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Abstract
Traditional climate classification and weather typing systems are not designed to understand and prevent heat illness, or to 
design effective cooling strategies during extreme heat. Thus, we developed the Heat Stress Compensability Classification 
(HSCC) combining open-source historical weather data (2005–2020) with biophysical modeling of a standard human, in 
the sun or shade, during peak city-specific hot hours on the top 10th percentile hottest days in 96 U.S. cities. Four categories 
of uncompensable heat stress (UHS)––which can result in rising core temperature––were established based on the rela-
tive constraints of dry and evaporative heat exchanges for achieving heat balance in proportion to constant metabolic heat 
production (112Wm−2). Results show that 88.7% of these peak-hot hours meet the UHS criterion, and 41% present a dry 
heat gain of 70 to 150Wm−2 while allowing a maximum evaporative loss between 90 and 140Wm−2. Evaporative heat loss 
constraints dominate the eastern U.S. Dry heat gain was widespread, yet particularly high in the south and southwest. Full 
shade reduces UHS frequency to 7.6%, highlighting the importance of quality shade access and accounting for radiative 
load in heat stress assessments. Although there are five distinct categories (one compensable and four UHS), the HSCC is 
dynamic and customizable, providing actionable information on thermal variations within a given category. These variations 
depict the reason for UHS (e.g., limited evaporative cooling) and, thus, how to concentrate cooling efforts, particularly at the 
limits of physiological adaptability. Findings facilitate developing targeted criteria for heat stress reduction with potential 
global applications.

Keywords  Heat Stress Compensability Classification (HSCC) · Extreme heat · Uncompensable Heat Stress · Climate 
Classification · Mean Radiant Temperature · Biophysical heat-exchange model

Introduction

Various classification or categorization systems are used 
to identify climate regions connected to vegetation and 
hydrology (Holdridge 1947; Köppen 1884; Thornthwaite 
1948), building energy use (Bai et al. 2020; Walsh et al. 
2017a, b), and various public health applications (Liss 
et al. 2014). These systems explain expected environmen-
tal conditions using select climate variables across a year/
season (Gupta et al. 2023) and their effects on various 
human or natural systems. Climate classification systems 
guide regional building design by distributing spatial 
energy and water efficiency criteria, thus upholding indoor 
comfort. For the specific case of the United States (U.S.), 
based on the International Energy Conservation Code 
zoning, the Building America program updates climate 
zone designations (Antonopoulos et al. 2022; Lstiburek 
2000). Yet, no system exists to express weather or climate 
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variables for environmental health applications, such as 
to analyze extreme heat by location identifing the envi-
ronmental heat stress and associated physiological strain.

Extreme heat is a well-known and increasing physical 
hazard globally, with increased prevalence linked to climate 
change and urban growth (Perkins-Kirkpatrick and Lewis 
2020), further challenging the ability to cope with anoma-
lous heat extremes (Krayenhoff et al. 2018; Nazarian et al. 
2022; Vecellio et al. 2023). Like other hazards, extreme heat 
events are described by intensity, scale, timing (i.e., sea-
sonally), and duration based on local climatology (e.g., see 
Table 1 in Barriopedro et al. 2023). Health impacts of heat 
are often recorded daily or across a heatwave, yet physi-
ological effects from high heat exposure can occur on sub-
daily and hourly time scales (Baldwin et al. 2024). These 
impacts will differ based on a person’s exposure to tempera-
ture, humidity, sunlight, and airflow, as well as their activity 
levels and clothing. Moreover, research highlights that the 
physiological underpinnings of heat strain in a humid heat 
versus a dry heat differ (Foster et al. 2021, 2022a, 2022b; 
Vanos et al. 2023; Vecellio et al. 2022). Finally, heat impacts 
are more dangerous for certain groups of people, such as 
those more sensitive due to older age, lack of acclimatiza-
tion, low fitness, medication usage, and/or co-morbidities 
(Ebi et al. 2021; Larose et al. 2013; Wolf et al. 2023).

Hence, climates can be classified not only by their 
impacts on environmental and built systems (Gupta et al. 
2023) but also by their probable physiological effects on 
humans, supporting an improved understanding of health 
outcomes and suitable behaviors by sub-population, time of 
year, location, intensity, etc. For example, specific behavio-
ral adaptations for heat relief (e.g., fan use) across varying 
climates and cultures require explicitly characterizing the 
thermal environment and exposure for particular popula-
tions (Manu et al. 2016; Morris et al. 2021). Such behavioral 
adaptations are increasingly necessary when the body cannot 
physiologically cope with heat (i.e., under uncompensable 
heat stress—UHS). Nevertheless, few studies differentiate 
“types” of heat geographically applied to people’s health and 
potential physiological responses. Weather typing systems, 
such as the Spatial Synoptic Classification (SSC) (Sheridan 
2002) and the Global Weather Typing Classification (Lee 
2020), categorize daily weather by temperature and humid-
ity, yet are not applied to individual physiology. In the SSC, 
the “plus” categories (or warmer than normal) have even 
been added to the tropical categories to delineate “extreme” 
conditions (Sheridan 2002). The spatiotemporal relativity 
of these systems provides indirect measures of seasonal and 
regional acclimatization for localized populations during 
extreme events, thus helping to describe weather and health 
interactions (e.g., Greene et al. 2011, Vanos et al. 2015, 
and Fonseca-Rodríguez et al. 2023). However, such studies 
are more epidemiological in nature, and the classification 

systems were not created with any direct physiological 
implications in mind.

Several heat or thermal stress indices have historically 
provided numerical representations of thermal stress using 
meteorological inputs (de Freitas and Grigorieva 2015, 
2017; Ioannou et al. 2022). Yet many metrics are static in 
their application over space and time and do not allow for 
the inclusion of personal attributes complexities (as out-
lined in Grundstein and Vanos (2020), Guzman-Echavarria 
et al. (2022) and Simpson (2024)). Further, those indices do 
not provide information on reasons for heat loss restriction 
from the body and thus do not support the implementation 
of effective cooling strategies. Instead, a biophysical human 
heat exchange approach allows the determination of UHS by 
partitioning the different heat avenues to and from the body. 
UHS is a condition that occurs when the body’s evaporative 
cooling requirements cannot be supported due to environ-
mental or other factors (including low sweat production) 
impeding the body’s ability to cool (Bouchama et al. 2022; 
Leon & Bouchama 2015). Importantly, this approach can 
be applied across diverse subpopulations and climates, both 
indoors and outdoors.

Here, we introduce a new classification system––the Heat 
Stress Compensability Classification (HSCC)––a weather-
based characterization of extreme heat using the biophysical 
heat exchange principles underpinning UHS. The system is 
applied to 96 cities in the U.S. during the peak hot hours 
for the city-specific hottest 10% of days, as defined by the 
90th percentiles exceedance of daily maximums of dry-bulb 
(Tdb) and wet-bulb (Tw) temperatures from 2005–2020. The 
classification goes beyond a unidimensional “yes/no” for 
extreme heat by discriminating between different types of 
“hot days” based on the factors contributing to UHS. There-
fore, this approach serves as a bridge, translating extreme 
heat exposure into actionable knowledge by identifying the 
primary causes of unsafe heat gain leading to UHS (such 
as high humidity or excessive radiative load) and providing 
direct guidance to minimize the risk of people reaching a 
non-compensable state.

Materials and methods

In this study, we developed and applied a UHS classification 
using open-source long-term weather data from 96 U.S. cit-
ies. We categorized the hottest hours of the 10% hottest days 
as defined by both Tdb and Tw between 2005 and 2020 for a 
person with body characteristics equivalent to the Universal 
Thermal Climate Index (UTCI) assumptions (details in “Physi-
ological details for categorization application” section) while 
sun-exposed or in the shade. The cities were first selected to 
capture the most populated metropolitan areas in the U.S. 
(> 1 M population) and later based on nationwide geographical 
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coverage. See Table S1 and Figure S1 for city metadata. The 
methods used in this study are divided into three main steps: 
data preprocessing, data filtering (i.e., subsetting) to apply the 
categorization, and the HSCC categorization itself.

Climatic data preprocessing

Inputs of Tdb , atmospheric moisture ( Pv , water vapor pressure), 
wind speed ( ws ), and mean radiant temperature ( TMRT ) reach-
ing an individual must be known to discern if the exposure to 
that thermal environment leads to UHS and within what UHS 
category (Fig. 2). Additionally, we included Tw to identify hot 
days, as we are interested in the most oppressively hot condi-
tions beyond Tdb (“Hot days selection” section). Intending to 
use long-term weather records and freely available data, we 
combined airport weather station data and estimated TMRT from 
modeled solar radiation (outlined below). Tdb , relative humid-
ity and atmospheric pressure were taken from HadISD.3.3.0- 
global sub-daily station dataset version v331_202301p (Dunn 
2019), available at https://​www.​metof​fi ce.​gov.​uk/​hadobs/​had-
isd/. These values were used to estimate Tw with the Davies-
Jones method (Davies-Jones 2008) and Pv as our humidity met-
ric (Baldwin et al. 2024). We assumed a constant wind speed of 
0.3 m/s to isolate differences in UHS from temperature, humid-
ity, and solar radiation. Future work will assess the sensitivity 
of UHS upon changing wind speeds (e.g., Foster et al. (2022a, 
b); Morris et al. (2021)).

Global horizontal irradiation (GHI), direct normal irra-
diation ( DNI ), and diffuse horizontal irradiation ( DHI ) 
were obtained from the National Solar Radiation Data-
base (NSRDB) (Sengupta et al. 2018), given that standard 
weather stations do not provide solar radiation or TMRT in 
their records. NSRDB dataset is obtained from satellite-
derived atmospheric and land surface properties using 
NREL’s Physical Solar Model (PSM). We used the PSM 
V3.1 (4 × 4 km grid) version available at https://​devel​oper.​
nrel.​gov/​docs/​solar/​nsrdb/​psm3-​downl​oad/.

Mean radiant temperature estimation

We calculated TMRT assuming that estimates will be repre-
sentative of an open space with no close obstacles (sky view 
factor = 1) over a flat weathered concrete surface with albedo 
� = 0.186, similar to the concrete roof surface in Vanos et al. 
(2021) and emissivity �g = 0.92, like the C002 material in 
Kotthaus et al. (2014). TMRT estimates were obtained from a 
mean radiant flux density approach as a weighted combina-
tion of 6-directional short- and long-wave radiant fluxes to a 
standing man using the Stefan-Boltzmann law (Höppe 1994; 
VID 1994) (VID 1994) adapted from Middel et al. (2023).

Appendix A describes the process to estimate TMRT and 
Figure S2 displays the model performance of the radiative 

flux budget and the surface energy balance. This method used 
the NSRDB data, sun elevation, and azimuth angle for short-
wave radiation estimates. In this model, the incoming long-wave 
radiation ( L↓ ) applies the Stefan-Boltzmann law using Tdb , Pv , 
shortwave estimates, and Prata's (1996) sky emissivity equa-
tion. For outgoing long-wave radiation, the Stefan-Boltzmann 
law and a surface energy balance solution for urban areas were 
used (Oke et al. 2017), in which the net heat storage (or ground 
soil flux in this case) was calculated using the Objective Hys-
teresis Model (Grimmond et al. 1991), assuming coefficients 
for concrete urban facets (e.g., walls, ground) (Asaeda and Ca 
1993). In that approach, the surface temperature was derived 
from the energy heat balance at urban facets (i.e., road), taking 
a bulk approach.

The estimation method for TMRT was calibrated using obser-
vations from Vanos et al. (2021) in Tempe, Arizona, U.S. 
(33.426°N, 111.940°W) from Aug 21st through Nov 8th, 2016, 
with predominantly low cloud cover, obtaining a TMRT RMSE 
of 2.95°C. Errors in L↓ data are similar to those reported by 
Lindberg et al. (2008) with a RMSE error of 23.15 Wm−2 (Fig-
ure S2). However, due to the sensible heat flux overestimation 
caused by assuming clear sky conditions, TMRT estimates are 
expected to be slightly higher than otherwise observed.

Hot days selection

To select the top 10% of hottest days in each city, we chose not 
to rely merely upon Tdb because the cause of heat stress would 
be biased towards dry-weather cities (Morris et al. 2021). 
Therefore, we include Tw to ensure that we also incorporate 
input data from environments that lead to high heat stress in 
humid places. To select the most oppressive conditions forTdb 
and Tw separately (Fig. 1a and b, respectively), we aggregated 
the hourly data to daily data based on the maximum daily tem-
perature value (Tmax) for both metrics. Then, the hottest day 
samples for each city were determined based on the exceed-
ance of the 90th percentile. The final dataset thus represents 
the weather corresponding to the days and hours from the 
joined sample of Tdb and Tw (Fig. 1c), where repeated tempo-
ral records were included only once. Note that HSCC in the 
following steps was applied only for the weather during those 
hottest hours of the day. Figure S3 displays the variability of 
Tdb , Tw , relative humidity, Pv , and TMRT per city during the top 
10% of hottest days.

Heat stress categorization

The rationale behind the different types of uncompensable 
heat stress

From a biophysical perspective, heat stress is compensable 
when the heat produced by the body’s metabolic processes 
and gained from the environment is ultimately offset through 

https://www.metoffice.gov.uk/hadobs/hadisd/
https://www.metoffice.gov.uk/hadobs/hadisd/
https://developer.nrel.gov/docs/solar/nsrdb/psm3-download/
https://developer.nrel.gov/docs/solar/nsrdb/psm3-download/
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increased evaporative heat loss (and, to a lesser extent, dry 
heat loss if Tsk > Tdb), enabling the human body to keep a 
stable internal temperature (Cramer et al. 2022). This com-
pensability can be expressed using human–environment heat 
exchange models comparing the rate of evaporative heat loss 
required for heat balance ( Ereq ) and the maximum capac-
ity for evaporative heat loss given a set of environmental 

and clothing settings ( Emax ). Thus, when Ereq< Emax , one 
experiences compensable heat stress (CHS), and vice versa, 
when Ereq> Emax , UHS is experienced. Ereq can be expressed 
using the human heat balance equation (Eq. 1) assuming 
null heat storage and negligible mechanical work (i.e., the 
energy transferred to a force) and conductive heat exchange 
(i.e., S,K,Wk = 0 W):

(1)Ereq = M − Rskin − Cskin − Cres − Eres (W, or W−2 if divided by body surface area)

Fig. 1   The resulting temperature sample from all 96 cities with the 
associated time-matching moisture levels during the daily Tmax above 
the 90th percentile for (a) Tdb , (b) Tw, and (c) the joined dataset of 
(a) and (b). For the number of observations in the joined dataset, if a 

Tdb and Tw observation matches in day and time of day, it is counted 
once. If the same day is identified but Tdb and Tw peak at different 
times, those observations are treated separately

Fig. 2   Schema of compensa-
ble vs uncompensable heat 
stress (UHS) and different 
categories of UHS based on 
the relative contributions of 
dry 
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The assumption of negligible Wk = 0 is used to express 
that internal metabolic heat production ( Hprod ) is equivalent 
to metabolic rate ( M ). Rskin and Cskin represent rates of dry 
heat exchange by radiation and convection through the skin 
and can be negative or positive depending on whether there 
is heat loss or gain. That heat gain/loss relies on the gradient 
between the skin temperature ( Tsk ) and operative tempera-
ture t0 (i.e., a temperature value that combines the effect of 
Tdb and radiant heat over a surface), in °C.

Rcl is the dry heat transfer resistance of clothing (m2 °C 
W−1), hc+r is the combined convective heat transfer coef-
ficient (Wm2°C−1)––or the sum of the convective ( hc ) and 
radiative ( hr ) heat transfer coefficients for airflow around 
humans––and fcl is the clothing area factor. For equations t0 , 
Rcl, hc, hr , fcl , and Ad , see Cramer and Jay (2019) and Vanos 
et al. (2023). Tsk is held constant at 36°C (Parsons 2014).

In Eq. 1, Cres and Eres represent the convective and evapo-
rative heat exchange in the respiratory tract:

Conversely, Emax accounts for environmental and clothing 
restrictions to body heat loss via sweat evaporation (Eq. 5). 
To consider the physiological capacity to wet the skin and 
distribute sweat across the skin surface in humid environ-
ments, Emax is constrained to the maximum skin wettedness 
(ωmax). ωmax represents the maximum percentage of the 
body that can be covered by sweat, ranging from 0.85 for 
fully heat-acclimatized to 0.65 for not heat-acclimatized or 
individuals older than 65 years (Candas et al. 1979; Morris 
et al. 2021). In this application of the HSCC, we used an 
intermediate value of 0.7.

Psksat
 is the water vapor pressure at the skin surface when 

saturated with sweat (kPa), Re,cl is the evaporative resist-
ance of clothing (m2kPa W −1 ), and he is the evaporative heat 
transfer coefficient (Wm−2 kPa−1 ). The Psksat

 is calculated 
from Tsk. For the equation for he , see Cramer and Jay (2019).

Taking the heat compensability limit when Ereq equals 
the body’s capacity to lose heat via sweat evaporation (i.e., 
Ereq = �max ⋅ Emaxenv

 ), we replace terms from Eqs. 1 and 5 
and rearrange the equation as a function of metabolic heat 
(Eq. 6). Hence, from Eq. 6, the physiological problem of 
heat compensability can be seen as the possibility of over-
coming the internal heat production by achieving enough 

(2)Rskin + Cskin =
(Tsk−t0)

(

Rcl+
1

(hc+r )+fcl

) (Wm−2)

(3)Cres = 0.0014 ⋅M
(

34 − Tair
)

(Wm−2)

(4)Eres = 0.0173 ⋅M(5.87 − Pv) (Wm−2)

(5)Emaxenv
=

(Psk,sat−Pv)

Re,cl+
1

he ⋅fcl

(Wm)−2

heat loss while considering the combined environmental, 
clothing, and physical effect on heat balance. In turn, this 
formulation allows us to group heat avenues into dry and 
evaporative heat balance components in proportion to a con-
stant value of M , which is the foundation for categorizing 
the different types of UHS, explained below.

Having the compensability/uncompensability limit at a 
fixed level of M allows us to describe extreme heat using 
UHS explained in terms of the main constraints in heat loss 
by environmental conditions (i.e., constraints due to evapo-
rative heat loss, dry heat loss, or both). Graphically, this 
problem is shown in Fig. 2.

Thus, the five categories of HSCC classification were 
established based on the relative contributions of dry and 
evaporative heat exchanges in proportion to the internal 
metabolic heat production needed to dissipate, as follows:

Category 0 Compensable heat stress (CHS): Heat 
stress is compensable because total heat loss is equal 
to or greater than the metabolic heat production 
( M <

(

𝜔max ⋅ Emax + Eres

)

+
(

Rskin + Cskin + Cres

)

 ). All 
conditions close to heat balance are at the edge of the transi-
tion from CHS to UHS, exerting high heat stress on people.
Category 1 Low dry and evaporative heat losses: 
UHS occurs because evaporative heat loss is not possi-
ble 

(

𝜔max ⋅ Emax + Eres < M
)

 , and dry heat loss is small 
(

0 < Rskin + Cskin + Cres < M
)

 . This condition typically 
occurs in environments with high humidity (moisture) 
and air temperatures.
Category 2 Dry heat gain with restricted evapo-
rative heat loss: UHS occurs because evaporative 
heat loss is not possible 

(

𝜔max ⋅ Emax + Eres < M
)

 , 
and the body gains heat via convection and radiation 
(

−M < Rskin + Cskin + Cres < 0
)

 . This condition typi-
cally occurs in an environment with high humidity, air 
temperature, and solar radiation.
Category 3 Dry heat gain outweighs evaporative 
loss: UHS occurs despite possible evaporative heat loss 
(

M < 𝜔max ⋅ Emax + Eres

)

 , but the heat gain via convec-
tion and radiation outweighs the evaporative heat loss 
([

𝜔max ⋅ Emax + Eres

]

+ [Rskin + Cskin + Cres] < M
)

 . This 
condition typically occurs in drier environments with 
high air temperatures and solar radiation.
Category 4 Excessive dry heat gain: UHS occurs due to exces-
sive heat gain (greater than M ) 

(

Rskin + Cskin + Cres < −M
)

 , 
whether or not evaporative heat loss is possible. This condition 
is common in arid environments with exceedingly high air tem-
peratures and intense solar radiation. This category is the most 
severe in this classification, adding that sweat rate limits do not 
restrain evaporative loss, as in Vanos et al. (2023).

(6)
M =

(

�max ⋅ Emax + Eres

)

+
(

Rskin + Cskin + Cres

)

(Wm−2)
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The HSCC system reports three types of results. First, a 
binary outcome describes whether heat stress is compensa-
ble or uncompensable (Fig. 3a). Second, heat stress typol-
ogy is defined when heat is uncompensable (Fig. 3b and c, 
Table S3). Third, within UHS, we can directly compare dry 

against evaporative heat losses, as summarized in the 2D 
histogram of the human heat balance (Fig. 5).

This third report type delineates the reasons for UHS 
grouping observations according to their potential evapora-
tive heat flux 

(

�max ⋅ Emax + Eres

)

 on the x-axis and dry heat 

Category 1:
Low dry and evaporative 
heat loss 

Category  2: 
Dry heat gain with restrictive 
evaporative heat loss 

Category 3: 
Dry heat gain outweighs
evaporative loss 

Category  4:
Excessive dry heat 
gain 

Category 0: 
Compensable 
heat stress (CHS)

Fig. 3   Proportion of days with compensable and uncompensable heat 
stress from the top 10th percentile of hottest days in 96 U.S. cities 
based on the peak Tdb and Tw from 2005–2020. (a) Displays results 
as a binary compensable-uncompensable heat stress outcome, while 
(b and c) detail the type of UHS (Categories 1 to 4). For (b) the cat-
egorization is applied for heat exposures with an estimated TMRT as 

a sun-exposed condition, whereas in (c) the results are applied for a 
person entirely shaded ( TMRT = Tdb ). An interactive version of the (b) 
plot is available in https://​zenodo.​org/​recor​ds/​10899​894, along with 
2D histograms (as in Fig. 5) with heat balance results for each city. 
Input data for these graphics are in Table S3

https://zenodo.org/records/10899894
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exchange (loss or gain) 
(

Rskin + Cskin + Cres

)

 on the y-axis, 
both in Wm−2. Given the fixed value of metabolic heat produc-
tion, a diagonal line (Fig. 5) expresses heat balance (total heat 
loss = metabolic internal heat). In the same plots, the grey line 
indicates a null dry heat exchange 

(

Rskin + Cskin + Cres = 0
)

 , 
the red line indicates where dry heat gain equals metabolic 
heat production 

(

Rskin + Cskin + Cres = −M
)

 , and the blue 
line separates conditions where evaporative heat loss could 
surpass metabolic heat production 

(

�max ⋅ Emax + Eres = M
)

 . 
Note that the absolute values of heat flux thresholds from all 
categories depend on metabolic heat production.

Physiological details for categorization application

To apply the HSCC, we must specify an individual’s per-
sonal characteristics. For this initial iteration of the HSCC, we 
adopt a UTCI operational set-up characteristics (Bröde et al. 
2012) representing a healthy “average” adult male walking 
with a speed of 4 km.h−1 (1.1 ms−1) at M = 2.3MET, wearing 
light clothes, with a mass of 73.4 kg and height of 1.85m2 
(Fiala et al. 2012), resulting in M=206.8W or 111.79Wm−2 
after a mass-based factor conversion. The human–environ-
ment heat exchange estimations were done using the PyHHB 
module (Guzman-Echavarria and Vanos 2023) and UTCI 
adaptative clothing scheme capped at a minimum of 0.31clo 
(Havenith et al. 2012; Vanos et al. 2012). Future work with 
this categorization can use multiple physiological settings.

Results

Results display the application of the HSCC during extreme 
heat conditions for 96 U.S. cities and demonstrate the impor-
tance of accounting for the radiative load in biometeoro-
logical applications for heat stress. In addition, we provide 
examples of various reporting methods possible with this 
system, highlighting the types of thermal environments 
captured by each category given the personal profile used 
(which can be customized in further applications).

Input data: weather during peak heat hours 
on the top 10% of warmest days

The environmental input data for the classification comprises 
105,981 hourly observations during the top 10% of the warm-
est days of each city based on Tdb and Tw daily maximums. Tdb 
exhibits a median (and interquartile range: IQR) of 32.8°C 
(30.0–34.6°C), ranging from a minimum of 15.0 to a maximum 
of 50.1°C. The mean TMRT is 65.9°C (60–70.1°C), ranging from 
10.4 to 91.1°C, while Pv has a mean of 21.3 hPa (14.5–26.7 hPa), 
ranging from 0.5 to 47.7 hPa. Relative humidity has a median 
of 44.6 (29.2–58.0%), ranging from 0 to 100%. The majority 

of peak the hottest hours in each city occurred between June 
and August (maximum in July) from 2:00–3:00 pm local time, 
except San Juan-PR, Honolulu-HI, Miami-FL, Melbourne-FL, 
and some cities along the Pacific Coast where peak heat hours 
occurred mostly between 12:00–2:00 pm. The hottest hours of 
occurrence from those time frames along the Pacific Coast is 
mainly related to high Tw . Appendix B in the Supplementary 
Material describes weather variability between (Figure S3) and 
within all cities (Figure S4, Table S2).

HSCC Heat Stress Categorization Results

We found that 88.7% of input data met the UHS criterion 
(Fig. 3a), meaning that at least during ~ 94,000 days weighted 
by city, people might be exposed to conditions in which they 
had to engage in cool-seeking behavior to keep safe from the 
regional heat. However, there is substantial heterogeneity in 
UHS typology across the cities studied (Fig. 3b). Only nine 
cities have more than 20% of observations within CHS, mainly 
in the northern U.S., while 26 present UHS conditions > 95% 
of the time. The higher UHS frequencies are found in San Juan 
(99.87%), Stockton-CA (93.37%), Melbourne-FL (98.13%), 
Orlando-FL (98.1%), and Cape Coral-FL (98%).

Figure 3b shows the categorization results grouping the 
extreme heat values for all 96 cities. Category 1 (low dry 
and evaporative heat losses) was assigned to only 0.46% 
of the data, where only three cities reported > 2% frequency 
(i.e., Monroe-MO, New Orleans-LA, and Jacksonville-FL). 
Category 2 (Dry heat gain with restrictive evaporative 
heat loss) accounts for 13.1% of data, with 36 cities, all con-
centrated in the east, having more than 20% of observations. 
San Juan (Fig. 5c), Omaha-NE, Melbourne, New Orleans 
(Fig. 5f) and Miami (5e) have the highest frequency of Cat-
egory 2 (> 34% observations), all presenting low evapora-
tive heat loss capacity values (< M) during extreme heat. 
Category 3 (dry heat gain outweighs evaporative loss) 
represents 30.7% of the data, with higher frequencies found 
in cities along the Pacific coast. For example, Santa Barbara-
CA, San Francisco-CA, and San Diego-CA present > 75% of 
observations in Category 3. Category 4 (Excessive dry heat 
gain) is found in 44.5% of the cities, being the most frequent 
category in the sample, with five having > 75% observations 
in this category (Needles-CA, Mc Allen-TX, Las Vegas-NV, 
Phoenix-AZ, and Dallas-TX) and 43 cities with > 50%.

Weather conditions and personal heat loads 
by category

This section describes the weather conditions captured 
within each category (Fig. 4d-f), as well as heat loads and 
heat compensability in terms of the required skin wettedness 
( �req ) to achieve heat balance (Fig. 4a-c).
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Category 0 has wider variations due to the CHS pos-
sibility under thermal environments that lead to either high 
evaporative heat loss (dry environments) or higher dry heat 
loss (colder temperatures) (see Table S4). As a result, pos-
sible dry and evaporative heat fluxes were the widest com-
pared to all categories (a median (IQR) of 30.2Wm−2 (-8.53, 
56.67Wm−2) for dry and 167.8Wm−2 (137.71, 193.82Wm−2) 
for evaporative heat fluxes). A slight variation is found in the 
weather parameters in Category 1, shown by the smaller 
IQRs in Fig. 5. Although UHS is in this category, the median 
�req (0.76) is the lowest (hence, this is the least stressful cat-
egory). Category 2 presents characteristics similar to Cat-
egory 1, yet with lower moisture levels and considerably 
higher TMRT (23.8°C greater based on median values). The 
higher moisture and TMRT are largely responsible for almost 
double �req (1.44) compared to category 1. The dry heat gain 
in Category 3 outweighs the evaporative heat loss yet does 
not exceed metabolic heat production, resulting in a median 

�req of ~ 1.0. Category 4 presents the highest values of Tdb , 
TMRT  , and GHI , yet a wide variation in moisture levels; 
hence, this category brings the possible occurrence of both 
very hot and humid heat stress. As a result, the ranges of 
possible dry heat gain with a median (IQR) of -133.82Wm−2 
(-150.5, -122.23Wm−2) and the highest median �max (1.47), 
thus being the most severe HSCC category.

Overall, results from Categories 1–4 can be interpreted 
as the amount of cooling that is possible for a group of 
sun-exposed people with average body characteristics and 
clothing (i.e., UTCI profile) to keep them in CHS (Fig. 5a). 
Beyond observations being categorized, the 2D histogram 
shows that ~ 41% of the hottest hours of the 10% hottest 
days from 2005–2020 exerted dry heat gain from 70 to 
150Wm−2, allowing a maximum evaporative loss between 
90 and 140Wm−2. Thus, heat gain must be limited to these 
thresholds while enhancing the evaporative heat flux to keep 
heat stress compensable.

Category 1: Low dry and 
evaporative heat loss 

Category  2: Dry heat gain with 
restrictive evaporative heat loss 

Category 3: Dry heat gain 
outweighs evaporative loss 
Category 4: Excessive dry 
heat gain 

Category 0: 
Compensable heat 
stress (CHS)

Fig. 4   Variability per category of (a) potential evaporative heat loss, 
(b) dry heat exchanges (positive = loss, negative = gain, grey line: null 
heat dry exchanges), (c) required skin wettedness ( ωreq ) to achieve 
heat balance (green line = ωmax , the grey background indicates ωreq 
values above 1 —or 100% of skin surface— which are not physically 

feasible), (d) Tdb , (e) Vp , and (f) TMRT . Boxes indicate IQR with the 
median marked by a black inside line, and whiskers displays the 5th 
and 95th percentile. Minimum and maximum values are shown as 
points. Median and IQR from (a-f) subplots are reported in Table S4 
in the Supplemental Material
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Within‑city variability in heat loads

As depicted in “HSCC Heat Stress Categorization Results” 
section, a given city can present different types of (or rea-
sons for) UHS based on high heat that arises due to diverse 
synoptic genesis. This section presents the possible heat 
loads on a person during extreme heat in U.S. cities with 
the highest air temperature combined with extremely high 
or low moisture levels, as well as some with the coolest 
conditions (see Fig. 5). We also present results from cities 
with the narrowest and widest variability in Tdb , TMRT and 
Pv (Appendix B).

San Juan (Fig. 5c), located in the north of Puerto Rico 
with a tropical rainforest climate (Köppen Af class), has the 
highest frequency of UHS, demonstrating high dry heat gains 
(up to ~ 220Wm−2) in combination with low evaporative heat 

losses (~ 70–110Wm−2). Honolulu (Fig. 5k) (with a similar 
latitude as San Juan yet a semi-arid climate (Köppen BSh) has 
most of its extreme heat days in category 3, where dry heat 
gain outweighs evaporative heat loss (around 120–140Wm−2).

In the East, New York (Fig. 5d) displays highly hetero-
geneous UHS behavior (spread among numerous categories 
with no distinct clustering), which differs from Florida cities 
and New Orleans, in which dry heat gain was often around 
100Wm−2 (up to 200 Wm−2) yet with low and narrow evapo-
rative heat loss variations around 80 to 100Wm−2.

Cities located in the South and Southwest (highest Tdb 
and TMRT ) reveal the highest dry heat gains (~ 150Wm−2), 
reaching values of 240Wm−2 (see Phoenix and Tucson 
in Fig. 5). Arizona cities also display the greatest val-
ues in maximum possible evaporative heat losses (up 
to ~ 200Wm−2), which could even demand nonfeasible 

Exposures with Tmrt estimations

Exposures with Tmrt = Tdb

Category 1:
Low dry and evaporative 
heat loss 

Category  2: 
Dry heat gain with restrictive 
evaporative heat loss 

Category 3: 
Dry heat gain outweighs
evaporative loss 

Category  4:
Excessive dry 
heat gain 

Category 0: 
Compensable 
heat stress (CHS)

Fig. 5   2D histograms displaying the relative frequency of obser-
vations disaggregated into bins of 10 Wm−2, indicating the relative 
contributions of evaporative (x-axis) and dry (y-axis) heat exchanges 
in proportion to a fixed value of internal metabolic heat production 
(M = 111.8Wm−2). Data are provided for all input data (a, b) and 
selected city examples: San Juan (c), New York (d), Miami (e), New 

Orleans (f), Phoenix (g), Tucson (h), Santa Barbara (i), Seattle (j), 
and Honolulu (k). In (a) heat fluxes represent heat exposures with 
estimated TMRT as sun-exposed conditions, and (b) heat exposures 
for a person who is fully shaded ( TMRT = Tdb ). The histogram plots 
for all cities are shown in the interactive version of Fig. 3 in https://​
zenodo.​org/​recor​ds/​10899​894

https://zenodo.org/records/10899894
https://zenodo.org/records/10899894


	 International Journal of Biometeorology

sweat rates for people with impaired sweating. Another 
aspect relevant in Southwest cities is the apparent bimo-
dality in UHS, with high frequency at lower evapora-
tive heat fluxes values (100-120Wm−2) that should be 
associated with Tw inclusion in a hot day selection and, 
therefore, summer monsoon days. Finally, the Pacific 
coast has more instances of CHS; when UHS occurs, it 
is dominated by high values of evaporative heat loss and 
low dry heat gain (< ~ 150Wm−2) when within Category 
4 (Fig. 5i-j).

The role of radiative heat load and uncompensable 
heat stress

The inclusion of radiant load in heat stress was tested by 
assuming a change from the TMRT estimated initially (open, 
sun-exposed) versus full shade, wherein TMRT = Tdb . While 
maintaining maximum evaporative loss between 90 and 
140W/m2, the overall effect of shade shifts the dry heat 
gain into possible heat loss. This shift results in low dry 
heat loss values from 5 to 50W/m2 (Fig. 5b) ~ 40% of the 
time, which could be enhanced with increased airflow to 
support further convective heat loss. This radiative change 
represents a reduction in the frequency of UHS to 7.62% 
(Figs. 3c and 5b) across all input data (comprised of 3.27% 
in Category 1, 1.39% in Category 2, 2.96% in Category 3, 
and 0% in Category 4).

Discussion

We report on the development and application of the 
Heat Stress Compensability Classification (HSCC), 
which combines historical weather data with biophysical 
modeling during peak city-specific hot hours, as defined 
by the 90th percentiles of daily maximums for Tdb and Tw 
over 15 years in 96 U.S. cities. The classification uniquely 
uses fundamental principles from thermal physiology and 
human biophysics to determine the main avenues for heat 
gain and loss to describe UHS on extreme heat days. In the 
long term, this knowledge can support cooling procedures 
by category based on the heat flux values that best achieve 
heat balance, adopting a similar standpoint as in building 
sciences to estimate cooling loads (Mao et al. 2018).

The HSCC is the first climate-based classification sys-
tem to focus on human heat health from a person-centric 
approach because, unlike other systems and heat stress 
related metrics (like the UTCI itself), it provides action-
able data to support decisions on personal heat-specific 
adaptations. Having a strong focus on human physiology, 
the HSCC can act as a baseline to mitigate and adapt 
to extreme temperatures. The HSCC is dynamic and 
customizable, allowing for more than just a categorical 

description of environmental conditions, but informa-
tion on thermal variations within a given category that 
informs users about the reason for UHS (or dangerous 
heat) and, thus, how to change personal cooling strate-
gies or behaviors. The HSCC approach also overcomes 
drawbacks of common bioclimatic models wherein solar 
radiation is not considered (e.g., NOAA’s Heat Index, 
Humidex, Tw), and its flexibility allows for future work 
adjusting metabolic heat loads along with environmental 
factors (e.g., airflow).

Insights from HSCC to mitigate UHS

It is well-known that seeking shade is one of the top 
forms of human agency for reducing heat exposure 
through behavioral adaptation (de Freitas 2015; Horton 
et al. 2021). In hot conditions, minimizing radiative heat 
sources is crucial to reduce heat stress, as demonstrated 
in this research (“The role of radiative heat load and 
uncompensable heat stress” section). For the personal 
characteristics simulated in this study, exposure to 
UHS conditions would occur only during 7.6% of days 
if people stayed indoors or in the shade, as opposed to 
88.7% of days when solar radiation exposure is considered. 
Assuming TMRT = Tdb implies no radiant thermal load 
contribution, which is the most favorable scenario within 
shade effectiveness. However, some people may not have 
the choice (e.g., working outdoors) or the ability to seek 
shade/indoors. For example, in Phoenix (Fig. 5f), on an 
average peak heat summer hour (3:30 pm), dry heat gain 
is around ~ 153.5Wm−2. If a person stands outdoors in the 
shade (no change of Tdb), under a tree or a lightweight 
engineered structure, the ∆Tmrt will be -22°C (Middel 
et al. 2021); hence, the dry heat gain could be reduced 
to 66Wm−2. That reduction could be even bigger and 
reach 42.1Wm−2, if the shade is provided by an urban form/
building (∆Tmrt = -28°C, Middel et al. (2021)). However, in 
such cases, with possible evaporative losses between 120 
and 180Wm−2, heat stress will be closer to, but not quite 
compensable, requiring additional cooling actions (more 
than only shade) to keep people safe.

Several optimal low-cost personal cooling strategies 
are being tested to overcome the dependency on 
mechanical cooling (air conditioning). For detailed 
information on the benefits of individual cooling 
strategies, see Jay et al. (2021). Under non-extreme heat 
conditions, when Tdb is less than skin temperature, using 
fans simultaneously enhances evaporative and convective 
heat fluxes. However, fan impact is strongly determined 
by air temperature and humidity. Recent empirical and 
modeling studies have provided critical insight into the 
optimal conditions for fan use across different populations 
and climates (Foster et al. 2022a, b; Morris et al. 2021; 



International Journal of Biometeorology	

Ravanelli et al. 2017). Within the HSCC system, it is 
implicit that beyond moisture levels linked to evaporative 
possible heat losses, the cooling suggestions (e.g., 
cooling amount) per category will vary according to the 
magnitude of dry heat exchanges and the metabolic load 
of the chosen sub-population-group (see Table 1).

Future opportunities for use

Although this initial HSCC application is delineated for 
U.S. cities and only one set of personal characteristics, 
the method can be replicated using any set of weather 
observations, physiological measurements, and metabolic 

Table 1   Insight from this first HSCC application for the different 
categories and appropriate heat strain mitigation strategies beyond 
air conditioning. Note that the evidence stated here comes from both 
empirical and theoretical studies, and that strategies that might work 

as heat stress relief upon compensable heat stress might only work for 
the delay or short relief of heat strain, and thus require further cooling 
for keeping people safe during long heat exposures

Category Actions

For all categories Moving out of direct sunlight significantly lessens overall heat load (see “The 
role of radiative heat load and uncompensable heat stress” section) and 
should be the first action taken. Regardless of humidity and clothing, if air 
temperature ≤ 30°C at moderate exercise, fans will increase the benefits from 
convective heat loss (Foster et al. 2022a, b), although their effectiveness 
can extend at rest to 39 °C for young adults, 38°C for older, and 37°C for 
older adults taking anticholinergic medication (Morris et al. 2021). Other 
options include optimizing clothing to avoid heat gain while allowing sweat 
evaporation and conductive heat loss strategies to alleviate heat strain as cold 
water immersion of extremities (Khomenok et al. 2008) and the use of wet 
clothing (Cramer et al. 2020). Maintaining hydration is paramount to avoid 
additional strain across all categories

Category 0 (Compensable heat stress) People are safely able to balance in the given conditions, yet if they are near the 
UHS limit, they might feel some thermal discomfort, thus people may actively 
seek various forms of cooling to keep safe and achieve thermal comfort

Category 1 (Low dry and evaporative heat losses) In this least serious of categories, people can focus on increasing dry and 
evaporative heat losses, for example, by using fans (depending on the air 
temperature) and enhancing cooling by reducing clothing amount or insula-
tion. Given low evaporative heat losses, it is suggested to avoid evaporative 
coolers or misting, particularly without additional airflow

Category 2 (Dry heat gain with restricted evaporative heat loss) Actions should be taken to reduce or reverse dry heat gain. With high 
moisture in the air, even if Tdb is around 36°C, the effect of fan use may 
help delay heart rate increase in the heat due to enhancing evaporative heat 
loss (Ravanelli et al. 2017). Cooling methods, like evaporative coolers or 
misters, that add moisture to the air should not be used, particularly without 
additional airflow

Category 3 (Dry heat gain outweighs evaporative loss) Actions should be taken to reduce or reverse dry heat gain. For example, 
dousing skin and/or clothing with water; use misters, wet towels, and 
evaporative cooling. However, take caution with the use of fans without 
adding water to the skin/clothing as it can worsen dry heat gain (Foster 
et al. 2022a, b; Morris et al. 2021). For Tdb ≥ 35°C, fans are ineffective 
and potentially harmful when relative humidity is below 50% (Foster 
et al. 2022a, b). For example, At Tdb = 42°C, 34 hPa, heat gain with fans 
increased ~ 70 Wm−2 (Ravanelli et al. 2017)

Category 4 (Excessive dry heat gain This category exhibits the most severe heat stress with excessive dry heat 
gain and can become very dangerous rapidly if sweating shuts down. Here, 
heat strain mitigation might be most effective through misting, wet towels 
or shirts soaked in cold water and evaporative coolers, along with water 
dousing, given the high evaporative capacity of the air. However, combining 
strategies does not always maximize benefit. Empirical evidence in Cramer 
et al. (2020) for older adults at 42.4°C air temperature and 34.2% relative 
humidity shows that electric fan use coupled with a wet t-shirt exacerbates 
sweat losses without mitigating heat strain. Still, using only wet t-shirts 
without a fan instead alleviates sweat loss and heat strain. Overall, it is 
paramount to reverse dry heat gain to keep people safe and leverage the dry 
air for evaporation



	 International Journal of Biometeorology

workloads. The contextual findings for the United States are 
comparable to other hot and dry/humid locations. However, 
the within-city variability in many locations (e.g., coastal to 
inland regions; parks to open fields) demonstrates that one 
“type” (or category) of extreme heat does not define a place. 
Thus, heat mitigation strategies should be focused beyond 
the predominant type of climate and understand the vari-
ability across the summer season and a region.

Unlike other heat stress assessment methods, the practi-
cal utility of the HSCC stems from the limits of physio-
logical adaptation. This categorization can evaluate diverse 
populations performing different activities to determine 
their customized HSCC. For example, empirical research 
reveals average dry heat exchanges from -1.5Wm−2 (humid 
experiments) to 76.9Wm−2 (dry experiments) in young, 
healthy adults without added radiant heat load in their lim-
its to physiologically adapt to heat (Vecellio et al. 2022), 
which are plausible values in the current study (Fig. 5b). 
Also, current research has shown that environmental limits 
for heat adaptability decrease with moisture, activity, and 
age (Vecellio et al. 2022; Wolf et al. 2021; Tony Wolf et al. 
2023). A calibrated HSCC by sub-population can give a 
more nuanced understanding (yet improved guidance) for 
different populations experiencing high heat loads. For 
example, modeling older adults (Vanos et al. 2023) and out-
door workers with a higher metabolic load would increase 
the frequency of UHS across the map. Overall, methods 
here can be expanded and improved based human-environ-
mental heat exchange models in interdisciplinary research 
(see Table 3 in Vanos et al. (2023)).

The HSCC model and data from other scientific fields 
can be used as actionable information to guide extreme 
heat management, highlighting the role of personal cool-
ing behavioral adaptations for safety in different indoor or 
outdoor contexts (Baniassadi et al. 2019; Jay et al. 2021; 
Larsen et al. 2022; Nazarian et al. 2022; Rempel et al. 2022; 
Samuelson et al. 2020). There are also potential applications 
in heat planning and disaster preparedness (e.g., compound-
ing disasters, blackouts), design of infrastructure and public 
spaces to withstand extreme heat, and design, testing, and 
implementation of personal cooling strategies and clothing.

Limitations

The initial HSCC formulation has assumptions regarding 
the type of human (based on the UTCI-like average person), 
calm airflow, and unacclimatized humans, yet humans can 
adapt through physiological adjustments, such as increas-
ing sweating capacity (Périard et al. 2015). Still, the model 
allows for size, shape, clothing, metabolic rate adjustments, 
variations for acclimatization, and for medications that 
affect sweat rate. The main limitation of this biophysical 
modeling approach are comprehensively outlined in Vanos 

et al. (2023) in Table 3, including holding skin temperature 
constant at 36°C or the skin wettedness values constant. 
As in Vanos et al. (2023), this method is able to represent 
exclusively heat strain that leads to hyperthermia and not to 
cardiovascular collapse or renal failure, acknowledging that 
heat stroke deaths are a fraction of total excess heat-related 
deaths (Ebi et al. 2021; MCDPH 2024; NYC Department of 
Health 2024). We also acknowledge that thermal environ-
ments at typical airport weather observation stations differ 
from people’s daily experience (Kuras et al. 2017; Nazarian 
and Lee 2021). Yet, these stations provide long-term, con-
sistent records and are helpful for city-wide, national-level 
surveillance applications, as well as baseline data to model 
mitigation strategies and heat in indoor environments.

Conclusions

This research introduces a novel classification system––the Heat 
Stress Compensability Classification (HSCC)––to describe 
uncompensable heat stress, which may result in rising core 
body temperature without altering one’s heat stress conditions. 
The HSCC classification system is based on biophysical prin-
ciples and thermal physiology, providing relevant information 
about the type of heat stress experienced by a person as a func-
tion of internal metabolic heat production. Using open-source 
historical weather data (2005–2020), this new classification 
system is successfully applied across 96 U.S. cities for the hot-
test hours in the hottest 10th of days (city-specific). In addi-
tion, this study introduces an approach to estimate TMRT using 
weather station and radiation-modeled data to account for the 
importance of radiative load on heat stress.

Results from the HSCC are reported in three ways: 1) a 
binary compensable heat stress outcome, 2) uncompensable, 
describing the typology, and 3) disaggregating the category 
results within the human heat balance in a 2D histogram. 
Results show that 88.7% of the evaluated city-hours met 
the UHS criterion. Said differently, people may have been 
exposed to conditions in which they had to engage in cool-
seeking behavior to keep safe (prevent rising core tempera-
ture) for ~ 94,000 h. Full shade reduced UHS frequency to 
7.6%, highlighting the importance of quality shade access 
and including radiative load in heat stress assessments. 
The results from UHS categories help support decisions 
on changing a thermal environment. The practical utility 
of this system over other traditional methods (like UTCI 
or heat index) comes from its dynamic and customizable 
nature by 1) being adaptable to determine limits for various 
populations and target activities in heat stress assessments, 
and 2) providing graphical outputs showing how much heat 
needs to be mitigated to keep a specific population group in 
a thermally compensable condition based on their activity 
(e.g., a person walking in this application).
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At the limits of physiological adaptability or surviv-
ability, these findings align with physiological theory and 
produce actionable information through the different ways 
of communicating the results and facilitating the develop-
ment of targeted criteria for heat stress mitigation strategies 
with potential global applications. Finally, the HSCC dem-
onstrates that heat mitigation strategies should, and can, be 
focused beyond viability for the predominant type of climate 
(place-specific) and account for the variability across the 
summer season and on people (time- and person-specific).
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