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Abstract

Traditional climate classification and weather typing systems are not designed to understand and prevent heat illness, or to
design effective cooling strategies during extreme heat. Thus, we developed the Heat Stress Compensability Classification
(HSCC) combining open-source historical weather data (2005-2020) with biophysical modeling of a standard human, in
the sun or shade, during peak city-specific hot hours on the top 10th percentile hottest days in 96 U.S. cities. Four categories
of uncompensable heat stress (UHS)—which can result in rising core temperature—were established based on the rela-
tive constraints of dry and evaporative heat exchanges for achieving heat balance in proportion to constant metabolic heat
production (112Wm™2). Results show that 88.7% of these peak-hot hours meet the UHS criterion, and 41% present a dry
heat gain of 70 to 150Wm~2 while allowing a maximum evaporative loss between 90 and 140Wm™2. Evaporative heat loss
constraints dominate the eastern U.S. Dry heat gain was widespread, yet particularly high in the south and southwest. Full
shade reduces UHS frequency to 7.6%, highlighting the importance of quality shade access and accounting for radiative
load in heat stress assessments. Although there are five distinct categories (one compensable and four UHS), the HSCC is
dynamic and customizable, providing actionable information on thermal variations within a given category. These variations
depict the reason for UHS (e.g., limited evaporative cooling) and, thus, how to concentrate cooling efforts, particularly at the
limits of physiological adaptability. Findings facilitate developing targeted criteria for heat stress reduction with potential
global applications.

Keywords Heat Stress Compensability Classification (HSCC) - Extreme heat - Uncompensable Heat Stress - Climate
Classification - Mean Radiant Temperature - Biophysical heat-exchange model

Introduction

Various classification or categorization systems are used
to identify climate regions connected to vegetation and
hydrology (Holdridge 1947; Koppen 1884; Thornthwaite
1948), building energy use (Bai et al. 2020; Walsh et al.
2017a, b), and various public health applications (Liss
et al. 2014). These systems explain expected environmen-
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human or natural systems. Climate classification systems
guide regional building design by distributing spatial
energy and water efficiency criteria, thus upholding indoor
School of Computing and Augmented Intelligence, Arizona comfort. For the specific case of the United States (U.S.),
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based on the International Energy Conservation Code
zoning, the Building America program updates climate
zone designations (Antonopoulos et al. 2022; Lstiburek
2000). Yet, no system exists to express weather or climate
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variables for environmental health applications, such as
to analyze extreme heat by location identifing the envi-
ronmental heat stress and associated physiological strain.
Extreme heat is a well-known and increasing physical
hazard globally, with increased prevalence linked to climate
change and urban growth (Perkins-Kirkpatrick and Lewis
2020), further challenging the ability to cope with anoma-
lous heat extremes (Krayenhoff et al. 2018; Nazarian et al.
2022; Vecellio et al. 2023). Like other hazards, extreme heat
events are described by intensity, scale, timing (i.e., sea-
sonally), and duration based on local climatology (e.g., see
Table 1 in Barriopedro et al. 2023). Health impacts of heat
are often recorded daily or across a heatwave, yet physi-
ological effects from high heat exposure can occur on sub-
daily and hourly time scales (Baldwin et al. 2024). These
impacts will differ based on a person’s exposure to tempera-
ture, humidity, sunlight, and airflow, as well as their activity
levels and clothing. Moreover, research highlights that the
physiological underpinnings of heat strain in a humid heat
versus a dry heat differ (Foster et al. 2021, 2022a, 2022b;
Vanos et al. 2023; Vecellio et al. 2022). Finally, heat impacts
are more dangerous for certain groups of people, such as
those more sensitive due to older age, lack of acclimatiza-
tion, low fitness, medication usage, and/or co-morbidities
(Ebi et al. 2021; Larose et al. 2013; Wolf et al. 2023).
Hence, climates can be classified not only by their
impacts on environmental and built systems (Gupta et al.
2023) but also by their probable physiological effects on
humans, supporting an improved understanding of health
outcomes and suitable behaviors by sub-population, time of
year, location, intensity, etc. For example, specific behavio-
ral adaptations for heat relief (e.g., fan use) across varying
climates and cultures require explicitly characterizing the
thermal environment and exposure for particular popula-
tions (Manu et al. 2016; Morris et al. 2021). Such behavioral
adaptations are increasingly necessary when the body cannot
physiologically cope with heat (i.e., under uncompensable
heat stress—UHS). Nevertheless, few studies differentiate
“types” of heat geographically applied to people’s health and
potential physiological responses. Weather typing systems,
such as the Spatial Synoptic Classification (SSC) (Sheridan
2002) and the Global Weather Typing Classification (Lee
2020), categorize daily weather by temperature and humid-
ity, yet are not applied to individual physiology. In the SSC,
the “plus” categories (or warmer than normal) have even
been added to the tropical categories to delineate “extreme”
conditions (Sheridan 2002). The spatiotemporal relativity
of these systems provides indirect measures of seasonal and
regional acclimatization for localized populations during
extreme events, thus helping to describe weather and health
interactions (e.g., Greene et al. 2011, Vanos et al. 2015,
and Fonseca-Rodriguez et al. 2023). However, such studies
are more epidemiological in nature, and the classification
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systems were not created with any direct physiological
implications in mind.

Several heat or thermal stress indices have historically
provided numerical representations of thermal stress using
meteorological inputs (de Freitas and Grigorieva 2015,
2017; Ioannou et al. 2022). Yet many metrics are static in
their application over space and time and do not allow for
the inclusion of personal attributes complexities (as out-
lined in Grundstein and Vanos (2020), Guzman-Echavarria
et al. (2022) and Simpson (2024)). Further, those indices do
not provide information on reasons for heat loss restriction
from the body and thus do not support the implementation
of effective cooling strategies. Instead, a biophysical human
heat exchange approach allows the determination of UHS by
partitioning the different heat avenues to and from the body.
UHS is a condition that occurs when the body’s evaporative
cooling requirements cannot be supported due to environ-
mental or other factors (including low sweat production)
impeding the body’s ability to cool (Bouchama et al. 2022;
Leon & Bouchama 2015). Importantly, this approach can
be applied across diverse subpopulations and climates, both
indoors and outdoors.

Here, we introduce a new classification system—the Heat
Stress Compensability Classification (HSCC)—a weather-
based characterization of extreme heat using the biophysical
heat exchange principles underpinning UHS. The system is
applied to 96 cities in the U.S. during the peak hot hours
for the city-specific hottest 10% of days, as defined by the
90th percentiles exceedance of daily maximums of dry-bulb
(T4,) and wet-bulb (T,,) temperatures from 2005-2020. The
classification goes beyond a unidimensional “yes/no” for
extreme heat by discriminating between different types of
“hot days” based on the factors contributing to UHS. There-
fore, this approach serves as a bridge, translating extreme
heat exposure into actionable knowledge by identifying the
primary causes of unsafe heat gain leading to UHS (such
as high humidity or excessive radiative load) and providing
direct guidance to minimize the risk of people reaching a
non-compensable state.

Materials and methods

In this study, we developed and applied a UHS classification
using open-source long-term weather data from 96 U.S. cit-
ies. We categorized the hottest hours of the 10% hottest days
as defined by both 7, and T, between 2005 and 2020 for a
person with body characteristics equivalent to the Universal
Thermal Climate Index (UTCI) assumptions (details in “Physi-
ological details for categorization application” section) while
sun-exposed or in the shade. The cities were first selected to
capture the most populated metropolitan areas in the U.S.
(> 1 M population) and later based on nationwide geographical
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coverage. See Table S1 and Figure S1 for city metadata. The
methods used in this study are divided into three main steps:
data preprocessing, data filtering (i.e., subsetting) to apply the
categorization, and the HSCC categorization itself.

Climatic data preprocessing

Inputs of 7, atmospheric moisture (P,, water vapor pressure),
wind speed (w,), and mean radiant temperature (7)) reach-
ing an individual must be known to discern if the exposure to
that thermal environment leads to UHS and within what UHS
category (Fig. 2). Additionally, we included T,, to identify hot
days, as we are interested in the most oppressively hot condi-
tions beyond 7, (“Hot days selection” section). Intending to
use long-term weather records and freely available data, we
combined airport weather station data and estimated 7 from
modeled solar radiation (outlined below). T, relative humid-
ity and atmospheric pressure were taken from HadISD.3.3.0-
global sub-daily station dataset version v331_202301p (Dunn
2019), available at https://www.metoffice.gov.uk/hadobs/had-
isd/. These values were used to estimate T,, with the Davies-
Jones method (Davies-Jones 2008) and P, as our humidity met-
ric (Baldwin et al. 2024). We assumed a constant wind speed of
0.3 m/s to isolate differences in UHS from temperature, humid-
ity, and solar radiation. Future work will assess the sensitivity
of UHS upon changing wind speeds (e.g., Foster et al. (2022a,
b); Morris et al. (2021)).

Global horizontal irradiation (GHI), direct normal irra-
diation (DNI), and diffuse horizontal irradiation (DHI)
were obtained from the National Solar Radiation Data-
base (NSRDB) (Sengupta et al. 2018), given that standard
weather stations do not provide solar radiation or T,y in
their records. NSRDB dataset is obtained from satellite-
derived atmospheric and land surface properties using
NREL’s Physical Solar Model (PSM). We used the PSM
V3.1 (4 X 4 km grid) version available at https://developer.
nrel.gov/docs/solar/nsrdb/psm3-download/.

Mean radiant temperature estimation

We calculated T, assuming that estimates will be repre-
sentative of an open space with no close obstacles (sky view
factor=1) over a flat weathered concrete surface with albedo
a = 0.186, similar to the concrete roof surface in Vanos et al.
(2021) and emissivity €,= 0.92, like the C002 material in
Kotthaus et al. (2014). Ty, estimates were obtained from a
mean radiant flux density approach as a weighted combina-
tion of 6-directional short- and long-wave radiant fluxes to a
standing man using the Stefan-Boltzmann law (Hoppe 1994;
VID 1994) (VID 1994) adapted from Middel et al. (2023).
Appendix A describes the process to estimate 7z, and
Figure S2 displays the model performance of the radiative

flux budget and the surface energy balance. This method used
the NSRDB data, sun elevation, and azimuth angle for short-
wave radiation estimates. In this model, the incoming long-wave
radiation (L) applies the Stefan-Boltzmann law using 7, P,,
shortwave estimates, and Prata's (1996) sky emissivity equa-
tion. For outgoing long-wave radiation, the Stefan-Boltzmann
law and a surface energy balance solution for urban areas were
used (Oke et al. 2017), in which the net heat storage (or ground
soil flux in this case) was calculated using the Objective Hys-
teresis Model (Grimmond et al. 1991), assuming coefficients
for concrete urban facets (e.g., walls, ground) (Asaeda and Ca
1993). In that approach, the surface temperature was derived
from the energy heat balance at urban facets (i.e., road), taking
a bulk approach.

The estimation method for 7, was calibrated using obser-
vations from Vanos et al. (2021) in Tempe, Arizona, U.S.
(33.426°N, 111.940°W) from Aug 21st through Nov 8th, 2016,
with predominantly low cloud cover, obtaining a 7}, RMSE
of 2.95°C. Errors in L| data are similar to those reported by
Lindberg et al. (2008) with a RMSE error of 23.15 Wm™> (Fig-
ure S2). However, due to the sensible heat flux overestimation
caused by assuming clear sky conditions, Tz, estimates are
expected to be slightly higher than otherwise observed.

Hot days selection

To select the top 10% of hottest days in each city, we chose not
to rely merely upon 74, because the cause of heat stress would
be biased towards dry-weather cities (Morris et al. 2021).
Therefore, we include T, to ensure that we also incorporate
input data from environments that lead to high heat stress in
humid places. To select the most oppressive conditions forT
and T, separately (Fig. 1a and b, respectively), we aggregated
the hourly data to daily data based on the maximum daily tem-
perature value (T,,,) for both metrics. Then, the hottest day
samples for each city were determined based on the exceed-
ance of the 90th percentile. The final dataset thus represents
the weather corresponding to the days and hours from the
joined sample of T, and T, (Fig. 1c), where repeated tempo-
ral records were included only once. Note that HSCC in the
following steps was applied only for the weather during those
hottest hours of the day. Figure S3 displays the variability of
T,,T,, relative humidity, P,, and T, per city during the top
10% of hottest days.

Heat stress categorization

The rationale behind the different types of uncompensable
heat stress

From a biophysical perspective, heat stress is compensable

when the heat produced by the body’s metabolic processes
and gained from the environment is ultimately offset through
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Fig.1 The resulting temperature sample from all 96 cities with the
associated time-matching moisture levels during the daily T,,,, above
the 90" percentile for (a) Ty, (b) T, and (c) the joined dataset of
(a) and (b). For the number of observations in the joined dataset, if a
Fig.2 Schema of compensa-

ble vs uncompensable heat 1
stress (UHS) and different

categories of UHS based on M
the relative contributions of

dry (Rskin + Cskin + Cres) and
evaporative heat exchanges
(mmax "Bt Eres) in propor-
tion to a fixed value of internal
metabolic heat production

(M). The green line divides
compensable (light green area)
from uncompensable heat stress

Dry heat loss (+)

Ty, and T, observation matches in day and time of day, it is counted
once. If the same day is identified but Ty, and T,, peak at different
times, those observations are treated separately

Heat balance
(Total heat loss = M)

Evaporative heat loss = M

No dry heat exchange

Dry heat gain =M
Evaporative
heat loss (W/m2)
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M >

Category 0: Compensable heat
stress

(light red area); the grey line
indicates the limit between dry
heat loss or gain; the blue line
divides the area where evapora-
tive heat loss is enough to dissi-
pate metabolic heat; and the red
line delineates when dry heat
gain is higher than metabolic
heat production

r
Dry heat exchanges (W/m?)
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Dry heat gain (-)
=

increased evaporative heat loss (and, to a lesser extent, dry
heat loss if Ty, >Ty,), enabling the human body to keep a
stable internal temperature (Cramer et al. 2022). This com-
pensability can be expressed using human—environment heat
exchange models comparing the rate of evaporative heat loss
required for heat balance (E,,,) and the maximum capac-
ity for evaporative heat loss given a set of environmental

Ereq =M - Rskin - Cskin - Cre

Compensable heat stress (CHS)

. —E,. (W, or W2 if divided by body surface area)

Category 1: Low dry and
evaporative heat loss

Category 2: Dry heat gain with
restrictive evaporative heat loss

Category 3: Dry heat gain
outweighs evaporative loss

Category 4: Excessive dry
heat gain

Uncompensable heat stress (UHS)

and clothing settings (E,,,,). Thus, when E,, < E,,,,, one
experiences compensable heat stress (CHS), and vice versa,
when E,, > E,, .. UHS is experienced. E,,, can be expressed
using the human heat balance equation (Eq. 1) assuming
null heat storage and negligible mechanical work (i.e., the
energy transferred to a force) and conductive heat exchange

(ie., S, K,W,=0W):

ey
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The assumption of negligible W, = 0 is used to express
that internal metabolic heat production (H,,,,) is equivalent
to metabolic rate (M). Ry, and C;, represent rates of dry
heat exchange by radiation and convection through the skin
and can be negative or positive depending on whether there
is heat loss or gain. That heat gain/loss relies on the gradient
between the skin temperature (7;) and operative tempera-
ture t, (i.e., a temperature value that combines the effect of
Ty, and radiant heat over a surface), in °C.

(T\k—fo)
R... C,. = ——=k0 = (Wm~
skin + skin ( R, — Hf 1) ( ) (2)

R, is the dry heat transfer resistance of clothing (m? °C
W), h,,, is the combined convective heat transfer coef-
ficient (Wm?°C~!)—or the sum of the convective (h,) and
radiative (%,) heat transfer coefficients for airflow around
humans—and f.1s the clothing area factor. For equations ¢,

R h.,h,, [, and A, see Cramer and Jay (2019) and Vanos
et al. (2023). T, is held constant at 36°C (Parsons 2014).

In Eq. 1, C,,, and E, represent the convective and evapo-
rative heat exchange in the respiratory tract:
Cpoy = 0.0014 - M(34 - T,;,) (Wm™) A3
E,, =00173-M(5.87 — P,) (Wm™) “4)

Conversely, E,, . accounts for environmental and clothing
restrictions to body heat loss via sweat evaporation (Eq. 5).
To consider the physiological capacity to wet the skin and
distribute sweat across the skin surface in humid environ-
ments, E, . is constrained to the maximum skin wettedness
(Wax)- ®max Tepresents the maximum percentage of the
body that can be covered by sweat, ranging from 0.85 for
fully heat-acclimatized to 0.65 for not heat-acclimatized or
individuals older than 65 years (Candas et al. 1979; Morris
et al. 2021). In this application of the HSCC, we used an
intermediate value of 0.7.

(Ps ',:aI_Pv) -2
= =2 (Wm) )

< hgfol

max,,,

P, is the water vapor pressure at the skin surface when
saturated with sweat (kPa), R, ; is the evaporative resist-
ance of clothing (m*kPa W~'), and h, is the evaporative heat
transfer coefficient (Wm=2 kPa~"). The Py s calculated
from Tj,. For the equation for /,, see Cramer and Jay (2019).

Taking the heat compensability limit when E,,, equals
the body’s capacity to lose heat via sweat evaporation (i.e.,
E g = @y - Epgy, ), We replace terms from Egs. 1 and 5
and rearrange the equatlon as a function of metabolic heat
(Eq. 6). Hence, from Eq. 6, the physiological problem of
heat compensability can be seen as the possibility of over-

coming the internal heat production by achieving enough

heat loss while considering the combined environmental,
clothing, and physical effect on heat balance. In turn, this
formulation allows us to group heat avenues into dry and
evaporative heat balance components in proportion to a con-
stant value of M, which is the foundation for categorizing
the different types of UHS, explained below.

M = (@pay * Epge + Eres) + (Ryin + C Cs) (Wm™)

(6)

Having the compensability/uncompensability limit at a
fixed level of M allows us to describe extreme heat using
UHS explained in terms of the main constraints in heat loss
by environmental conditions (i.e., constraints due to evapo-
rative heat loss, dry heat loss, or both). Graphically, this
problem is shown in Fig. 2.

Thus, the five categories of HSCC classification were
established based on the relative contributions of dry and
evaporative heat exchanges in proportion to the internal
metabolic heat production needed to dissipate, as follows:

max skin vkm

Category 0 Compensable heat stress (CHS): Heat
stress is compensable because total heat loss is equal
to or greater than the metabolic heat production
(M < (mmax : Emax + Eres) ( skin + Cskm rcs>) All
conditions close to heat balance are at the edge of the transi-
tion from CHS to UHS, exerting high heat stress on people.
Category 1 Low dry and evaporative heat losses:
UHS occurs because evaporative heat loss is not possi-
ble (co ‘E, tE.< M) and dry heat loss is small

max res

(0 < Ry + Cskm + C,,, < M). This condition typically
occurs in environments with high humidity (moisture)
and air temperatures.

Category 2 Dry heat gain with restricted evapo-
rative heat loss: UHS occurs because evaporative
heat loss is not possible (@4« Epux + Epes < M),

and the body gains heat via convection and radlatlon
(—M < Ry + Coin + Cros < 0). This condition typi-
cally occurs in an environment with high humidity, air
temperature, and solar radiation.

Category 3 Dry heat gain outweighs evaporative
loss: UHS occurs despite possible evaporative heat loss
(M < @, * E . + E,5 ), but the heat gain via convec-
tion and radiation outweighs the evaporative heat loss
([@max = Emar + Eves| + [Rygin + Cogin + Cres] < M). This
condition typically occurs in drier environments with
high air temperatures and solar radiation.

Category 4 Excessive dry heat gain: UHS occurs due to exces-
sive heat gain (greater than M) (R, + Cipin + Croy < =M )
whether or not evaporative heat loss is possible. This condition
is common in arid environments with exceedingly high air tem-
peratures and intense solar radiation. This category is the most
severe in this classification, adding that sweat rate limits do not

restrain evaporative loss, as in Vanos et al. (2023).

skin
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The HSCC system reports three types of results. First, a
binary outcome describes whether heat stress is compensa-
ble or uncompensable (Fig. 3a). Second, heat stress typol-
ogy is defined when heat is uncompensable (Fig. 3b and c,
Table S3). Third, within UHS, we can directly compare dry

compensable

88.7%

non-compensable

compensable

44.5%

against evaporative heat losses, as summarized in the 2D
histogram of the human heat balance (Fig. 5).

This third report type delineates the reasons for UHS
grouping observations according to their potential evapora-
tive heat flux (@,,4 * Eypgy + Eyes ) ON the x-axis and dry heat

Category 0: Category 1: Category 2: Category 3: Category 4:
Compensable . Low dry and evaporative . Dry heat gain with restrictive Dry heat gain outweighs ‘ Excessive dry heat
heat stress (CHS) heat loss evaporative heat loss evaporative loss gain

Fig.3 Proportion of days with compensable and uncompensable heat
stress from the top 10" percentile of hottest days in 96 U.S. cities
based on the peak Ty, and T,, from 2005-2020. (a) Displays results
as a binary compensable-uncompensable heat stress outcome, while
(b and c) detail the type of UHS (Categories 1 to 4). For (b) the cat-
egorization is applied for heat exposures with an estimated Ty;zy as
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a sun-exposed condition, whereas in (c) the results are applied for a
person entirely shaded (Tygr = T4,)- An interactive version of the (b)
plot is available in https://zenodo.org/records/10899894, along with
2D histograms (as in Fig. 5) with heat balance results for each city.
Input data for these graphics are in Table S3
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exchange (loss or gain) (Rskm + Cyn + Cm) on the y-axis,
both in Wm™2. Given the fixed value of metabolic heat produc-
tion, a diagonal line (Fig. 5) expresses heat balance (total heat
loss =metabolic internal heat). In the same plots, the grey line
indicates a null dry heat exchange (Rskin + Cyip + Co = 0),
the red line indicates where dry heat gain equals metabolic
heat production (R, + Cyy + Cyy = —=M), and the blue
line separates conditions where evaporative heat loss could
surpass metabolic heat production (@,,,, - E,. + E,e = M).
Note that the absolute values of heat flux thresholds from all

categories depend on metabolic heat production.
Physiological details for categorization application

To apply the HSCC, we must specify an individual’s per-
sonal characteristics. For this initial iteration of the HSCC, we
adopt a UTCI operational set-up characteristics (Brode et al.
2012) representing a healthy “average” adult male walking
with a speed of 4 km.h~! (1.1 ms™!) at M= 2.3MET, wearing
light clothes, with a mass of 73.4 kg and height of 1.85m?
(Fiala et al. 2012), resulting in M=206.8W or 111.79Wm™>
after a mass-based factor conversion. The human—environ-
ment heat exchange estimations were done using the PyHHB
module (Guzman-Echavarria and Vanos 2023) and UTCI
adaptative clothing scheme capped at a minimum of 0.31clo
(Havenith et al. 2012; Vanos et al. 2012). Future work with
this categorization can use multiple physiological settings.

Results

Results display the application of the HSCC during extreme
heat conditions for 96 U.S. cities and demonstrate the impor-
tance of accounting for the radiative load in biometeoro-
logical applications for heat stress. In addition, we provide
examples of various reporting methods possible with this
system, highlighting the types of thermal environments
captured by each category given the personal profile used
(which can be customized in further applications).

Input data: weather during peak heat hours
on the top 10% of warmest days

The environmental input data for the classification comprises
105,981 hourly observations during the top 10% of the warm-
est days of each city based on T, and 7, daily maximums. 7,
exhibits a median (and interquartile range: IQR) of 32.8°C
(30.0-34.6°C), ranging from a minimum of 15.0 to a maximum
of 50.1°C. The mean 7Tz is 65.9°C (60-70.1°C), ranging from
104 t0 91.1°C, while P, has a mean of 21.3 hPa (14.5-26.7 hPa),
ranging from 0.5 to 47.7 hPa. Relative humidity has a median
of 44.6 (29.2-58.0%), ranging from 0 to 100%. The majority

of peak the hottest hours in each city occurred between June
and August (maximum in July) from 2:00-3:00 pm local time,
except San Juan-PR, Honolulu-HI, Miami-FL, Melbourne-FL,
and some cities along the Pacific Coast where peak heat hours
occurred mostly between 12:00-2:00 pm. The hottest hours of
occurrence from those time frames along the Pacific Coast is
mainly related to high 7. Appendix B in the Supplementary
Material describes weather variability between (Figure S3) and
within all cities (Figure S4, Table S2).

HSCC Heat Stress Categorization Results

We found that 88.7% of input data met the UHS criterion
(Fig. 3a), meaning that at least during ~ 94,000 days weighted
by city, people might be exposed to conditions in which they
had to engage in cool-seeking behavior to keep safe from the
regional heat. However, there is substantial heterogeneity in
UHS typology across the cities studied (Fig. 3b). Only nine
cities have more than 20% of observations within CHS, mainly
in the northern U.S., while 26 present UHS conditions > 95%
of the time. The higher UHS frequencies are found in San Juan
(99.87%), Stockton-CA (93.37%), Melbourne-FL (98.13%),
Orlando-FL (98.1%), and Cape Coral-FL (98%).

Figure 3b shows the categorization results grouping the
extreme heat values for all 96 cities. Category 1 (low dry
and evaporative heat losses) was assigned to only 0.46%
of the data, where only three cities reported > 2% frequency
(i.e., Monroe-MO, New Orleans-LA, and Jacksonville-FL).
Category 2 (Dry heat gain with restrictive evaporative
heat loss) accounts for 13.1% of data, with 36 cities, all con-
centrated in the east, having more than 20% of observations.
San Juan (Fig. 5c), Omaha-NE, Melbourne, New Orleans
(Fig. 5f) and Miami (5e) have the highest frequency of Cat-
egory 2 (>34% observations), all presenting low evapora-
tive heat loss capacity values (< M) during extreme heat.
Category 3 (dry heat gain outweighs evaporative loss)
represents 30.7% of the data, with higher frequencies found
in cities along the Pacific coast. For example, Santa Barbara-
CA, San Francisco-CA, and San Diego-CA present > 75% of
observations in Category 3. Category 4 (Excessive dry heat
gain) is found in 44.5% of the cities, being the most frequent
category in the sample, with five having >75% observations
in this category (Needles-CA, Mc Allen-TX, Las Vegas-NV,
Phoenix-AZ, and Dallas-TX) and 43 cities with>50%.

Weather conditions and personal heat loads
by category

This section describes the weather conditions captured
within each category (Fig. 4d-f), as well as heat loads and
heat compensability in terms of the required skin wettedness

(®,,,) to achieve heat balance (Fig. 4a-c).
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Fig.4 Variability per category of (a) potential evaporative heat loss,
(b) dry heat exchanges (positive =loss, negative = gain, grey line: null
heat dry exchanges), (c) required skin wettedness ((oreq) to achieve
heat balance (green line=w,,,, the grey background indicates .,
values above 1 —or 100% of skin surface— which are not physically

Category 0 has wider variations due to the CHS pos-
sibility under thermal environments that lead to either high
evaporative heat loss (dry environments) or higher dry heat
loss (colder temperatures) (see Table S4). As a result, pos-
sible dry and evaporative heat fluxes were the widest com-
pared to all categories (a median (IQR) of 30.2Wm™2 (-8.53,
56.67Wm™2) for dry and 167.8Wm™2 (137.71, 193.82Wm™2)
for evaporative heat fluxes). A slight variation is found in the
weather parameters in Category 1, shown by the smaller
IQRs in Fig. 5. Although UHS is in this category, the median
O (0.76) is the lowest (hence, this is the least stressful cat-
egory). Category 2 presents characteristics similar to Cat-
egory 1, yet with lower moisture levels and considerably
higher T}, (23.8°C greater based on median values). The
higher moisture and 7, are largely responsible for almost
double w,,, (1.44) compared to category 1. The dry heat gain
in Category 3 outweighs the evaporative heat loss yet does
not exceed metabolic heat production, resulting in a median
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restrictive evaporative heat loss

heat gain

feasible), (d) Ty, (e) V,, and (f) Tyrr- Boxes indicate IQR with the
median marked by a black inside line, and whiskers displays the 5
and 95" percentile. Minimum and maximum values are shown as
points. Median and IQR from (a-f) subplots are reported in Table S4
in the Supplemental Material

w,,, of ~1.0. Category 4 presents the highest values of 7,
T\rr> and GHI, yet a wide variation in moisture levels;
hence, this category brings the possible occurrence of both
very hot and humid heat stress. As a result, the ranges of
possible dry heat gain with a median (IQR) of -133.82Wm™2
(-150.5, -122.23Wm™2) and the highest median w,,, (1.47),
thus being the most severe HSCC category.

Overall, results from Categories 1-4 can be interpreted
as the amount of cooling that is possible for a group of
sun-exposed people with average body characteristics and
clothing (i.e., UTCI profile) to keep them in CHS (Fig. 5a).
Beyond observations being categorized, the 2D histogram
shows that~41% of the hottest hours of the 10% hottest
days from 2005-2020 exerted dry heat gain from 70 to
150Wm™2, allowing a maximum evaporative loss between
90 and 140Wm™2. Thus, heat gain must be limited to these
thresholds while enhancing the evaporative heat flux to keep
heat stress compensable.

max
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Fig.5 2D histograms displaying the relative frequency of obser-
vations disaggregated into bins of 10 Wm™2, indicating the relative
contributions of evaporative (x-axis) and dry (y-axis) heat exchanges
in proportion to a fixed value of internal metabolic heat production
(M=111.8Wm™). Data are provided for all input data (a, b) and
selected city examples: San Juan (c), New York (d), Miami (e), New

Within-city variability in heat loads

As depicted in “HSCC Heat Stress Categorization Results”
section, a given city can present different types of (or rea-
sons for) UHS based on high heat that arises due to diverse
synoptic genesis. This section presents the possible heat
loads on a person during extreme heat in U.S. cities with
the highest air temperature combined with extremely high
or low moisture levels, as well as some with the coolest
conditions (see Fig. 5). We also present results from cities
with the narrowest and widest variability in 7, Ty,zr and
P, (Appendix B).

San Juan (Fig. 5c¢), located in the north of Puerto Rico
with a tropical rainforest climate (K&ppen Af class), has the
highest frequency of UHS, demonstrating high dry heat gains
(up to~220Wm~2) in combination with low evaporative heat

Orleans (f), Phoenix (g), Tucson (h), Santa Barbara (i), Seattle (j),
and Honolulu (k). In (a) heat fluxes represent heat exposures with
estimated Typy as sun-exposed conditions, and (b) heat exposures
for a person who is fully shaded (Tyrr = T4,)- The histogram plots
for all cities are shown in the interactive version of Fig. 3 in https://
zenodo.org/records/10899894

losses (~70-110Wm™2). Honolulu (Fig. 5k) (with a similar
latitude as San Juan yet a semi-arid climate (Kdppen BSh) has
most of its extreme heat days in category 3, where dry heat
gain outweighs evaporative heat loss (around 120—140Wm™>).

In the East, New York (Fig. 5d) displays highly hetero-
geneous UHS behavior (spread among numerous categories
with no distinct clustering), which differs from Florida cities
and New Orleans, in which dry heat gain was often around
100Wm™2 (up to 200 Wm™?2) yet with low and narrow evapo-
rative heat loss variations around 80 to 100Wm™2.

Cities located in the South and Southwest (highest 7,
and T),;) reveal the highest dry heat gains (~ 150Wm™2),
reaching values of 240Wm~2 (see Phoenix and Tucson
in Fig. 5). Arizona cities also display the greatest val-
ues in maximum possible evaporative heat losses (up
to ~200Wm_2), which could even demand nonfeasible
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sweat rates for people with impaired sweating. Another
aspect relevant in Southwest cities is the apparent bimo-
dality in UHS, with high frequency at lower evapora-
tive heat fluxes values (100-120Wm™2) that should be
associated with T, inclusion in a hot day selection and,
therefore, summer monsoon days. Finally, the Pacific
coast has more instances of CHS; when UHS occurs, it
is dominated by high values of evaporative heat loss and
low dry heat gain (<~ 150Wm™2) when within Category
4 (Fig. 5i-j).

The role of radiative heat load and uncompensable
heat stress

The inclusion of radiant load in heat stress was tested by
assuming a change from the 7}, estimated initially (open,
sun-exposed) versus full shade, wherein T, = T,5,. While
maintaining maximum evaporative loss between 90 and
140W/m2, the overall effect of shade shifts the dry heat
gain into possible heat loss. This shift results in low dry
heat loss values from 5 to 50W/m? (Fig. 5b) ~40% of the
time, which could be enhanced with increased airflow to
support further convective heat loss. This radiative change
represents a reduction in the frequency of UHS to 7.62%
(Figs. 3c and 5b) across all input data (comprised of 3.27%
in Category 1, 1.39% in Category 2, 2.96% in Category 3,
and 0% in Category 4).

Discussion

We report on the development and application of the
Heat Stress Compensability Classification (HSCC),
which combines historical weather data with biophysical
modeling during peak city-specific hot hours, as defined
by the 90th percentiles of daily maximums for Ty, and T,
over 15 years in 96 U.S. cities. The classification uniquely
uses fundamental principles from thermal physiology and
human biophysics to determine the main avenues for heat
gain and loss to describe UHS on extreme heat days. In the
long term, this knowledge can support cooling procedures
by category based on the heat flux values that best achieve
heat balance, adopting a similar standpoint as in building
sciences to estimate cooling loads (Mao et al. 2018).

The HSCC is the first climate-based classification sys-
tem to focus on human heat health from a person-centric
approach because, unlike other systems and heat stress
related metrics (like the UTCI itself), it provides action-
able data to support decisions on personal heat-specific
adaptations. Having a strong focus on human physiology,
the HSCC can act as a baseline to mitigate and adapt
to extreme temperatures. The HSCC is dynamic and
customizable, allowing for more than just a categorical
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description of environmental conditions, but informa-
tion on thermal variations within a given category that
informs users about the reason for UHS (or dangerous
heat) and, thus, how to change personal cooling strate-
gies or behaviors. The HSCC approach also overcomes
drawbacks of common bioclimatic models wherein solar
radiation is not considered (e.g., NOAA’s Heat Index,
Humidex, T,,), and its flexibility allows for future work
adjusting metabolic heat loads along with environmental
factors (e.g., airflow).

Insights from HSCC to mitigate UHS

It is well-known that seeking shade is one of the top
forms of human agency for reducing heat exposure
through behavioral adaptation (de Freitas 2015; Horton
et al. 2021). In hot conditions, minimizing radiative heat
sources is crucial to reduce heat stress, as demonstrated
in this research (“The role of radiative heat load and
uncompensable heat stress” section). For the personal
characteristics simulated in this study, exposure to
UHS conditions would occur only during 7.6% of days
if people stayed indoors or in the shade, as opposed to
88.7% of days when solar radiation exposure is considered.
Assuming Tjpr = Ty, implies no radiant thermal load
contribution, which is the most favorable scenario within
shade effectiveness. However, some people may not have
the choice (e.g., working outdoors) or the ability to seek
shade/indoors. For example, in Phoenix (Fig. 5f), on an
average peak heat summer hour (3:30 pm), dry heat gain
is around ~ 153.5Wm™2. If a person stands outdoors in the
shade (no change of Tg), under a tree or a lightweight
engineered structure, the AT, will be -22°C (Middel
et al. 2021); hence, the dry heat gain could be reduced
to 66Wm~2. That reduction could be even bigger and
reach 42.1Wm™2, if the shade is provided by an urban form/
building (AT, =-28°C, Middel et al. (2021)). However, in
such cases, with possible evaporative losses between 120
and 180Wm™2, heat stress will be closer to, but not quite
compensable, requiring additional cooling actions (more
than only shade) to keep people safe.

Several optimal low-cost personal cooling strategies
are being tested to overcome the dependency on
mechanical cooling (air conditioning). For detailed
information on the benefits of individual cooling
strategies, see Jay et al. (2021). Under non-extreme heat
conditions, when Ty, is less than skin temperature, using
fans simultaneously enhances evaporative and convective
heat fluxes. However, fan impact is strongly determined
by air temperature and humidity. Recent empirical and
modeling studies have provided critical insight into the
optimal conditions for fan use across different populations
and climates (Foster et al. 2022a, b; Morris et al. 2021;
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Ravanelli et al. 2017). Within the HSCC system, it is
implicit that beyond moisture levels linked to evaporative
possible heat losses, the cooling suggestions (e.g.,
cooling amount) per category will vary according to the
magnitude of dry heat exchanges and the metabolic load
of the chosen sub-population-group (see Table 1).

Table 1 Insight from this first HSCC application for the different
categories and appropriate heat strain mitigation strategies beyond
air conditioning. Note that the evidence stated here comes from both
empirical and theoretical studies, and that strategies that might work

Future opportunities for use

Although this initial HSCC application is delineated for
U.S. cities and only one set of personal characteristics,
the method can be replicated using any set of weather
observations, physiological measurements, and metabolic

as heat stress relief upon compensable heat stress might only work for
the delay or short relief of heat strain, and thus require further cooling
for keeping people safe during long heat exposures

Category

Actions

For all categories

Category 0 (Compensable heat stress)

Category 1 (Low dry and evaporative heat losses)

Category 2 (Dry heat gain with restricted evaporative heat loss)

Category 3 (Dry heat gain outweighs evaporative loss)

Category 4 (Excessive dry heat gain

Moving out of direct sunlight significantly lessens overall heat load (see “The
role of radiative heat load and uncompensable heat stress” section) and
should be the first action taken. Regardless of humidity and clothing, if air
temperature < 30°C at moderate exercise, fans will increase the benefits from
convective heat loss (Foster et al. 2022a, b), although their effectiveness
can extend at rest to 39 °C for young adults, 38°C for older, and 37°C for
older adults taking anticholinergic medication (Morris et al. 2021). Other
options include optimizing clothing to avoid heat gain while allowing sweat
evaporation and conductive heat loss strategies to alleviate heat strain as cold
water immersion of extremities (Khomenok et al. 2008) and the use of wet
clothing (Cramer et al. 2020). Maintaining hydration is paramount to avoid
additional strain across all categories

People are safely able to balance in the given conditions, yet if they are near the
UHS limit, they might feel some thermal discomfort, thus people may actively
seek various forms of cooling to keep safe and achieve thermal comfort

In this least serious of categories, people can focus on increasing dry and
evaporative heat losses, for example, by using fans (depending on the air
temperature) and enhancing cooling by reducing clothing amount or insula-
tion. Given low evaporative heat losses, it is suggested to avoid evaporative
coolers or misting, particularly without additional airflow

Actions should be taken to reduce or reverse dry heat gain. With high
moisture in the air, even if Ty, is around 36°C, the effect of fan use may
help delay heart rate increase in the heat due to enhancing evaporative heat
loss (Ravanelli et al. 2017). Cooling methods, like evaporative coolers or
misters, that add moisture to the air should not be used, particularly without
additional airflow

Actions should be taken to reduce or reverse dry heat gain. For example,
dousing skin and/or clothing with water; use misters, wet towels, and
evaporative cooling. However, take caution with the use of fans without
adding water to the skin/clothing as it can worsen dry heat gain (Foster
et al. 2022a, b; Morris et al. 2021). For Ty, >35°C, fans are ineffective
and potentially harmful when relative humidity is below 50% (Foster
et al. 2022a, b). For example, At Ty, =42°C, 34 hPa, heat gain with fans
increased ~ 70 Wm™? (Ravanelli et al. 2017)

This category exhibits the most severe heat stress with excessive dry heat
gain and can become very dangerous rapidly if sweating shuts down. Here,
heat strain mitigation might be most effective through misting, wet towels
or shirts soaked in cold water and evaporative coolers, along with water
dousing, given the high evaporative capacity of the air. However, combining
strategies does not always maximize benefit. Empirical evidence in Cramer
et al. (2020) for older adults at 42.4°C air temperature and 34.2% relative
humidity shows that electric fan use coupled with a wet t-shirt exacerbates
sweat losses without mitigating heat strain. Still, using only wet t-shirts
without a fan instead alleviates sweat loss and heat strain. Overall, it is
paramount to reverse dry heat gain to keep people safe and leverage the dry
air for evaporation
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workloads. The contextual findings for the United States are
comparable to other hot and dry/humid locations. However,
the within-city variability in many locations (e.g., coastal to
inland regions; parks to open fields) demonstrates that one
“type” (or category) of extreme heat does not define a place.
Thus, heat mitigation strategies should be focused beyond
the predominant type of climate and understand the vari-
ability across the summer season and a region.

Unlike other heat stress assessment methods, the practi-
cal utility of the HSCC stems from the limits of physio-
logical adaptation. This categorization can evaluate diverse
populations performing different activities to determine
their customized HSCC. For example, empirical research
reveals average dry heat exchanges from -1.5Wm~2 (humid
experiments) to 76.9Wm~ (dry experiments) in young,
healthy adults without added radiant heat load in their lim-
its to physiologically adapt to heat (Vecellio et al. 2022),
which are plausible values in the current study (Fig. 5b).
Also, current research has shown that environmental limits
for heat adaptability decrease with moisture, activity, and
age (Vecellio et al. 2022; Wolf et al. 2021; Tony Wolf et al.
2023). A calibrated HSCC by sub-population can give a
more nuanced understanding (yet improved guidance) for
different populations experiencing high heat loads. For
example, modeling older adults (Vanos et al. 2023) and out-
door workers with a higher metabolic load would increase
the frequency of UHS across the map. Overall, methods
here can be expanded and improved based human-environ-
mental heat exchange models in interdisciplinary research
(see Table 3 in Vanos et al. (2023)).

The HSCC model and data from other scientific fields
can be used as actionable information to guide extreme
heat management, highlighting the role of personal cool-
ing behavioral adaptations for safety in different indoor or
outdoor contexts (Baniassadi et al. 2019; Jay et al. 2021;
Larsen et al. 2022; Nazarian et al. 2022; Rempel et al. 2022;
Samuelson et al. 2020). There are also potential applications
in heat planning and disaster preparedness (e.g., compound-
ing disasters, blackouts), design of infrastructure and public
spaces to withstand extreme heat, and design, testing, and
implementation of personal cooling strategies and clothing.

Limitations

The initial HSCC formulation has assumptions regarding
the type of human (based on the UTCI-like average person),
calm airflow, and unacclimatized humans, yet humans can
adapt through physiological adjustments, such as increas-
ing sweating capacity (Périard et al. 2015). Still, the model
allows for size, shape, clothing, metabolic rate adjustments,
variations for acclimatization, and for medications that
affect sweat rate. The main limitation of this biophysical
modeling approach are comprehensively outlined in Vanos
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et al. (2023) in Table 3, including holding skin temperature
constant at 36°C or the skin wettedness values constant.
As in Vanos et al. (2023), this method is able to represent
exclusively heat strain that leads to hyperthermia and not to
cardiovascular collapse or renal failure, acknowledging that
heat stroke deaths are a fraction of total excess heat-related
deaths (Ebi et al. 2021; MCDPH 2024; NYC Department of
Health 2024). We also acknowledge that thermal environ-
ments at typical airport weather observation stations differ
from people’s daily experience (Kuras et al. 2017; Nazarian
and Lee 2021). Yet, these stations provide long-term, con-
sistent records and are helpful for city-wide, national-level
surveillance applications, as well as baseline data to model
mitigation strategies and heat in indoor environments.

Conclusions

This research introduces a novel classification system—the Heat
Stress Compensability Classification (HSCC)—to describe
uncompensable heat stress, which may result in rising core
body temperature without altering one’s heat stress conditions.
The HSCC classification system is based on biophysical prin-
ciples and thermal physiology, providing relevant information
about the type of heat stress experienced by a person as a func-
tion of internal metabolic heat production. Using open-source
historical weather data (2005-2020), this new classification
system is successfully applied across 96 U.S. cities for the hot-
test hours in the hottest 10th of days (city-specific). In addi-
tion, this study introduces an approach to estimate 75, using
weather station and radiation-modeled data to account for the
importance of radiative load on heat stress.

Results from the HSCC are reported in three ways: 1) a
binary compensable heat stress outcome, 2) uncompensable,
describing the typology, and 3) disaggregating the category
results within the human heat balance in a 2D histogram.
Results show that 88.7% of the evaluated city-hours met
the UHS criterion. Said differently, people may have been
exposed to conditions in which they had to engage in cool-
seeking behavior to keep safe (prevent rising core tempera-
ture) for ~ 94,000 h. Full shade reduced UHS frequency to
7.6%, highlighting the importance of quality shade access
and including radiative load in heat stress assessments.
The results from UHS categories help support decisions
on changing a thermal environment. The practical utility
of this system over other traditional methods (like UTCI
or heat index) comes from its dynamic and customizable
nature by 1) being adaptable to determine limits for various
populations and target activities in heat stress assessments,
and 2) providing graphical outputs showing how much heat
needs to be mitigated to keep a specific population group in
a thermally compensable condition based on their activity
(e.g., a person walking in this application).
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At the limits of physiological adaptability or surviv-
ability, these findings align with physiological theory and
produce actionable information through the different ways
of communicating the results and facilitating the develop-
ment of targeted criteria for heat stress mitigation strategies
with potential global applications. Finally, the HSCC dem-
onstrates that heat mitigation strategies should, and can, be
focused beyond viability for the predominant type of climate
(place-specific) and account for the variability across the
summer season and on people (time- and person-specific).
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