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Mean Radiant Temperature (Ty,) is the most critical atmospheric variable influencing outdoor human thermal
exposure and comfort in hot, dry environments. However, accurately quantifying T, requires time-consuming
field measurements with expensive equipment or complex, resource-intensive computations. We introduce
WebMRT, an online tool to predict Ty, using a data-driven approach. It features an intuitive interface using air
temperature, shading status, and built environment features as predictors of Tp, for a user-selected summer day,
time, and location. Utilizing a tree-based ensemble model, WebMRT is trained on state-of-the-art human-
biometeorological data collected by MaRTy using LightGBM after evaluating its performance against several
candidate machine learning regressors. Feature engineering was applied to the day and time input, and two
additional temporal features were derived: ‘Solar Altitude’ and ‘Minutes-from-Sunrise’. These inputs are inte-
grated into the user interface, emphasizing simplicity and easy access for users at the frontend. After training the
regressor on MaRTy datasets and employing k-fold cross-validation with ten folds, the model demonstrated
strong predictive power (R2:0.92) with acceptable error (RMSE=3.43, MAPE=5.33) and bias (MBE=0.20).
WebMRT also features optional fisheye photo uploads, processed using transfer learning techniques for image
segmentation, further enhancing the tool’s predictive accuracy, user experience, and applications towards
climate action decision-making processes.

1. Introduction

Outdoor human thermal exposure is a pressing public health
concern, particularly in rapidly growing desert cities where vulnera-
bility to extreme heat is already intensified by global climate change
(IPCC, 2023). Identifying conditions that lead to thermal stress requires
several micrometeorological factors beyond air temperature, including
shortwave and longwave radiation, wind speed, and humidity
(Guzman-Echavarria, Middel & Vanos, 2023). During extreme heat
events, wind speed is usually low, diminishing the effectiveness of
convective cooling. In such situations, radiation becomes the primary
factor influencing thermal comfort and stress, particularly in hot and dry
climates (Lindberg, Holmer & Thorsson, 2008; Middel, AlKhaled,
Schneider, Hagen & Coseo, 2021; Shashua-Bar, Pearlmutter & Erell,
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2011). Given these conditions, mean Radiant Temperature (Ty,) has
been recognized as the most critical atmospheric metric influencing the
human thermal experience (Guo et al., 2020; Johansson, Thorsson,
Emmanuel & Kriiger, 2014; Thorsson, Lindberg, Eliasson & Holmer,
2007). Tmre summarizes the effects of short and longwave fluxes (direct
and reflected) on the human body and is an essential indicator of ther-
mal exposure in human biometeorology. In current research and prac-
tice, Tmr has been widely used as a crucial variable for
thermophysiological stress indices such as UTCI (Jendritzky, de Dear &
Havenith, 2012), PET (Hoppe, 1999), and SET* (Gagge, Fobelets &
Berglund, 1986). However, calculating Ty, is complex, and predicting it
presents several challenges, including the need for field measurements
and the computational complexities involved.

Various methods exist to obtain Ty, from field measurements and
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numerical modeling (Kantor & Unger, 2011). Field measurements range
from complex setups using pyranometers and pyrgeometers oriented in
six directions to simpler, though less accurate, infrared camera
(Merchant et al., 2022; Middel, Huff, Krayenhoff, Udupa & Schneider,
2023), globe thermometer (Kriiger, Minella & Matzarakis, 2014), and
cylindrical thermometer methods (Rykaczewski et al., 2024). The
impact of the different measurement approaches on Ty, values has been
the focus of several studies (Thorsson et al., 2007; Vanos et al., 2021).
Often, such measurements are unavailable or lack the temporal conti-
nuity necessary for urban planning and design decision-making
processes.

Longitudinal studies have relied on numerical modeling to simulate
Tmrt, using parameterized models such as RayMan (Matzarakis, Rutz &
Mayer, 2007) and SOLWEIG (Lindberg et al., 2008), as well as compu-
tational fluid dynamic models like ENVI-met (Bruse & Fleer, 1998).
However, these models encounter several challenges, including: (a)
inadequate physical process modeling, particularly in the calculation
and reflection of surface temperatures; (b) limited support for vector
data formats, which restricts the integration of detailed geographic data
essential for accurate modeling; and (c) high computational demands
(Buo, Sagris, Jaagus & Middel, 2023; Gal & Kantor, 2020; Wu, Fang, Liu
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& Middel, 2023). Consequently, the oversimplified representations
inherent to these models often compromise Ty, predictions and limit
their effectiveness in routine decision-making processes.

Recognizing these challenges, this study introduces WebMRT, an
online tool to predict Ty, using machine learning models trained on
state-of-the-art T, measurements and built environment features (360-
degree surface type fractions) collected in the Desert Southwest US using
MaRTy (Middel et al., forthcoming; Middel & Krayenhoff, 2019). The
primary objective of WebMRT is to bridge the gap in current method-
ologies, which typically rely on complex field observations and intensive
computational resources to predict Ty;+. WebMRT offers a streamlined
alternative by using empirical models that provide accurate predictions
without the extensive computational demands of numerical modeling.
The simplicity of WebMRT’s user interface enhances its accessibility,
making it particularly engaging for stakeholders and policy officials.
This interface, combined with the tool’s ability to integrate and process
real-time data efficiently, supports timely and informed
decision-making in urban heat stress mitigation. Consequently,
WebMRT contributes to data-driven urban climate governance, a need
underscored by recent studies such as those by Hughes, Giest and Tozer
(2020) and Middel, Nazarian, Demuzere and Bechtel (2022).
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Fig. 1. WebMRT dual framework architecture with the backend (A and B) and frontend (C) workflows. The backend is structured into three primary components: the
Tnre Prediction Model, the Fisheye (Hemispherical) Image Generator, and the Fisheye Segmentation Model.
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The remainder of this paper is organized as follows: Section 2, details
the techniques and processes used in the development of WebMRT, from
data sourcing to the overarching web application architecture. Section 3
presents the rationale behind selecting the prediction model, its per-
formance compared to other machine learning regressors, and the
functionality of WebMRT’s user interface. Section 4 considers the im-
plications and potentials of WebMRT for broader engagement among
stakeholders. Finally, the paper concludes with Section 5 which outlines
the significance of WebMRT and future research directions.

2. Materials and methods

The development of WebMRT involved various tasks, from data
sourcing and backend model development to photo segmentation and
the design of a user-friendly interface (Fig. 1). All dataset management
tasks were performed using R (Version 4.2.1). Python (Version 3.10) was
utilized for machine learning using the Scikit-learn library (Pedregosa
et al., 2011). The interface of WebMRT was developed in HTML, CSS,
and JavaScript.

2.1. Data sources

The empirical model in the WebMRT backend is based on MaRTy
human-biometeorological measurements in the Phoenix metropolitan
area (Middel & Krayenhoff, 2019; Middel et al., 2021), alongside built
environment features derived from hemispherical fisheye photographs
(Middel, Lukasczyk, Zakrzewski, Arnold & Maciejewski, 2019).

The Phoenix metropolitan area is the largest city in the Sonoran
Desert and classified under the Koppen-Geiger climate type BWh,
indicative of a hot, arid desert (Kottek, Grieser, Beck, Rudolf & Rubel,
2006). During the summer months of June, July, and August, the region
typically experiences dry conditions and intense heat, with average daily
maximum air temperatures exceeding 40 °C for the 1991-2020 period.
The monsoon season, which extends from June 15 to September 30,
introduces higher humidity levels. Throughout May to September, the
average nightly minimum air temperature remains well above 20 °C.

The human-biometeorological dataset, a gold standard in the field,
includes hourly measurements of air temperature, humidity, wind
speed, and six-directional shortwave and longwave radiation (Middel
et al., forthcoming). These measurements were recorded using the
MaRTy mobile human-biometeorological station across various sites
and summertime days in the Desert Southwest USA between 2016 and
2019. Ty is calculated using the six-directional method, with
three-dimensional radiation budgets decomposed into directional
weighted components of shortwave and longwave radiation. Ty, ob-
servations for each site are coupled with view factors of built environ-
ment features, calculated from image cubes, to determine the main
drivers of Tp,+ and thermal exposure. Those include percent sky, trees,
buildings, impervious surfaces, pervious surfaces, and non-permanent
objects. A detailed description of MaRTy and the methodology behind
calculating view factors of built environment features are available in
Middel and Krayenhoff (2019) and Middel et al. (2021).

2.2. Backend development

2.2.1. Empirical model development

WebMRT’s backend prediction model follows the main steps of a
typical machine learning workflow. It consists of (1) data preparation,
(2) data splitting into training and testing subsets, (3) identifying
candidate algorithms, (4) model training and tuning, and (5) model
performance evaluation and comparison.

2.2.1.1. Data preparation. A dataset was compiled to estimate Ty, using
various built environment features as predictor variables for entry into
the machine learning process. As discussed in Section 2.1, two datasets
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were merged: the MaRTy dataset containing T+ values along with
observation metadata, and the dataset detailing built environment view
factors, categorized into six classes of potential predictor variables—sky,
trees, buildings, impervious surfaces, pervious surfaces, and non-permanent
objects — considering both spatial and temporal factors. During data pre-
processing and wrangling, missing values were removed, and categori-
cal variables were converted to a numerical format as necessary through
one-hot encoding. Descriptive statistics of the merged dataset are re-
ported in Table 1.

In the feature engineering phase, additional variables pertinent to
solar radiation were derived using R’s suntools package (Bivand et al.,
2023) and incorporated into the dataset. Specifically, the solar position
(altitude) and time (minutes from sunrise) were determined from each
measurement’s geographic coordinates and timestamp. These features
are crucial as they normalize solar position and exposure time,
enhancing accuracy beyond what a timestamp alone can offer. This
normalization is especially relevant to Ty, predictions, improving the
model’s ability to accurately represent thermal conditions. The selection
of features, including extracted and engineered variables, was deter-
mined through backward elimination and feature importance ranking.
The final set of selected features included: (1) air temperature, (2) solar
altitude, (3) minutes from sunrise, (4) shade at measurement, and the view
factors of surrounding (5) sky, (6) buildings, (7) trees, and (8) pervious
ground cover.

2.2.1.2. Training and testing subsets. The dataset was split into training
and testing subsets. 70% of the data was allocated for training, while the
remaining 30% was set aside for testing. In addition to the validation
processes (Section 2.2.1.4), a predetermined random seed was utilized
to maintain consistency and reproducibility in the data division.
Following the data split, the training and testing subset indices,
encompassing the features and the target variable, were reset. This
procedure ensures that the data’s structural integrity is preserved
throughout the machine-learning process, particularly when cross-
validation techniques are implemented (Section 2.2.1.4).

2.2.1.3. Identifying candidate algorithms. The candidate algorithm se-
lection was driven by the necessity to examine a range of modeling
techniques capable of handling the complex relationships and varied
data types in the dataset. Simple linear models such as Ridge (Hoerl &
Kennard, 1970) and Lasso Regression (Tibshirani, 1996) were included
because they address multicollinearity and feature selection.
Kernel-based methods like Support Vector Regression (Smola &
Scholkopf, 2004) were selected for their capacity to handle non-linear
relationships through different kernel functions. Advanced tree-based
ensemble methods including Decision Tree (Loh, 2011), Random For-
est (Breiman, 2001), LightGBM (Ke et al., 2017), and XGBoost (Chen &
Guestrin, 2016) were chosen for their robustness and high performance
in capturing complex data structures while preventing overfitting,
which is critical for achieving the predictive accuracy objectives of
WebMRT. The rationale behind each selection relates directly to the
algorithm’s known strengths and alignment with the specific challenges
presented by the dataset characteristics, ensuring a comprehensive
evaluation of different approaches. The objective was to identify the
most effective algorithm that would exhibit superior predictive accuracy
across the various models.

2.2.1.4. Model tuning and evaluation. Tuning refers to the process of

Table 1

Dataset description.
No. of observations: 2159 Hours: 0730-2030
No. of features: 12 Months: June - August
Data types: Numeric & Nominal Tair (°C): 26.02-43.97
Years: 2016; 2018- 2019 Tnre (°C): 15.54-76.22
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adjusting the hyperparameters of the models to improve performance.
The hyperparameter space is preset before the learning process to
modify the learning structure and process but is not derived from the
data per se. It involves identifying the optimal settings within the pre-
defined space through an iterative process of testing various combina-
tions and assessing their impact on the model’s predictive power.

The selection of hyperparameters for tuning was informed by the
known sensitivities and performance impacts associated with each
model type. For linear and kernel-based models, an exhaustive grid
search approach was employed to systematically explore combinations
of parameters and ascertain the most effective settings. In contrast, due
to the vast hyperparameter space of tree-based ensemble models, a
randomized search strategy was adopted, enabling the efficient identi-
fication of high-performing configurations without the need for
exhaustive testing. To mitigate the risks of overfitting and ensure the
reliability of the tuning results, a 10-fold cross-validation approach was
employed (James, Witten, Hastie & Tibshirani, 2013). In every tuning
iteration, nine folds were used for the training of the model, and the
remaining one-fold was used for validation. The assessment of the
hyperparameter settings was based on averaging the performance met-
rics from these ten validations.

After the tuning process, the predictive capabilities and accuracy of
all models were evaluated. Table 2 presents the four performance met-
rics used for evaluating the models: the coefficient of determination
(Rz), which indicates how well the model’s predictions match the
variance of the data; Root Mean Square Error (RMSE), measuring the
average prediction error magnitude; Mean Bias Error (MBE), indicating
the average prediction bias; and Mean Absolute Percent Error (MAPE),
assessing the average percentage error relative to actual values. These
metrics collectively provide insights into the accuracy and efficacy of the
models by quantifying the deviation of model predictions from observed
Tmre values.

2.2.2. Fisheye image processing

2.2.2.1. Fisheye (Hemispherical) image generation. A JavaScript-based
model was developed to dynamically generate a hypothetical fisheye
image that displays the simulated hemispherical view corresponding to
the built environment features and exposure conditions selected by the
user in real time (Fig. 2). Digital representations of buildings, trees, and
sky textures (daytime, nighttime, and sun vector images) were used as
individual elements for the hypothetical view. Driven by user inputs, the
model dynamically composes a panoramic scene on an HTML canvas
element. A stereographic projection is applied to the panorama, with
fine-tuning hyperparameters to adjust size, randomness, overlay ratio,
and distance from the border to enhance the simulation’s resemblance to
real-world conditions. The validation and optimization of these hyper-
parameters were iteratively conducted through the segmentation of
output images and their subsequent comparison with user inputs.
Finally, the SunCalc library (Agafonkin, 2023) was used to calculate the
sun’s position for accurate dynamic solar exposure and trajectory

Table 2
Model performance evaluation metrics.

Metric Equation

b —fa)®
Y- y)z
T (Fox) — )

Coefficient of determination
R?2 =1

Root mean squared error

RMSE =
n
Mean bias error MBE — Y (f(:lf:) - %)
Mean absolute percent error 100 «—n yi — f(x:)
MAPE =— —_—
n Zi:l ‘ Yi ‘

y; represents the i observed value and f(x;) represents the i predicted.
value for a total of n observations, and ¥ is the mean of all observations.
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simulation. If enabled by the user, the sun’s trajectory is optionally
visualized by rendering a sun path diagram.

2.2.2.2. Fisheye segmentation using SAM. The primary purpose of pro-
cessing a user-uploaded fisheye image is to eliminate the need for users
to know the surrounding built environment feature composition and
apply the model to real-world locations. Fisheye photos are processed in
three steps: (a) image preprocessing and advanced image segmentation
(SAM); (b) Sky View Factor (SVF) calculation; and (c) extraction and
quantification of the relevant features. Upon uploading, the image is
first resized and converted into a standard format appropriate for the
subsequent processes using Python’s pillow library (Clark, 2023). The
urban environment, as depicted in the uploaded fisheye image, is
analyzed using the Segment Anything Model (SAM). Trained on over 1
billion segmentation masks from Meta AI's Segment Anything project,
SAM adapts to segmentation tasks using principles of transfer learning
without the need for custom annotations or extensive retraining
(Kirillov et al., 2023). Specifically, for WebMRT, SAM’s task is to iden-
tify buildings and trees as specific features to compute their coverage
ratios within the hemispherical scene. The image is then partitioned into
annular rings where the SVF is calculated by summing up the contri-
bution of each ring following Middel, Lukasczyk and Maciejewski
(2017) adapted version of the manual Steyn method (Chapman, Thornes
& Bradley, 2001).

2.3. Frontend development

2.3.1. User interface design

The user interface was designed in HTML and CSS. A noteworthy
dynamic element is the custom-made ternary slider, consisting of a tri-
angle image with a draggable circle (Fig. 3). Moving the circle within the
triangle’s borders allows users to adjust the proportions of the built
environment features (SVF, buildings, and trees) while ensuring their
cumulative proportions always complete a whole (100%).

The ternary slider is implemented in JavaScript, using the D3.js li-
brary (Bostock, Ogievetsky & Heer, 2011) for graphical manipulations
and the jQuery library to streamline Document Object Model (DOM)
interactions and event handling. The input controls determining the
remaining predictor variables are dynamically handled through
WebMRT’s integration of AJAX for asynchronous server communica-
tion. It allows updating the T predictions and visualizations in
real-time by enabling communication between the front and back end.

2.3.2. Web application architecture

WebMRT’s framework architecture combines client-side inter-
activity and server-side computation (Fig. 4). Central to the applica-
tion’s architecture is a Flask server, which manages HTTP requests and
the direction of information flow. Comprised of routes and views, the
architecture facilitates processing incoming data and generating
appropriate responses.

The SAM model and the SVF calculator (Section 2.2.2.2) run on the
server. Upon receiving the user input (and the processed image data
from the optional fisheye photo), the Flask server calculates solar altitude
and minutes from sunrise as the two feature-engineered variables (Section
2.2.1.1), incorporating them with built environment features (SVF,
buildings, and trees), surface characteristics (pervious ground cover), and
exposure conditions (air temperature and shade at measurement) before
they are fed into the machine learning model. Predicted Ty is then
returned to the front end and displayed to the user.

The front end, constructed with HTML, CSS, and JavaScript, provides
the interface for users to interact with WebMRT. It includes a ternary
slider (Section 2.3.1) controlled by JavaScript event handlers, enabling
users to input model feature variables manually. Fisheye images
(Section 2.2.2) are generated with JavaScript, which simulates the built
environment and exposure conditions determined by user inputs.
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Fig. 3. A ternary slider in the form of a triangle was developed as a control
element to represent the built environment features ensuring their cumulative
proportions always complete a whole. Each corner of the triangle represents
one of the three inputs at its maximum value, and the user can determine the
combination ratio by moving the circle within the triangle. The position of the
circle determines the proportion of each feature within a given study area.

The application architecture thus encapsulates a bidirectional data
flow between the front and back end. This includes the collection of user
inputs via interactive web elements, the image processing logic in the
front end, the predictive modeling in the backend, and the final delivery
of Ty predictions to the user interface.

3. Results
3.1. Model performance

The results of the models’ predictive power are reported in Table 3
and are further illustrated graphically as a Taylor Diagram in Fig. 5.
LightGBM stands out as the top-performing model, closely followed by
XGBoost, considering all evaluated performance metrics. The Random
Forest model remains competitive, especially in error minimization and
maintaining low bias as depicted by its position in relation to the
concentric standard deviation arcs in the Taylor Diagram. The SVR and
Decision Tree models can somewhat accurately predict and manage
error sizes and percentages. However, compared to advanced tree-based
ensembles, they exhibit error reduction and percentage error minimi-
zation limitations. Although the linear models perform adequately, they

do not match the tree-based models’ precision and show larger dis-
crepancies between predicted and actual values.

This comparative analysis indicates the strength of tree-based
ensemble models, particularly LightGBM, emerging as the superior
model when compared to XGBoost and Random Forest. One reason
LightGBM excels is its use of gradient-based one-sided sampling, which
filters out data instances with small gradients. This speeds up the
learning process and improves model accuracy (Ke et al., 2017). Another
feature is its leaf-wise growth strategy, in contrast to the level-wise
growth strategy used by traditional models such as Random Forest.
This approach allows for more complex decision boundaries, thereby
improving LightGBM’s ability to capture data complexities (Ke et al.,
2017). These outcomes are clearly demonstrated in its high predictive
power (R? = 0.915) with acceptable error (RMSE = 3.436, MAPE =
5.331) and minimal bias (MBE = 0.198). These advancements in ma-
chine learning, as demonstrated in this analysis, have enabled models
such as LightGBM to outperform traditional empirical methods, over-
coming some of the diagnostic limitations with superior predictive ac-
curacy and nuanced data complexity handling.

3.2. WebMRT user interface

Upon loading WebMRT (https://shadelab.asu.edu/webmrt/) the
user interacts with the model via a web browser (Fig. 6), which is the
entry point for required model input data. The interface is divided into
several interactive components:

M Date and Time Selection: At the top left, users can select a specific
date, with an adjacent time selector with an option to visualize the
sun’s trajectory.

M Ternary Slider for Built Environment Features: Below the date
and time selection, a ternary slider is available where users can
adjust the view fractions of “Sky”, “Trees”, and “Buildings” sur-
rounding the study area of interest. For verification, the selected
values are presented as a percentage below the diagram.

M Adjustable Sliders and Checkbox: To the right of the ternary slider,
two number sliders are available for the user to set the "Percentage of
Surrounding Pervious Area" and "Air Temperature." A checkbox is
also available to indicate if the study area is sun-exposed or shaded.

M Predicted T, Display: Below these controls, the predicted Ty
value is displayed for the given conditions. Users can save their
defined parameters and the corresponding Ty, predictions as sce-
narios, which can be exported in CSV format.
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Table 3
Prediction model performance on testing subset.
R2 RMSE MAPE MBE

Linear
Ridge 0.782 5.434 10.608 —0.226
Lasso 0.777 5.497 10.889 -0.219
Kernel-based
SVR 0.884 3.962 5.941 —0.320
Tree-based Ensemble
Decision Tree 0.836 4.714 7.540 0.158
Random Forrest 0.912 3.458 5.362 0.130
XGBoost 0.913 3.436 5.331 0.198
LightGBM 0.915 3.404 5.235 0.127

M Fisheye Image: To the right of the sliders, a fisheye (hemispherical)
image is generated, simulating the built environment and exposure
conditions as determined by user inputs.

B Upload Feature: Below the fisheye image, an optional upload
feature is available to replace the manual input of built environment
feature variables. The process button would adjust the draggable
point in the ternary slider to represent the fractions of sky, trees, and
buildings depicted in the uploaded image.

M Instructions Panel: To the right, a dedicated panel provides in-
structions on how to use the tool.

The user interface is designed to facilitate sequential navigation from
input variables to the predicted Tp,; outcome, ensuring a user-friendly
experience.

4. Discussion

WebMRT is designed as an accessible tool that enables stakeholders
to make informed decisions on urban design and policy enhancements
for improved outdoor thermal exposure and comfort. This objective was
made possible by integrating Al-driven functionalities across machine
learning and predictive analytics, deep learning generative Al, and
computer vision.

Compared to other widely used microclimate numerical models such
as RayMan, SOLWEIG, and ENVI-met, it is notable that WebMRT
streamlines the modeling process. This feature allows users to configure
the model to predict Ty, without requiring extensive urban climate
knowledge, thus saving time, and facilitating broader engagement
among professionals and stakeholders in the decision-making process.
This has significant implications for policy and science, making
WebMRT accessible to a wider audience.

Importantly, WebMRT’s simplicity does not compromise accuracy.
While uncertainties in the predicted Ty, for the other popular models
are reported to be within the +5 °C threshold (Crank et al., 2020; For-
ouzandeh, 2018; Gal & Kantor, 2020; Kriiger et al., 2014; Zhao & Fong,
2017), WebMRT maintains a tighter uncertainty of +3.43 °C. Addi-
tionally, WebMRT’s streamlined process from input to prediction en-
ables intricate sensitivity analysis and scenario comparisons, which are
typically time-consuming in other numerical models. This efficiency not
only expedites the decision-making process but also significantly con-
tributes to making science actionable, addressing the science-policy
communication gap as noted by Schneider, Epel and Middel (2024).
This capability ensures that stakeholders can quickly evaluate different
urban planning and design strategies, making informed decisions with
high degrees of accuracy.

On the other hand, WebMRT has several limitations that warrant
consideration. As an empirical model, it is inherently constrained by the
dataset it utilizes. Firstly, the MaRTy Dataset is currently limited to the
summer months of the Desert Southwest US and mainly includes day-
time observations. Secondly, the selection of model input features, or
predictor variables, is heavily influenced by that dataset and determined
based on feature importance ranking. Consequently, in its current form,
WebMRT may not fully account for variables that are critical to assessing
outdoor thermal exposure and comfort during nighttime or in different
climatic conditions.

However, it is important to note that observations in Phoenix are
ongoing, and the database is expected to expand in the future to also
cover nighttime predictions. Plans are also in place to include observa-
tions from other geographic locations that have MaRTy data, such as
Singapore, Australia, and Canada. This expansion will enable WebMRT
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Fig. 5. Taylor Diagram visualizing the accuracy of the prediction models, with each model’s performance depicted as a point. The angular position of each point
indicates the correlation coefficient with the observations, the radial distance from the origin denotes the model predictions’ standard deviation, and the concentric
circles represent the normalized Root Mean Square Deviation (RMSD) from the observations.

to enhance its learning process and extend its prediction across a
broader spectrum of environmental conditions, including diverse sea-
sonal and nocturnal scenarios.

Lastly, the current version of WebMRT does not account for the
cardinal direction of interventions, such as urban canyon orientations or
tree clusters. This omission could limit the model’s practicality in urban
planning scenarios. Nevertheless, the workflow upon which WebMRT
was designed offers many possibilities for future research to incorporate
such parameters during the model’s learning process, thereby extending
its utility and applicability. Future enhancements may also include ca-
pabilities for users to access detailed feature importance metrics,
enhancing transparency and understanding of the model’s predictive
dynamics.

5. Conclusions

WebMRT was developed in direct response to the challenges of
measuring and calculating Ty, emphasizing simplicity for relevant
stakeholders to make informed decisions for urban design and policy
enhancement. It emerges not only as a practical tool for the Desert
Southwest but also as a concept with the potential to be scaled across
diverse climate regions. By integrating advanced datasets with machine
learning algorithms and emphasizing a user-focused design, WebMRT is
developed to offer a reliable predictive model and a straightforward
interface. This approach aims to ensure accurate Ty, predictions,
making it accessible and easy to use for a wide range of users. As an
empirical model, it aligns with the evolving paradigm of urban climate
informatics (Middel et al., 2022) and data-driven urban climate gover-
nance outlined by Hughes et al. (2020). The structure of WebMRT is
designed to accommodate open-source data integration, enabling its
application beyond summertime in the Desert Southwest to encompass
different climate regions and seasonal contexts. This flexibility show-
cases the potential of modern data science approaches in solving com-
plex environmental challenges that previously relied heavily on
resource-intensive, physics-based models. By leveraging faster, more
efficient computational methods and larger, more diverse datasets,

researchers and policymakers can achieve improved decision-making
capabilities and enhanced predictive analytics, enabling deeper in-
sights and more effective interventions.

Future developments of WebMRT and similar tools could further
harness advancements in real-time data feeds and IoT devices to
enhance the tool’s predictive accuracy and usability. Specifically, inte-
grating IoT sensors distributed across various locations would improve
the data collection process and enable real-time or near-real-time pre-
dictive modeling. This integration could lead to more dynamic models
that adjust predictions based new incoming data and retraining cycles.
Moreover, the use of IoT technology could facilitate continuous updates
to the model, improving predictive capabilities as more data becomes
available and across varying conditions.

In addition to these enhancements, future versions of WebMRT could
significantly benefit from improved interface functionality. For instance,
linking WebMRT to a Weather API for forecasting would allow the tool
to incorporate current and forecasted weather conditions into its pre-
dictions, providing users with more accurate and timely information.
Furthermore, enabling users to select a location directly on a map to
automatically generate a fisheye image could simplify user interactions
and reduce the number of steps needed to obtain predictions. These
interface enhancements would improve the user experience and extend
the practical applications of WebMRT.
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