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A B S T R A C T

Mean Radiant Temperature (Tmrt) is the most critical atmospheric variable influencing outdoor human thermal 
exposure and comfort in hot, dry environments. However, accurately quantifying Tmrt requires time-consuming 
field measurements with expensive equipment or complex, resource-intensive computations. We introduce 
WebMRT, an online tool to predict Tmrt using a data-driven approach. It features an intuitive interface using air 
temperature, shading status, and built environment features as predictors of Tmrt for a user-selected summer day, 
time, and location. Utilizing a tree-based ensemble model, WebMRT is trained on state-of-the-art human- 
biometeorological data collected by MaRTy using LightGBM after evaluating its performance against several 
candidate machine learning regressors. Feature engineering was applied to the day and time input, and two 
additional temporal features were derived: ‘Solar Altitude’ and ‘Minutes-from-Sunrise’. These inputs are inte
grated into the user interface, emphasizing simplicity and easy access for users at the frontend. After training the 
regressor on MaRTy datasets and employing k-fold cross-validation with ten folds, the model demonstrated 
strong predictive power (R2=0.92) with acceptable error (RMSE=3.43, MAPE=5.33) and bias (MBE=0.20). 
WebMRT also features optional fisheye photo uploads, processed using transfer learning techniques for image 
segmentation, further enhancing the tool’s predictive accuracy, user experience, and applications towards 
climate action decision-making processes.

1. Introduction

Outdoor human thermal exposure is a pressing public health 
concern, particularly in rapidly growing desert cities where vulnera
bility to extreme heat is already intensified by global climate change 
(IPCC, 2023). Identifying conditions that lead to thermal stress requires 
several micrometeorological factors beyond air temperature, including 
shortwave and longwave radiation, wind speed, and humidity 
(Guzman-Echavarria, Middel & Vanos, 2023). During extreme heat 
events, wind speed is usually low, diminishing the effectiveness of 
convective cooling. In such situations, radiation becomes the primary 
factor influencing thermal comfort and stress, particularly in hot and dry 
climates (Lindberg, Holmer & Thorsson, 2008; Middel, AlKhaled, 
Schneider, Hagen & Coseo, 2021; Shashua-Bar, Pearlmutter & Erell, 

2011). Given these conditions, mean Radiant Temperature (Tmrt) has 
been recognized as the most critical atmospheric metric influencing the 
human thermal experience (Guo et al., 2020; Johansson, Thorsson, 
Emmanuel & Krüger, 2014; Thorsson, Lindberg, Eliasson & Holmer, 
2007). Tmrt summarizes the effects of short and longwave fluxes (direct 
and reflected) on the human body and is an essential indicator of ther
mal exposure in human biometeorology. In current research and prac
tice, Tmrt has been widely used as a crucial variable for 
thermophysiological stress indices such as UTCI (Jendritzky, de Dear & 
Havenith, 2012), PET (Höppe, 1999), and SET* (Gagge, Fobelets & 
Berglund, 1986). However, calculating Tmrt is complex, and predicting it 
presents several challenges, including the need for field measurements 
and the computational complexities involved.

Various methods exist to obtain Tmrt from field measurements and 
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numerical modeling (Kántor & Unger, 2011). Field measurements range 
from complex setups using pyranometers and pyrgeometers oriented in 
six directions to simpler, though less accurate, infrared camera 
(Merchant et al., 2022; Middel, Huff, Krayenhoff, Udupa & Schneider, 
2023), globe thermometer (Krüger, Minella & Matzarakis, 2014), and 
cylindrical thermometer methods (Rykaczewski et al., 2024). The 
impact of the different measurement approaches on Tmrt values has been 
the focus of several studies (Thorsson et al., 2007; Vanos et al., 2021). 
Often, such measurements are unavailable or lack the temporal conti
nuity necessary for urban planning and design decision-making 
processes.

Longitudinal studies have relied on numerical modeling to simulate 
Tmrt, using parameterized models such as RayMan (Matzarakis, Rutz & 
Mayer, 2007) and SOLWEIG (Lindberg et al., 2008), as well as compu
tational fluid dynamic models like ENVI-met (Bruse & Fleer, 1998). 
However, these models encounter several challenges, including: (a) 
inadequate physical process modeling, particularly in the calculation 
and reflection of surface temperatures; (b) limited support for vector 
data formats, which restricts the integration of detailed geographic data 
essential for accurate modeling; and (c) high computational demands 
(Buo, Sagris, Jaagus & Middel, 2023; Gál & Kántor, 2020; Wu, Fang, Liu 

& Middel, 2023). Consequently, the oversimplified representations 
inherent to these models often compromise Tmrt predictions and limit 
their effectiveness in routine decision-making processes.

Recognizing these challenges, this study introduces WebMRT, an 
online tool to predict Tmrt using machine learning models trained on 
state-of-the-art Tmrt measurements and built environment features (360- 
degree surface type fractions) collected in the Desert Southwest US using 
MaRTy (Middel et al., forthcoming; Middel & Krayenhoff, 2019). The 
primary objective of WebMRT is to bridge the gap in current method
ologies, which typically rely on complex field observations and intensive 
computational resources to predict Tmrt. WebMRT offers a streamlined 
alternative by using empirical models that provide accurate predictions 
without the extensive computational demands of numerical modeling. 
The simplicity of WebMRT’s user interface enhances its accessibility, 
making it particularly engaging for stakeholders and policy officials. 
This interface, combined with the tool’s ability to integrate and process 
real-time data efficiently, supports timely and informed 
decision-making in urban heat stress mitigation. Consequently, 
WebMRT contributes to data-driven urban climate governance, a need 
underscored by recent studies such as those by Hughes, Giest and Tozer 
(2020) and Middel, Nazarian, Demuzere and Bechtel (2022).

Fig. 1. WebMRT dual framework architecture with the backend (A and B) and frontend (C) workflows. The backend is structured into three primary components: the 
Tmrt Prediction Model, the Fisheye (Hemispherical) Image Generator, and the Fisheye Segmentation Model.
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The remainder of this paper is organized as follows: Section 2, details 
the techniques and processes used in the development of WebMRT, from 
data sourcing to the overarching web application architecture. Section 3
presents the rationale behind selecting the prediction model, its per
formance compared to other machine learning regressors, and the 
functionality of WebMRT’s user interface. Section 4 considers the im
plications and potentials of WebMRT for broader engagement among 
stakeholders. Finally, the paper concludes with Section 5 which outlines 
the significance of WebMRT and future research directions.

2. Materials and methods

The development of WebMRT involved various tasks, from data 
sourcing and backend model development to photo segmentation and 
the design of a user-friendly interface (Fig. 1). All dataset management 
tasks were performed using R (Version 4.2.1). Python (Version 3.10) was 
utilized for machine learning using the Scikit-learn library (Pedregosa 
et al., 2011). The interface of WebMRT was developed in HTML, CSS, 
and JavaScript.

2.1. Data sources

The empirical model in the WebMRT backend is based on MaRTy 
human-biometeorological measurements in the Phoenix metropolitan 
area (Middel & Krayenhoff, 2019; Middel et al., 2021), alongside built 
environment features derived from hemispherical fisheye photographs 
(Middel, Lukasczyk, Zakrzewski, Arnold & Maciejewski, 2019).

The Phoenix metropolitan area is the largest city in the Sonoran 
Desert and classified under the Köppen-Geiger climate type BWh, 
indicative of a hot, arid desert (Kottek, Grieser, Beck, Rudolf & Rubel, 
2006). During the summer months of June, July, and August, the region 
typically experiences dry conditions and intense heat, with average daily 
maximum air temperatures exceeding 40 ◦C for the 1991–2020 period. 
The monsoon season, which extends from June 15 to September 30, 
introduces higher humidity levels. Throughout May to September, the 
average nightly minimum air temperature remains well above 20 ◦C.

The human-biometeorological dataset, a gold standard in the field, 
includes hourly measurements of air temperature, humidity, wind 
speed, and six-directional shortwave and longwave radiation (Middel 
et al., forthcoming). These measurements were recorded using the 
MaRTy mobile human-biometeorological station across various sites 
and summertime days in the Desert Southwest USA between 2016 and 
2019. Tmrt is calculated using the six-directional method, with 
three-dimensional radiation budgets decomposed into directional 
weighted components of shortwave and longwave radiation. Tmrt ob
servations for each site are coupled with view factors of built environ
ment features, calculated from image cubes, to determine the main 
drivers of Tmrt and thermal exposure. Those include percent sky, trees, 
buildings, impervious surfaces, pervious surfaces, and non-permanent 
objects. A detailed description of MaRTy and the methodology behind 
calculating view factors of built environment features are available in 
Middel and Krayenhoff (2019) and Middel et al. (2021).

2.2. Backend development

2.2.1. Empirical model development
WebMRT’s backend prediction model follows the main steps of a 

typical machine learning workflow. It consists of (1) data preparation, 
(2) data splitting into training and testing subsets, (3) identifying 
candidate algorithms, (4) model training and tuning, and (5) model 
performance evaluation and comparison.

2.2.1.1. Data preparation. A dataset was compiled to estimate Tmrt using 
various built environment features as predictor variables for entry into 
the machine learning process. As discussed in Section 2.1, two datasets 

were merged: the MaRTy dataset containing Tmrt values along with 
observation metadata, and the dataset detailing built environment view 
factors, categorized into six classes of potential predictor variables—sky, 
trees, buildings, impervious surfaces, pervious surfaces, and non-permanent 
objects — considering both spatial and temporal factors. During data pre- 
processing and wrangling, missing values were removed, and categori
cal variables were converted to a numerical format as necessary through 
one-hot encoding. Descriptive statistics of the merged dataset are re
ported in Table 1.

In the feature engineering phase, additional variables pertinent to 
solar radiation were derived using R’s suntools package (Bivand et al., 
2023) and incorporated into the dataset. Specifically, the solar position 
(altitude) and time (minutes from sunrise) were determined from each 
measurement’s geographic coordinates and timestamp. These features 
are crucial as they normalize solar position and exposure time, 
enhancing accuracy beyond what a timestamp alone can offer. This 
normalization is especially relevant to Tmrt predictions, improving the 
model’s ability to accurately represent thermal conditions. The selection 
of features, including extracted and engineered variables, was deter
mined through backward elimination and feature importance ranking. 
The final set of selected features included: (1) air temperature, (2) solar 
altitude, (3) minutes from sunrise, (4) shade at measurement, and the view 
factors of surrounding (5) sky, (6) buildings, (7) trees, and (8) pervious 
ground cover.

2.2.1.2. Training and testing subsets. The dataset was split into training 
and testing subsets. 70% of the data was allocated for training, while the 
remaining 30% was set aside for testing. In addition to the validation 
processes (Section 2.2.1.4), a predetermined random seed was utilized 
to maintain consistency and reproducibility in the data division. 
Following the data split, the training and testing subset indices, 
encompassing the features and the target variable, were reset. This 
procedure ensures that the data’s structural integrity is preserved 
throughout the machine-learning process, particularly when cross- 
validation techniques are implemented (Section 2.2.1.4).

2.2.1.3. Identifying candidate algorithms. The candidate algorithm se
lection was driven by the necessity to examine a range of modeling 
techniques capable of handling the complex relationships and varied 
data types in the dataset. Simple linear models such as Ridge (Hoerl & 
Kennard, 1970) and Lasso Regression (Tibshirani, 1996) were included 
because they address multicollinearity and feature selection. 
Kernel-based methods like Support Vector Regression (Smola & 
Schölkopf, 2004) were selected for their capacity to handle non-linear 
relationships through different kernel functions. Advanced tree-based 
ensemble methods including Decision Tree (Loh, 2011), Random For
est (Breiman, 2001), LightGBM (Ke et al., 2017), and XGBoost (Chen & 
Guestrin, 2016) were chosen for their robustness and high performance 
in capturing complex data structures while preventing overfitting, 
which is critical for achieving the predictive accuracy objectives of 
WebMRT. The rationale behind each selection relates directly to the 
algorithm’s known strengths and alignment with the specific challenges 
presented by the dataset characteristics, ensuring a comprehensive 
evaluation of different approaches. The objective was to identify the 
most effective algorithm that would exhibit superior predictive accuracy 
across the various models.

2.2.1.4. Model tuning and evaluation. Tuning refers to the process of 

Table 1 
Dataset description.

No. of observations: 2159 ​ Hours: 0730–2030
No. of features: 12 ​ Months: June - August
Data types: Numeric & Nominal Tair ( ◦C): 26.02–43.97
Years: 2016; 2018- 2019 Tmrt ( ◦C): 15.54–76.22
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adjusting the hyperparameters of the models to improve performance. 
The hyperparameter space is preset before the learning process to 
modify the learning structure and process but is not derived from the 
data per se. It involves identifying the optimal settings within the pre
defined space through an iterative process of testing various combina
tions and assessing their impact on the model’s predictive power.

The selection of hyperparameters for tuning was informed by the 
known sensitivities and performance impacts associated with each 
model type. For linear and kernel-based models, an exhaustive grid 
search approach was employed to systematically explore combinations 
of parameters and ascertain the most effective settings. In contrast, due 
to the vast hyperparameter space of tree-based ensemble models, a 
randomized search strategy was adopted, enabling the efficient identi
fication of high-performing configurations without the need for 
exhaustive testing. To mitigate the risks of overfitting and ensure the 
reliability of the tuning results, a 10-fold cross-validation approach was 
employed (James, Witten, Hastie & Tibshirani, 2013). In every tuning 
iteration, nine folds were used for the training of the model, and the 
remaining one-fold was used for validation. The assessment of the 
hyperparameter settings was based on averaging the performance met
rics from these ten validations.

After the tuning process, the predictive capabilities and accuracy of 
all models were evaluated. Table 2 presents the four performance met
rics used for evaluating the models: the coefficient of determination 
(R2), which indicates how well the model’s predictions match the 
variance of the data; Root Mean Square Error (RMSE), measuring the 
average prediction error magnitude; Mean Bias Error (MBE), indicating 
the average prediction bias; and Mean Absolute Percent Error (MAPE), 
assessing the average percentage error relative to actual values. These 
metrics collectively provide insights into the accuracy and efficacy of the 
models by quantifying the deviation of model predictions from observed 
Tmrt values.

2.2.2. Fisheye image processing

2.2.2.1. Fisheye (Hemispherical) image generation. A JavaScript-based 
model was developed to dynamically generate a hypothetical fisheye 
image that displays the simulated hemispherical view corresponding to 
the built environment features and exposure conditions selected by the 
user in real time (Fig. 2). Digital representations of buildings, trees, and 
sky textures (daytime, nighttime, and sun vector images) were used as 
individual elements for the hypothetical view. Driven by user inputs, the 
model dynamically composes a panoramic scene on an HTML canvas 
element. A stereographic projection is applied to the panorama, with 
fine-tuning hyperparameters to adjust size, randomness, overlay ratio, 
and distance from the border to enhance the simulation’s resemblance to 
real-world conditions. The validation and optimization of these hyper
parameters were iteratively conducted through the segmentation of 
output images and their subsequent comparison with user inputs. 
Finally, the SunCalc library (Agafonkin, 2023) was used to calculate the 
sun’s position for accurate dynamic solar exposure and trajectory 

simulation. If enabled by the user, the sun’s trajectory is optionally 
visualized by rendering a sun path diagram.

2.2.2.2. Fisheye segmentation using SAM. The primary purpose of pro
cessing a user-uploaded fisheye image is to eliminate the need for users 
to know the surrounding built environment feature composition and 
apply the model to real-world locations. Fisheye photos are processed in 
three steps: (a) image preprocessing and advanced image segmentation 
(SAM); (b) Sky View Factor (SVF) calculation; and (c) extraction and 
quantification of the relevant features. Upon uploading, the image is 
first resized and converted into a standard format appropriate for the 
subsequent processes using Python’s pillow library (Clark, 2023). The 
urban environment, as depicted in the uploaded fisheye image, is 
analyzed using the Segment Anything Model (SAM). Trained on over 1 
billion segmentation masks from Meta AI’s Segment Anything project, 
SAM adapts to segmentation tasks using principles of transfer learning 
without the need for custom annotations or extensive retraining 
(Kirillov et al., 2023). Specifically, for WebMRT, SAM’s task is to iden
tify buildings and trees as specific features to compute their coverage 
ratios within the hemispherical scene. The image is then partitioned into 
annular rings where the SVF is calculated by summing up the contri
bution of each ring following Middel, Lukasczyk and Maciejewski 
(2017) adapted version of the manual Steyn method (Chapman, Thornes 
& Bradley, 2001).

2.3. Frontend development

2.3.1. User interface design
The user interface was designed in HTML and CSS. A noteworthy 

dynamic element is the custom-made ternary slider, consisting of a tri
angle image with a draggable circle (Fig. 3). Moving the circle within the 
triangle’s borders allows users to adjust the proportions of the built 
environment features (SVF, buildings, and trees) while ensuring their 
cumulative proportions always complete a whole (100%).

The ternary slider is implemented in JavaScript, using the D3.js li
brary (Bostock, Ogievetsky & Heer, 2011) for graphical manipulations 
and the jQuery library to streamline Document Object Model (DOM) 
interactions and event handling. The input controls determining the 
remaining predictor variables are dynamically handled through 
WebMRT’s integration of AJAX for asynchronous server communica
tion. It allows updating the Tmrt predictions and visualizations in 
real-time by enabling communication between the front and back end.

2.3.2. Web application architecture
WebMRT’s framework architecture combines client-side inter

activity and server-side computation (Fig. 4). Central to the applica
tion’s architecture is a Flask server, which manages HTTP requests and 
the direction of information flow. Comprised of routes and views, the 
architecture facilitates processing incoming data and generating 
appropriate responses.

The SAM model and the SVF calculator (Section 2.2.2.2) run on the 
server. Upon receiving the user input (and the processed image data 
from the optional fisheye photo), the Flask server calculates solar altitude 
and minutes from sunrise as the two feature-engineered variables (Section 
2.2.1.1), incorporating them with built environment features (SVF, 
buildings, and trees), surface characteristics (pervious ground cover), and 
exposure conditions (air temperature and shade at measurement) before 
they are fed into the machine learning model. Predicted Tmrt is then 
returned to the front end and displayed to the user.

The front end, constructed with HTML, CSS, and JavaScript, provides 
the interface for users to interact with WebMRT. It includes a ternary 
slider (Section 2.3.1) controlled by JavaScript event handlers, enabling 
users to input model feature variables manually. Fisheye images 
(Section 2.2.2) are generated with JavaScript, which simulates the built 
environment and exposure conditions determined by user inputs.

Table 2 
Model performance evaluation metrics.

Metric Equation

Coefficient of determination
R2 = 1 −

∑n
i=1

(
yi − f(xi)

)2

∑n
i=1

(
yi − y

)2

Root mean squared error
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
f(xi) − yi

)2

n

√

Mean bias error
MBE =

∑n
i=1

(
f(xi) − yi

)

n
Mean absolute percent error MAPE =

100
n

∑n
i=1

|
yi − f(xi)

yi
|

yi represents the ith observed value and f(xi) represents the ith predicted.
value for a total of n observations, and ȳ is the mean of all observations.
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The application architecture thus encapsulates a bidirectional data 
flow between the front and back end. This includes the collection of user 
inputs via interactive web elements, the image processing logic in the 
front end, the predictive modeling in the backend, and the final delivery 
of Tmrt predictions to the user interface.

3. Results

3.1. Model performance

The results of the models’ predictive power are reported in Table 3
and are further illustrated graphically as a Taylor Diagram in Fig. 5. 
LightGBM stands out as the top-performing model, closely followed by 
XGBoost, considering all evaluated performance metrics. The Random 
Forest model remains competitive, especially in error minimization and 
maintaining low bias as depicted by its position in relation to the 
concentric standard deviation arcs in the Taylor Diagram. The SVR and 
Decision Tree models can somewhat accurately predict and manage 
error sizes and percentages. However, compared to advanced tree-based 
ensembles, they exhibit error reduction and percentage error minimi
zation limitations. Although the linear models perform adequately, they 

do not match the tree-based models’ precision and show larger dis
crepancies between predicted and actual values.

This comparative analysis indicates the strength of tree-based 
ensemble models, particularly LightGBM, emerging as the superior 
model when compared to XGBoost and Random Forest. One reason 
LightGBM excels is its use of gradient-based one-sided sampling, which 
filters out data instances with small gradients. This speeds up the 
learning process and improves model accuracy (Ke et al., 2017). Another 
feature is its leaf-wise growth strategy, in contrast to the level-wise 
growth strategy used by traditional models such as Random Forest. 
This approach allows for more complex decision boundaries, thereby 
improving LightGBM’s ability to capture data complexities (Ke et al., 
2017). These outcomes are clearly demonstrated in its high predictive 
power (R2 = 0.915) with acceptable error (RMSE = 3.436, MAPE =

5.331) and minimal bias (MBE = 0.198). These advancements in ma
chine learning, as demonstrated in this analysis, have enabled models 
such as LightGBM to outperform traditional empirical methods, over
coming some of the diagnostic limitations with superior predictive ac
curacy and nuanced data complexity handling.

3.2. WebMRT user interface

Upon loading WebMRT (https://shadelab.asu.edu/webmrt/) the 
user interacts with the model via a web browser (Fig. 6), which is the 
entry point for required model input data. The interface is divided into 
several interactive components:

■ Date and Time Selection: At the top left, users can select a specific 
date, with an adjacent time selector with an option to visualize the 
sun’s trajectory.

■ Ternary Slider for Built Environment Features: Below the date 
and time selection, a ternary slider is available where users can 
adjust the view fractions of “Sky”, “Trees”, and “Buildings” sur
rounding the study area of interest. For verification, the selected 
values are presented as a percentage below the diagram.

■ Adjustable Sliders and Checkbox: To the right of the ternary slider, 
two number sliders are available for the user to set the "Percentage of 
Surrounding Pervious Area" and "Air Temperature." A checkbox is 
also available to indicate if the study area is sun-exposed or shaded.

■ Predicted Tmrt Display: Below these controls, the predicted Tmrt 
value is displayed for the given conditions. Users can save their 
defined parameters and the corresponding Tmrt predictions as sce
narios, which can be exported in CSV format.

Fig. 2. Workflow of the fisheye (hemispherical) image generation.

Fig. 3. A ternary slider in the form of a triangle was developed as a control 
element to represent the built environment features ensuring their cumulative 
proportions always complete a whole. Each corner of the triangle represents 
one of the three inputs at its maximum value, and the user can determine the 
combination ratio by moving the circle within the triangle. The position of the 
circle determines the proportion of each feature within a given study area.
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■ Fisheye Image: To the right of the sliders, a fisheye (hemispherical) 
image is generated, simulating the built environment and exposure 
conditions as determined by user inputs.

■ Upload Feature: Below the fisheye image, an optional upload 
feature is available to replace the manual input of built environment 
feature variables. The process button would adjust the draggable 
point in the ternary slider to represent the fractions of sky, trees, and 
buildings depicted in the uploaded image.

■ Instructions Panel: To the right, a dedicated panel provides in
structions on how to use the tool.

The user interface is designed to facilitate sequential navigation from 
input variables to the predicted Tmrt outcome, ensuring a user-friendly 
experience.

4. Discussion

WebMRT is designed as an accessible tool that enables stakeholders 
to make informed decisions on urban design and policy enhancements 
for improved outdoor thermal exposure and comfort. This objective was 
made possible by integrating AI-driven functionalities across machine 
learning and predictive analytics, deep learning generative AI, and 
computer vision.

Compared to other widely used microclimate numerical models such 
as RayMan, SOLWEIG, and ENVI-met, it is notable that WebMRT 
streamlines the modeling process. This feature allows users to configure 
the model to predict Tmrt without requiring extensive urban climate 
knowledge, thus saving time, and facilitating broader engagement 
among professionals and stakeholders in the decision-making process. 
This has significant implications for policy and science, making 
WebMRT accessible to a wider audience.

Importantly, WebMRT’s simplicity does not compromise accuracy. 
While uncertainties in the predicted Tmrt for the other popular models 
are reported to be within the ±5 ◦C threshold (Crank et al., 2020; For
ouzandeh, 2018; Gál & Kántor, 2020; Krüger et al., 2014; Zhao & Fong, 
2017), WebMRT maintains a tighter uncertainty of ±3.43 ◦C. Addi
tionally, WebMRT’s streamlined process from input to prediction en
ables intricate sensitivity analysis and scenario comparisons, which are 
typically time-consuming in other numerical models. This efficiency not 
only expedites the decision-making process but also significantly con
tributes to making science actionable, addressing the science-policy 
communication gap as noted by Schneider, Epel and Middel (2024). 
This capability ensures that stakeholders can quickly evaluate different 
urban planning and design strategies, making informed decisions with 
high degrees of accuracy.

On the other hand, WebMRT has several limitations that warrant 
consideration. As an empirical model, it is inherently constrained by the 
dataset it utilizes. Firstly, the MaRTy Dataset is currently limited to the 
summer months of the Desert Southwest US and mainly includes day
time observations. Secondly, the selection of model input features, or 
predictor variables, is heavily influenced by that dataset and determined 
based on feature importance ranking. Consequently, in its current form, 
WebMRT may not fully account for variables that are critical to assessing 
outdoor thermal exposure and comfort during nighttime or in different 
climatic conditions.

However, it is important to note that observations in Phoenix are 
ongoing, and the database is expected to expand in the future to also 
cover nighttime predictions. Plans are also in place to include observa
tions from other geographic locations that have MaRTy data, such as 
Singapore, Australia, and Canada. This expansion will enable WebMRT 

Fig. 4. Overview of WebMRT’s framework architecture, schematically highlighting the interaction between the user, web browser, and additional front/back
end services.

Table 3 
Prediction model performance on testing subset.

R2 RMSE MAPE MBE

Linear ​ ​ ​ ​
Ridge 0.782 5.434 10.608 −0.226
Lasso 0.777 5.497 10.889 −0.219
Kernel-based ​ ​ ​ ​
SVR 0.884 3.962 5.941 −0.320
Tree-based Ensemble ​ ​ ​ ​
Decision Tree 0.836 4.714 7.540 0.158
Random Forrest 0.912 3.458 5.362 0.130
XGBoost 0.913 3.436 5.331 0.198
LightGBM 0.915 3.404 5.235 0.127
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to enhance its learning process and extend its prediction across a 
broader spectrum of environmental conditions, including diverse sea
sonal and nocturnal scenarios.

Lastly, the current version of WebMRT does not account for the 
cardinal direction of interventions, such as urban canyon orientations or 
tree clusters. This omission could limit the model’s practicality in urban 
planning scenarios. Nevertheless, the workflow upon which WebMRT 
was designed offers many possibilities for future research to incorporate 
such parameters during the model’s learning process, thereby extending 
its utility and applicability. Future enhancements may also include ca
pabilities for users to access detailed feature importance metrics, 
enhancing transparency and understanding of the model’s predictive 
dynamics.

5. Conclusions

WebMRT was developed in direct response to the challenges of 
measuring and calculating Tmrt, emphasizing simplicity for relevant 
stakeholders to make informed decisions for urban design and policy 
enhancement. It emerges not only as a practical tool for the Desert 
Southwest but also as a concept with the potential to be scaled across 
diverse climate regions. By integrating advanced datasets with machine 
learning algorithms and emphasizing a user-focused design, WebMRT is 
developed to offer a reliable predictive model and a straightforward 
interface. This approach aims to ensure accurate Tmrt predictions, 
making it accessible and easy to use for a wide range of users. As an 
empirical model, it aligns with the evolving paradigm of urban climate 
informatics (Middel et al., 2022) and data-driven urban climate gover
nance outlined by Hughes et al. (2020). The structure of WebMRT is 
designed to accommodate open-source data integration, enabling its 
application beyond summertime in the Desert Southwest to encompass 
different climate regions and seasonal contexts. This flexibility show
cases the potential of modern data science approaches in solving com
plex environmental challenges that previously relied heavily on 
resource-intensive, physics-based models. By leveraging faster, more 
efficient computational methods and larger, more diverse datasets, 

researchers and policymakers can achieve improved decision-making 
capabilities and enhanced predictive analytics, enabling deeper in
sights and more effective interventions.

Future developments of WebMRT and similar tools could further 
harness advancements in real-time data feeds and IoT devices to 
enhance the tool’s predictive accuracy and usability. Specifically, inte
grating IoT sensors distributed across various locations would improve 
the data collection process and enable real-time or near-real-time pre
dictive modeling. This integration could lead to more dynamic models 
that adjust predictions based new incoming data and retraining cycles. 
Moreover, the use of IoT technology could facilitate continuous updates 
to the model, improving predictive capabilities as more data becomes 
available and across varying conditions.

In addition to these enhancements, future versions of WebMRT could 
significantly benefit from improved interface functionality. For instance, 
linking WebMRT to a Weather API for forecasting would allow the tool 
to incorporate current and forecasted weather conditions into its pre
dictions, providing users with more accurate and timely information. 
Furthermore, enabling users to select a location directly on a map to 
automatically generate a fisheye image could simplify user interactions 
and reduce the number of steps needed to obtain predictions. These 
interface enhancements would improve the user experience and extend 
the practical applications of WebMRT.
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