supported 
programming in BASIC or LOGO and offered designers limited resources for creating 
applications (Friedler et al., 1990; Mandinach, et al., 1986). In 1980 Seymour Papert laid out a 
perspective on constructivism and described the potential of teaching students to program in 
LOGO in Mindstorms (Papert, 1980). Many warned about the widening digital divide in 
educational opportunity as computers became available to students whose families could afford 
them (e.g., Linn, 2003; Lockheed & Frakt, 1984).  

With increased access to more powerful computers for education, designers extended efforts to 
align innovations with pedagogical frameworks. One group created cognitive tutors primarily for 
mathematics and computer science guided by ACT* theory (Anderson, 1996), later 
incorporating the Knowledge, Learning and Instruction (KLI) pedagogy (Koedinger et al., 2012; 
Van Lehn, 2011). These tutors sought to achieve the same level of proficiency as typical 
instruction, in topics such as algebra, geometry, and LISP programming, while shortening the 
instructional time needed (Anderson et al., 1995).  Empirical studies showed that students were 
learning skills in production-rule units and that the best tutorial interaction style was one in which 
the tutor provides immediate feedback, consisting of short and directed error messages.  The 
cognitive tutors were effective in detecting and correcting student errors while students solved 
problems and they became commercial products (Koedinger & Aleven, 2016).  

In science, many investigators built on constructivist pedagogy (e.g., Cognition and Technology 
Group, 1991; Gerard et al., 2015a; Inhelder & Piaget, 1987) with the goal of supporting inquiry 
learning. These groups designed technology-enhanced environments designed to promote 
self-directed learners who could plan a series of investigations (e.g., Lieberman & Linn, 1991).  

In this paper we illustrate how the constructivist pedagogy, Knowledge integration, informed our 
use of NLP to design assessments and guidance. The KI pedagogy emerged from longitudinal 
and experimental studies of science and computer science instruction, designed to use 
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innovative technologies to improve student outcomes and teacher success (Clancy & Linn, 
1999; Linn & Clancy, 1992; Linn, 1995; Linn & Hsi, 2000; Mokros & Tinker, 1987).  It draws on 
research showing that students typically have multiple, incomplete, and fragmented ideas about 
scientific phenomena (diSessa, 2000; Smith et al., 1994). The KI pedagogy focuses on 
supporting students to analyze their own ideas, discover new insights into the phenomena, 
distinguish among these ideas, and reflect on their investigations (Linn & Eylon, 2011).  

 

Authorable and Customizable Environments (ACEs) for Inquiry 
Science  
Authorable and Customizable Environments (ACEs) that supported students to construct 
understanding emerged in the 1990s and enabled designers to scaffold science learning 
(Quintana et al., 2004). Rather than emulating typical textbooks, ACE design was informed by 
constructivist frameworks that emphasized inquiry learning (e.g., Linn & Eylon, 2011). ACEs 
were designed by partnerships of teachers, computer scientists, discipline experts, and learning 
scientists (e.g. Konings et al., 2014; Kyza & Agesilaou, 2022; Shear et al., 2004; Slotta & Linn, 
2009). Partnerships included Concord Consortium (Concord.org, Molros & Tinker, 1987 ), 
Go-Lab (https://www.golabz.eu/, DeJong, et al., 2021),  PhET (https://phet.colorado.edu/, 
Weiman et al, 2008), STOCHASMOS (Kyza et al., 2007) and the Web-based Interactive 
Science Environment (WISE, https://wise.berkeley.edu; Linn & Eylon, 2011). Many ACEs are 
free and open source, encouraging teachers and researchers to create experimental activities. 

ACEs log student work and include scaffolds to guide students, making them potentially ideal for 
leveraging NLP tools. Further, ACEs take advantage of interactive visualizations of scientific 
phenomena including models or simulations and real time data collection, as well as creating 
ways to support hands-on investigations (Smetana & Bell, 2012). Studies of designs using 
inquiry to illustrate complex ideas in specific disciplines showed the value of using visualizations 
in Chemistry (Linn et al., in press) and other science disciplines (McElhaney et al., 2015).  Many 
advocated combining virtual and hands-on activities to capitalize on the strengths of each 
format (de Jong et al., 2013). Many ACEs also feature collaborative tools (Ke & Hoadley, 2009; 
Matuk & Linn, 2018) and aspects of Learning Management Systems (LMS). ACEs can 
incorporate varied assessments including engineering designs (McBride et al., 2016), concept 
maps (Ryoo & Linn, 2012), and written explanations for complex questions (Tansomboon et al., 
2017).  

Researchers have been investigating ways to personalize guidance in ACEs taking advantage 
of logs of student interactions and responses to assessments (e.g. Gerard et al., 2015a; 
Puntambekar & Hübscher, 2005). Materials delivered by ACEs are often easy to use in 
experimental designs. They can support personalized instruction for each student as well as  
random assignment of students to conditions. Partnerships have built and tested multiple 
activities that are used by 1000s of teachers today. The major finding from a wide range of 
studies using ACEs is that inquiry learning is facilitated by personalized guidance and that 
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teachers benefit from tools to amplify their efforts to guide their students (e.g., Furtak et al., 
2012). 

Most ACEs are supported by systems such as WISE that are themselves open source and 
available on GitHub (https://github.com/WISE-Community). Materials delivered by ACEs are 
often easy to use in experimental designs. They can support personalized instruction for each 
student as well as  random assignment of students to conditions. Embedded assessments 
enable teachers to monitor student progress during learning and to use student work when 
planning customizations (e.g., Wiley et al., in press). 

As NLP tools have been incorporated into ACEs, the field has also begun to address issues of 
privacy, algorithmic bias, ethics, and equity (e.g. Higgs & Vahkil, 2019). For example, it is 
essential to develop NLP scoring algorithms with students who have the same cultural 
background as the students who will use the materials. The advances in ACEs support the 
possibility of transforming education with seamless school to home solutions. 

The WISE ACE and KI Pedagogy 
Reviews show the advantage of using pedagogies such as KI to guide the design of ACEs, 
assessments, guidance, and tools for teachers (Donnelly et al., 2014; Krajcik & Mun, 2014; Linn 
Donnelly, & Gerard, in press; Reiser et al., 2021). The WISE ACE offers tools that support 
designers to implement KI processes (Linn, Clark, & Slotta, 20). WISE elicits student ideas in 
multiple ways, often by posing dilemmas such as, “How do animals get energy from the sun?” 
Or by asking students to make predictions about a complex situation such as predicting the 
temperature within a car sitting in the sun on a snow-covered road. To discover ideas students 
often use models, virtual experiments, or hands-on investigations such as using a temperature 
probe to measure the temperature of objects in the room and comparing the measured 
temperature to how the object feels. To distinguish ideas, students might conduct virtual 
experiments by varying the amount of CO2 in the atmosphere, conduct hands-on experiments 
with temperature probes to compare the insulating properties of cups made of different 
materials, or use the Idea Basket to compare their explanations to those of their peers (e.g., 
Matuk & Linn, 2018). To reflect on their ideas students might write essays, make concept maps, 
or sort materials by some property. The WISE ACE logs all the students’ activities and can 
provide real-time personalized guidance based on student responses.  

KI Assessments  
KI assessments are embedded in WISE instruction, including as pretests and posttests. They 
may feature designing experiments using a virtual system (McBride et al, 2016), making a 
concept map (Ryoo & Linn, 2012), or writing explanations of complex situations where they link 
ideas with evidence (e.g.,Tansomboon et al., 2017; Vitale, Appleaum, & Linn, 2019). KI rubrics 
analyze student explanations for promising ideas, links between ideas justified by evidence, and 
multiple links between ideas (see example question and rubric in Table 1). Rather than 
rewarding only the right answer, KI rubrics reward students for sorting out their disparate ideas 
and using evidence to justify the ideas they incorporate into their explanations.  
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WISE units have always featured explanation items, due to their value in developing 
understanding. Generating explanations is more effective than answering multiple choice 
questions during learning (Richland et al., 2007). Research shows that generation items are 
also better predictors of long term retention than recall items, even for straightforward material 
(Bertsch et al., 2007). Further, a comparison of multiple choice and KI items covering the same 
material showed that KI items were better than multiple choice at discriminating between high 
and low scorers; they also captured nuances of progress more effectively (Lee et al., 2011).  

Nevertheless, most science assessments use multiple choice questions that require recall of 
details and some form of problem solving (e.g. Third International Mathematics and Science 
Assessment, PISA) often informed by an information processing pedagogy (e.g., Anderson, 
1996). This has led to extensive classroom practice on Multiple Choice factual questions that 
are often embedded in textbooks. It sends a message to teachers that recall is a major 
component of science learning. Yet, little of this information is retained as indicated by many 
assessments of adults. Further, investigations of public understanding of science consistently 
reveal weak and fragmented understanding of crucial science concepts (e.g., Weber & Stern, 
2011).  

Table 1: KI Rubric and Automated Guidance for “Cancer” explanation in a Mitosis unit.  

Item Prompt: Humans have a control mechanism that regulates cell division. When that control mechanism is 
broken, cells are allowed to divide out of control. As we have seen, this can lead to cancer. Now that we have 
successfully completed our investigation, let's use what we know to design a new drug to treat cancer. Which 
phase of mitosis would you have your drug target to stop cancer growth? [MC - NOT scored]. Explain the effect 
your drug would have on the different parts of the cell in that phase, and how this would help keep cancer growth 
under control. 

Key Ideas 

Describes a cell organelle or phase to be affected by the medicine 
●​ Ways students might say this: “My drug would make the spindle fibers not be able to grow” 

Explains how the medicine will disrupt the function of/action related to the organelle 
●​ Function of OR action for an organelle (e.g.chromosomes carry genetic info (function) OR chromosomes 

are pulled apart (related action) 
●​ Ways students might say this: “keeping cancer cells' chromosomes from being pulled into equal portions 

of each new cell.” 
Mentions need for medicine to stop cell division/cancer growth  

●​ Controlling cancer cell growth; Stopping cell division; Stopping cells from splitting; Stopping X from 
making new cells 

●​ Ways students might say this: “if you stop the chromosomes from dividing then there wouldn't be any 
new cell” 

Side effects of drug treatment and their cause.  
●​ Brings together ideas “stops cell division” + “but will stop good and bad cells (or cancerous and 

non-cancerous or normal and bad)”  
●​ Ways students might say this: “cancer drugs target any cell that is dividing, which means cuts heal 

slower, hair may not grow back.”  

Score Criteria Student Examples KI Guidance 

1 Off Task:  
Writes text, does not answer 
question 

IDK Think about mitosis. What phase of 
mitosis will your drug target and 
WHY? Look at the phases in Step 2.5. 
Then, write a new description of your 
drug below. 
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2 Irrelevant/Incorrect 
Incorrect/nonnormative ideas 
Vague response 

it would help the cancer cells 
stop growing because the 
cells would die. 

Think about mitosis. What phase of 
mitosis will your drug target and 
WHY? Look at the phases in Step 2.5. 
Then, write a new description of your 
drug below. 

3 Partial Link 
Any ONE of the three key 
ideas is correctly explained. 
OK to mention additional, 
incorrect ideas.  

my drug would either freeze or 
burn the cell at their point 
where the cell multiplies  
 

Good start - you are moving in the 
right direction. Now, add details about 
what function of the cell is important to 
stop and WHY. Watch the phases in 
Step 2.6 to gather ideas. Then, write a 
new description of your drug below.  

4 Full Link 
Any TWO of the three key 
ideas are correctly explained 
and linked.  

I would stop this phase 
because if you stop the 
spindle fibers, the 
chromosomes just float 
around and the cell can't 
reproduce.  

Great work! Now, think about side 
effects - how will your drug affect the 
body? Check out Step 3.2 to gather 
some ideas. Then, write a more 
detailed description of your drug 
below. 

5 Complex Links 
All THREE key ideas are 
correctly explained and 
linked. 

This phase is the beginning of 
cell division. If you stop the 
cell from duplicating the 
chromosomes, the cell will not 
divide. 

Nice thinking! Now, think about the 
rate of cell division in different parts of 
the body. Where in the body will your 
drug have the greatest impact? Check 
out Step 1.4 to gather some ideas. 
Then, write a more detailed 
description of your drug below. 

 

Although teachers would like to score each students’ work, this is difficult in middle school when 
teachers often have six science classes per day each with 30 students. Teachers report 
spending up to 10 minutes per student writing personalized guidance when teaching an online 
inquiry unit - or 5 hours per class (Gerard et al., 2015). Developing NLP to score student written 
responses initially involves a big commitment to collect and annotate the data, and build the 
model. Once developed, the NLP models can be used for many students as long as the new 
students resemble the students whose responses were used for training (Liu et al., 2014). 

NLP Scoring 
Our partnership uses  c-raterML™, a tool developed by our collaborators at the Educational 
Testing Service (ETS) to score explanations for KI. The c-raterML system uses natural language 
processing methods to automatically score student written essays for KI. The system scores 
each student essay based on a 5-point knowledge integration rubric that rewards students for 
using evidence to make links among scientifically normative ideas. For example, as shown in 
Table 1, craterML assesses the degree to which students link ideas about cell organelle 
functions, the phases of mitosis, and health impacts from interrupting cell division, to explain 
how a drug they have designed will slow the spread of cancer.  

craterML works by building a model of the linguistic features evident in human-scored student 
explanations at each knowledge integration score level. To build the human-scored data set, we 
collect over 1000+ student responses to the prompt from students in schools with demographics 
similar to those who will use the NLP-based guidance. This is done by working in sustained 
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partnership with teachers who are using the web-based curriculum units in which the 
explanation prompts are embedded. Two humans use the KI rubric to reach inter-rater reliability. 
They then score at least 1000 student written explanations to the prompt. c-raterML forms a 
statistical model based on its analysis of the given human scored data set. The c-raterML™ 
scoring has demonstrated satisfactory agreement with human scoring for constructed response 
items in inquiry science, meaning they demonstrated a sufficient quadratic-weighted kappa 
(KQW)  (Liu et al., 2014; Liu et al., 2016; Riordan et al., 2020). The quadratic-weighted kappa 
coefficient indicates the percentage of score agreement between the automated score and the 
human-assigned score, beyond what is expected by chance. It uses a range from -1 to 1 in 
which -1 indicates poorer than chance agreement, 0 indicates pure chance agreement, and 1 
indicates perfect agreement (Fleiss & Cohen, 1973). Models that result in a coefficient above 
.75 in testing on a novel data set of student responses are deemed sufficient for use in 
instruction. This level of agreement is equivalent to rater agreement between typical trained 
humans. 

The resulting NLP models can be deployed in the WISE units. They enabled our partnership to 
score KI explanation items that ask students to generate their ideas instead of using multiple 
choice items that often rely heavily on recall of information and knowledge of advanced 
vocabulary to differentiate among responses. Establishing KI scores is the first step. A big 
question is how best to use the scores.  

KI essays and NLP tools have the potential to amplify the guidance of teachers by strengthening 
the guidance that ACEs can offer students (e.g., Gerard et al., 2015b). The WISE ACE has 
incorporated NLP and Machine Learning (McBride et al., 2016). In the next section we illustrate 
how our partnership has iteratively refined personalized guidance for science phenomena such 
as thermodynamics, photosynthesis, and plate tectonics. 

Design Research: Personalized Guidance for Revision 
We report on the results from the design research conducted by our partnership to find effective 
ways to use NLP scores to promote productive revision of scientific explanations. We conducted 
multiple iterations of the guidance across many WISE units on varied topics in middle school 
classrooms (see Table 2). We use mixed methods including quantitative methods to analyze 
both comparison studies and pre/post studies and qualitative methods in observational and 
interview studies.  

Partnership 
Our partnership had many participants who met regularly at school site meetings, professional 
development workshops, and on-campus seminars. Each partner contributed to the outcomes 
and respected the expertise of the others. We partnered with teachers and their students in over 
12 participating middle schools. Partners included the computer scientists and software 
designers who created the WISE ACE and refined it to incorporate NLP scoring into a set of 12 
units on topics including mitosis, photosynthesis, chemical reactions, thermodynamics, plate 
tectonics, and global climate change. Partners also included learning science researchers, 
psychometricians, and professional developers. We partnered with experts in NLP at ETS in 
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Princeton. The partners each conduct design research consisting of iterative refinement of 
guidance for revision with the goal of using NLP tools to personalize guidance for students and 
to help teachers guide their students to revise their ideas (e.g., Linn et al., in press; Wiley et al., 
in press). This work is both informed by the KI pedagogy and intended to strengthen the KI 
pedagogy. These studies have enabled us to refine our KI assessments, rubrics, instructional 
frameworks, professional learning tools, and the WISE ACE. 

In partnership meetings we analyzed the results of each study and discussed ways to improve 
the personalized guidance, drawing on the KI pedagogy and related research. We focused on 
guiding students to revise their explanations based on research showing that generating 
explanations is a powerful way to build student understanding of their experimental 
investigations (e.g., Krist, 2020), and  that productive revision can deepen student 
understanding (Berland et al., 2016; Hayes & Flower, 1986). This also aligns with the reported 
value of explanation in laboratory science as supported by ethnographic studies of scientific 
communities (e.g., Latour, 1987). We recognized that revision is difficult to motivate and often 
superficial (Crawford et al., 2008; Freedman et al., 2016).  

Assessments of Revision 
We used embedded explanations requiring knowledge integration scored by KI rubrics that 
reward students for linking ideas with evidence, reinforcing self-directed learning and knowledge 
building  (e.g., Scardamalia & Bereiter, 2006). We scored the initial response using NLP and 
assigned guidance. We then scored the resulting revision in several ways. First, we noted 
whether the student revised their response. Then we scored the revised response using the KI 
rubric. In addition, in later studies we analyzed the nature of the revisions students made 
including noting whether students tacked on ideas, paraphrased their initial ideas, made 
grammatical improvements, or revised their reasoning. 

In some studies we use a pretest/posttest KI revision item to assess student progress in revision 
across the unit. The KI revision items asked students to write an explanation, gave the student 
guidance, and asked the student to revise their response. Since most 5 to 12 day units had one 
NLP item, we did not expect the limited opportunity for revision during the unit to have a big 
impact on the KI Revision items between pretest and posttest. 

Guidance Designs 
We designed guidance to encourage students to build on their insights and observations in 
conjunction with new information, following the KI pedagogy. Students responding to KI 
guidance can use resources in the unit to find the evidence they need to determine which ideas 
are most useful and valid. As shown in Table. KI Rubric and Guidance, the guidance included a 
prompt with a link to visit relevant evidence within the unit. Rather than relying on authorities, 
the guidance encourages students to gain appreciation for relying on evidence to refine their 
knowledge. Ultimately KI guidance promotes cumulative understanding. Students who become 
better at KI become able to evaluate new arguments and see if they align with the evidence 
available to them. 
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In this paper we synthesize our design research studies to illustrate how taking advantage of 
emerging NLP technology and analyzing the impact of each revision is strengthening our 
understanding of personalized guidance. Each iteration of the instruction led to insights into the 
factors contributing to productive revision and to ways that personalized guidance can amplify 
the impact of teachers during inquiry instruction.    

Initial Studies: Comparing Guidance Designs for KI 
In our initial studies, we developed adaptive knowledge integration (KI) guidance for students’ 
written arguments using craterML (Linn et al., 2014; See Table 1). The goal of the guidance was 
to prompt productive revision of student ideas. We designed the adaptive KI guidance to align 
with the KI pedagogy. It built on the current student answer and was intended to enable the 
student to move to the next level of the KI rubric. It included 4 parts: (1) Acknowledgement of 
the students’ current ideas, (2) a question about the key missing or non-normative idea, (3) a 
suggestion to revisit related evidence in a dynamic visualization, and (4) a prompt asking the 
student to use the evidence they’ve gathered to generate an improved response (see Figure 1).  

In our four initial studies, we found that the adaptive KI guidance was more effective in 
improving students’ knowledge integration abilities, relative to other types of guidance typically 
used in middle school classrooms (Table 2, Rows A-D). We compared KI guidance to simulated 
teacher guidance (e.g. Redo. What does increased carbon dioxide do to global temperature?), 
generic guidance (e.g. Go back and review the visualization to improve your answer), and 
specific guidance (e.g. Light energy transformed into _____ kind of energy). Studies of the 
logged revisions and student navigation indicated that in comparison to the other forms of 
guidance, the KI guidance was more likely to support students to revisit specific evidence in the 
unit when revising, and to integrate a new idea into their initial response. 

Table 2: Classroom Studies of NLP-based KI Guidance for Student Written Explanations.  
A-D Initial Studies in italics; E-H: Refinement of Guidance; I-J: Teacher Alerts; K-M: 
Modeling Revision with the Annotator. 

Citation Study Design & 
Topic 

Impact on Item Revision Impact on Pre/post 
Revision 

Prior 
Knowledge 
Interaction 

A: 
Tansomboon 
et al.. (2015). 
AERA 

KI vs Simulated 
Teacher 
Guidance,1 round 
—- 
Global Climate 
Change (GCC) 

KI more effective No difference in KI gains 
between conditions. 
  
Students who integrated 
an idea (normative or 
non-normative) when 
revising during instruction 
made greater pre-post 
gains than students who 
made superficial revisions 

No interaction 
detected 
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B: Gerard et 
al.. (2015b). 
Ed Psych 
Study 1 

Teacher assigned 
KI v. Teacher 
assigned Generic, 
1 round 
—- 
Mitosis,  
Chemical 
Reactions 

KI more effective than 
generic guidance across 
contexts 
  
No effect for accuracy of 
NLP 

No difference between 
conditions. 

n/a 

C: Gerard et 
al. (2015b). Ed 
Psych Study 2 

KI Automated v. KI 
Teacher assigned, 
1 round 
—- 
Cell Respiration 

No difference in KI gains 
  
No effect for accuracy of 
NLP 
  
Took teachers 1-2 minutes 
to assign guidance for 
each student 

No difference between 
conditions 

n/a 

D: Gerard et 
al. (2017). 
ESERA 

KI v. Simulated 
Teacher guidance, 
1 round 
—- 
Photosynthesis 

No difference in KI gains 
between conditions. 
  
With KI guidance, more 
likely to integrate ideas 
when revising 

Greater pre/post gains for 
low prior knowledge with 
KI guidance 
   
Low prior students who 
integrated an idea 
(normative or 
non-normative) when 
revising made greater 
pre-post gains than 
students who did not 
integrate when revising. 

KI more 
effective for low 
prior on pre-post 
gains 

E: Vitale et al. 
(2016).  

KI v. Specific 
guidance, 2 
rounds 
—- 
GCC 

Slight advantage for 
specific guidance during 
instruction, not significant 

Advantage of KI guidance 
for pre to post gains on 
essay item, and delayed 
posttest; Correlation 
between time spent 
revisiting visualization and 
pre/post gains  

No interaction 
detected 

F: Gerard & 
Linn. (2016b). 
AERA 

KI Guidance - 
Revision Rubric 
Categories, 1 
round 
—- 
Photosynthesis 

Sig gains with KI guidance 
  
High prior students are 
more likely to integrate 
ideas when revising - low 
prior likely to add 
disconnected ideas.  

Students who integrated 
ideas when revising made 
greater pre/post gains in 
School A.  
No diff in School B (73% in 
School B did not revise at 
all)  

High prior 
students more 
likely to 
integrate ideas 
when revising. 
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G: 
Tansomboon 
et al. (2017). 
IJAIED - Study 
1 

Student name + 
Transparent KI v. 
Typical KI 
guidance, 2 rounds 
—- 
Thermodynamics 

Transparent more 
effective.  
  
[No difference between 
students who engaged in 1 
round versus 2 rounds of 
revision suggesting 
indication of progress did 
not impact outcomes. 

No difference between 
conditions.  
  
Transparent more effective 
for low prior knowledge, 
sig higher scores at 
posttest 

No interaction 
detected on 
embedded;  
Transparent 
more effective 
for low prior on 
pre/post  

H: 
Tansomboon 
et al. (2017). 
IJAIED – 
Study 2 

KI Planning v. KI 
Revisiting 
Guidance, 2 
rounds 
—- 
Thermodynamics 

No sig. gains in revision.  
  
Students in revisit more 
likely to revisit evidence; 
Students in planning more 
likely to make substantial 
revisions 

No difference between 
conditions. 

No interaction 
detected 

I: Gerard & 
Linn (2016). 
JSTE 

KI + Teacher 
Alerts v. KI, 2 
rounds 
—- 
Photosynthesis 

KI + Teacher alerts more 
effective for low prior 
knowledge in School A [no 
difference in School B] 

Greater pre/post gains for 
KI + Teacher alerts for low 
prior knowledge  in School 
A, than 2 rounds KI 
guidance 
[no difference in School B] 

KI + Teacher 
Alerts more 
effective for low 
prior knowledge 

J: Gerard et al. 
(2019). IJCSCL 

Teacher adaptive 
KI + teacher 
alerts v. 2 rounds 
of KI guidance for 
low prior 
 
[Conditions did not 
hold in classroom 
study - only 2 pairs 
received a teacher 
alert] 
—- 
Plate Tectonics 

Sig. revision gains. 
  
Teacher gave different 
guidance to low v. high, 
built on adaptive KI 
guidance.  
 
Teacher checked in with 
each group, high rate of 
revision 

Sig pre/post gains n/a  

K: Gerard et 
al. (2016). 
ICLS  

Annotator + KI  
KI, 2 rounds 
—- 
Photosynthesis 

Annotator + KI made 
greater revision gains 

Annotator + KI greater pre 
to post gains; Annotator + 
KI greater revision gains 
on posttest revision essay 
  
Students who made 
integrated revisions when 
revising, made greater pre 
to post test gains 

High prior 
students more 
likely to 
integrate ideas 
when revising 
on KI revision 
item. 

L: Gerard & 
Linn (2022). 
Computers & 
Education 

KI 2 rounds v. 
Annotator + KI 
—- 

Annotator + KI more 
effective on revision gains; 
Annotator + KI  resulted in 
more integrated revisions  

Annotator + KI greater 
revisions on posttest KI 
revision item 
 

Annotator + KI 
more effective 
for low prior on 
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Photosynthesis, 
Plate Tectonics 

embedded and 
KI revision item 

M: Linn & 
Gerard (in 
press) This 
Paper 

Annotator + KI, 2 
rounds 

Annotate own explanation 
vs. Annotate fictitious 
student explanation 

Both conditions revise, 
gain on KI revision item; 
Annotate fictitious student 
greater revisions 

Fictitious 
student 
condition 
created more 
unique labels. 

 

Refinement of Guidance 
The initial studies established that our KI guidance was as effective as guidance from 
experienced teachers and more effective than typical guidance or completion guidance. In our 
refinement studies we sought to improve on the initial designs (Table 2, rows E-H).  

Specific Guidance. We explored the role of KI versus Specific guidance where students were 
told the right answer (Vitale et al., 2016). Consistent with other research on learning, we found 
that specific guidance was as effective as KI guidance during instruction and that KI guidance 
was more effective than specific guidance for promoting durable understanding as measured by 
a delayed posttest (Richland et al., 2007). 

Types of Revisions. We analyzed the types of revisions students made and found that they 
were often superficial. Students added ideas rather than thoroughly integrating the new 
information (Tansomboon et al., 2017). These findings are consistent with related research on 
writing and revision. When given feedback from teachers or peers, using technology tools such 
as collaborative Google Docs, students most often make minimal or superfluous changes to 
their science explanations (Freedman et al., 2016; Sun et al., 2016; Zheng et al., 2015; Zhu et 
al., 2020). Learners tend to make changes to spelling and grammar rather than to revise for 
meaning (Bridwell, 1980; Fitzgerald, 1987; Strobl et al., 2019; Zhu et al., 2020).   

Transparency about Guidance. Some students did not recognize that the guidance was 
personalized and dismissed it (Tansomboon et al., 2017). Students’ uncertainty about whether 
the guidance was personalized is consistent with beliefs about computers when the study was 
conducted. To help students appreciate that the guidance was personalized to their ideas we 
made the NLP process more transparent. We added student names to the guidance. We 
explained how the computer read their response, compared their response to the responses 
from 1000s of other students of the same grade level, and then selected guidance to address 
their distinct science ideas. We found that the transparent guidance condition led to greater 
rates of revision particularly for students who initially displayed low prior knowledge 
(Tansomboon et al., 2017). This extended prior research suggesting that when students are 
challenged, they are more likely to engage and persist if they perceive the guidance they 
receive as connected to their reasoning (Shute, 2008). We altered the KI guidance interface to 
always provide transparent guidance.  

Reflection on Refinements. Analyzing the overall effectiveness of guidance in these 
refinement studies, we noted that although the KI guidance helped many students to integrate 
new evidence into their explanations and strengthen the links among their ideas, there were 
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limitations. Many students still struggled to use the guidance to revise their arguments--only 
about half of the students were able to make productive revisions (Gerard et al., 2016). In one 
study, over 50% of students who received automated guidance either did not revise their 
answers or only made surface-level changes without adding a new idea (Tansomboon et al. 
2015). In addition, integrating new ideas when revising was most challenging for students who 
initially displayed low prior knowledge (Gerard & Linn, 2016b). This resonates with prior 
research findings that when confronted with contrasting evidence, students tend to ignore the 
evidence and restate their own perspective, consistent with confirmation bias (Clark & Chase, 
1972; Höttecke & Allchin, 2020). Further, in student interviews conducted during guidance 
studies, some students reported that they preferred their teacher’s guidance over the automated 
KI guidance because their teacher gave feedback that was specific to their response.   

Combining Teacher and Personalized Guidance 
To address the challenges faced by low prior knowledge students we tried alerting teachers to 
guide students who were stuck (Table 2, rows I-J). The partners decided on the conditions 
under which they wanted alerts. Typically, teachers wanted alerts when students made two 
attempts at revision without any progress or continued to express vague ideas (level 2 on KI 
rubric). We designed alerts which showed up on the students’ computer screen. Teachers could 
see the alert as they circled the classroom. Students could keep working while the alert showed 
on their screen, and the teacher could come to talk with the student about the item (Gerard & 
Linn, 2016a). We found that the alerts led to gains in one school and not in the other school, 
suggesting that the process needed fine tuning. 

Analyzing Revision Strategies and Modeling Revision 
Our initial analysis of the nature of student revisions suggested the need for deeper 
understanding of how students were envisioning revision. We systematically investigated how 
students were revising their science writing based on the KI guidance, and what kinds of 
revisions to science arguments led to building coherent, long term science understanding (see 
Figure 1). To characterize how students revised their science writing based on the KI guidance, 
we analyzed students’ writing in their initial and revised explanations and identified what 
changes, if any, students made to their writing (e.g. Gerard et al., 2016; Tansomboon et al., 
2017).  

In this coding process we noticed qualitatively different patterns in the kinds of revisions 
students were making after they received KI guidance. Specifically, some students made 
integrated revisions while others tacked on ideas or did not revise at all. Those who integrated 
ideas when revising during instruction, were also making greater pre to post test gains (Gerard, 
& Linn, 2016a; Tansomboon et al., 2015). We developed an emergent coding scheme that 
captured the patterns we observed:  those who integrated new ideas when revising their writing, 
those who integrated redundant ideas or paraphrased what they had said initially, those who 
added new but discrete ideas, and those who made no changes at all (see Figure 1; Gerard & 
Linn, 2022).  In coding students’ writing revision strategies, we evaluated only the changes in 
the students’ science writing, not the scientific accuracy of the change. Consistent with the KI 
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pedagogy, we hypothesized that making connections among ideas would be a more productive 
learning strategy than accumulating more discrete ideas or not refining the ideas at all.  

We found that the type of revision strategy impacted learning outcomes (Tansomboon et al., 
2017; Gerard et al., 2016). For example, in one study students wrote a short essay in a 
photosynthesis unit and received one round of KI guidance. We coded students’ initial and final 
(after receiving the guidance) short essays in the unit, and student responses on pre/post test 
short essay items using knowledge integration rubrics. We found that students who integrated 
ideas when revising their essay during instruction made greater pre to posttest gains on the 
short answer items than those students who added ideas when revising on the essay activity 
during instruction, or those who chose to make no changes at all. The difference in pre/post test 
gains between those who integrated ideas and those who did not, was significant on the Energy 
Story pre/post item (Integrated n=181, M=.81, SD=1.16; Did Not Integrate n=159, M=.43, 
SD=.96; t(338)=3.19, p=.002). These results suggested that the students who made no attempt 
to integrate ideas lacked a model of the revision process.  

Figure 1: Type of Revision Response to KI Guidance (Gerard & Linn 2022). 

Description Initial Response Revised Response [bold italics is revised idea] 

No Revision   

Integrated New 
 
Connects new 
idea(s) to initial 
ideas. The new idea 
builds on what was 
stated in initial 
response, by 
elaborating, 
extending, or 
contrasting.  

Heat goes up into the atmosphere 
then cools down then goes back 
down into earths core and repeats 
the process. 

Heat goes up into the atmosphere where the density 
is higher then cools down then goes back down into 
earths core where it is less dense and repeats the 
process. 

 
The heat makes it less dense, as it 
flows away from the heat source it 
becomes less dense. It comes back 
down to the heat source after being 
in circulation. 

The heat makes it less dense, as it flows away from 
the heat source it becomes less dense. It comes back 
down to the heat source after being in circulation. The 
reason it goes from top to bottom is because it 
looses its density as it goes to the bottom. When it 
looses its density it gets lighter and floats to the 
top. When it gets heavier it sinks to the bottom. 
The process is ongoing. 

Integrated 
Redundant 
 
Adds an idea that 
repeats initial idea or 
paraphrases; does 
not add new science 
idea.  

The bottom of the lamp is hot like 
the core. The blob is like the 
convection currents. At the bottom 
the blob is heated becoming less 
dense floating to the top. At the top 
it becomes less dense and goes 
back down. 

The bottom of the lamp is hot like the core. The blob is 
like the convection currents. At the bottom the blob is 
heated becoming less dense floating to the top. At the 
top it becomes less dense and goes back down. Like 
the convection current in goes up and goes back 
down. 

I think a lava lamp works by the 
heat in the lamp causing the blobs 
to go up word and then it gets more 
dense and then when the blobs go 
down it gets less dense. 

I think a lava lamp works by the heat in the lamp 
causing the blobs to go up word and then the density 
increases and then when the blobs go down it gets 
less dense. 
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Disconnected New 
 
Writes entirely new 
response. Or, adds 
new idea with no edit 
to initial response, 
that does not connect 
to initial idea(s). 

The heat from the lava lamp makes 
the blobs less and causes it to 
move easily. It's similar bc in earth's 
mantle it slowly comes out like a 
lava lamp 

When it's too hot at the bottom, it goes up, gets 
too cold, and goes back down, like a cycle. 

We think that the blob of colored 
fluid goes up because of heat and 
density. Heat makes density less 
dense and density is what brings up 
the fluid. 

We think that, the blob of colored fluid goes up 
because of heat and density. Heat makes density 
less dense and density is what brings up the fluid. 
There is also more density on the top with low 
heat and less density on the bottom and high heat 
on the bottom. 

 

The Annotator. The challenge that integrating ideas posed for students suggested that some 
students were not sure what revision looks like. We designed the Annotator (See Figure 2) to 
provide students with an interactive model of integrated argument revision. The Annotator asks 
students to help a fictitious student make decisions about revision by placing premade labels on 
the students’ response. The student also has the opportunity to author their own labels to guide 
the revision. An initial study of the Annotator showed that combining one round of adaptive KI 
guidance with one round of the Annotator was more effective in promoting integrated revision, 
especially for students who initially expressed “unintegrated ideas” and hence had received low 
KI scores (1 to 2), than providing multiple rounds of adaptive KI guidance (Gerard  & Linn, 
2022). 

These findings documented the importance of providing a model of the revision process, 
especially for low prior knowledge students. When learners had the opportunity to select and 
place labels on the response of another student, they were more likely to revise their own 
response. Indeed, students often remarked that they were using the same strategy they used to 
choose a label when revising their own explanation. For example, one student reflected on their 
use of the Annotator in the Plate Tectonics unit: “This way [the Annotator] gets your brain on 
what you need, like what she [fictional peer in Annotator] does not have…Placing the labels was 
useful [to revising in the next step] bc it had many things i didn’t think about.” Another student 
reflected on their use of the Annotator in the Photosynthesis unit: “I realized I needed to expand 
more what I wrote.” Another student expressed: “It helped set up a structure for my writing. I 
went back to our writing and thought about those questions.” Across the student interviews, 
across unit contexts, students reported how their experience using the Annotator helped them to 
notice gaps in their explanation, or to recognize a new idea they held to strengthen the links in 
their explanation.  

An Experiment: Peer versus Self Annotator 
To better understand the mechanisms underlying the benefit of the Annotator and to continue to 
refine the Annotator with a focus on fostering self-directed learning in revision we designed a 
version where students annotated their own response. We hypothesized that placing the 
pre-authored labels onto the explanation was the central mechanism promoting integrated 
revision. It (a) modeled for the student the process of distinguishing which key ideas in an 
explanation are missing by evaluating the response using the ideas in the labels and (b) 
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modeled how to link new ideas with existing ideas by determining where to place the labels onto 
the written response. It appeared that students could then apply this approach to their own 
explanation when using the KI guidance. To test this idea, we designed an iteration of the 
Annotator to support the student to annotate their own explanation - rather than a fictional peer’s 
- with pre-authored labels. We conjectured that this may increase students’ sense of autonomy 
and hence self-directed learning in the revision process while also promoting integrated 
revision. 

We studied the impact of the self- and peer-annotations in an unpublished study. Students were 
asked to place pre-written labels on sections of an explanation to suggest areas for change or 
improvement. They were also given the opportunity to make self-constructed labels. The 
pre-written labels were designed to elicit evidence central to explaining the phenomenon that is 
most often missing in student explanations.  

For example, an explanation prompt embedded in a unit on Plate Tectonics asks students to 
explain how Mt. Hood was formed (given a photograph of Mt. Hood on the Pacific coast). A 
pre-written label in the Annotator for a fictional peer’s response to the Mt.Hood explanation, 
says “Think about plate density. Check out the graph in Step 2.5”, since many students leave 
out this idea and it is central to understanding how the plates interact. Selecting the relevant 
labels and placing them in the written response encourages distinguishing of ideas in the 
response and in the labels, and the integration of new and prior knowledge, rather than novice 
practices of tacking on disconnected information. We compared this new version of the 
Annotator intended to strengthen student agency in revision to the initial Annotator design 
involving peer annotation. We hypothesized that instantiating the student’s own essay in the 
Annotator would encourage students to view their essay as a scientific product and attend more 
carefully to each expressed idea, the connections among them, and possible gaps. Flower and 
Hayes (1980) showed that when students succeeded in analyzing the structure and argument of 
their essay, they were capable of making valuable revisions to their reasoning. (See Figure 2.) 

Figure 2: Annotator tool to support revision. Students move pre-written labels to suggest 
ways an explanation can be improved. Students can also create their own labels. 
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Methods. 5 teachers from 3 schools and their 678 7th-grade students participated. All students 
used the WISE Plate Tectonics unit (wise.berkeley.edu). For two activities embedded in the 
Plate Tectonics unit, all students wrote an explanation. Each prompt called for students to 
connect ideas about plate boundary interactions and convection to explain volcano formation. 
After writing their argument, when students moved to the next step, they were randomly 
assigned using the WISE branching technology to one of two conditions: (a) annotate their own 
argument or (b) annotate a peers’ argument.  
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In the Peer-annotator version, an explanation by a fictitious peer named Sara was pre-loaded in 
the Annotator (Table 3). A peer explanation was selected at a KI level 3, to reflect a common 
student idea and missing evidence, making it generative for critique. The labels were 
pre-designed to be personalized to Sara’s explanation, meaning that they elicited evidence 
which would link to an existing idea in the explanation. The pre-designed labels asked: (a) Add 
evidence about plate density. Check out the graph in Step 2.5, and (b) Add details about how 
the plates interact. Check out the animation in Step 2.6. The instructions also encouraged 
students to write their own label if they have another comment. 

In the Self-annotator version, the student’s written explanation was automatically imported into 
the Annotator (Table 4). The same pre-designed labels as in the ‘Peer-Annotator' version 
appeared to the right of their explanation. While the labels were personalized to Sara’s 
explanation, the labels raised key concepts that were general enough that we hypothesized one 
or both of the labels could likely be applied to improve most student written explanations. 

In both conditions, students used labels to address gaps or inaccuracies in the explanation; 
revised their own work; and then had one opportunity to receive personalized KI guidance for 
their explanation and revise again. Students completed a pretest and a posttest before and after 
the unit with an item that called for students to write and revise. All students’ written arguments 
were scored using 5-point knowledge integration rubrics that reward students for scientifically 
accurate links among ideas.  

Findings. Use of the Annotator to Critique Arguments. We analyzed the students' annotations 
from one teacher in each of the three schools. Students were better able to identify and 
remedy gaps with scientifically accurate suggestions when annotating a fictional peer’s 
explanation than when annotating their own. Student annotations in the peer-annotator 
condition were scored significantly higher, than those in self-annotator condition 
[Peer-annotator, M=2.03, SD=1.03; Self-annotator, M=1.33, SD=1.15; t(282)=5.47, p<.0001].  

Students reported that the peer-annotator enabled them to gather new ideas. As one student 
stated: “I like revising the classmates and ours was hard to revise because we’re the ones who 
made them”. Another student commented, “I reviewed Sara's and so then I just added a 
sentence [to mine] because it gave me more information and then I put that into my own words”. 
As seen in Table 3, the student added a new idea to their explanation about plate density after 
prompting the fictional peer Sara to consider this same idea.  Teachers echoed the student 
perspective, noting that students were more likely to critique a peer’s explanation than their own 
as they presume their own response is correct, and particularly for students with initially vague 
ideas, they may also be uncertain of what criteria to use to evaluate their own explanation. 

In both Annotator conditions, students were given two pre-authored labels to use in annotating 
the argument, and they were also instructed to create their own new label if they identified an 
additional gap in the argument. Students in the peer-annotator condition were significantly more 
likely to create new labels during annotation (33% of students), than students in self-annotator 
condition (18%) [X2(1)=7.36, p=.007]. For example, in Table 3, the student created a new label 
“add evidence about how the plates move differently from in 2.1”, prompting the fictional peer to 
consider how oceanic and continental plates interact differently than two continental plates 
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colliding. We coded the type of label students generated as either (a) general (e.g. add more), 
(b) add a new idea (e.g. what about convection currents?), or (c) fill a gap to clarify the 
mechanism (e.g. why does heat cause molecules to become less dense?). In both conditions, 
students primarily generated labels focused on filling a gap to clarify the mechanism in the 
explanation [peer-annotator, 72% of labels; self-Annotator, 68%]. Taken together, the analyses 
suggest that annotating a fictional peer’s explanation may lead to greater student engagement 
in evaluating the ideas in a scientific argument, and in generating mechanistic ideas to 
strengthen the argument.  

Table 3: Peer-Annotate Condition, Example of Student Writing, Annotation and Revision. 

Event Student Work 

Initial explanation Initial: The mountain range was probably formed by the Oceanic crust and 
Continental crust push against sediment that goes up. That sediment then 
turns into a mountain. 

They place the labels where 
Sara should add the 
suggested ideas. They also 
add their own label 
encouraging the student to 
distinguish how this type of 
plate interaction, is different 
from the interactions that 
occur at a transform boundary 
and divergent boundary, as 
explored in Step 2.1 

 

After annotating Sarah’s 
explanation, they revised their 
explanation. They added a 
new idea to their explanation 
that they had previously 
recognized was missing in 
Sara’s explanation, based on 
their placement of the labels.  

Revised 1: The mountain range was probably formed by the Oceanic crust and 
Continental crust push against sediment that goes up. They push becuase 
one is more dense then the other,one goes under the continental crust. 
That sediment then turns into a mountain. 

The student then received 
adaptive KI guidance for 
their explanation. 

Adaptive KI Guidance: Elliott, add details to your explanation. How does the 
density of the two plates affect their movement? Check out for a hint. Then, 
expand your explanation. 

They further revise their 
explanation, clarifying the 
plate interactions due to their 
differing densities.  

Final explanation: The mountain range was probably formed by the Oceanic 
crust and Continental crust push against sediment that goes up. They push 
because one is more dense ,the oceanic crust goes under the continental 
crust,pushing the continental crust up. The crust then forms a 
mountain. 

 

Table 4: Self-Annotate Condition, Example of Student Writing, Annotation and Revision. 
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Event Student Work 

Writes explanation mid-way 
through the Plate Tectonics 
unit 

Initial Explanation: This mountain range near the seacoast was probably 
formed with continental oceanic. The oceanic crust goes under the continental 
crust. The continental crust then erupts magma from the bottom to the top. 
Then, as the lava cools, it turns into rocks, and mountains. 

The student’s explanation is 
imported into the Annotator, 
with pre-authored labels on 
the side. In this case the 
labels hence are well 
aligned to gaps in the 
student’s explanation. They 
place the labels in their 
explanation to indicate 
where to make a link to 
evidence. 

 

After the student annotated 
their own explanation, they 
incorporated a new idea to 
strengthen the link between 
plate density and 
subduction.  

Revised explanation after using the annotator. “This mountain range near 
the seacoast was probably formed with continental oceanic. The crust push 
into each other. The oceanic crust goes under the continental crust. This is 
because the oceanic crust is denser than the continental crust, so the 
oceanic crust subducts under the continental crust. The continental crust 
then erupts magma from the bottom to the top. Then, as the lava cools, it turns 
into rocks, and mountains.” 

The student then received 
automated KI Guidance 
level 5 

Sam, nice thinking! Look over your explanation to be sure it addresses the 
density of the plates and how they interact. Revise your explanation as much 
as you think is needed. 

The student continued to 
clarify the role of density in 
plate movement.  

Final explanation. This mountain range near the seacoast was probably 
formed with continental oceanic. The crust push into each other, causing the 
oceanic crust goes under the continental crust. The oceanic crust is denser 
than the continental crust. Denser things sink, so that's why the oceanic 
crust went under the continental crust. The continental crust then erupts 
magma from the bottom to the top. Then, as the lava cools, it turns into rocks, 
and mountains. 

 

Embedded Revision Gains. Students used the guidance to significantly improve their 
explanations in the revision activity in both guidance conditions [AnnotatePeer Gain, M=.40, 
SD=.67, t(216)=8.76, p<.0001; AnnotateOwn, M=.37, SD=.68, t(218)=7.95, p<.0001]. Students 
made significant revision gains after using the Annotator in the first round of revision, and 
smaller gains in the second round of revision after receiving the KI guidance [AnnotatePeer (1st 
round) M=.27, SD=.65; (2nd) M=.13, SD=.61; AnnotateOwn, (1st) M=.30, SD=.65; (2nd) M=.07 
SD=.57]. There was no main effect for the condition, suggesting that both critiquing a peer and 
one’s own argument can strengthen student explanation writing and revising.  

Pre to Post Test Gains. Students in both conditions made significant pre to post test gains 
[Gains: AnnotatePeer M=.56, SD=.88; AnnotateOwn M=.47, SD=.80] with no main effect for 
condition. 
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Discussion. Revising explanations is central to the iterative process of knowledge building in 
science yet it is unfamiliar and challenging to most learners (Berland et al., 2016; Mercier & 
Sperber, 2011). We created the peer-annotator to model the process of revising. We designed 
labels personalized to the response and also enabled students to write their own labels. We 
created the self-annotator to directly allow students to annotate their own response by using 
the labels or writing their own.  

Our findings suggest that students benefit from a model of revision that helps them discern key 
science practice such as distinguishing criteria to critique a scientific argument. Students wrote 
more labels in the peer than the self condition, suggesting that the personalized labels in the 
peer annotator modeled revision. The peer annotator was more effective than the self condition 
for promoting revision of students’ initial response. Students reported that they were more likely 
to gather new ideas that they could then apply to their own explanation.  

This also suggests that students in the self-annotate condition did not see the pre-authored 
labels as helping them to identify new ideas to incorporate into their response. An important 
difference between the conditions was the design of personalized pre-authored labels for the 
fictional peer’s explanation. The labels for the self-annotation condition were the same as in the 
peer-annotator condition and hence not personalized to the student’s response.  

This raises a question about the design of the Annotator. One question concerns the labels. 
Would students benefit from labels personalized to the response they are annotating? Can we 
use NLP to design personalized labels for students’ own responses? Would using an NLP 
model to identify pre-authored labels for the students’ own explanation enhance the 
self-annotator condition? Personalizing the labels may support students to (a) see how the 
model of revision is aligned to their ideas and hence elicit greater engagement in the revision 
process - building on Tansomboon et al, (2017), and (b) help the student distinguish between 
their ideas expressed in their explanation and those suggested by the personalized labels to 
determine what evidence to pursue fill a gap or clarify a link, to create a more coherent 
explanation.  

A second question concerns the limitation of the model of revision in the Annotator. Do students 
need a model of the metacognitive processes of considering alternatives for revision? How 
could we design an annotator or another tool that enables students to diagnose that they need 
to distinguish among their ideas rather than tack another idea on to the explanation? Perhaps 
we can design a Metacognitive Annotator to engage students in distinguishing among possible 
revisions, some that tack on ideas and others that integrate evidence.  

Discussion: Using NLP to Improve Personalized Guidance 
Advances in NLP offer designers new opportunities to improve instruction. In our work, we were 
guided by the KI pedagogy as well as the insights of expert teachers to test and refine 
personalized guidance for KI items. We initially focused on moving students to the next level of 
the KI rubric. In our initial studies, we were able to approximate the guidance of expert teachers. 
And, like expert teachers, the personalized automated guidance had impacts and limitations. 
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The guidance significantly improved responses to the KI items. KI guidance was more effective 
than specific guidance, leading to durable understanding as measured by a delayed posttest. 

Some of the limitations resulted from the automated nature of the guidance. Students prefer the 
guidance of their teachers, often saying that their teachers were more likely to provide the right 
answer. They suspected the automated guidance was not personalized. By being transparent 
about how automated guidance was designed, we were able to reduce distrust and increase the 
impact of automated guidance.   

Some of the limitations aligned with prior research. Revision is difficult and superficial revisions 
are common. Our guidance had these same limitations. To make progress, we combined 
automated guidance with alerts to teachers about students who were struggling. This process 
has promise. We have initiated a line of work involving teacher dashboards that responds to 
teacher interest in more nuanced information about their students than simply an alert. They 
would like information about the whole class as well as about the needs of individual students 
so they can target their guidance to the needs of each student (Wiley et al., in press). 

We also did a detailed analysis of the types of revisions students made and identified additional 
opportunities to improve personalized guidance. Some students did not have a clear 
understanding of the nature of revision. We designed the Annotator to model revision. The 
Annotator was helpful, especially for students who started with low prior knowledge and 
therefore were likely to lack a model of revision. To explore ways to improve the Annotator, we 
compared the situation where students annotated the response of a peer to a condition where 
they annotated their own explanation. We found that students, as anticipated, had difficulty 
annotating their own responses, consistent with work on the limitations of metacognition. An 
important difference between the conditions was that students placed a personalized 
pre-authored label to annotate the peer explanation. We identified some directions for future 
work on a self-annotator. For example, we hypothesize that an NLP model to identify 
pre-authored labels for the students’ own explanation would enhance the self-annotator 
condition. We will also explore ways to design a MetaCognitive Annotator.   

Design Research: Reflection 
Emergent technologies offer educators opportunities to improve instruction. Finding optimal 
uses of these technologies often takes many design iterations. The iterations are informed by 
deliberations of the design research partners; analysis of the logged data that provides detailed 
insights into the interaction between student thinking, guidance, and revision; and reflection on 
the way results align with the underlying pedagogy. This paper reports on ways that NLP tools 
have been refined to improve student learning. The results show that personalized guidance 
aligned with the KI pedagogy emphasizing rewarding students to integrate their ideas has 
advantages for long term retention as well as the development of self-directed learners. This 
aligns with other work on self-directed learning (e.g., Scardamalia & Bereiter, 2006). 

This design research illustrates how partnership refinement of guidance can improve student 
learning. By combining the expertise of each partner we were able to gain insight into ways to 
promote revision. We were inspired by the excellent guidance provided by expert teachers. We 
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benefited from the insights of psychometricians to design KI items that require students to 
generate arguments and that measure how students respond to personalized guidance with KI 
revision items. We refined the adaptive guidance that both promotes revision and encourages 
self-directed exploration of scientific evidence by conducting whole partnership reflections at 
professional development workshops (e.g. Gerard et al., 2022b). We were able to realize often 
nascent ideas when the software designers brought prototypes of the Annotator, new designs 
for discussion tools, and refinements to the interactive models to partnership meetings. We 
worked closely with the NLP designers to clarify the strengths and limitations of early models 
and improve accuracy (e.g., Riordan et al., 2020). 

This design research tested forms of personalized guidance informed by KI pedagogy and  
strengthened our understanding of KI pedagogy as a result. By analyzing the ways that students 
respond to requests to integrate their ideas, this research revealed opportunities for refining KI 
design recommendations. We found that students often had no experience evaluating and 
revising science explanations, emphasizing the need for engaging students in finding gaps in 
their arguments. This resonates with earlier work on metacognitive reasoning and KI (e.g. Linn 
et al., 2004). We found that students often chose to tack on an idea rather than to distinguish it 
from their other ideas. This finding resonates with other studies of KI that revealed the need for 
more emphasis on distinguishing ideas (e.g. Gerard et al., 2020; Ryoo & Linn, 2012; Vitale et 
al., 2019). 

NLP technology has the potential to amplify the role of the teacher by providing automated 
guidance to students and identifying the learners who would most benefit from teacher 
guidance. Building on the ways that successful teachers guide students, we show how NLP 
tools implemented in ACEs can strengthen science instruction. Initially, we diagnosed student 
performance using a KI rubric and designed guidance intended to enable the student to revise 
their explanation and achieve the next level of the rubric. This was helpful but many students 
floundered or did not revise at all. Based on observations of how teachers interact with 
individual students, we can envision the potential of hybrid models of personalized guidance 
that combine NLP scoring with opportunities for teachers to continue the conversation. 
Guidance embedded in the unit can encourage the student to strengthen the links between 
different pieces of evidence to explain a phenomenon. The guidance may also serve as a 
conversation starter between teacher and student or student and peer thus combining 
automated and human guidance. Building on the findings from studies combining adaptive KI 
guidance with a teacher alert, that alerts the teacher in real-time to students whose explanation 
was scored by the NLP below a set threshold, hybrid models optimize referrals to peers, 
teachers, or an alternative approach such as a computer-student dialogue. Our current work 
takes advantage of new NLP models designed to identify specific ideas rather than KI levels 
and could support these types of dialogues (Gerard et al., 2022a).  

This design research program illustrates the process of iterative design and the ways it has 
benefitted student learning. Many challenges remain. As we noted initially, NLP can provide 
scores for student work, the challenge is figuring out what to do with the scores. 
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