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Abstract: Developing the capacity to monitor species diversity worldwide is of great
importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In
this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI)
data, combined with conventional satellite optical imagery and climate reanalysis data,
to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index)
among tree species. Data from Sentinel-2 optical imagery, ERA-5 climate data, SRTM-DEM
imagery, and simulated GEDI data were selected for the characterization of diversity in four
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study areas. The integration of ancillary data can improve biodiversity metrics predictions.
Random Forest (RF) regression models were suitable for estimating tree species diversity
indices from remote sensing variables. From these models, we generated diversity index
maps for the entire Cerrado using all GEDI data available in orbit. For all models, the
structural metric Foliage Height Diversity (FHD) was selected; the Renormalized Difference
Vegetation Index (RDVI) was also selected in all species diversity models. For the Shannon
model, two GEDI variables were selected. Overall, the models indicated performances for
species diversity ranging from (R2 = 0.24 to 0.56). In terms of RMSE%, the Shannon model
had the lowest value among the diversity indices (31.98%). Our results suggested that the
developed models are valuable tools for assessing species diversity in tropical savanna
ecosystems, although each model can be chosen based on the objectives of a given study,
the target amount of performance/error, and the availability of data.

Keywords: Cerrado; alpha diversity; GEDI; LiDAR; imagery; modeling

1. Introduction
The Brazilian savanna, also known as the Cerrado, is home to over 12,400 plant

species [1] and accounts for one-third of Brazil’s biodiversity, with a high rate of endemism,
making it the most biodiverse savanna globally [2]. The Cerrado is considered the largest
savanna in South America and is the continent’s second-largest ecosystem after the Ama-
zon, and so it plays a crucial role in global ecological processes [2]. However, this critical
biome faces significant degradation and anthropogenic pressures. As of 2022, approxi-
mately half of the Cerrado had been converted into pastureland (51.6%) or agricultural
fields (26%) [3], with only 8.2% falling under formal protection in indigenous reserves or
parks [4]. Historically, forest cover change assessments in South America have largely
centered on tropical rainforests, often neglecting regions with shorter humid seasons like
the Cerrado [5,6]. As a consequence of vegetation cover changes, tree species biodiversity
declined substantially [7], resulting in the loss of biodiversity and important ecosystem
services, such as nutrient and water cycle regulation, soil protection, and food and wood
provision [8,9].

The spatial monitoring of ecosystem structures and diversity metrics is therefore
crucial. Innovative approaches are essential in providing data that can effectively guide
conservation policies, inform climate change mitigation strategies [10,11], and support
the sustainable management of natural resources. However, the conservation of tropi-
cal savannas is challenged by the lack of detailed information on species diversity on a
regional scale.

The conservation of biodiversity in threatened ecosystems like the Cerrado requires
approaches that integrate structural and spectral data and so can overcome the limitations
of traditional methods. Floristic inventories, although detailed, are limited in scale and
incur high costs, and present challenges such as time consumption and difficulties in
standardizing reproducible procedures [12]. Optical imagery often faces signal saturation
in high-biomass areas, which hinders the accurate discrimination of vegetation structure
and composition. Remote sensing, on the other hand, offers a transformative alternative,
enabling the cost-effective mapping of species diversity across extensive areas [13–15].
Compared to traditional field methods, remote sensing provides a scalable solution for bio-
diversity monitoring and could be critical in implementing effective conservation strategies
and mitigating biodiversity losses [16].
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Several studies have explored species diversity in savanna ecosystems using remote
sensing [17–21]. However, research focused on the Cerrado remains scarce and predom-
inantly relies on passive optical data, which have limitations due to signal saturation in
areas with higher biomass [20]. In addition, most studies that used multispectral infor-
mation explored only the Normalized Difference Vegetation Index (NDVI) to assess tree
species diversity [17,19]. Other broadband VIs have been used, though more rarely [22].
Despite being widely used in vegetation and remote sensing studies, NDVI saturation
capacity affects the discrimination of vegetation structure and composition as leaf area
index peaks [23]. However, conventional passive optical imagery from air- and space-borne
platforms have limited applicability, as these data are not directly sensitive to vertical
vegetation structure [24].

Active remote sensing, particularly LiDAR technology, has proven effective in accu-
rately measuring spatial and vertical vegetation structures [10,25,26]. Airborne LiDAR has
yielded highly accurate results for assessing species diversity [13,27–30]. However, most of
these studies used airborne LiDAR data, which is limited by high survey costs and low area
coverage. Spaceborne LiDAR platforms like GEDI overcome these limitations, delivering
global-scale data on forest structure and biodiversity potential. Combining spaceborne
LiDAR from GEDI with optical data offers a unique opportunity to capture both the vertical
structure and spectral composition of vegetation. This approach is particularly relevant
for the Cerrado, where signal saturation in vegetation indices limits the use of optical
data alone.

The GEDI mission, launched by NASA in 2018, represents a milestone in global
observation, offering unprecedented opportunities for large-scale ecological and biodi-
versity studies. Operating from the International Space Station (ISS), GEDI provides
high-resolution data on vegetation structure, with a focus on forest biomass and diver-
sity [31]. Previous studies have demonstrated the utility of GEDI for assessing biodiversity
in savanna ecosystems, explaining up to 71% of species diversity variance in African sa-
vannas [32]. However, whether such methods can be reliably applied to the Brazilian
Cerrado remains an open question, particularly given that biome’s unique environmental
and ecological characteristics.

Furthermore, to the best of our knowledge, no study has yet proposed to assess the
combined contribution of variables from different sensors, such as spectral vegetation
indices (VIs), canopy structure, topography, and climate data. Factors such as altitude,
aspect, precipitation, and temperature all play a decisive role in the distribution of veg-
etation communities [33]; however, these factors have rarely been taken into account in
assessing species diversity. Moreover, while previous studies have predominantly focused
on African savannas or relied on limited optical data for biodiversity assessments, this
research provides a novel approach by integrating GEDI LiDAR data with spectral, climatic,
and topographic variables in order to model biodiversity indices in the Cerrado. This inno-
vative methodology not only addresses the challenges of signal saturation in high-biomass
regions but, also, offers insights into how environmental variables interact with vegetation
structure and composition on a continental scale, filling a critical gap in the literature on
tropical savanna ecosystems.

The main objective of this study is to develop and evaluate multi-source predictive
models that combine GEDI structural data with optical, climate, and topographic infor-
mation to estimate three biodiversity indices across the Cerrado: Shannon, Simpson, and
species richness. This study innovates by integrating GEDI structural data with climatic,
topographic, and spectral variables to model biodiversity indices on a continental scale.
This multi-source approach allows the exploration of environmental variable interactions
with vegetation structure and composition metrics. Additionally, we also aim to char-
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acterize large-scale species diversity across the entire Cerrado (i.e., 1.9 million km2) by
applying calibrated Random Forest (RF) models to multi-source data, then aggregating
footprint levels, then estimating three species diversity indices to a 1 km resolution grid
across the biome.

2. Materials and Methods
2.1. Study Area

The study area spans the states of Minas Gerais and Goiás, covering the savanna forest
strips in the Cerrado, Brazil (Figure 1). The area is divided into two land management
regimes with different land-use practices: communal areas (University Federal of São João
del-Rei-UFSJ-1 km2); and protected areas (Serra do Cipó National Park-CNPK-316 km2,
Chapada dos Veadeiros National Park-CVNPK-2.406 km2, Paraopeba National Forest-PNF-
2 km2).
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(DGNSS). Each tree was taxonomically identified, and its height (ht, in m) and diameter 
at breast height (dbh, in cm) were measured using a clinometer and diameter tape, respec-
tively. To ensure reproducibility, three diversity indices (species richness, Simpson index, 
and Shannon index) were calculated for each plot (Table 1). 

Table 1. Diversity indices used in the study and their equations, where pi is the percent cover pro-
portion of the species. 
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utes within a community: species richness and equability [42,43]. Equability refers to how 
similarly species are represented in the community. If all species have the same represent-
ativeness (or importance [42]), the equability will be at a maximum. Most diversity indices 
are said to be non-parametric as they do not depend on the parameters of a distribution. 
They usually consist of simple mathematical expressions involving the relative abundance 
of each species in the sample [44]. 

The Shannon–Wiener diversity index, represented by H’, is calculated based on the 
number of individuals in each species and the total number of individuals sampled. As 
one of the most frequently used diversity indices, it is sensitive both to species’ rarity and 

Figure 1. (a) Spatial location of the Brazilian savanna (Cerrado) and study sites where UAV-lidar
and field data were collected: (b) Chapada dos Veadeiros National Park (CVNPK); (c) Paraopeba
National Forest (PNF); (d) Serra do Cipó National Park (CNPK); (e) University of São João Del-Rei’s
Forest (UFSJ).

The PNF, UFSJ, and CNPK study sites are located in the southeast portion of the
Cerrado, in the state of Minas Gerais; the CVNPK is located in the central portion of the
Cerrado (Figure 1). Each site is characterized by different climatic, topographic, and water
regime conditions; there are also diverse vegetation formations present in the Cerrado,
which must be considered. More detailed information can be found in [34]. Overall, open
grasslands are characterized by the predominance of herbaceous species and some shrubs,
and an absence of trees. Savanna formations refer to areas with trees and shrubs scattered
over a stratum of grasses and herbs, with an absence of continuous tree canopies. Forest
formations are areas with a predominance of tree species with either a continuous or
discontinuous canopy [35].

The landscape of the CVNPK (13◦51′–14◦10′S, 47◦25′–42′W) consists of a mosaic of
diverse vegetation types [35]. Lower elevations are predominantly covered by forest
formations, while higher elevations feature montane savannas. Wet and dry grasslands,
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as well as savannas, extend between stream corridors and make up the majority of the
landscape [36]. At the northwest edge of the park, dry, deciduous forests are present,
while riparian evergreen forests dominate the southwest edge [37]. Overall, approximately
77% of the CVNPK is made up of savanna formations, with around 10% consisting of
forest fragments [38]. The CNPK displays a range of vegetation physiognomies, from open
grasslands (“campo limpo”) below 1000 m altitude to savanna formations with varying
degrees of woody cover (“campo sujo”, “campo cerrado”, and “cerrado sensu stricto”) and
forest formations (“cerradão”), all classified as part of the broader Cerrado sensu lato [39].
Additionally, the rupestrian grasslands are found at elevations above 1000 m [40].

For the characterization of the vegetation types in the Cerrado, herein, we follow the
definitions proposed by [35], which subdivide the Cerrado into open grasslands (campo
sujo, rupestrian grasslands, and campo limpo), savanna formations (campo cerrado, cerrado
sensu stricto, palm grove, and veredas, classified as wet savanna), and forest formations
(riparian forest, gallery forest, dry forest, and cerradão). In addition, the Cerrado phys-
iognomic gradient is related to environmental factors and is maintained by spatially and
temporally dynamic disturbance regimes, both natural and anthropogenic [41].

2.2. Field and Forest Diversity Data

A total of 50 square plots, each measuring 900 m2 (30 × 30 m), were measured between
June and July of 2019 for this study, representing 0.0016% of the total area of the study
sites. Plot corners were registered using a Differential Global Navigation Satellite System
(DGNSS). Each tree was taxonomically identified, and its height (ht, in m) and diameter at
breast height (dbh, in cm) were measured using a clinometer and diameter tape, respectively.
To ensure reproducibility, three diversity indices (species richness, Simpson index, and
Shannon index) were calculated for each plot (Table 1).

Table 1. Diversity indices used in the study and their equations, where pi is the percent cover
proportion of the species.

Diversity Metric Equation

Species richness (S) Number of species
Shannon’s index (H′) H′ = ∑ pi Ln pi
Simpson’s index (D) D = ∑ pi2

Species richness refers to the total number of different species in a sampling unit
and provides a direct measure of biodiversity [29]. Other diversity indices combine two
attributes within a community: species richness and equability [42,43]. Equability refers
to how similarly species are represented in the community. If all species have the same
representativeness (or importance [42]), the equability will be at a maximum. Most diversity
indices are said to be non-parametric as they do not depend on the parameters of a
distribution. They usually consist of simple mathematical expressions involving the relative
abundance of each species in the sample [44].

The Shannon–Wiener diversity index, represented by H′, is calculated based on the
number of individuals in each species and the total number of individuals sampled. As
one of the most frequently used diversity indices, it is sensitive both to species’ rarity and
abundance, and it has been used in various studies as a measure of alpha diversity [19,29].
The Simpson index is also a widely used measure of species diversity [45,46], which takes
into account the abundance and number of species present in an area and estimates the
probability that two individuals chosen at random belong to the same species.
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2.3. Remote Sensing Data

This study integrated four data sources: Sentinel-2 optical imagery, ERA-5 climate
data, SRTM-DEM, and simulated GEDI data. Data collection and processing for the first
three sources were conducted via Google Earth Engine (GEE); simulated GEDI data were
generated using the rGEDI package in R [47].

2.3.1. UAV-LiDAR GatorEye

We simulated GEDI data from the UAV-lidar 3D point cloud for calibrating species
diversity models in order to avoid the geolocation errors accrued by GEDI (~10–20 m)
and due to the fact that GEDI orbits likely did not overlay our field plots. The GatorEye
UAV-LiDAR system [48] was selected to scan our study sites for two weeks in July 2019,
almost simultaneously with field data collection. The GatorEye used a DJI M600 Pro
flight platform mounted with a Phoenix Scout Ultra core to integrate LiDAR (VLP16)
with an inertial motion unit (Novatel STIM 300, NovAtel Inc., Calgary, AB, Canada), and
centimeter accuracy differential GNSS system. A complete description of the GatorEye
system can be found in a recent study [34]; data are also available on the GatorEye website
(www.gatoreye.org, accessed on 17 December 2024). For further information, the reader is
referred to [48,49]. The autonomous flight was programmed to survey at a mean speed of
14 m s−1 at 100 m above ground level (AGL), with flight lines spaced 100 m apart. In total,
across the four study sites, we flew more than 600 km of flight lines, with a lidar swatch
coverage of 1854 hectares, which, to our knowledge, as of the flight date, is the largest area
of UAV-lidar used in a publication and the only one in this ecosystem. This mapped area
represents approximately 7% of the total study area. Validation of the simulated GEDI
data was performed by comparing extracted canopy metrics with field-measured plot
characteristics. The final merged point clouds were about 100 GB in total size and had a
very high density of approximately 450 points m−2 across all study sites [39]. In this study,
processing UAV-LiDAR 3D point cloud data involved applying the GatorEye Multi-Scalar
Post-Processing Workflow (as described in [48]), aligning flight paths, and clipping point
clouds to fit the field plots for simulating GEDI data [50].

2.3.2. NASA’S GEDI

GEDI data from the UAV-LiDAR 3D point cloud were simulated using the approach
outlined in [50]. The GEDI pre-launch planning phase involved creating a simulator capable
of replicating the characteristics of in-orbit GEDI data [51]. The simulation process involves
converting discrete-return lidar point clouds into full-waveform signals within GEDI-
sized footprints and incorporating anticipated noise levels from the GEDI instrument [52].
The signal-to-noise ratio (SNR) in the in-orbit GEDI data is influenced by factors such
as laser type (power or coverage), time of acquisition (day or night), canopy density,
and atmospheric conditions [51,53]. This simulator maintains consistency across flight
characteristics, particularly for high-density LiDAR point clouds, like those utilized in
this study, which ensures that models can be reliably transferred to in-orbit GEDI data. A
comprehensive explanation and validation of the GEDI simulator can be found in [51].

GEDI waveforms were simulated using the gediWFSimulator tool from the rGEDI
package, which introduces realistic noise levels to mimic in-orbit GEDI data. Metrics such as
canopy cover (COV), foliage height diversity (FHD), and relative heights (RH10, RH25, and
RH50, etc.) were calculated to match GEDI Level 2A and 2B products [47,54]. Although the
simulation accurately replicates GEDI’s operational metrics, it is important to acknowledge
potential uncertainties associated with these data, including noise levels and discrepancies
between simulated and actual GEDI acquisitions. Realistic noise was introduced based on
a beam sensitivity of 0.98, representing canopy cover where the ground is detected 90% of

www.gatoreye.org
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the time with a 5% false positive probability, following [51]. This was achieved with a link
margin of 4.956 under 95% canopy cover, corresponding to noise levels for the power beam
collecting data at night [55]. For ground detection and metric calculations, waveforms were
denoised and smoothed by setting the noise threshold to the mean plus three standard
deviations, with a smoothing width of 0.5 m applied post-denoising [56,57].

2.3.3. Sentinel-2 MSI

Sentinel-2 offers multi-spectral data that include four bands with 10 m spatial reso-
lution, six bands at 20 m, three bands at 60 m, and three quality assessment (QA) bands,
with QA60 serving as a bitmask band containing cloud mask information [58]. In this
study, we used Sentinel-2 level 2A surface reflectance products available in the Google
Earth Engine (Dataset ID: ee.ImageCollection (“COPERNICUS/S2_SR”)). We selected
images from 1 May 2019 to 31 August 2019, with less than 30% cloud cover based on the
“CLOUDY_PIXEL_PERCENTAGE” attribute, and combined them to reduce cloud interfer-
ence. Then, we computed the following vegetation indices (VIs): Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil-Adjusted Vegetation Index
(SAVI), Renormalized Difference Vegetation Index (RDVI), and Simple Ratio Index (SRI).

On GEE, we applied a compound median-reducing function to calculate the median
value of each image collection from May to August, i.e., the Cerrado’s dry season. The
median-reducing function removes clouds, which have high values, and shadows, which
have low values, from the image. The output composite value is the median in each band
over time. Then, we applied a clip function to group the image collections in the study
region, then calculated the indices using equations in Table 2.

Table 2. Vegetation indices derived from images from the Sentinel-2 satellite MSI sensor.

Indices Equation

Normalized Difference Vegetation Index NDVI = NIR − RED/NIR + RED
Renormalized Difference Vegetation Index RDVI = NIR − RED/

√
NIR + RED

Soil-Adjusted Vegetation Index SAVI = NIR − REDNIR + RED + 0.5 × 1 + 0.5
Enhanced Vegetation Index EVI = 2.5 × NIR − REDNIR + 6 × RED − 7.5 × A + 1

Simple Ratio SR = NIR/RED

The NDVI is one of the most commonly used remotely sensed spectral vegetation
indices and is calculated from reflectance in the near-infrared and red portions of the
electromagnetic spectrum [59]. The Enhanced Vegetation Index (EVI) was proposed by Liu
and Huete [60] to compensate for the limitations of the NDVI regarding soil background and
atmospheric interference. Generally, NDVI is responsive to chlorophyll content and other
pigments that absorb solar radiation in the red portion of the electromagnetic spectrum.
In contrast, EVI is additionally sensitive to variations in canopy structure, including Leaf
Area Index (LAI), plant physiognomy, and canopy volume, due to the incorporation of
blue band information [61,62].

The RDVI was proposed to combine the advantages of the Difference Vegetation Index
(DVI = NIR − Red; [63]) and the NDVI for low and high LAI values, respectively. The
RDVI was proposed to minimize saturation effect. The Soil-Adjusted Vegetation Index
(SAVI; [62]) was proposed to account for changes in soil optical properties. The SAVI
includes a canopy background adjustment factor L. Finally, the Simple Ratio (SR) index
was selected as it is one of the most commonly used vegetation indices [64,65]. It provides
unique information that is not available in any single band. It is used for discriminating
between soil and vegetation in the study region [66].
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2.3.4. Ancillary Data

ERA-5 climate data and SRTM-DEM provided essential ancillary variables for diversity
modeling. These datasets complemented remote sensing data by accounting for climate and
topographic variations across the study sites. We used the ERA-5 [67] and Digital Elevation
Model (DEM), obtained from Shuttle Radar Topography Mission (SRTM) data [68,69], as
ancillary data for forest diversity modeling. The ERA-5 (fifth generation) is the latest climate
reanalysis model produced by the ECMWF (European Centre for Medium-Range Weather
Forecasts) and the Copernicus Climate Change Service [70], with a spatial resolution of
31 km. This dataset is freely available and offers a detailed overview of the atmosphere. In
addition, the ERA-5 is part of GEE’s datasets, consisting of air temperature as a monthly
average at 2 m height, with data available from 1979 to present. With this method, we
selected the products “mean_2m_air_temperature”, which corresponds to the average air
temperature at 2 m height (monthly average), as well as “total_precipitation”, which refers
to total precipitation (monthly sums). These were chosen as the variables to represent the
temperature and precipitation of the study areas.

SRTM data, measured and released by NASA and the National Surveying and Map-
ping Bureau of the US Department of Defense, cover 80% of global land surface [71]. Our
research utilized the SRTM Version 3 (V3) product, available from NASA’s Jet Propulsion
Laboratory (JPL), at a 1 arc-second resolution (around 30 m). Using the code provided on
the GEE platform (https://developers.google.com/earth-engine/datasets/catalog/USGS_
SRTMGL1_003, accessed on 25 December 2024) we applied functions to directly extract
aspect, slope, and elevation for our study areas. The remote sensing candidate metrics used
in this study are summarized in Table 3. These metrics include data from multiple sources,
such as GEDI, Sentinel 2, ERA 5, and SRTM, which were selected to enhance the modeling
of forest species diversity.

Table 3. Sets of remote sensing candidate metrics for the forest species diversity modeling.

Metric Set Source Name Variables

1 GEDI RH98 + FHD + PAI + COV
2 SENTINEL 2 NDVI + SR + SAVI + RDVI + EVI
3 ERA 5 Temperature + Precipitation
4 SRTM Slope + Aspect + Elevation

2.4. Feature Selection

Feature selection is a crucial step in machine learning with two primary purposes:
(1) reducing the number of features and dimensions, thereby improving model general-
ization and minimizing overfitting; and (2) clarifying the relationships between features
and eigenvalues. The VSURF algorithm was applied to the original dataset to identify
the optimal number of variables. This wrapper-based algorithm uses Random Forest
(RF) as the base classifier [72]. Initially, feature variables are ranked by an importance
measure, and those with lower scores are removed to reduce feature count and enhance
model accuracy [73]. The process ultimately produces a ranked list of only the most
significant features.

Then, we applied an RF regression [74] for predicting diversity indices. RF has been
widely used in forest modeling based on earth observation data [26,75,76], due to its
non-parametric nature and its ability to deal with dimensionality, multicollinearity, and
overfitting [77,78]. In RF modeling, two parameters are required to construct the decision
trees. The first one is the number of decision trees that should be generated. The second is
the number of variables that need to be selected for the greatest split when the trees become

https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003


Sensors 2025, 25, 308 9 of 23

larger over a period of time (k predictor). The RF algorithm was implemented in R using
the randomForest package [79].

The bootstrapping approach was applied in order to assess the precision and accuracy
of the models. First, we completed 1000 random permutations of the original data, then
split the data to a training set and test data set. Two-thirds of the data were used to train
the models; the remaining data were used to assess the predictive ability of the models.
The strength of the relationship was assessed using the coefficient of determination (R2);
the performance of the model was assessed using root mean square error (RMSE) and bias.
All diversity measures and regressions were calculated using RStudio v1.4.17 [47]. Figure 2
shows the bootstrapping process for modeling diversity indices in the Brazilian Cerrado.
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Brazilian Cerrado: (a) Cerrado and field plots; (b) area sampling (total 50 plots); (c) from the sample-
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The diversity models were based on multi-source data from remote sensing and
in situ measurements. An overview of the methodology is illustrated in Figure 3. The
approach was divided into three phases: (1) Field surveys and calculating diversity indices;
(2) remote sensing and processing data collection; and (3) development of predictive models
and validation.
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2.5. Development and Validation of Predictive Models

In order to characterize the Cerrado species diversity indices, we carried out a series
of sequential steps. First, GEDI Level 2A and 2B (version 2) data [80,81], collected between
18 April 2019 and 1 March 2023, were downloaded for the entire vegetated area of the
Cerrado. GEDI orbits intersecting the Cerrado boundaries were identified and downloaded
from the rGEDI package using the gedifinder and gediDownload functions [60]. Next,
the GEDI footprints were masked to the vegetated area of the Cerrado based on the
MapBiomas land cover classification for the corresponding year of data collection [82]. This
procedure ensured that only pixels classified as forest, savanna, and grassland vegetation
were considered in the subsequent steps. The data were then integrated into a unified
environment. In the Google Earth Engine (GEE), optical data layers (Sentinel-2), elevation
data (SRTM), and climate data (ERA-5) were stacked using the layerstack function. The
combined data were imported into the R environment, where they were integrated with the
GEDI footprints. In this way, each GEDI footprint included not only the previously selected
structural metrics but, also, the values of the optical, climate, and elevation variables.
The footprint-level metrics were extracted using the getLevel2A and getLevel2B functions
in the rGEDI package. These metrics include key structural variables such as canopy
height, canopy cover, and the vertical profiles of vegetation structures. To ensure the
use of only high-quality GEDI data, the metrics were filtered using the “quality_flag = 1”
parameter. This filter guarantees that the selected data meet strict quality criteria, including
waveform shot energy, signal sensitivity (<0.9 over land), amplitude, and real-time surface
tracking quality [82,83]. These criteria reduce uncertainties stemming from sensor noise
or atmospheric interference, ensuring that the GEDI measurements are both reliable and
accurate. Once high-quality data were selected and pre-processed, the diversity index
models were applied at the GEDI footprint scale. Each footprint, with an approximate
diameter of 25 m, represents a localized sampling point where structural vegetation metrics
are combined with additional environmental datasets. The integration of GEDI data with
optical (Sentinel-2), climate (ERA-5), and elevation (SRTM) variables allowed for a robust
assessment of species diversity across the Cerrado biome. This integration process involved
stacking optical and ancillary data within a Google Earth Engine (GEE) environment and,
subsequently, linking these datasets to the GEDI footprints within the R environment.
By spatially aligning these inputs, each GEDI footprint became enriched with a suite of
predictor variables that enhance the accuracy of the diversity index estimates. The diversity
index estimates at the footprint level were then spatially aggregated into 1 km2 grid cells.
This spatial resolution was chosen to ensure compatibility with planned GEDI gridded
products [84] and to meet the requirements of global biomass mapping initiatives [85],
which rely on consistent and standardized data at this scale. The aggregation process
involved averaging the diversity index estimates across all GEDI footprints within each grid
cell, reducing spatial variability while providing a generalized representation of diversity
patterns at a landscape scale. Finally, the uncertainty of the diversity index estimates was
quantified for each 1 km2 grid cell. This step was essential in evaluating the robustness
and reliability of the predictions. The uncertainty was calculated by accounting for the
variability of footprints within each cell, the uncertainty associated with the Random Forest
(RF) algorithm, and the residual lack of model fit. The variability among footprints within
a cell reflects the heterogeneity in vegetation structure and composition; the RF uncertainty
captures any errors inherent in the predictive model and the limitations of the training
dataset. The residual lack of fit indicates deviations between predicted and observed
values, particularly in complex or poorly represented areas. The calculation of uncertainty
followed the methodology proposed by [50], ensuring consistency with previous studies
and providing a clear framework for interpreting the confidence of the diversity index
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predictions. By incorporating multiple sources of uncertainty, the resulting diversity index
maps deliver not only estimates of species diversity but, also, a robust evaluation of
their associated confidence, which enhances their value for ecological monitoring and
conservation planning.

3. Results
3.1. Species Diversity Indices and Remote Sensing Metrics

Different types of species diversity indices showed similar patterns in variable selection
using Variable Selection Using Random Forest (VSURF). The number of selected features
differed between different types of indices. For the Shannon index, the ideal number of
variables was five, while four variables were selected for the Simpson index and for species
richness (Richness) (Table 4 and Figure 4).

Table 4. Variable Selection Using Random Forest (VSURF) for each diversity index model.

Diversity Index Selected Variables

Shannon RDVI + FHD + RH98 + Elevation + Precipitation
Simpson FHD + RDVI + RH98 + Slope
Richness Elevation + FHD + Precipitation + RDVI
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the requirements for prediction.

The variable selection method revealed that, among the 15 candidate variables, two of
them were selected for all models. FHD was the GEDI variable selected for all diversity
models; RDVI was the spectral index from Sentinel-2 also selected in all models. Addi-
tionally, the variable selection method for the Shannon and Simpson models revealed that
GEDI metrics were more important in relation to other data sources. For these models,
FHD and RH98 were selected to estimate species diversity in the Cerrado. This shows that,
for the Simpson and Shannon models, GEDI variables represented 50% and 40% of the total
selected variables, respectively. The auxiliary variables, Elevation (SRTM) and Precipitation
(ERA-5), also proved to be important for diversity models, as they were selected in two of
the three models developed (Shannon and Richness).

In general, topographic variables also proved to be relevant for variable selection. All
models included at least one topographic variable. Terrain elevation was selected for the
Shannon and Richness models, while terrain slope proved to be important for the Simpson
model. For the 5 Sentinel-2 candidate spectral index variables, only RDVI was selected
for the species diversity estimation in Cerrado. RDVI was selected for all models. The
OOB error values decreased continuously as the variable number increased from 0 to 4 for
Simpson and Richness models, and increased from 0 to 5 for the Shannon model.
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3.2. Predictive Models for Species Diversity Indices

Overall, all models performed well during training with R2 > 0.858, RMSE < 45%,
bias < −7.94 (Figure 5). Among the three models, Richness showed the best model fit with
an R2 of 0.89; Shannon exhibited slightly lower performance with an R2 of 0.87; Simpson
demonstrated the lowest performance with an R2 of 0.85. The Shannon and Richness
indices were more accurately estimated with models, producing R2 values of 0.52 and 0.56,
respectively, and an RMSE of 36% and 54% in validation, respectively (Table 5). On the
other hand, the model that estimates the Simpson index showed low performance during
validation (R2 = 0.24), despite the RMSE percentage of this model in validation being the
lowest (35.29%) relative to the others.
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Figure 5. Training results for estimating the diversity indices (Shannon, Simpson, and Rich-
ness), using Random Forest, GEDI waveform metrics, and passive optical imaging as predictors.
R2 = coefficient of determination; RMSE = root mean square error; and bias.

Table 5. Cross-validation performance assessment in 500 iterations of models used to estimate
the diversity index (Shannon, Simpson, and Richness), using Random Forest, GEDI waveform
metrics, and conventional passive optical imaging as predictors. R2 = coefficient of determination;
RMSE = root mean square error; bias; and t.

Diversity Index R2 RMSE RMSE% Bias Bias%

Shannon 0.52 0.63 37.47% 0.07 4.44
Simpson 0.24 0.24 35.29% 0.07 10.2
Richness 0.56 5.03 53.89% −0.56 −6.02

The models tended to overestimate the values for diversity indices in the Cerrado.
The species richness model produced an RMSE of 5.03; Shannon and Simpson produced
RMSEs of 0.63 and 0.24 in validation, respectively. However, all models produced low bias
values. Shannon and Simpson both had a bias value of 0.07; Richness had a value of –0.56.

3.3. Diversity Index Characterization Across the Cerrado Biome

Species diversity indices estimates were obtained by applying the models to the in-
orbit GEDI data stacked with optical data (Sentinel-2, ERA-5, and SRTM). Estimates were
obtained for the entire Cerrado biome using GEDI footprints with a radius of 25 m. The
spatial variation of estimates of species diversity indices in the Cerrado is shown in Figure 6.
These maps allowed us to identify regions in the Cerrado with greater species diversity
(e.g., ~45◦W ~ 5◦S Figure 6(a1)) and locations with lower diversity (e.g., ~47◦ W ~ 16◦ S
Figure 6(a1)). The distribution of estimates were primarily evenly distributed for all indices
(Figure 6). The estimated mean values of Shannon, Simpson, and Richness were 0.99 ± 0.38,
0.37 ± 0.10, and 08.37 ± 2.90, respectively. The uncertainty of the predictions was evenly
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distributed across the Cerrado (Figure 7), with a pattern of lower uncertainty in regions
with more GEDI footprints (Figure 7(a2–c2)).
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4. Discussion
In this study, we were able to estimate large-scale forest diversity for the Brazilian

tropical savanna (Cerrado), using GEDI data combined with conventional passive optical
imagery from space. This study represents a first step towards understanding the rela-
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tionship between tree species diversity and the variability of multi-source remote sensing
data in the Cerrado. To date, no similar studies have been carried out in this ecosystem,
and this study suggests promising potential in using free satellite-derived structural and
optical data in combination with machine learning to map tree species diversity across
the Cerrado.

The spatial predictions of tree species diversity are scarce for savanna ecosystems.
Our results have demonstrated that the combined use of GEDI and conventional passive
optical imagery data can improve large-scale species diversity indices estimates. According
to [29], descriptors of alpha diversity such as Shannon, which is less affected by rare species
than Richness, would be more readily predicted by remote sensing data. This aligns with
our findings; however, Shannon and Richness were more accurate than Simpson. The
Simpson index gives more weight to species with higher proportions whereas Richness is
only based on species presence/absence. The addition of GEDI variables appears to have
contributed significantly to species richness estimates, as the presence of rare species in the
understory influences species richness, which might be challenging to detect using only
passive sensors. Conversely, dominant species are more easily identified. These findings
suggest that multi-source models that combine structural and optical data can be used to
map large-scale tree species diversity in the Cerrado. The greater precision of the Shannon
and Richness indices, compared to Simpson, suggests that the models are better suited for
mapping diversity on large scales, especially in complex ecosystems like the Cerrado. This
could guide conservation efforts in priority regions, maximizing the efficiency of available
resources. Moreover, the consistent performance of the indices indicates that GEDI- and
optical imagery-based models can support conservation policies by reliably identifying
biodiversity hotspots in the Cerrado.

Knowledge of the variables that contributed most to model accuracies is important in
modeling. It helps to select key variables that are robust and it reduces redundancy and
noise in the prediction and characterization of vegetation attributes [86]. Regarding the
variables selected by the VSURF algorithm, Foliage Height Diversity (FHD) proved to be
very important for all diversity models. FHD emerged as the most significant variable
for Simpson and the second most influential for Shannon and Richness, likely due to
its capacity to indicate more complex forest structures. This characteristic is particularly
relevant for ecosystems like savannas, where structural complexity varies considerably.
Structural differences between tree species provide a different directional gap probability,
which underlies LiDAR-based forest diversity estimates, and have been confirmed by
direct correlations between tree species diversity by indices and FHD derived from GEDI.
RH98 also proved to be an important variable for estimating large-scale diversity indices in
the Cerrado. Canopy height information has been evaluated as an important variable for
modeling forest parameters, such as biomass [53,86], fuel load [50], and forest volume [87],
even in studies that estimated species diversity [88,89]. GEDI metrics are thus poised to
become essential for accurately estimating tree species diversity across extensive regions
in the Cerrado. The role of metrics like FHD and RH98 indicates that LiDAR data can be
expanded to monitor the structural dynamics of vegetation in other savanna-like biomes.
This insight paves the way for developing more robust models that incorporate seasonality
and climatic patterns. Additionally, the vertical structure diversity captured by GEDI may
also contribute to fauna diversity, providing greater diversity of habitats (e.g., open fields,
tree canopies, and under canopies).

The Random Forest algorithm, although robust for capturing nonlinear relationships
and handling imbalanced data, has limitations. These include a tendency to overfit, par-
ticularly with small datasets like the one used in this study, and a lack of transparency in
the decision-making process, which makes it difficult to identify the key variables driving
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predictions. To address these issues, we employed cross-validation methods and variable
importance analysis to enhance the reliability and interpretability of the results. Perfor-
mance metrics such as R2, RMSE, and bias reveal both the strengths and limitations of
the model in predicting species diversity in the Cerrado. The Shannon index (R2 = 0.52)
demonstrated a moderate ability to explain variability in diversity, while the Richness
index (R2 = 0.56) showed slightly better results due to its simplicity in quantifying the total
number of species. On the other hand, the Simpson index (R2 = 0.24) exhibited low predic-
tive capacity, possibly due to that model’s reduced sensitivity to patterns of uniformity in
highly heterogeneous environmental areas. High RMSE values, particularly for Shannon
(0.63, 37.47%) and Richness (5.03, 53.89%), indicate significant errors that may undermine
practical applications. Additionally, bias analysis revealed tendencies toward overestima-
tion for Shannon (4.44%) and Simpson (10.2%), and underestimation for Richness (−6.02%),
highlighting the need to recalibrate the models to reduce biases and improve predictive
accuracy, especially in biodiversity conservation and management contexts.

Our findings also showed the importance of the spectral information revealed here by
RDVI from the Sentinel-2. The RDVI was strongly associated with all tree species diversity
indices derived from field data. RDVI uniquely combines the advantages of NDVI and the
Difference Vegetation Index (DVI), making it effective across a wide range of vegetation
densities, from sparse canopies to dense forests [90]. All vegetation indices tested in this
study cover the region of the infrared and red electromagnetic spectrum, which are the
wavelength regions often defined as the most relevant for studying differences in vegetation
structures [91,92]. Previous studies have found that the use of VIs is better correlated with
abundance indices (Shannon and Simpson) [19,93], but they can also partially explain [19].
Furthermore, [94] reported that spectral information is better used to explain variations in
forest structures at lower levels of biomass. The RDVI has a measurement scale that ranges
from 0 to well beyond 1, and such an open scale facilitated its ability to explain tree species
diversity in our study. Most studies report NDVI as a potential variable for forest species
diversity; however, the scale problem of the NDVI has long been recognized as limiting
its ability to detect forest canopy variation [23] and, therefore, it is not surprising that the
RDVI has greater explanatory power than the other indices.

Topographic data source was also important for the models. Elevation was important
for the Shannon and Richness models; Slope was necessary for the Simpson model. The im-
portance of elevation and slope has also been emphasized in previous studies that explored
tree species classification, which reflects their role in shaping environmental conditions
such as solar radiation exposure and water availability [95,96]. Previous studies claim that
elevation was one of the most important metrics in estimating tree species diversity [97–99].
This statement aligns with the result of the Richness model, as elevation was the most
important variable for this model. Our findings support the idea that elevation, combined
with precipitation, significantly affects tree species distribution and diversity. These studies
explored the relationship between vegetation and topographic factors and found that, with
an increase in elevation and aspect, the growth rates of vegetation also increased. In addi-
tion, as reported by [100], not all diversity indices are equally correlated with landscape
parameters. For example, species richness correlates better with landscape parameters
than the Shannon index. This is partially in line with our results, in which elevation was
important for the Richness model as well as the Shannon model. These results reinforce
those from other studies where remotely derived abiotic factors related to topographic and
edaphic properties were found to be significant predictors of tree species richness [101–103].
Additionally, precipitation, another critical abiotic variable, was integral to the Shannon
and Richness models, reinforcing its role as a key driver of biodiversity patterns in tropical
ecosystems. This suggests that remote sensing explains variations in species diversity better
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when integrated with environmental variables, given that they are also known to influence
the spatial patterns of natural resources [104,105]. Areas with higher species diversity
coincided with regions of greater topographic heterogeneity, suggesting that structural
complexity is crucial for maintaining biodiversity. However, high-diversity regions in
non-protected areas face significant risks from predatory exploitation and agricultural
conversion, underscoring the need for expanding protected areas and creating ecological
corridors to connect existing reserves and to mitigate habitat fragmentation.

Although our models have proven to be consistent for estimating and mapping large-
scale species diversity indices in the Cerrado, this study has some limitations, and the
methodology can be improved in the future. First, diversity indices were not generated
separately for different zone types (communal and protection), as described in Section 2.1.
Such an analysis could have provided more detailed insights into the differences in di-
versity patterns, based on management and conservation policies. Second, the analysis
focused exclusively on tree species, excluding understory and herbaceous strata, which
play a critical role in overall biodiversity in the Cerrado. Including these strata in future
studies would broaden our understanding of diversity patterns in this biome. Lastly, the
study did not explore beta and gamma diversity, which are essential in understanding
species variation across areas and total landscape diversity. Incorporating these analyses in
future work could offer a more comprehensive perspective on biodiversity and its spatial
distribution. In addition, the use of a small number of plots (50), as well as logistical chal-
lenges in covering all vegetation types in the Cerrado, impacted the robustness of the model.
While GEDI data capture biodiversity patterns in forest ecosystems without ancillary data,
its applicability to savanna ecosystems like the Cerrado is still uncertain, which highlights
the need for more comprehensive data. Future research should incorporate multi-temporal
datasets to account for seasonal variations, as demonstrated in savanna and forest studies,
where the timing of analyses significantly influenced diversity modeling. In this study,
median composites from May and August ensured cloud-free data but focused on the dry
season. Spectral resolution also proved essential, with additional wavelengths, such as
the red-edge band, improving the accuracy of diversity estimates. Finally, improving plot
design, e.g., by using clusters, could better capture landscape variability. Despite these
limitations, the methods developed can be applied to other tropical and savanna biomes,
contributing to global biodiversity assessments and studies on climate change. Despite
these limitations, the results provide an important foundation for understanding species di-
versity in the Cerrado and for developing conservation and management strategies. Future
studies could integrate broader approaches, such as including multiple vegetation strata
and more detailed analyses according to management zones, and by applying methods to
assess beta and gamma diversity.

Habitat heterogeneity has often been associated with species richness. Several authors
have reported strong associations between spectral heterogeneity (as a proxy for habitat
heterogeneity) and species richness [17,106]. Future studies could be concerned with
forming a more robust database by increasing the number of plots in each vegetation
type, in addition to analyzing different regions. Furthermore, future research may address
whether there are significant differences in model predictions caused by seasonality, given
that the results of research carried out in forest formations that belong to distant biomes
and are subject to different climate regimes can be quite contrasting [107]. It would also be
interesting to use new approaches to increase the quantity and coverage of canopy structure
measurements by GEDI, as the mission was programmed to collect only traces. Future
studies should also focus on other multi-spectral vegetation diversity indices, including
those extracted from red-edge bands, as they enable the recording of subtle differences in
leaf structure and chlorophyll content [108,109].
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Statistically rigorous methods for communicating results quickly to the scientific com-
munity, government, industrial stakeholders, and the general public are a critical element
of successful biodiversity integrity monitoring programs [110–113]. Understanding tree
species diversity status in biodiversity conservation is crucial, as it provides management
with the necessary baseline information about tree species distribution in a given ecosystem,
which is essential in planning and management. This type of information is of great impor-
tance for the Cerrado, which has been subject to intense predatory exploitation: countless
animals and plants are at risk of extinction, and only 8.21% of the total area of the territory
is legally protected by conservation units. As suggested by [32], we also believe that future
research should focus on the transferability of structure-diversity models to other regions
and continents in order to more precisely establish the potential of this method in various
biomes. Topics such as the assessment of biodiversity loss in ecosystems are extremely
important and could be better explored. The information derived from our approach may
open new opportunities for future studies of global importance.

5. Conclusions
We developed a new workflow for large-scale tree species diversity mapping for the

Brazilian tropical savanna (Cerrado) combining GEDI, optical, and environmental data.
Three multi-source models were developed to estimate large-scale tree species diversity
indices in the Cerrado. The Shannon and Richness indices were more consistent than
the Simpson index in evaluating tree species diversity in the Cerrado. GEDI metrics can
capture information related to vegetation structures and significantly improve the accuracy
of tree species diversity estimates and mapping. The RDVI vegetation index was selected
for all models, confirming our hypothesis that spectral information contributes to the
description of species diversity. The elevation and slope variables were also necessary
for composing the models; precipitation was more favorable for predicting the Shannon
and Richness indices. Remote sensing provides systematic spatial and temporal data on
vegetation attributes, which can be assessed on a large scale. Our findings will contribute
to the identification of locations with high and low species richness, and an abundance of
shrubs and trees, through remote sensing data. The maps provided in this study will be
valuable for the assessment and management of tree species diversity in the Cerrado. Given
the Cerrado’s status as a biodiversity hotspot, as well as its vulnerability to anthropogenic
pressures, our findings underscore the importance of leveraging advanced technologies
like GEDI to ensure its sustainable management and conservation.
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