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SUMMARY

Recent studies have demonstrated the significance of hyperbolic geometry in uncovering low-dimensional
structure within complex hierarchical systems. We developed a Bayesian formulation of multi-dimensional
scaling (MDS) for embedding data in hyperbolic spaces that allows for a principled determination of manifold
parameters such as curvature and dimension. We show that only a small amount of data are needed to
constrain the manifold, the optimization is robust against false minima, and the model is able to correctly
discern between Hyperbolic and Euclidean data. Application of the method to COVID sequences revealed
that viral evolution leaves the dimensionality of the space unchanged but produces a logarithmic increase
in curvature, indicating a constant rate of information acquisition optimized under selective pressures. The
algorithm also detected a contraction in curvature after the introduction of vaccines. The ability to discern
subtle changes and structural shifts showcases the utility of this approach in understanding complex data

dynamics.

INTRODUCTION

Hyperbolic geometry has gained traction recently as a powerful
framework for understanding complex hierarchies in both ma-
chine learning and the basic sciences. Hyperbolic space can
informally be thought of as the continuous analog of a tree,
and so the exponential expansion of hyperbolic spaces allows
them to capture hierarchical structure with only a few degrees
of freedom. This has spurred a variety of techniques for embed-
ding taxonomies, networks, and continuous datasets in these
spaces.' ™ For example® used hyperbolic embeddings to show
that volatile metabolites from plants and animals conform to a
low-dimensional hyperbolic geometry. It has also been shown
that real world networks such as the internet possess a latent hy-
perbolic geometry that allows for efficient communication,” and®
has proposed a general framework for understanding how scale-
free network topologies arise from networks being embedded in
hyperbolic spaces.

Hierarchical structures are typically understood in the form of
graphs, so previous representation learning studies in hyperbolic
space have focused on embedding explicit networks or taxon-
omies,">%" where links between nodes determine their geometric
similarity. However in many cases explicit hierarchical relation-
ships are not known beforehand, and often the hierarchy cannot
be decomposed cleanly into a tree-like graph.? Instead, data typi-
cally have continuous relationships, more akin to a distance or sim-
ilarity, than a binary connection. Even in studies that have worked
with data in this form,®'° there is no clear prescription for deter-
mining the curvature or dimension of the underlying space. Both
are important geometric parameters for interpreting continuous
maps obtained from discrete data. For example, dimensionality
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can be used to derive a minimal set of independent parameters
to describe variations in the data, and curvature can act as a
continuous indicator of how hierarchical the data are. This empha-
sizes the need for an embedding framework that can explicitly fit
for the proper curvature and dimension of the hyperbolic space.
In particular, complex systems typically have many degrees of
freedom, but display a large scale coherence and organization
that suggests the dynamics have a reduced “effective” dimension.
We seek a systematic treatment of complex systems that allows us
to infer their low dimensional structure, and hierarchical connec-
tions within it. Applied to COVID19 data, this method produced a
geometric insight into constraints in viral evolution.

In this study we formulate the hyperbolic embedding problem
within a Bayesian framework for multi-dimensional scaling. Previ-
ous studies have investigated Bayesian MDS,"" but restricted
themselves to Euclidean space. While embedding problems are
typically stated as the task of minimizing some stress function,
we instead formulate the equivalent maximum likelihood problem
and re-interpret the stress of classical MDS'? as a probability dis-
tribution. This allows us to incorporate hyperparameters, such as
curvature, directly into the model by introducing their prior distribu-
tions. We also leverage the “Occam’s Razor” property of Bayesian
statistics,® and give a simple criteria for unambiguously deter-
mining dimension based on the evidence integral.

RESULTS

Hyperbolic geometry

Distances and scaling

Hyperbolic geometry refers to geometric spaces of uniform
negative curvature. While spaces of zero curvature like a flat
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plane are straightforward to visualize, hyperbolic spaces are
difficult to represent without distortion due to their exponential
expansion. Concretely, the area enclosed by a circle in the space
with radius rgrows as ~ e, where K = — C2 is the sectional cur-
vature of the space (as opposed to the familiar «r? for flat
spaces). This exponential expansion is analogous to the expo-
nential expansion of trees, and is what allows hyperbolic space
to model complex hierarchical structures with only a few dimen-
sions. We can visualize the space in the “Poincare” ball where
the circle of radius 1 represents the “boundary at infinity.” In
the tiling of the Poincare plane shown in Figure 1A we see
that the tiles get compressed as they stretch out to infinity, but
this is just a distortion of the representation. Each of these tiles
represents a region of equal area. Note that the number of tiles
grows exponentially as you move outwards. In the right panel
we show a random sample of points in the Poincare ball and
some geodesics (shortest paths) connecting them. Notice that
the shortest path between two points at large radii curves in-
wards toward the center. This reflects another familiar property
of trees: paths connecting nodes in a tree pass through their
nearest common ancestor, traversing the hierarchy up to a
higher depth. As such, hyperbolic space encodes hierarchical
depth in the radial coordinate.

We now turn to some mathematical details relevant for the pre-
sent work. In the “native” coordinate representation of hyperbol-
ic spaces the radial coordinate r of a point is equal to its distance
from the origin. In this representation we can compute the dis-
tance / between 2 points with angular separation A# by the hy-
perbolic law of cosines as follows:

cosh(¢l) = cosh(Zry)cosh(Zry) — sinh(¢rq)sinh({ry)cos(Af)
(Equation 1)

where ¢ defines the sectional curvature K of the space as
K = — ¢2. This is a direct analog of the familiar Euclidean
law of cosines, and as {—0 this reduces to the Euclidean
law, as expected.

Although the straightforward scale invariance of flat spaces is
lost, hyperbolic spaces still possess a more subtle form of scale
invariance that our MDS algorithm will exploit. Intuitively, spaces
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Figure 1. Geometry in the Poincare plane
Left: a tesselation of hyperbolic space in the Poin-
care plane using pentagons. Note that despite the
distortions, each pentagon has the same area and
the edges are connected by straight lines. Right: a
random sample of points in hyperbolic space, with
geodesics plotted between a small subsample of
points.

exhibit different levels of curvature based
on the scale on which you are viewing
them (the Earth looks flat from the surface
but round from space). We can thus
modulate the strength of curvature by
changing the scale on which we view the
space. Mathematically, we can consider
a joint rescaling of the coordinates r—Ar and curvature
K — 2"2K. By Equation 1 the distance must then be rescaled
as/— Al. Thus, unlike Euclidean spaces that can be rescaled sim-
ply by scaling the coordinates, scaling hyperbolic spaces must
also be accompanied by a rescaling of the curvature. Further-
more, we see that up to an overall scaling of distances, a hyper-
bolic space with unit curvature and maximum radius Rpax is
equivalent to a space with unit radius and curvature K = —
R2 .. This allows us to modulate the curvature of our space at
fixed radius simply by rescaling our distance matrix, a fact we
will exploit in when constructing our Bayesian model in order
to adaptively fit for the curvature of our embedding space.
Embedding coordinates

There are many equivalent coordinate systems to describe hyper-
bolic spaces.® Although “compact” projections such as the Poin-
care or Beltrami-Klein representation can be intuitive for visualiza-
tion, we follow Nickel and Kiela® who found that the Lorentz model
behaved significantly better computationally. In this model a D
dimensional hyperbolic space is represented by its embedding
inaD + 1 dimensional space Minkowski space using the following
constraint equation in the D + 1 dimensional space:

X2 —x2 —x2... — x5 =1, (Equation 2)
Following conventions from physics we denote points in the
D+1spaceasx® = (xo, X ), where X is a D dimensional vector
referred to as the spacelike component, and xq is referred to as
the time-like component. In these coordinates the hyperbolic
distance between any two points x¢, y* satisfying the constraints
is computed as follows:
dy, = arcosh(xeyo — X - ¥). (Equation 3)
Computationally, we take the D space-like components X’ of
the coordinates as our free parameters, and compute the time-

like component according to the constraint x, = vV 1+x - x.
Note that these coordinates are for a space with unit curvature
K = — 1. As we will see in the next section, our embedding
model will fit for the maximum radius of the distribution of points
in this space. Once the embedding is complete, we can rescale
distances and coordinates and reinterpret the model as having a
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different curvature, but for computational simplicity it is preferred
to perform the embedding itself at fixed curvature.

A Bayesian model for MDS

We now turn to describing our Bayesian model for hyperbolic
MDS, and inferring dimension. We demonstrate that only a small
number of points are required to correctly infer the curvature of
the space, and our modeling of embedding uncertainty makes
the optimization robust against false minima. Finally, we present
an iterative algorithm for effectively scaling the optimizer up to
large datasets.

The likelihood function

Given a matrix ¢; of distances (dissimilarities) between data points,
MDS seeks an embedding of points {7,} in a geometric space
whose distance matrix dj; matches the dissimilarity matrix as
closely as possible.'? This is formulated by defining a stress func-
tion that is minimized when the distances matrices are exactly
equal.

S({7n}) = D@ - &

i<j

(Equation 4)

As has been pointed out in previous Bayesian studies,'" mini-
mizing Equation 4 is equivalent to finding the maximum likeli-
hood of an associated Gaussian likelihood function. Taking this
perspective, we seek to construct a generative stochastic model
for the data such that the posterior distribution P({7}|d;) is
maximized exactly when the stress is minimized.

By analogy with generative models for linear regression,
we model our data dissimilarities as being generated directly
from an underlying geometric model by some stochastic pro-
cess that introduces white noise to the system. Thus we write:

dj

5,',' = —t¢€,

3 (Equation 5)

where the ¢; ~ N'(0,0;) are independent and normally distrib-
uted random variables, but with possibly differing variances,
and A is a global scale parameter. Without loss of generality
we normalize é to have a maximum value of 2 (i.e., unit radius),
so that we can view A as setting the maximum radius of the
embedding with unit curvature K = — 1. Equivalently, as dis-
cussed in the hyperbolic geometry section we can interpret A
as setting the curvature of the interior of the unit sphere to
be — A%. From the form of the distribution for ¢; we can write

the conditional distribution P(6;| 7, T}) ~ N'(dj /2, aj). Taking

the product over all pairs of points gives the likelihood of the pa-
rameters given the dissimilarity matrix:

e({7o)adosh) =ITP (5

i<j

S G
ij

1

- —

ri, }) = | | 29
i<j 271'0,-/-

(Equation 6)

For given values of the parameters A and constant {¢;} the
maximum likelihood solution of Equation 6 is equivalent to the
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minimum of Equation 4. However it is unclear what the optimal
values of these parameters should be, and in the case of A, the
actual value of the parameter has geometric implications for
the interpretation of the model. Therefore, we take a Bayesian
approach and fit for all parameters simultaneously by intro-
ducing priors over {T'»}, , and {o;} to compute the posterior:

p([7. 2 =72} o)
P({7n}) PO Par}).

The posterior distribution

We start by choosing prior distributions for our parameters that
appropriately regularize them without being too restrictive. For
our embedding coordinates we would like something like a har-
monic oscillator potential that possesses spherical symmetry
and prevents points from escaping to extremely large radii.
Though we could implement this directly with a normal prior on
the radial coordinates, this is a complicated function of the Lor-
entzian coordinates and could impair the speed and stability of
the code. Instead, we use the fact that A controls the size of
the space, so putting a normal prior on A will have the same effect
and is significantly simpler. Note that the log likelihood scales
with the number of points as ~N(N — 1)/2, while A ~ N°.
Thus, as the number of points in our embedding increases the
prior on lambda becomes negligible relative to the likelihood.
To remedy this, we multiply the log-prior on A by N(N —1)/2
so that it scales with the likelihood. With this, we can simply leave
a flat prior on the Lorentzian coordinates. Although there is a Ja-
cobian distortion of the flat prior when transforming back to the
native hyperbolic space, the effect is negligible and the embed-
ding results are unaffected by it.

For the embedding variances, we reduce the number of pa-
rameters by introducing an uncertainty ¢, associated to each
data point 7',. We then compute the uncertainty of the distance
between points i and j as follows:

(Equation 7)

o = gl +al. (Equation 8)

From a physical perspective, minimizing the stress is equiv-
alent to finding the lowest energy configuration of a collection
of points fully connected by springs of equilibrium lengths given

by 6; and stiffnesses k; = o 2. Thus the interpretation of Equa-
tion 8 is that each point has a characteristic stiffness o7 2, and
each pair of points is connected by their two springs in series.
Physically, this model allows subsets of points that are well fit
relative to each other to condense into high-stiffness/low-un-
certainty clusters, while poorly fit points have low stiffness
and can still easily explore the space. Not only does this help
the optimizer (Figure 2, left panel), but it also allows us to iden-
tify if points have gotten caught in a false minima and help
guide them out of it (Figure 2, middle and right panels). This al-
lows us to iteratively handle problems with false minima when
scaling up to large datasets. We complete our model by putting
an inverse-gamma prior on each ¢;, as a standard semi-infor-
mative prior for Gaussian variances. We found that our results
are not sensitive to the choice of the prior on o, so long as it is
not too restrictive.
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Figure 2. Uncertainty modeling

(A) “Shepard diagrams,” plot of djj/ A versus d;, for an embedding in 2D with a single global uncertainty o in red, and an embedding with individual uncertainties o,
for each point in blue. The optimal solution should coincide with the line of slope 1 show in gray.
(B) An embedding with local uncertainties caught in a false minimum. Most points are well fit to each other, with a few poorly fit points responsible for the observed

scatter.

(C) Distribution of o values for the false minimum embedding. We can clearly identify a stiff and loose cluster of points. We can randomize the coordinates of points

with high ¢ and re-run the optimizer until all points are at the optimal solution.

Putting all this together, we can write the posterior distribution
as follows:

~In P({?n},x,{an}

CCE))

NN —-1), b
+47¢7§A + E,- ((a+1)ln cr,+;i>.
(Equation 9)

1 (d/A = &)
6) m22< a,-2+a/2

i<j

This represents the objective function that we seek to minimize
by our embedding. The crucial point is that the embedding
distance matrix dj is computed with respect to a hyperbolic
metric, and the embedding coordinates T are the Lorentzian
coordinates discussed earlier. We chose ¢; =10 and a = 2,
b = 0.5, though we have confirmed that the embedding results
are insensitive to the choice of hyper-parameters. We minimize
Equation 9 using an L-BFGS algorithm implemented in the Stan
statistical package,'* distributed under a BSD license. We deal
with the singularity at 2 = 0 by imposing 2> 0.001. We confirmed
that this value is small enough that the hyperbolic law of cosines
with the corresponding curvature gives indistinguishable results
from the Euclidean law of cosines, thus this lower bound is small
enough to cover the Euclidean case. Coordinate parameters are
initialized with a uniform distribution on the interval [— 2,2}, and
the remaining positively constrained parameters are initialized
with a uniform distribution on (0, 2]. We compared this to initial-
izing scale and uncertainty parameters at various fixed values,
but found no discernible difference in performance.

Synthetic data results
We first test our method on synthetic distance matrices produced
by randomly generating points uniformly in hyperbolic spaces out
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to some maximum radius. We add noise of magnitude 0.05R,,a« to
each distance matrix to simulate a more realistic dataset.

To test our method’s ability to fit for the underlying curvature of
the space we generate points in 3 dimensional spaces with
K = — 1 out to varying maximum radii. We then rescale all of the
distance matrices so that their maximum distance is 2 (i.e., radius
of 1), and we are thus ignorant as to the true radius of the data. With
this rescaling the value of A predicted by the simulation is exactly
the predicted Rnax, and we can compute the model curvature as
Kmodel = — A2 (recall the discussion in the hyperbolic geometry
section). Figure 3A demonstrates that we are able to effectively
fit for the correct curvature with as few as 25 — 50 points. In or-
ange we show the results of embedding data generated in a flat
space with noise. Our model correctly predicts curvature close
to 0, and the embedding matrix matches d; almost perfectly.
Thus our method subsumes traditional MDS methods that only op-
erate in flat spaces. We also show in Figure 3B how the variance in
Amodel With respect to different random seeds converges as a func-
tion of the number of points.

One advantage of a Bayesian approach to MDS is that we can
employ Bayesian model selection techniques to determine the
underlying dimension of the space. Let 0=({Tn},% {on})
denote the set of all parameters. Naively, one could compute
the likelihood L (@) of an embedding in dimension D and choose
the dimension that maximizes this value'?; however, this does
not account for volume effects introduced by having a different
number of parameters in embeddings of different dimension.
Instead one would like to compare models by computing the ev-
idence,'® which integrates out all parameters and defines the
Bayesian information criteria (BIC)'® as follows:

P(8|D) = / P(56,D)P(6|D)d6 = e B2 BIC = kIn(n)

-2 In(P(6|0MP)),
(Equation 10)
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Figure 3. Curvature and Dimension

(A) Predicted curvatures Kpmoqes plotted against
actual curvatures Kgae for synthetic data.
Kmodel = Kgata line is shown in gray. Predicted cur-
vatures for Euclidean data are shown in orange.
(B) Fractional error in Amoder (Adata = 5) @s a function
of the number of points. Errors bars encompass the
full range of values with respect to simulating mul-
tiple times with different random seeds.

(C) Bayesian information criteria versus embedding
dimension evaluated on a synthetic dataset of 100
points and true dimension D = 5.

(D) Mean o for the same embeddings. Error bars

® encompass the full range of o values for all points in
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ding data in different dimensions in steps
of 5 or 10 to build an estimate of the BIC
curve over large changes in D. We can
use this curve to find the small subrange
over which the minimum occurs and
sample only this small range densely.
Alternatively, we can analyze the distri-
butions of the o values of the embeddings,
shown in Figure 3D. There is a clear
“elbow” at D =5 where the mean and
standard deviation of the distribution

5
Dimension

10

where k is the number of parameters in the model, n is the num-
ber of observations, and 0yp are the values of the parameters
that maximize the posterior. This approximate expression for
the evidence integral is obtained by evaluating the integral ac-
cording to the saddle point method. Since the posterior is
invariant to rigid rotations of the configuration of points there
are D(D —1)/2 “redundant” transformations that do not change
the probability distribution. We exclude these rotational degrees
of freedom when computing the number of model parameters so
k= ND+1)+1 - DD — 1)/2.

To test our method’s ability to infer the underlying dimen-
sion of the space we generate 100 points in a 5 dimensional
hyperbolic space, and embed the resultant normalized dis-
tance matrix across a range of dimensions. We compute the
evidence for all embeddings and plot the result in Figure 3C.
For D<5 the evidence decreases due to the poor quality of
fit, while for D>5 the evidence decreases since the quality
of fit remains constant but the number of parameters in-
creases. Penalizing additional parameters that do not aid the
model is one of the principle features of using the evidence
for model selection. Thus we are able to correctly identify
D =5 from the maximum of the evidence. When we do not
know the ground truth dimension beforehand, it is not as
straightforward to select the range of dimensions over which
to embed data to construct the BIC curve. For large, costly
embeddings, with potentially large dimension, one can typi-
cally consider a coarse grained range of dimensions, embed-

L I I

5

Dimension

drops dramatically. Adding more dimen-
sions gives little to no improvement so we
can still identify the correct dimension as
D = 5. When working with real datasets,
however, this elbow can often be less clear so we use the BIC
going forward.

We ran two further synthetic tests to demonstrate the robust
capability of the method. First, we embedded binary trees of
various depths to elaborate on the claim that hyperbolic spaces
are the continuous analog of trees. The input distances for these
embeddings are the path distances on the tree graphs. In the left
panel of Figure 4, we show how the fitted scale parameters A
scales with tree depth. We see a linear relationship between A
and depth, which we expect since tree depth is the graph analog
of hyperbolic radius. In the middle panel, we show the Shepard
diagrams for the embedding of a tree of depth 6 in both hyperbol-
ic and Euclidean spaces of the same dimension. The hyperbolic
fit is extremely tight with little to no distortion, as expected. The
Euclidean embedding, by contrast, has significantly more scat-
ter and scale dependent distortion, thus further demonstrating
how explicit hierarchies can be well fit in a hyperbolic space,
while failing to be fit into a Euclidean space.

To show the effectiveness of the algorithm beyond the case of
uniform distributions we introduce the following model for testing
correlated distributions of points. Consider a multivariate
Gaussian distribution in D = 5 with a covariance matrix Cj that
is a unit diagonal along the first three dimensions: C; = ¢; for i,
j < 3. We introduce correlations along the final two dimensions
by setting C45 = Cs4 =b and Cyq Css V1+b2. In this
model, b parameterizes the strength of correlations while enforc-
ing that C; has unit determinant. If we consider the D =5

10
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Figure 4. Nonuniform embeddings

Left: scale parameter A as a function of tree depth for hyperbolic embeddings of binary trees. Middle: Shepard diagrams for both Euclidean (blue) and hyperbolic
(red) embeddings of a binary tree with a depth of 6. The quality of the hyperbolic embedding is far superior due to the exponential expansion of the curved space.
Right: BIC curves for increasingly correlated distributions of points generated in a D = 5 hyperbolic space. There is a transition when the correlations become
strong enough that one of the dimensions becomes redundant and BIC selects a lower dimensional description.

Euclidean space as the tangent space at the origin of a 5 dimen-
sional hyperbolic space, we can map correlated distributions of
points into the hyperbolic space using the exponential map.® For
our experiment we generated correlated distributions of points in
aD = 5 hyperbolic space over arange of b values from 0 (no cor-
relation) to 4 (high correlation). We added a small amount of
Gaussian noise to the resultant distance matrices and
embedded them over a range of dimensions to see how well
the embeddings would perform in the presence of correlations.
We found that despite correlations, the embedding quality was
still excellent across the range of b values. When fitting for the
dimensionality of the data using BIC we saw a crossover around
b = 2. When the correlations become very strong, relative to the
added noise, the distribution of points has effectively lowered its
dimension since the low degree of variance along the correlated
dimension is indistinguishable from the noise present in the sys-
tem. In the right panel of Figure 4, we correctly see that the min-
imum of the BIC curves transitions down to D = 4 at the critical
correlation value.

Techniques for embedding large datasets

The highly non-linear nature of hyperbolic spaces that endows
them with the geometric power to capture complex hierarchical
relationships also makes them very difficult to deal with numeri-
cally. We describe here an iterative procedure for scaling up the
BHMDS algorithm to embed arbitrarily large datasets.

The primary difficulty with large datasets is that for random
initial conditions the gradient of each contribution to the cost
function tends to be very large. Summed over ~ N? points this
can easily lead to an overflow. Our solution is to allow the simu-
lation to find the “optimal” initial condition so that initial gradients
are minimal. To do this, suppose that a subset Ngeeq <N points
have been embedded in a D dimensional hyperbolic space and
we would like to add one more point (or a batch of points, see
the following text) to the embedding. Since N > Nseeq > D the dis-
tances between the new point and the existing Nseeq points are in
theory enough to constrain the position of the new point. So, we
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freeze the Ngeeg points in place and find the position of only the
new point based on its distances to the Ny frozen points. Since
the data distance matrices are noisy we expect this to only be
approximate, so we think of this procedure as finding the optimal
initial condition for the new point. We finish by unfreezing and
fully coupling all points as if it were standard MDS and continue
optimizing the cost function until convergence.

The essence of our iterative algorithm is to scale this proced-
ure up by adding points in batches of 100 at a time, instead of
one at a time. We do this as follows.

o Start with random subsample of Nseeq points out of the full
N points and embed them according to the standard
BHMDS algorithm. We typically take Nseeq = 300, but
any number small enough that it can be manageably
embedded will work.

® Select 100 new points that have not been embedded yet.
With the Nseeg points frozen in place we “initialize” each
of the 100 new points individually in the manner described
previously.

o Unfreeze all points and optimize the full cost function of
Nseeq + 100 points until converged.

® Update Ngeeg = Nseeg + 100 and continue adding points in
batches of 100 until Nggeg = N.

The procedure is flexible in the explicit choices of 300 points
for the initial embedding and adding points in batches of 100.
We found success embedding up to 5,000 points with this
method, though we have not yet fully probed the upper limit of
what this algorithm can embed.

In Figure 5 we show the experimentally obtained computa-
tional complexity of both the standard BHMDS algorithm and
the large scale embedding method described previously. The
standard approach exhibits an N? scaling as expected, since
each iteration of the optimizer must loop over all ~ N? pairwise
distances. The limiting factor in this case is stability; as
mentioned previously, the large gradients that arise in the large
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Figure 5. Complexity plots

Left: computational complexity of the BHMDS al-
gorithm for embeddings in dimensions 10 and 50.
Run times have the expected N? dependence.
Right: complexity of the large scale embedding al-
gorithm. The overhead induced by the multiple
stages of optimization results in a scaling well fit by
N?% in both cases. The increase in computational
cost is compensated for by increased stability that
allows the embeddings to work with larger N. Error
bars show standard deviation of run times with
respect to multiple trials with different randomly
generated data.
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N limit cause the optimizer to crash often. The large scale
embedding method exhibits a steeper scaling, well fit by N?5.
This additional cost makes sense due to the overhead induced
by having to perform optimization in multiple stages. This addi-
tional cost is compensated for by improved stability: the large
scale embedding technique allows us to push to much higher
ranges of data where the limiting factor is no longer stability.

lllustrative examples

We now consider two example problems with real world data
from broadly different fields to illustrate the power and versatility
of the Bayesian hyperbolic MDS. First we consider the WordNet
hypernym tree, to demonstrate the advantages of the proposal
hyperbolic embedding compared to previous hyperbolic and
Euclidean embedding methods. Our second example studies
the hierarchical nature of viral evolution from a geometric
perspective, and enables us to elucidate a constraint on the dy-
namics of viral evolution in geometric terms.

The geometry of WordNet

WordNet is a massive lexical database encoding the semantic
relationships between words. The inherently hierarchical nature
of language has made this an excellent candidate dataset for
previous hyperbolic studies.”® WordNet thus provides the op-
portunity to directly compare our embedding method to previous
works. We work with WordNet’s hypernym tree of “is-a” relation-
ships. For direct comparison with other works we look specif-
ically at the “mammal” subtree, consisting of 1,170 words and
generate a distance matrix by computing the graph distance be-
tween words in the hypernym tree. We can now seek a low
dimensional representation of data based on their distance in or-
der to significantly compress the ~ N? bits needed to represent
the full adjacency matrix.

We show the results of our embedding in Figure 6. Computing
the BIC gives the explicit prediction for a three dimensional
model for the WordNet graph. Note this improvement over pre-
vious methods’ that cannot unambiguously select a single
optimal dimension, and instead must simultaneously analyze re-
sults over a range of dimensions, and could not prevent overfit-
ting provided by selecting a higher dimensional embedding. In
the left panel we plot the Shepard diagrams for three dimensional
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hyperbolic and Euclidean embeddings. Not only does our
Bayesian model predict a strong curvature of A = 6.8, but by
direct comparison we see that the hyperbolic embedding is
able to far better fit the data with the same number of degrees
of freedom. Note how although information about the network
connections are only implicitly given to the algorithm through
the distance matrix, we can see from the visualization of the
embedding in the middle panel that the network topology con-
forms to the geometry extremely well. In the right hand panel,
we show how the radial coordinate of the embedding encodes
the hierarchical structure in the data. We define the “specificity”
of a word as the number of levels of hierarchy it is removed from
the root hypernym, and show the very clear trend of increasing
specificity with radius. The example words shown in the plot
make clear why we call this quantity “specificity.” As the radius
increases the words represented transition from very broad cat-
egories to very specific examples. This allows us to assign a sin-
gle scalar value to each word to quantify its linguistic specifying
power without needing knowledge of the entire network
topology.

The geometry of viral evolution

For our second example we analyze the hierarchical nature of
viral evolution through the lens of hyperbolic geometry. The
conception of evolution as a vast branching tree was immortal-
ized early on by Darwin with his depiction of a “Tree of Life.”®
Based on this analogy, we theorize that hyperbolic geometry
can be used to effectively map out viral evolution. To study this
quantitatively we use the database of COVID-19 gene se-
quences provided by the NCBI.'® We seek to geometrically
quantify the pace, progress, and dynamics of evolution by
analyzing structure found in large scale embeddings of COVID-
19 sequences, as well as comparing the geometry recovered
from embeddings of sequences collected over different time-
scales.

To compile our dataset we take a random sample of 1,000
COVID sequences sampled uniformly in time between January
1st, 2020, and October 1st, 2021. We measure the distance be-
tween sequences by counting the number of nucleotide posi-
tions in which two gene sequences disagree, also known as
the Hamming distance. We embed this distance matrix over a
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Figure 6. Embedding the WordNet graph in hyperbolic space
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Left: Shepard diagrams for hyperbolic and Euclidean embeddings of the WordNet mammal subtree. In the inset we plot Bayesian information criteria for the
hyperbolic embeddings to determine the optimal embedding dimension of D = 3. Middle: visualization of the optimal hyperbolic embedding in the 3D Poincare
model. Each red point represents a single word in the network, and the connections are shown in gray. Right: specificity vs. radius, with select example words
shown. Words transition from broad categories to specific labels as radius increases.

range of dimensions using the large scale embedding algorithm.
A BIC analysis (Figure 7, left panel) predicts a significant
compression of the ~ 10* nucleotide sequences down to a
40-dimensional space. The resultant embeddings are strongly
hyperbolic, with a predicted maximum radius of 1 =7.95 in
D = 40. We can also confirm this by comparing the Shepard di-
agrams of hyperbolic and Euclidean embeddings in the optimally
predicted dimension. From the inset of the left panel we can
clearly see the hyperbolic embedding gives a better fit to the
data than Euclidean embedding. A temporal hierarchy is imme-
diately revealed by the embedding: in the middle panel we see
that the hyperbolic embedding radius scales with the date that
the sequences were collected. This suggests that we are seeing
an evolutionary hierarchy unfolding in time in the hyperbolic
space.

We also seek to move beyond the analyses of individual
embeddings, and ask what questions can be answered by
comparing the geometry of multiple embeddings. To test the hy-
pothesis that hyperbolic geometry encodes information about
the hierarchical depth of evolution we analyze samples of viruses
taken over time windows of varying length. We hypothesize that
since longer time windows allow for more mutations to push the
evolutionary tree further down the hierarchy, we expect to see
embeddings over longer time windows to have stronger hyper-
bolic curvature. To test this, we take samples of 500 COVID se-
quences sampled uniformly starting from March 2020 over time
windows of lengths 1 week, 1 month, 3 months, and 6 months.
We show the results of these multiple embeddings in the right
panel of Figure 7. In the inset panel we show the BIC curves
for fitting the optimal dimension for each time window
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Figure 7. Viral evolution

Time (Days Since Jan 1 2020)

Sampling Window (Weeks)

Left: BIC curve and Shepard diagrams for large embedding of N = 1,000 COVID sequences. BIC predicts an optimal dimension of D = 40, and from the shepard
diagrams the hyperbolic embedding fits the data in D = 40 much better than Euclidean embeddings. Middle: hyperbolic radius increases with time of collection
date. The evolutionary hierarchy unfolding in time is sorted along the radial axis in the hyperbolic embedding. Right: fitted curvatures and dimensions for em-
beddings of N = 500 points sampled over time windows of increasing length. Curvature grows logarithmically with time window length, while dimension stays

roughly constant.
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embedding. While the dimension only weakly increased with
time window length (and remained within the error bars of the
BIC estimate), the main effect of increasing the sampling window
size was on curvature (middle panel). Importantly, the curvature
increase was logarithmic (in orange we show the best fit logarith-
mic curve). This is interesting because a logarithmic dependence
on time describes the maximum entropy rate of by a discrete
Poisson process.'”'® This suggests that viral evolution is
following a strategy that maximizes information acquisition in
time. Of course, viral evolution is not a fully random process,
being subject to natural selection. Instead, these results indicate
under natural selection (prior to vaccine introduction) follows the
maximally random process with a rescaled time constant that
quantifies selective pressure on viral evolution.

DISCUSSION

We have presented a Bayesian method for embedding data in
hyperbolic spaces, with an improved approach to uncertainty
modeling, as well as probabilistic techniques for inferring the
curvature and dimension of the underlying space. We estab-
lished through tests on synthetic datasets that the method is
both accurate and efficient: the algorithm consistently recon-
structs the data in space with high fidelity, and can correctly infer
the geometric parameters of the space with very little data. We
emphasize the ability of our model to both fit data to geometry,
through MDS embedding, and the ability to fit geometry to
data, through the Bayesian inference of geometric hyper-param-
eters. On real datasets from complex systems, the Bayesian
hyperbolic method show vast improvements over Euclidean em-
beddings and uncover insights about the hierarchical nature of
the data. We also emphasize that embeddings allow us to infer
the underlying hierarchy in the data in a continuous manner,
and thus can afford more power and flexibility than discrete hier-
archical clustering algorithms.

We also mention Liu et al.,'® who simultaneously released an
alternative approach to Bayesian MDS in hyperbolic space.
Although similar in spirit, our approach differs in a variety of
ways. For example, in the study by Liu et al.,'® they impose
explicit priors on the hyperbolic coordinates, while we only
regularize the scale parameter itself. They also model the
embedding with a single global uncertainty parameter o, while
we take a more granular approach and allow each point to have
its own uncertainty. Another notable difference is that our
approach is based on optimization of the exact posterior, while
theirs is based on sampling of an approximate posterior.
Finally, our method includes the fitting of a scale parameter,
which as we discussed allows us to effectively fit for the curva-
ture of the embedding space and subsumes traditional
Euclidean MDS.

Of notable significance are our findings concerning the
hyperbolic geometry of viral evolution. We found that with
time, the latent manifold maintained its dimensionality while
its size (relative to inverse curvature) increased logarithmically
with time. This type of dynamics is what is expected for a
maximum entropy Poisson process with a constant rate. The
rate is presumably set by selection pressure. In future studies,
it will be important to test the manifold properties against
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different types of viruses and other pathogens. If it can be
established more broadly that the geometry of pathogenic
mutations follows a low-dimensional hyperbolic geometry,
then this finding could serve as an organizing principle
for testing the optimality in the immune system and its
function. Notably, upon vaccine’s introduction, the size of
the hyperbolic embedding decreased abruptly, indicating
reduced complexity. This reduction allows for quantifying
the vaccine’s effectiveness in slowing down viral evolution.
These results offer a tangible method for assessing the impact
of interventions such as vaccines on viral evolutionary
dynamics.

Limitations of the study

When using hyperbolic geometry to model hierarchical data we
make the implicit assumption that the underlying hierarchy can
be approximated by a uniform b-ary tree (some degree of loops
can be tolerated®). Real systems are of course much more com-
plex, with branching factors varying with both depth and direc-
tion. A proper model of such systems must allow for dynamically
varying curvature and its accompanying geometric complexities.
While hyperbolic geometry is certainly a better model for hierar-
chical data than Euclidean embeddings, one must exercise
caution when interpreting to what degree they have captured
the hierarchical structure in the data. Additionally, the non-linear-
ities induced by curvature that endow hyperbolic spaces with
their enhanced modeling capacity also induce severe computa-
tional complexity. The resultant optimization problems are much
harder and scaling to large datasets ~ 10,000 poses a signifi-
cant computational challenge that will require new algorithmic
techniques.

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Tatyana O. Sharpee (sharpee@snl.salk.edu).

Material availability
N/A.

Data and code availability

o The WordNet dataset is publicly available for download at https://
wordnet.princeton.edu/. COVID sequence datasets are publicly
available for download at https://www.ncbi.nlm.nih.gov/labs/virus/
vssi/#/.

e All original code for implementation of the BHMDS algorithm can be
found at https://github.com/sharpee/BayesianHMDS.

e Any additional information required to analyze the data reported in this
paper is available from the lead contact upon request.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

WordNet https://wordnet.princeton.edu/

Covid Sequence Datasets

https://www.ncbi.nlm.nih.gov/labs/virus/vssi//

Software and algorithms

BHMDS Algorithm

https://github.com/sharpee/BayesianHMDS

METHOD DETAILS

All simulations and generation of synthetic datasets were done with varying random seeds so we could ensure robustness of the
method to statistical fluctuations. Error bars when reported show the full range of values of a given variable, except in the complexity
scaling plots where the error bars correspond to the standard deviation with respect to multiple trials with differing random seeds.
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