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SUMMARY
Recent studies have demonstrated the significance of hyperbolic geometry in uncovering low-dimensional
structure within complex hierarchical systems. We developed a Bayesian formulation of multi-dimensional
scaling (MDS) for embedding data in hyperbolic spaces that allows for a principled determination of manifold
parameters such as curvature and dimension. We show that only a small amount of data are needed to
constrain the manifold, the optimization is robust against false minima, and the model is able to correctly
discern between Hyperbolic and Euclidean data. Application of the method to COVID sequences revealed
that viral evolution leaves the dimensionality of the space unchanged but produces a logarithmic increase
in curvature, indicating a constant rate of information acquisition optimized under selective pressures. The
algorithm also detected a contraction in curvature after the introduction of vaccines. The ability to discern
subtle changes and structural shifts showcases the utility of this approach in understanding complex data
dynamics.
INTRODUCTION

Hyperbolic geometry has gained traction recently as a powerful

framework for understanding complex hierarchies in both ma-

chine learning and the basic sciences. Hyperbolic space can

informally be thought of as the continuous analog of a tree,

and so the exponential expansion of hyperbolic spaces allows

them to capture hierarchical structure with only a few degrees

of freedom. This has spurred a variety of techniques for embed-

ding taxonomies, networks, and continuous datasets in these

spaces.1–3 For example4 used hyperbolic embeddings to show

that volatile metabolites from plants and animals conform to a

low-dimensional hyperbolic geometry. It has also been shown

that real world networks such as the internet possess a latent hy-

perbolic geometry that allows for efficient communication,2 and5

has proposed a general framework for understanding how scale-

free network topologies arise from networks being embedded in

hyperbolic spaces.

Hierarchical structures are typically understood in the form of

graphs, so previous representation learning studies in hyperbolic

space have focused on embedding explicit networks or taxon-

omies,1,3,6,7 where links between nodesdetermine their geometric

similarity. However in many cases explicit hierarchical relation-

ships are not known beforehand, and often the hierarchy cannot

be decomposed cleanly into a tree-like graph.8 Instead, data typi-

cally havecontinuous relationships,moreakin toadistanceorsim-

ilarity, than a binary connection. Even in studies that have worked

with data in this form,9,10 there is no clear prescription for deter-

mining the curvature or dimension of the underlying space. Both

are important geometric parameters for interpreting continuous

maps obtained from discrete data. For example, dimensionality
iScience 27, 111266, Decem
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can be used to derive a minimal set of independent parameters

to describe variations in the data, and curvature can act as a

continuous indicator of how hierarchical the data are. This empha-

sizes the need for an embedding framework that can explicitly fit

for the proper curvature and dimension of the hyperbolic space.

In particular, complex systems typically have many degrees of

freedom, but display a large scale coherence and organization

that suggests thedynamicshavea reduced ‘‘effective’’ dimension.

Weseekasystematic treatmentofcomplexsystems thatallowsus

to infer their low dimensional structure, and hierarchical connec-

tions within it. Applied to COVID19 data, this method produced a

geometric insight into constraints in viral evolution.

In this study we formulate the hyperbolic embedding problem

within a Bayesian framework for multi-dimensional scaling. Previ-

ous studies have investigated Bayesian MDS,11 but restricted

themselves to Euclidean space. While embedding problems are

typically stated as the task of minimizing some stress function,

we instead formulate the equivalent maximum likelihood problem

and re-interpret the stress of classical MDS12 as a probability dis-

tribution. This allows us to incorporate hyperparameters, such as

curvature,directly into themodel by introducing their prior distribu-

tions.Wealso leverage the ‘‘Occam’sRazor’’ propertyofBayesian

statistics,13 and give a simple criteria for unambiguously deter-

mining dimension based on the evidence integral.

RESULTS

Hyperbolic geometry
Distances and scaling

Hyperbolic geometry refers to geometric spaces of uniform

negative curvature. While spaces of zero curvature like a flat
ber 20, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Geometry in the Poincare plane

Left: a tesselation of hyperbolic space in the Poin-

care plane using pentagons. Note that despite the

distortions, each pentagon has the same area and

the edges are connected by straight lines. Right: a

random sample of points in hyperbolic space, with

geodesics plotted between a small subsample of

points.
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plane are straightforward to visualize, hyperbolic spaces are

difficult to represent without distortion due to their exponential

expansion. Concretely, the area enclosed by a circle in the space

with radius r grows as� ezr , whereK = � z2 is the sectional cur-

vature of the space (as opposed to the familiar pr2 for flat

spaces). This exponential expansion is analogous to the expo-

nential expansion of trees, and is what allows hyperbolic space

to model complex hierarchical structures with only a few dimen-

sions. We can visualize the space in the ‘‘Poincare’’ ball where

the circle of radius 1 represents the ‘‘boundary at infinity.’’ In

the tiling of the Poincare plane shown in Figure 1A we see

that the tiles get compressed as they stretch out to infinity, but

this is just a distortion of the representation. Each of these tiles

represents a region of equal area. Note that the number of tiles

grows exponentially as you move outwards. In the right panel

we show a random sample of points in the Poincare ball and

some geodesics (shortest paths) connecting them. Notice that

the shortest path between two points at large radii curves in-

wards toward the center. This reflects another familiar property

of trees: paths connecting nodes in a tree pass through their

nearest common ancestor, traversing the hierarchy up to a

higher depth. As such, hyperbolic space encodes hierarchical

depth in the radial coordinate.

We now turn to somemathematical details relevant for the pre-

sent work. In the ‘‘native’’ coordinate representation of hyperbol-

ic spaces the radial coordinate r of a point is equal to its distance

from the origin. In this representation we can compute the dis-

tance l between 2 points with angular separation Dq by the hy-

perbolic law of cosines as follows:

coshðzlÞ = coshðzr1Þcoshðzr2Þ � sinhðzr1Þsinhðzr2ÞcosðDqÞ
(Equation 1)

where z defines the sectional curvature K of the space as

K = � z2. This is a direct analog of the familiar Euclidean

law of cosines, and as z/0 this reduces to the Euclidean

law, as expected.

Although the straightforward scale invariance of flat spaces is

lost, hyperbolic spaces still possess a more subtle form of scale

invariance that our MDS algorithm will exploit. Intuitively, spaces
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exhibit different levels of curvature based

on the scale on which you are viewing

them (the Earth looks flat from the surface

but round from space). We can thus

modulate the strength of curvature by

changing the scale on which we view the

space. Mathematically, we can consider
a joint rescaling of the coordinates r/lr and curvature

K/l� 2K. By Equation 1 the distance must then be rescaled

as l/ll. Thus, unlike Euclidean spaces that can be rescaled sim-

ply by scaling the coordinates, scaling hyperbolic spaces must

also be accompanied by a rescaling of the curvature. Further-

more, we see that up to an overall scaling of distances, a hyper-

bolic space with unit curvature and maximum radius Rmax is

equivalent to a space with unit radius and curvature K = �
R2
max. This allows us to modulate the curvature of our space at

fixed radius simply by rescaling our distance matrix, a fact we

will exploit in when constructing our Bayesian model in order

to adaptively fit for the curvature of our embedding space.

Embedding coordinates

There are many equivalent coordinate systems to describe hyper-

bolic spaces.5 Although ‘‘compact’’ projections such as the Poin-

care or Beltrami-Klein representation can be intuitive for visualiza-

tion, we followNickel and Kiela6 who found that the Lorentzmodel

behaved significantly better computationally. In this model a D

dimensional hyperbolic space is represented by its embedding

in aD+ 1 dimensional spaceMinkowski space using the following

constraint equation in the D+ 1 dimensional space:

x20 � x21 � x22. � x2D = 1: (Equation 2)

Following conventions from physics we denote points in the

D+ 1 space as xa = ðx0; x!Þ, where x! is a D dimensional vector

referred to as the spacelike component, and x0 is referred to as

the time-like component. In these coordinates the hyperbolic

distance between any two points xa, yb satisfying the constraints

is computed as follows:

dxy = arcoshðx0y0 � x!$ y!Þ: (Equation 3)

Computationally, we take the D space-like components x! of

the coordinates as our free parameters, and compute the time-

like component according to the constraint x0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ x!$ x!

p
.

Note that these coordinates are for a space with unit curvature

K = � 1. As we will see in the next section, our embedding

model will fit for the maximum radius of the distribution of points

in this space. Once the embedding is complete, we can rescale

distances and coordinates and reinterpret the model as having a
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different curvature, but for computational simplicity it is preferred

to perform the embedding itself at fixed curvature.
A Bayesian model for MDS
We now turn to describing our Bayesian model for hyperbolic

MDS, and inferring dimension. We demonstrate that only a small

number of points are required to correctly infer the curvature of

the space, and our modeling of embedding uncertainty makes

the optimization robust against false minima. Finally, we present

an iterative algorithm for effectively scaling the optimizer up to

large datasets.

The likelihood function

Given amatrix dij of distances (dissimilarities) betweendatapoints,

MDS seeks an embedding of points f r!ng in a geometric space

whose distance matrix dij matches the dissimilarity matrix as

closely as possible.12 This is formulated by defining a stress func-

tion that is minimized when the distances matrices are exactly

equal.

S
�n

r!n

o�
=
X
i < j

ðdij � dijÞ2: (Equation 4)

As has been pointed out in previous Bayesian studies,11 mini-

mizing Equation 4 is equivalent to finding the maximum likeli-

hood of an associated Gaussian likelihood function. Taking this

perspective, we seek to construct a generative stochastic model

for the data such that the posterior distribution Pðf r
!

ng
���dijÞ is

maximized exactly when the stress is minimized.

By analogy with generative models for linear regression,

we model our data dissimilarities as being generated directly

from an underlying geometric model by some stochastic pro-

cess that introduces white noise to the system. Thus we write:

dij =
dij

l
+ eij; (Equation 5)

where the eij � N ð0;sijÞ are independent and normally distrib-

uted random variables, but with possibly differing variances,

and l is a global scale parameter. Without loss of generality

we normalize d to have a maximum value of 2 (i.e., unit radius),

so that we can view l as setting the maximum radius of the

embedding with unit curvature K = � 1. Equivalently, as dis-

cussed in the hyperbolic geometry section we can interpret l

as setting the curvature of the interior of the unit sphere to

be � l2. From the form of the distribution for eij we can write

the conditional distribution Pðdij
���� r!i; r!jÞ � N ðdij =l; sijÞ. Taking

the product over all pairs of points gives the likelihood of the pa-

rameters given the dissimilarity matrix:

L
�n

r!n

o
; l;
�
sij

��
h
Y
i < j

P

�
dij

���� r!i; r
!

j

	
=
Y
i < j

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

ij

q e
� 1

2s2
ij

ðdij=l� dijÞ2
:

(Equation 6)

For given values of the parameters l and constant fsijg the

maximum likelihood solution of Equation 6 is equivalent to the
minimum of Equation 4. However it is unclear what the optimal

values of these parameters should be, and in the case of l, the

actual value of the parameter has geometric implications for

the interpretation of the model. Therefore, we take a Bayesian

approach and fit for all parameters simultaneously by intro-

ducing priors over f r
!

ng, l, and fsijg to compute the posterior:

P
�n

r!n

o
; l;
�
sij

����d�fL
�n

r!n

o
; l;
�
sij

��
P
�n

r!n

o�
PðlÞ Pð�sij

�Þ: (Equation 7)

The posterior distribution

We start by choosing prior distributions for our parameters that

appropriately regularize them without being too restrictive. For

our embedding coordinates we would like something like a har-

monic oscillator potential that possesses spherical symmetry

and prevents points from escaping to extremely large radii.

Though we could implement this directly with a normal prior on

the radial coordinates, this is a complicated function of the Lor-

entzian coordinates and could impair the speed and stability of

the code. Instead, we use the fact that l controls the size of

the space, so putting a normal prior on lwill have the same effect

and is significantly simpler. Note that the log likelihood scales

with the number of points as � NðN � 1Þ=2, while l � N0.

Thus, as the number of points in our embedding increases the

prior on lambda becomes negligible relative to the likelihood.

To remedy this, we multiply the log-prior on l by NðN � 1Þ=2
so that it scales with the likelihood.With this, we can simply leave

a flat prior on the Lorentzian coordinates. Although there is a Ja-

cobian distortion of the flat prior when transforming back to the

native hyperbolic space, the effect is negligible and the embed-

ding results are unaffected by it.

For the embedding variances, we reduce the number of pa-

rameters by introducing an uncertainty sn associated to each

data point r!n. We then compute the uncertainty of the distance

between points i and j as follows:

s2
ij = s2

i + s2
j : (Equation 8)

From a physical perspective, minimizing the stress is equiv-

alent to finding the lowest energy configuration of a collection

of points fully connected by springs of equilibrium lengths given

by dij and stiffnesses kij = s� 2
ij . Thus the interpretation of Equa-

tion 8 is that each point has a characteristic stiffness s� 2
i , and

each pair of points is connected by their two springs in series.

Physically, this model allows subsets of points that are well fit

relative to each other to condense into high-stiffness/low-un-

certainty clusters, while poorly fit points have low stiffness

and can still easily explore the space. Not only does this help

the optimizer (Figure 2, left panel), but it also allows us to iden-

tify if points have gotten caught in a false minima and help

guide them out of it (Figure 2, middle and right panels). This al-

lows us to iteratively handle problems with false minima when

scaling up to large datasets. We complete our model by putting

an inverse-gamma prior on each si, as a standard semi-infor-

mative prior for Gaussian variances. We found that our results

are not sensitive to the choice of the prior on s, so long as it is

not too restrictive.
iScience 27, 111266, December 20, 2024 3
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Figure 2. Uncertainty modeling

(A) ‘‘Shepard diagrams,’’ plot of dij=l versus dij , for an embedding in 2Dwith a single global uncertainty s in red, and an embedding with individual uncertainties sn
for each point in blue. The optimal solution should coincide with the line of slope 1 show in gray.

(B) An embedding with local uncertainties caught in a false minimum. Most points are well fit to each other, with a few poorly fit points responsible for the observed

scatter.

(C) Distribution ofs values for the falseminimum embedding.We can clearly identify a stiff and loose cluster of points.We can randomize the coordinates of points

with high s and re-run the optimizer until all points are at the optimal solution.
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Putting all this together, we can write the posterior distribution

as follows:

� ln P
�n

r
!

n

o
; l; fsng

���d�f1

2

X
i < j

 
ðdij



l � dijÞ2
s2
i +s

2
j

+ ln
�
2p
�
s2
i + s2

j

��!

+
NðN � 1Þ

4s2
l

l2 +
X
i

�
ða+ 1Þln si +

b

si

	
:

(Equation 9)

This represents the objective function that we seek to minimize

by our embedding. The crucial point is that the embedding

distance matrix dij is computed with respect to a hyperbolic

metric, and the embedding coordinates r!i are the Lorentzian

coordinates discussed earlier. We chose sl = 10 and a = 2,

b = 0:5, though we have confirmed that the embedding results

are insensitive to the choice of hyper-parameters. We minimize

Equation 9 using an L-BFGS algorithm implemented in the Stan

statistical package,14 distributed under a BSD license. We deal

with the singularity at l = 0 by imposing l> 0:001. We confirmed

that this value is small enough that the hyperbolic law of cosines

with the corresponding curvature gives indistinguishable results

from the Euclidean law of cosines, thus this lower bound is small

enough to cover the Euclidean case. Coordinate parameters are

initialized with a uniform distribution on the interval ½ � 2;2�, and
the remaining positively constrained parameters are initialized

with a uniform distribution on ð0;2�. We compared this to initial-

izing scale and uncertainty parameters at various fixed values,

but found no discernible difference in performance.

Synthetic data results

We first test our method on synthetic distancematrices produced

by randomly generating points uniformly in hyperbolic spaces out
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to somemaximum radius.We add noise ofmagnitude 0:05Rmax to

each distance matrix to simulate a more realistic dataset.

To test our method’s ability to fit for the underlying curvature of

the space we generate points in 3 dimensional spaces with

K = � 1 out to varying maximum radii. We then rescale all of the

distance matrices so that their maximum distance is 2 (i.e., radius

of 1), andweare thus ignorant as to the true radiusof thedata.With

this rescaling the value of l predicted by the simulation is exactly

the predicted Rmax, and we can compute the model curvature as

Kmodel = � l2 (recall the discussion in the hyperbolic geometry

section). Figure 3A demonstrates that we are able to effectively

fit for the correct curvature with as few as 25 � 50 points. In or-

ange we show the results of embedding data generated in a flat

space with noise. Our model correctly predicts curvature close

to 0, and the embedding matrix matches dij almost perfectly.

Thusourmethod subsumes traditionalMDSmethods that only op-

erate in flat spaces.We also show in Figure 3B how the variance in

lmodel with respect to different randomseeds converges as a func-

tion of the number of points.

One advantage of a Bayesian approach to MDS is that we can

employ Bayesian model selection techniques to determine the

underlying dimension of the space. Let qhðf r
!

ng; l; fsngÞ
denote the set of all parameters. Naively, one could compute

the likelihoodLDðqÞ of an embedding in dimensionD and choose

the dimension that maximizes this value12; however, this does

not account for volume effects introduced by having a different

number of parameters in embeddings of different dimension.

Instead one would like to compare models by computing the ev-

idence,13 which integrates out all parameters and defines the

Bayesian information criteria (BIC)15 as follows:

PðdjDÞ =

Z
Pðdjq;DÞPðqjDÞdqz e�BIC=2;BIC = k lnðnÞ

� 2 lnðPðdjqMPÞÞ;
(Equation 10)
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B Figure 3. Curvature and Dimension

(A) Predicted curvatures Kmodel plotted against

actual curvatures Kdata for synthetic data.

Kmodel = Kdata line is shown in gray. Predicted cur-

vatures for Euclidean data are shown in orange.

(B) Fractional error in lmodel (ldata = 5) as a function

of the number of points. Errors bars encompass the

full range of values with respect to simulating mul-

tiple times with different random seeds.

(C) Bayesian information criteria versus embedding

dimension evaluated on a synthetic dataset of 100

points and true dimension D = 5.

(D) Mean s for the same embeddings. Error bars

encompass the full range of s values for all points in

the embedding.
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where k is the number of parameters in the model, n is the num-

ber of observations, and qMP are the values of the parameters

that maximize the posterior. This approximate expression for

the evidence integral is obtained by evaluating the integral ac-

cording to the saddle point method. Since the posterior is

invariant to rigid rotations of the configuration of points there

are DðD � 1Þ=2 ‘‘redundant’’ transformations that do not change

the probability distribution. We exclude these rotational degrees

of freedomwhen computing the number of model parameters so

k = NðD + 1Þ+ 1 � DðD � 1Þ=2.
To test our method’s ability to infer the underlying dimen-

sion of the space we generate 100 points in a 5 dimensional

hyperbolic space, and embed the resultant normalized dis-

tance matrix across a range of dimensions. We compute the

evidence for all embeddings and plot the result in Figure 3C.

For D< 5 the evidence decreases due to the poor quality of

fit, while for D> 5 the evidence decreases since the quality

of fit remains constant but the number of parameters in-

creases. Penalizing additional parameters that do not aid the

model is one of the principle features of using the evidence

for model selection. Thus we are able to correctly identify

D = 5 from the maximum of the evidence. When we do not

know the ground truth dimension beforehand, it is not as

straightforward to select the range of dimensions over which

to embed data to construct the BIC curve. For large, costly

embeddings, with potentially large dimension, one can typi-

cally consider a coarse grained range of dimensions, embed-
iSc
ding data in different dimensions in steps

of 5 or 10 to build an estimate of the BIC

curve over large changes in D. We can

use this curve to find the small subrange

over which the minimum occurs and

sample only this small range densely.

Alternatively, we can analyze the distri-

butions of the s values of the embeddings,

shown in Figure 3D. There is a clear

‘‘elbow’’ at D = 5 where the mean and

standard deviation of the distribution

drops dramatically. Adding more dimen-

sions gives little to no improvement so we

can still identify the correct dimension as

D = 5. When working with real datasets,
however, this elbow can often be less clear so we use the BIC

going forward.

We ran two further synthetic tests to demonstrate the robust

capability of the method. First, we embedded binary trees of

various depths to elaborate on the claim that hyperbolic spaces

are the continuous analog of trees. The input distances for these

embeddings are the path distances on the tree graphs. In the left

panel of Figure 4, we show how the fitted scale parameters l

scales with tree depth. We see a linear relationship between l

and depth, which we expect since tree depth is the graph analog

of hyperbolic radius. In the middle panel, we show the Shepard

diagrams for the embedding of a tree of depth 6 in both hyperbol-

ic and Euclidean spaces of the same dimension. The hyperbolic

fit is extremely tight with little to no distortion, as expected. The

Euclidean embedding, by contrast, has significantly more scat-

ter and scale dependent distortion, thus further demonstrating

how explicit hierarchies can be well fit in a hyperbolic space,

while failing to be fit into a Euclidean space.

To show the effectiveness of the algorithm beyond the case of

uniform distributions we introduce the followingmodel for testing

correlated distributions of points. Consider a multivariate

Gaussian distribution in D = 5 with a covariance matrix Cij that

is a unit diagonal along the first three dimensions: Cij = dij for i;

j%3. We introduce correlations along the final two dimensions

by setting C45 = C54 = b and C44 = C55 =
ffiffiffiffiffiffiffiffiffiffiffi
1+b2

p
. In this

model, b parameterizes the strength of correlations while enforc-

ing that Cij has unit determinant. If we consider the D = 5
ience 27, 111266, December 20, 2024 5



Figure 4. Nonuniform embeddings

Left: scale parameter l as a function of tree depth for hyperbolic embeddings of binary trees. Middle: Shepard diagrams for both Euclidean (blue) and hyperbolic

(red) embeddings of a binary tree with a depth of 6. The quality of the hyperbolic embedding is far superior due to the exponential expansion of the curved space.

Right: BIC curves for increasingly correlated distributions of points generated in a D = 5 hyperbolic space. There is a transition when the correlations become

strong enough that one of the dimensions becomes redundant and BIC selects a lower dimensional description.
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Euclidean space as the tangent space at the origin of a 5 dimen-

sional hyperbolic space, we can map correlated distributions of

points into the hyperbolic space using the exponential map.6 For

our experiment we generated correlated distributions of points in

aD = 5 hyperbolic space over a range of b values from 0 (no cor-

relation) to 4 (high correlation). We added a small amount of

Gaussian noise to the resultant distance matrices and

embedded them over a range of dimensions to see how well

the embeddings would perform in the presence of correlations.

We found that despite correlations, the embedding quality was

still excellent across the range of b values. When fitting for the

dimensionality of the data using BIC we saw a crossover around

b = 2.When the correlations become very strong, relative to the

added noise, the distribution of points has effectively lowered its

dimension since the low degree of variance along the correlated

dimension is indistinguishable from the noise present in the sys-

tem. In the right panel of Figure 4, we correctly see that the min-

imum of the BIC curves transitions down to D = 4 at the critical

correlation value.

Techniques for embedding large datasets

The highly non-linear nature of hyperbolic spaces that endows

them with the geometric power to capture complex hierarchical

relationships also makes them very difficult to deal with numeri-

cally. We describe here an iterative procedure for scaling up the

BHMDS algorithm to embed arbitrarily large datasets.

The primary difficulty with large datasets is that for random

initial conditions the gradient of each contribution to the cost

function tends to be very large. Summed over � N2 points this

can easily lead to an overflow. Our solution is to allow the simu-

lation to find the ‘‘optimal’’ initial condition so that initial gradients

are minimal. To do this, suppose that a subset Nseed <N points

have been embedded in a D dimensional hyperbolic space and

we would like to add one more point (or a batch of points, see

the following text) to the embedding. Since N>Nseed >D the dis-

tances between the new point and the existingNseed points are in

theory enough to constrain the position of the new point. So, we
6 iScience 27, 111266, December 20, 2024
freeze the Nseed points in place and find the position of only the

newpoint based on its distances to theNseed frozen points. Since

the data distance matrices are noisy we expect this to only be

approximate, so we think of this procedure as finding the optimal

initial condition for the new point. We finish by unfreezing and

fully coupling all points as if it were standard MDS and continue

optimizing the cost function until convergence.

The essence of our iterative algorithm is to scale this proced-

ure up by adding points in batches of 100 at a time, instead of

one at a time. We do this as follows.

d Start with random subsample of Nseed points out of the full

N points and embed them according to the standard

BHMDS algorithm. We typically take Nseed = 300, but

any number small enough that it can be manageably

embedded will work.

d Select 100 new points that have not been embedded yet.

With the Nseed points frozen in place we ‘‘initialize’’ each

of the 100 new points individually in the manner described

previously.

d Unfreeze all points and optimize the full cost function of

Nseed + 100 points until converged.

d Update Nseed = Nseed + 100 and continue adding points in

batches of 100 until Nseed = N.

The procedure is flexible in the explicit choices of 300 points

for the initial embedding and adding points in batches of 100.

We found success embedding up to 5; 000 points with this

method, though we have not yet fully probed the upper limit of

what this algorithm can embed.

In Figure 5 we show the experimentally obtained computa-

tional complexity of both the standard BHMDS algorithm and

the large scale embedding method described previously. The

standard approach exhibits an N2 scaling as expected, since

each iteration of the optimizer must loop over all � N2 pairwise

distances. The limiting factor in this case is stability; as

mentioned previously, the large gradients that arise in the large



Figure 5. Complexity plots

Left: computational complexity of the BHMDS al-

gorithm for embeddings in dimensions 10 and 50.

Run times have the expected N2 dependence.

Right: complexity of the large scale embedding al-

gorithm. The overhead induced by the multiple

stages of optimization results in a scaling well fit by

N2:5 in both cases. The increase in computational

cost is compensated for by increased stability that

allows the embeddings to work with larger N. Error

bars show standard deviation of run times with

respect to multiple trials with different randomly

generated data.
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N limit cause the optimizer to crash often. The large scale

embedding method exhibits a steeper scaling, well fit by N2:5.

This additional cost makes sense due to the overhead induced

by having to perform optimization in multiple stages. This addi-

tional cost is compensated for by improved stability: the large

scale embedding technique allows us to push to much higher

ranges of data where the limiting factor is no longer stability.

Illustrative examples
We now consider two example problems with real world data

from broadly different fields to illustrate the power and versatility

of the Bayesian hyperbolic MDS. First we consider the WordNet

hypernym tree, to demonstrate the advantages of the proposal

hyperbolic embedding compared to previous hyperbolic and

Euclidean embedding methods. Our second example studies

the hierarchical nature of viral evolution from a geometric

perspective, and enables us to elucidate a constraint on the dy-

namics of viral evolution in geometric terms.

The geometry of WordNet

WordNet is a massive lexical database encoding the semantic

relationships between words. The inherently hierarchical nature

of language has made this an excellent candidate dataset for

previous hyperbolic studies.1,6 WordNet thus provides the op-

portunity to directly compare our embeddingmethod to previous

works.WeworkwithWordNet’s hypernym tree of ‘‘is-a’’ relation-

ships. For direct comparison with other works we look specif-

ically at the ‘‘mammal’’ subtree, consisting of 1,170 words and

generate a distance matrix by computing the graph distance be-

tween words in the hypernym tree. We can now seek a low

dimensional representation of data based on their distance in or-

der to significantly compress the � N2 bits needed to represent

the full adjacency matrix.

We show the results of our embedding in Figure 6. Computing

the BIC gives the explicit prediction for a three dimensional

model for the WordNet graph. Note this improvement over pre-

vious methods1 that cannot unambiguously select a single

optimal dimension, and instead must simultaneously analyze re-

sults over a range of dimensions, and could not prevent overfit-

ting provided by selecting a higher dimensional embedding. In

the left panel we plot the Shepard diagrams for three dimensional
hyperbolic and Euclidean embeddings. Not only does our

Bayesian model predict a strong curvature of l = 6:8, but by

direct comparison we see that the hyperbolic embedding is

able to far better fit the data with the same number of degrees

of freedom. Note how although information about the network

connections are only implicitly given to the algorithm through

the distance matrix, we can see from the visualization of the

embedding in the middle panel that the network topology con-

forms to the geometry extremely well. In the right hand panel,

we show how the radial coordinate of the embedding encodes

the hierarchical structure in the data. We define the ‘‘specificity’’

of a word as the number of levels of hierarchy it is removed from

the root hypernym, and show the very clear trend of increasing

specificity with radius. The example words shown in the plot

make clear why we call this quantity ‘‘specificity.’’ As the radius

increases the words represented transition from very broad cat-

egories to very specific examples. This allows us to assign a sin-

gle scalar value to each word to quantify its linguistic specifying

power without needing knowledge of the entire network

topology.

The geometry of viral evolution

For our second example we analyze the hierarchical nature of

viral evolution through the lens of hyperbolic geometry. The

conception of evolution as a vast branching tree was immortal-

ized early on by Darwin with his depiction of a ‘‘Tree of Life.’’8

Based on this analogy, we theorize that hyperbolic geometry

can be used to effectively map out viral evolution. To study this

quantitatively we use the database of COVID-19 gene se-

quences provided by the NCBI.16 We seek to geometrically

quantify the pace, progress, and dynamics of evolution by

analyzing structure found in large scale embeddings of COVID-

19 sequences, as well as comparing the geometry recovered

from embeddings of sequences collected over different time-

scales.

To compile our dataset we take a random sample of 1,000

COVID sequences sampled uniformly in time between January

1st, 2020, and October 1st, 2021. We measure the distance be-

tween sequences by counting the number of nucleotide posi-

tions in which two gene sequences disagree, also known as

the Hamming distance. We embed this distance matrix over a
iScience 27, 111266, December 20, 2024 7



Figure 6. Embedding the WordNet graph in hyperbolic space

Left: Shepard diagrams for hyperbolic and Euclidean embeddings of the WordNet mammal subtree. In the inset we plot Bayesian information criteria for the

hyperbolic embeddings to determine the optimal embedding dimension of D = 3. Middle: visualization of the optimal hyperbolic embedding in the 3D Poincare

model. Each red point represents a single word in the network, and the connections are shown in gray. Right: specificity vs. radius, with select example words

shown. Words transition from broad categories to specific labels as radius increases.
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range of dimensions using the large scale embedding algorithm.

A BIC analysis (Figure 7, left panel) predicts a significant

compression of the � 104 nucleotide sequences down to a

40-dimensional space. The resultant embeddings are strongly

hyperbolic, with a predicted maximum radius of l = 7:95 in

D = 40. We can also confirm this by comparing the Shepard di-

agrams of hyperbolic and Euclidean embeddings in the optimally

predicted dimension. From the inset of the left panel we can

clearly see the hyperbolic embedding gives a better fit to the

data than Euclidean embedding. A temporal hierarchy is imme-

diately revealed by the embedding: in the middle panel we see

that the hyperbolic embedding radius scales with the date that

the sequences were collected. This suggests that we are seeing

an evolutionary hierarchy unfolding in time in the hyperbolic

space.
Figure 7. Viral evolution

Left: BIC curve and Shepard diagrams for large embedding ofN = 1; 000 COVID s

diagrams the hyperbolic embedding fits the data in D = 40 much better than Euc

date. The evolutionary hierarchy unfolding in time is sorted along the radial axis

beddings of N = 500 points sampled over time windows of increasing length. Cu

roughly constant.
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We also seek to move beyond the analyses of individual

embeddings, and ask what questions can be answered by

comparing the geometry of multiple embeddings. To test the hy-

pothesis that hyperbolic geometry encodes information about

the hierarchical depth of evolution we analyze samples of viruses

taken over time windows of varying length. We hypothesize that

since longer time windows allow for more mutations to push the

evolutionary tree further down the hierarchy, we expect to see

embeddings over longer time windows to have stronger hyper-

bolic curvature. To test this, we take samples of 500 COVID se-

quences sampled uniformly starting from March 2020 over time

windows of lengths 1 week, 1 month, 3 months, and 6 months.

We show the results of these multiple embeddings in the right

panel of Figure 7. In the inset panel we show the BIC curves

for fitting the optimal dimension for each time window
equences. BIC predicts an optimal dimension ofD = 40, and from the shepard

lidean embeddings. Middle: hyperbolic radius increases with time of collection

in the hyperbolic embedding. Right: fitted curvatures and dimensions for em-

rvature grows logarithmically with time window length, while dimension stays
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embedding. While the dimension only weakly increased with

time window length (and remained within the error bars of the

BIC estimate), themain effect of increasing the sampling window

size was on curvature (middle panel). Importantly, the curvature

increase was logarithmic (in orange we show the best fit logarith-

mic curve). This is interesting because a logarithmic dependence

on time describes the maximum entropy rate of by a discrete

Poisson process.17,18 This suggests that viral evolution is

following a strategy that maximizes information acquisition in

time. Of course, viral evolution is not a fully random process,

being subject to natural selection. Instead, these results indicate

under natural selection (prior to vaccine introduction) follows the

maximally random process with a rescaled time constant that

quantifies selective pressure on viral evolution.

DISCUSSION

We have presented a Bayesian method for embedding data in

hyperbolic spaces, with an improved approach to uncertainty

modeling, as well as probabilistic techniques for inferring the

curvature and dimension of the underlying space. We estab-

lished through tests on synthetic datasets that the method is

both accurate and efficient: the algorithm consistently recon-

structs the data in space with high fidelity, and can correctly infer

the geometric parameters of the space with very little data. We

emphasize the ability of our model to both fit data to geometry,

through MDS embedding, and the ability to fit geometry to

data, through the Bayesian inference of geometric hyper-param-

eters. On real datasets from complex systems, the Bayesian

hyperbolic method show vast improvements over Euclidean em-

beddings and uncover insights about the hierarchical nature of

the data. We also emphasize that embeddings allow us to infer

the underlying hierarchy in the data in a continuous manner,

and thus can afford more power and flexibility than discrete hier-

archical clustering algorithms.

We also mention Liu et al.,19 who simultaneously released an

alternative approach to Bayesian MDS in hyperbolic space.

Although similar in spirit, our approach differs in a variety of

ways. For example, in the study by Liu et al.,19 they impose

explicit priors on the hyperbolic coordinates, while we only

regularize the scale parameter itself. They also model the

embedding with a single global uncertainty parameter s, while

we take a more granular approach and allow each point to have

its own uncertainty. Another notable difference is that our

approach is based on optimization of the exact posterior, while

theirs is based on sampling of an approximate posterior.

Finally, our method includes the fitting of a scale parameter,

which as we discussed allows us to effectively fit for the curva-

ture of the embedding space and subsumes traditional

Euclidean MDS.

Of notable significance are our findings concerning the

hyperbolic geometry of viral evolution. We found that with

time, the latent manifold maintained its dimensionality while

its size (relative to inverse curvature) increased logarithmically

with time. This type of dynamics is what is expected for a

maximum entropy Poisson process with a constant rate. The

rate is presumably set by selection pressure. In future studies,

it will be important to test the manifold properties against
different types of viruses and other pathogens. If it can be

established more broadly that the geometry of pathogenic

mutations follows a low-dimensional hyperbolic geometry,

then this finding could serve as an organizing principle

for testing the optimality in the immune system and its

function. Notably, upon vaccine’s introduction, the size of

the hyperbolic embedding decreased abruptly, indicating

reduced complexity. This reduction allows for quantifying

the vaccine’s effectiveness in slowing down viral evolution.

These results offer a tangible method for assessing the impact

of interventions such as vaccines on viral evolutionary

dynamics.

Limitations of the study
When using hyperbolic geometry to model hierarchical data we

make the implicit assumption that the underlying hierarchy can

be approximated by a uniform b-ary tree (some degree of loops

can be tolerated5). Real systems are of course much more com-

plex, with branching factors varying with both depth and direc-

tion. A proper model of such systems must allow for dynamically

varying curvature and its accompanying geometric complexities.

While hyperbolic geometry is certainly a better model for hierar-

chical data than Euclidean embeddings, one must exercise

caution when interpreting to what degree they have captured

the hierarchical structure in the data. Additionally, the non-linear-

ities induced by curvature that endow hyperbolic spaces with

their enhanced modeling capacity also induce severe computa-

tional complexity. The resultant optimization problems are much

harder and scaling to large datasets � 10; 000 poses a signifi-

cant computational challenge that will require new algorithmic

techniques.
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Material availability
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Data and code availability

d The WordNet dataset is publicly available for download at https://

wordnet.princeton.edu/. COVID sequence datasets are publicly

available for download at https://www.ncbi.nlm.nih.gov/labs/virus/

vssi/#/.

d All original code for implementation of the BHMDS algorithm can be

found at https://github.com/sharpee/BayesianHMDS.
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Deposited data

WordNet https://wordnet.princeton.edu/

Covid Sequence Datasets https://www.ncbi.nlm.nih.gov/labs/virus/vssi//

Software and algorithms
METHOD DETAILS

All simulations and generation of synthetic datasets were done with varying random seeds so we could ensure robustness of the

method to statistical fluctuations. Error bars when reported show the full range of values of a given variable, except in the complexity

scaling plots where the error bars correspond to the standard deviation with respect to multiple trials with differing random seeds.

BHMDS Algorithm https://github.com/sharpee/BayesianHMDS
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