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Abstract

Odours released by objects in natural environments can contain information about their spa-
tial locations. In particular, the correlation of odour concentration timeseries produced by two
spatially separated sources contains information about the distance between the sources.
For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at
frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations
exceeding 100 Hz. Can this high-frequency acuity support odour source localization? Here
we answer this question by quantifying the spatial information about source separation con-
tained in the spectral constituents of correlations. We used computational fluid dynamics sim-
ulations of multisource plumes in two-dimensional chaotic flow environments to generate
temporally complex, covarying odour concentration fields. By relating the correlation of these
fields to the spectral decompositions of the associated odour concentration timeseries, and
making simplifying assumptions about the statistics of these decompositions, we derived
analytic expressions for the Fisher information contained in the spectral components of the
correlations about source separation. We computed the Fisher information for a broad range
of frequencies and source separations for three different source arrangements and found
that high frequencies were more informative than low frequencies when sources were close
relative to the sizes of the large eddies in the flow. We observed a qualitatively similar effect
in an independent set of simulations with different geometry, but not for surrogate data with a
similar power spectrum to our simulations but in which all frequencies were a priori equally
informative. Our work suggests that the high-frequency acuity of olfactory systems may sup-
port high-resolution spatial localization of odour sources. We also provide a model of the dis-
tribution of the spectral components of correlations that is accurate over a broad range of
frequencies and source separations. More broadly, our work establishes an approach for the
quantification of the spatial information in odour concentration timeseries.
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1 Introduction

Olfactory signals enable a multitude of crucial behaviors observed in terrestrial organisms,
from male moths navigating to females from hundreds of meters away [1, 2], to mice detecting
and avoiding predators [3], to honeybees foraging for nectar in a flower among a field of vege-
tation [4]. Such feats of olfactory navigation pose complex problems, due in part to a turbulent
transport process that causes odour signals to become patchy and highly fluctuating away
from the source [5]. Even in a single-source context, strategies for olfactory search span a
range of complexity [6], including reactive strategies in which a searcher reorients upwind
upon odour detection [7, 8], information-theoretic approaches that exploit the spatiotemporal
dynamics of odour signals [9-11], and strategies that incorporate non-olfactory cues in the
search (such as visual cues as in [12], public cues from other searchers as in [13], or direction
of motion of odor as in [14]). Recent work employs machine learning, including neural net-
works and reinforcement learning, to discover data-driven navigational strategies from large
training sets [15].

Such olfactory search strategies are often studied in the context of single-source searches,
but in naturalistic odour plumes, odour signals do not arrive in isolation but instead arrive in a
fluctuating mixture of multiple odorants, further complicating navigation tasks [16]. In such
multi-source contexts, a navigating animal must both identify the odour(s) of interest and
localize the target odour(s). The relative distance between two target odours may be of particu-
lar interest to an organism; for example, the distance of a predator to a food source or the prox-
imity of multiple food sources to each other. As noted early by Hopfield [17], the modulation
of correlation by intersource distance can help animals locate odour sources in the environ-
ment, i.e. perform olfactory scene segmentation. To resolve such correlations requires an abil-
ity to parse signals at high frequency. Insects indeed demonstrate the capacity to distinguish
high-bandwidth odor signals at frequencies up to 100 Hz [18], and in a multi-source context,
moths have even been shown to discriminate odor sources separated by as little as 1 mm in
space or 0.001 s in time [19]. Mammalian olfaction has generally been considered a ‘slow’
modality, but recent research demonstrated the ability of mice to discriminate fast odour fluc-
tuations at frequencies of up to 40 Hz, much higher than expected [20].

Given the sensitivity of animals to high-bandwidth information in odour signals, can the
correlations between two odour signals theoretically be exploited to estimate the distance
between the two sources? And if so, are some frequencies more informative than others? To
investigate these questions, we develop a framework for quantifying the usefulness of correla-
tions between odour signals at various frequencies, based on computing the Fisher informa-
tion that they contain about intersource distance.

Our analysis of high bandwidth information requires consideration of the statistics and
driving mechanisms of the range of signal frequencies present in naturalistic odour plumes.
Odours released into turbulent flow environments are advected downstream with the mean
flow. Concurrent distortion of odour streams by chaotic flow structures spanning a range of
sizes (a defining characteristic of fluid turbulence) produces discrete odour filaments whose
structure is subsequently altered by the turbulent mixing field. The associated stretching and
folding of filaments sharpens odour concentration gradients, enhancing molecular diffusion
in response to these flow-sharpened gradients and acts to broaden them [21]. The net effect of
these competing processes, collectively constrained by odour mass conservation, is broadly
referred to as chaotic advection, turbulent diffusion, or simply mixing [22, 23], and the resul-
tant product is a complex, spatiotemporally dynamic concentration landscape. We refer to
these as odour landscapes or plumes.
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Fig 1. Variety of odour landscapes. Diverse single odour landscapes in air and water (adapted from [29]) with varying source release configurations and
flow, fluid, and odourant properties. Animals may have to operate in multiple landscapes. For example, the odour landscape relevant to a mouse may be
similar to the nearbed isokinetic condition (lower left) when it is searching the soil, and more like the freestream isokinetic (upper left) when it is rearing.
The plumes were measured experimentally using planar laser-induced fluorescence (PLIF) and are described in detail in [30] (air) and [31] (water).

https://doi.org/10.1371/journal.pone.0297754.9001

Statistics describing concentration fluctuations of passive scalar plumes (composed of odours
that do not modify the local flow field) and their spatial variation are set by a number of dimen-
sionless parameters. These include a Reynolds number (Re) describing the ambient flow envi-
ronment (setting the statistics of the turbulent flow field) and a Péclet number (Pe) describing
the relative importance of advective and diffusive odour transport (or alternatively a Schmidt
number describing the relative diffusivities of fluid momentum and odour mass). Higher Re
and Pe numbers are associated with more turbulent flows producing plume statistics dominated
by turbulent diffusion. Additionally, a number of ratios describe the source configuration. These
include its size relative to the largest, energy-containing eddies (characterized by an integral
length scale), its proximity to solid boundaries, and its injection momentum relative to the flow.
Source configuration effects are well-known (e.g. geometry [24, 25], source momentum relative
to the mean flow [26], and proximity to surfaces [27, 28]). The variety of experimentally-mea-
sured odour landscapes shown in Fig 1 illustrates the effects of some of these important factors.

Plume statistics exhibit characteristic variations with distance from the source—including
with streamwise and cross-stream location, parallel and normal to the mean flow vector,
respectively [32]—owing to transitions between phenomenological regimes defined by differ-
ing sources of concentration variance. For example, for a small relative source size, near the
source where the plume width is small relative to the large eddies, concentration variance is
primarily driven by meandering of the whole plume driven by those large eddies (e.g. [33]). As
the plume width grows with distance from the source, the large eddies produce less meander-
ing and instead a range of eddy sizes are effective at mixing odour-laden and ambient (clean)
fluid—a turbulent diffusive regime with enhanced relative dispersion of the plume locally
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around its meandering centroid. A number of studies have examined statistical structure with
distance from the source both experimentally [5, 34] and analytically [16]. Broadly speaking,
source configuration effects influence near-field plume statistics (close to the source), whereas
the far-field structure is largely self-similar, being set by the physics of turbulent flows and the
linearly coupled advection-diffusion equations governing odourant transport and diffusion.

When multiple non-reactive odours are released from initially-distant locations into turbulent
flows, odour-specific plumes evolve independently and uniquely under the influence of chaotic
coherent flow structures [35]. The nature of the cumulative odour landscape describing all local
odour concentrations and associated gradients is then simply the superposition of these odour-
specific plumes, information that is potentially exploitable by a navigating sensor or organism.
Of particular relevance to the work presented here is that, in addition to the factors setting the
overall statistics of each individual odour plume, pointwise concentration correlations between
odour species will depend strongly on the initial source separation distance [36, 37]. In particular,
the correlations of concentration fluctuations can vary non-monotonically with distance from
the source, and they show strong source separation effects with weak Reynolds number effects
[38, 39]. This contributes to the observations of zero, negative, and positive correlation regimes
(no interaction, destructive and constructive interference, respectively) [40, 41]. As an analogue
to the single-source case where the local plume width relative to the large eddy sizes is important
in driving local production of concentration variability, the source separation relative to the large
eddy sizes in the multisource case drives these complex correlation behaviors.

Many statistical models describing concentration fluctuations for the single-source case
have been proposed in the literature, and most leverage the simplicity of the exponential family
to describe the one-point probability density functions [42, 43]. While the best match for a par-
ticular distance from the source and plume realization (Re, Pe, source configuration) varies,
there is recent evidence that the flexibility of the Gamma distribution can robustly account for
much of this variability [44], where the shape parameter is related to the concentration fluctua-
tion intensity [24]. Intuitively, good statistical descriptors for concentration fluctuations must
also capture the intermittent nature of concentration dynamics in turbulent flows manifesting
as high probabilities of zero concentration events [43, 45]. Extensions of these models to
describe the concentration statistics of multiple interacting sources are less frequent in the lit-
erature, but the exponential family was also shown to provide a good description of the distri-
butions for the sum of concentrations [36, 46]. Even fewer studies have examined the spectral
properties of correlations; however, recent work showed that for a single source separation,
correlations increase with distance from the source and become more spectrally uniform [41].

Due to the dynamics described above, odour plumes in naturalistic environments contain
fluctuations at a wide range of frequencies, modulated by distance to the source, proximity to
solid boundaries, odour source characteristics, and the ambient flow environment. At the
same time, recent research has demonstrated the high frequency acuity of olfactory systems,
but the purpose of such sensitivity is unknown. One possibility is that information about inter-
source distance is better encoded in different frequency bands depending on the olfactory con-
text, and that the sensitivity of animal olfactory systems to rapidly fluctuating odours allows
them to use this information when performing odour source localization. Thus the question
we aim to answer in this study is: What is the spectral distribution of the information that corre-
lations carry about source separation?

2 Results

To provide a testing ground for our approach to quantifying information in odour plumes we
performed computational fluid dynamics (CFD) simulations of two-dimensional fluid flowing
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Fig 2. CFD simulation domain. The wind tunnel domain used to simulate multispecies odour landscapes. The total
domain consists of an inlet flow development section followed by a plume domain section, beginning at x = 0. Most of
the analyses in the Main Text are for an array of source pairs located at x = 0 and mirrored about the domain
centerline at y=0 (the ‘cross-stream’ source configuration, orange arrows in the inset). We also performed analyses for
sources placed oblique to the flow (brown arrow in the inset) or parallel to it (‘streamwise’, green arrow). Geometric,
flow, fluid, and odourant properties are summarized in Table 1.

https://doi.org/10.1371/journal.pone.0297754.9002

past equally spaced cylindrical obstacles in a rectangular wind tunnel, as shown in Fig 2. The
interaction of the flow with the obstacles generated complex flow patterns that we used as a
proxy for turbulent advection. We placed multiple odour sources in the simulated wind tunnel
and measured the correlation of the resulting concentration profiles—henceforth referred to
as plumes—at fixed probe locations downwind. A snapshot of the plumes generated by two
adjacent odour sources is shown coloured blue and red in Fig 2.

Most of the results we present below are for odour sources placed ‘cross-stream’ i.e. at a
fixed distance from the flow inlet, symmetric along the midline, and equally spaced transverse
to mean flow. The direction along which the sources are placed is indicated by the orange
arrow in the inset of Fig 2. The resulting odour signals that these sources generate are mea-
sured at a single probe location situated along the midline. To determine the generalizeability
of our results we also performed our analyses for sources placed oblique to the mean flow
(brown arrow in the inset) and parallel to the flow (‘streamwise’, green arrow), and with odour
signals measured at 8 other probe locations. Further, we repeated these analyses for a supple-
mentary set of simulations using similar flow parameters and source configurations but
slightly different domain geometry. In Supporting Information Sec S3.1 in S1 File we describe
these supplementary simulations and present some of the corresponding results of the analyses
presented in the Main Text. The full set of source geometries and probe locations that we used
are shown in S10 Fig.

Another snapshot of a flow pattern, this time for the maximally separated sources in the
cross-stream configuration, is shown in Fig 3A. In Fig 3B we show some example concentra-
tion time series from sources at three different intersource distances. We express all distances
in terms of the spacing between the obstacles, called the ‘pitch,” and indicate this by suffixing
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Fig 3. Example plumes and correlations. (A) Snapshot of the simulated flow patterns advecting two sources (colours). The plumes are sampled downwind
at the probe location marked ‘x’. (B) Concentration profiles of the two odours at the probe location, scaled by the larger of their two standard deviations
computed over the window shown. Sources were placed at the same downwind (horizontal) location and separated by cross-stream (vertical) distances
indicated by s. Pearson correlations computed for the time windows shown, and for the entire simulation duration, are indicated by p,, and p, respectively.
(C) Mean + standard deviation of the Pearson correlations computed over 1-second boxcar windows overlapping by 500 msec., for all sources at the
intersource distances indicated. All distances are measured in pitch (¢).

https://doi.org/10.1371/journal.pone.0297754.9003

all distances with ‘¢’. This is a natural length scale for distance normalization since it approxi-
mates the sizes of the largest eddies.

We used the Pearson correlation to measure the cofluctuations of two plumes. For the
examples shown in Fig 3B correlations decrease with increasing intersource distance. We con-
firmed that this effect holds for the rest of our data in Fig 3C, similar to previous observations
in the literature, e.g. [47].

The Pearson correlation of two plumes x(f) and y(¢) in a time window of width T seconds is

_ L) = D)) — ) dt

1
T 0,0, M)

r

where X and o, are the mean and standard deviation of x(¢) over this window, and similarly for
y and 0. A key property of the Pearson correlation for our purposes is that it can be decom-
posed as a sum of correlations computed for each harmonic of the fundamental frequency 1/T

r= Zrn, (2)

where r,, is the contribution from the »’th harmonic,

r, & %(ancn +b,d), (3)
and (a,, b,,) and (c,,, d,,) are the cosine and sine coefficients of the Fourier decomposition of x
() and y(t), respectively, scaled by the standard deviations of these two signals (see Eq 59 in
Methods).
The spectral decomposition of plume correlations clearly depends on the corresponding
decomposition of the plumes themselves. Observation of long duration signals such as plumes
over short time windows introduces uncertainty about their spectral content called spectral
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Fig 4. Decomposition of correlations. (A) Mean + S.D. of Pearson correlations between the plumes emitted by two sources the specified distance apart,
computed using 1-second Hann windows (compare to Fig 3C which used 1-second boxcar windows). (B-E) The components of the correlation at the
frequencies stated above each panel. (F) The means of the data in panels (B-E) scaled to have the same value at intersource distance zero and overlayed for
ease of comparison.

https://doi.org/10.1371/journal.pone.0297754.9004

leakage [48], wherein the spectral content of the observed signal at a given frequency is not just
that of the original signal at that frequency, but includes weighted contributions from all other
frequencies. The effects of spectral leakage can be ameliorated by judicious weighting of the
observations, called ‘windowing’. Unless stated otherwise, the results below use a 1-second
Hann window. In Fig 4 we have plotted the distribution of some of these correlation compo-
nents as a function of distance.

To measure the amount of information that correlations r,, provide about intersource dis-
tance s, we used the Fisher information [49], defined as

7() = - [ TR b ar, @

where p(r,|s) is the distribution of correlations r,, for harmonic 7 for an intersource separation
s. Informally, the Fisher information measures the dependence of our estimate of s on the
observed correlations r,,. The more sensitive this estimate is to correlations, the more informa-
tive the correlations. The Fisher information also bounds the precision of unbiased estimation
of intersource distance from correlations. Thus the higher the Fisher information, the higher
the maximum precision with which intersource distance can be estimated from correlations.
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Note also that the Fisher information is a function of the intersource distance s. Thus the infor-
mation provided by correlations will in general depend on the (true) intersource distance.

2.1 Outline of our approach

Our approach to determining the spectral distribution of information in the correlations is as
follows. First, we

1. Use simplifying assumptions about the statistics of the Fourier coefficients of the component
waveforms to determine analytically tractable approximations to the distribution p(r,,|s)
needed to compute the Fisher information (Sec 2.2, Eq 21, and Fig 7);

Although we make some of these assumptions for mathematical tractability rather than
because we believe they hold in actual flows, we nevertheless test their validity numerically in
Sec $4in S1 File.

Next, we

2. Use the distribution of correlations thus derived to compute analytic expressions for the
Fisher information (Sec 2.3 and Eq 23);

3. Fit tractable distributions for the quantities required in the analytic expressions of Fisher
information to our simulation data (Eq 24, Figs 8 and 9);

4. Compute the Fisher information using fitted parameters for each harmonic and intersource
distance (Eq 26 and Fig 10).

2.2 The distribution of correlations

To determine an analytically tractable expression for p(r,,|s), we began by using the rules of
probability to relate the correlation 7, to the Fourier coefficients a,,, b,, ¢, and d,,. In our
description so far we have assumed a single pair of sources at a given distance s apart. In reality,
the distribution of correlations is formed by combining the contribution of all pairs of sources
separated by that distance. For example, in our simulations, there will frequently be many
pairs of sources a given distance apart. To quantify effects that depend only on the relative
location of sources, rather than the specific locations of specific sources, we made two loca-
tion-independence assumptions.

First, we assumed that sources were close enough together relative to the animal and to the
geometry of the flow so that

1. The distribution of coefficients from each source is the same for all sources, and

2. The distribution of coefficients from one source given those at another source depends only
on the distance between them.

We tested these assumptions numerically and found that they both broadly held (see S2 and
S3 Figs).

We show in Methods Sec 5.3.3 that these two assumptions allow us to write the distribution
of correlations at a given source separation as

p(rn|s) = /p(rn|an’ b?l’ Cﬂ7dl’l7s) I)(ai‘l7 bn) p(cﬂ7d7!|a}’l7 bn’s) da?lbﬂcnd}’l' (5)

The first term in the integrand describes the dependence of correlations r,, on the Fourier
coefficients and the intersource distance. From Eq 3 we know that r,, is determined entirely by
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the Fourier coefficients. We can express this fact probabilistically by concentrating all of the
probability density at the value in Eq 3 using the Dirac d function,

b d
p(rn|an’ bnv Cn,dn,s) = 5<rn - %)

(6)

The second term in the integrand of Eq 5 is the probability of observing the pair of coeffi-
cients a,, b, from a source. To arrive at analytically tractable solutions, we made our next
assumption:

3. Concentration profiles are Gaussian processes.

This assumption implies that the joint distribution of coefficients from each source, p(a,,,
b,), is a two-dimensional Gaussian distribution. We emphasize that we made this assumption
for analytic tractability; turbulent flows are well known to exhibit non-Gaussianity, for exam-
ple in their velocity fields a [50] or the concentrations of advected substances [43]. Indeed,
when we tested this assumption numerically we found that at most locations in the plume it
only held for frequencies below 10 Hz (see S4 Fig). We consider some of the implications of
this non-Gaussianity in the Discussion.

To specify the mean and covariance of our assumed Gaussian distribution, we made our
next assumption,

4. Concentration profiles are temporally stationary.

This means that the statistical properties of plumes do not change with time. Temporal sta-
tionarity has the following important implications for the Fourier coefficients (see Sec S6.1 in
S1 File for details). First, it implies that the marginal distribution of the sine and cosine coeffi-
cients must be the same, that is

pla, =v) =p(b, = ). (7)
Second, it implies that the coefficients at non-zero frequency have mean zero, that is
<an¢o> = <bn¢o> =0. (8)
Third, it implies that the coefficients are uncorrelated, so
(a,b,) =0 (©)

The expectations in Eqs 8 and 9 are over time windows. We tested all three implications
numerically and found that they broadly held (see S5 Fig).

By combining our Gaussian process assumption with our assumptions of location indepen-
dence and temporal stationarity we can completely specify the second term in Eq 5:

p(a,,b,) = pla,)p(b,) = N(a,;0,0,)N(b,;0,07), (10)

n)=n

where ¢? is the marginal variance of the coefficients for harmonic n.

The third term in Eq 5 is p(c,, d,|a,, by, s) and expresses the probability of observing the
pair of coefficients (c,, d,,) from the second source given the observed coefficients (a,, b,) from
the first source located at an intersource distance of s. To specify it, we first represented the
joint distribution of coefficients p(a,,, b,, ¢,,, d,,|s), as the graphical model in Fig 5A. The mar-
ginal independence of the sine and cosine coefficients a,, and b,, in Eq 10 is reflected in the net-
work through the lack of connections between a,, and b,,. Importantly, the network indicates
that the coefficients ¢, and d,, are conditionally independent given the observed values of a,,
and b,,. This is because the only routes by which ¢, and d,, can influence each other are through
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Fig 5. Decomposition of phase relationships. (A) Knowing the cosine (a) and sine (b) coefficients at one source can inform about the corresponding
coefficients (c and d, respectively) at another. The lack of arrows between a and b indicates their marginal independence. (B) Cosine (a) vs. sine (b)
coefficients from the same source at 5 Hz, pooled across all sources. (C) Cosine coefficients from one source (a) vs. those (¢) from the closest source in the

positive vertical direction, pooled across all such pairs. (D) As in panel C but plotted against the sine coefficient from the neighbouring source. The Pearson
correlation of the coefficients in each panel is indicated with p.

https://doi.org/10.1371/journal.pone.0297754.9005

a, and b,,, which serve as common input to a,, and b,,, and these are observed [51]. Therefore,

P(Cn, dn|an’ bnv 5) = p(cnlan’ brn S) p(dn|an’ bnv 5)' (11)

To specity a form for the conditional distributions on the right-hand side of Eq 2, we must
determine the uncertainty that remains about the coefficients ¢, and d,, of the component
waveform at the second source when we know the corresponding coefficients a,, and b,, at the
first. To do so, we expressed the component waveform at the second source as a scaled and
phase-shifted version of the first, plus a residual. Doing so, we made our final assumption,

5. The conditional distribution p(c,, d,|a,, b,, s) of coefficients at one source (c, and d,,) given
those at another (a,, and b,,), is bivariate Gaussian.

We performed a coarse test of this assumption and found that it held, at least within the
limitations of this test; see S6 Fig.

With this final assumption in hand we concluded that the conditional distribution of the
individual coefficients is

plc,la,,b,.5) = N(c,; B,(s)[a, cos 0,(s) + b, sin 0,(s)],m,(s)°), (12a)

p(d,|a,,b,.s) = N(d,; B,(s)[b, cos 0,(s) — a,sin0,(s)],n,(s)"). (12b)

Here §,(s) and the 0,,(s) are the best-fit scaling and phase-shifts, and na(s)? is the variance of
the residual (see Methods Sec 5.3.2).
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Substituting these equations into Eq 11 and combining with Eq 10 we arrive at the form of
the joint distribution of the coefficients

p(arn bnv Cus dn|5) = N([ana bn7 Cos dn]; 0, En(s)) (133)
1 0 B.(s)cos0,(s) —B,(s)sin0,(s)
0 i B(5)sin0,(5) B, (5) cos0,(s)
. (s)=0a’ . (13b)
f.(s)cos0 (s) f,(s)sin0 (s) 1 0
—p.(s)sin@ (s) f.(s)cosB(s) 0 1

Note that by the location independence assumption, the marginal variance o2 of the coeffi-
cients does not depend on s.

The covariance in Eq 13 specifies two types of relationship between the coefficients from
the two sources. Those that are ‘in-phase’ relate coefficients of the same type, for example the
cosine coefficients a, and c,. Those that are ‘out-of-phase’ or ‘quadrature’ relate coefficients of
different types, for example the cosine coefficient a,, at the first source and the sine coefficient
d, at the second. Determining the spatial information that correlations provide requires incor-
porating both types of relationship by using the full set of covariances specified in Eq 13.

However, for our data the out-of-phase contribution is very small, and the in-phase rela-
tionship dominates. This can be seen, for example, in the high in-phase correlation of the data
in Fig 5C vs. the near zero correlation of the out-of-phase data in Fig 5D (see also S17 Fig).
Therefore, it will be convenient to focus on the marginal distribution relating only the in-
phase coefficients. For the pair of cosine coefficients this is

pla,cls) =N(la,.c,]';0,7(s)) (14)

mon of L pa(s)
En(S)—0n<pn(s) ) > (14b)

where we’ve defined the in-phase correlation
pa(s) 2 B, (s) cos 0,(s). (15)

Note that this expression is not meant to constrain the dependence of p,, on intersource dis-
tance s, and merely defines it in terms of the quantities 3, and 6, at that distance. The depen-
dence on intersource distance can in principle be arbitrary, although we will find below (see
Fig 8) that it is adequately described for small intersource distances by exponential decay.

The relationship relating the pair of sine coefficients b,, and d,, has the same form as Eq 14.
Since the off-diagonal element of X" (s) is the covariance of pairs of sine or cosine coefficients,
we can use Eq 3 to relate the in-phase correlations to the average component correlations as

(a,c,) + (b,d,)

(r,) = 22— g2y (16)
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Fig 6. Fourier coefficients vs. distance. Distribution of the indicated coefficients for the 5 Hz component of the plume from one source vs. the indicated
coefficient computed for the second source, computed for all pairs of sources separated by the intersource distance stated above panels A-D. Crosses
indicate the mean of each dataset; ellipses indicate first three standard deviations of bivariate normal fit to the data; Pearson correlations (p) of the data in
each plot are indicated in the top-left corner. (A-D) Cosine coefficient at source 1 vs. cosine coefficient at source 2. (E-H) Sine coefficient at source 1 vs.

cosine coefficient at source 2.

https://doi.org/10.1371/journal.pone.0297754.9g006

The relationship of the out-of-phase coefficients can be described in a similar way. For
example,

p(b,.c,ls) = N([b,,c,)";0, £ (s)) (17a)
1 (s
is)=oy| | 7 (6) : (17b)
pi(s) 1
where the out-of-phase correlation is defined as
Py (s) 2 B, (s) sin 0, (s). (18)

The distribution p(a,,, d,|s) has the same form, but with negative the covariance between the
two variables.

In Fig 6 we have plotted examples of the joint distribution of in-phase (panels A-D) and
out-of-phase (panels E-H) coefficients. These plots confirm that the out-of-phase correlations,
while not zero, are much smaller than the in-phase correlations.

Armed with the joint distribution of Fourier coefficients given intersource distance speci-
fied in Eq 13, we can return to Eq 5 and derive the distribution of correlations to be the
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asymmetric Laplacian (see Methods Sec 5.3.3)

| [em@oirne >0

p(r,ls) =——= : (19)
Z,(5) | ez ;<

where the normalizing constant is defined as

Z,(s) =0a2y/1 = pl(s). (20)

n

A simplifying assumption. Because the out-of-phase correlations of our data are typically
very close to zero, in what follows we will assume that these correlations are zero. In that case,
Z,(s) = o2 and Eq 19 simplifies to

L [ el ey >0
p(r,ls) =~ : (21)

Tu | 2l -n) <0

To evaluate the agreement of the asymmetric Laplacian in Eq 21 with the observed distribu-
tion of correlations we compare their cumulative distribution functions (CDFs). In Fig 7A-7C
we make the comparison for the 5 Hz correlation data at three different intersource distances.
We quantified the agreement between the CDFs as 1 minus the largest absolute difference
between them. A value of 1 would indicate perfect agreement, while, a value of 0, the smallest
possible would indicate non-overlapping distributions. A heatmap of the match over the full
range of intersource distances and frequencies (Fig 7G) reveals a match of ~ 0.7 and higher
over most of this range.

Although there is good qualitative agreement between the data distributions of correlations
and the corresponding asymmetric Laplacians of Eq 21, the plots in Fig 7A-7C also suggest
that there are systematic differences between the two. In Fig 7D-7F we have plotted the differ-
ences between the data distribution and the asymmetric Laplacian fits. These plots have similar
shapes, consisting of a narrow positive lobe followed by a broader negative lobe, eventually
decaying to zero as both CDFs approach 1. This reveals that the data had more correlation val-
ues concentrated near zero, and correspondingly fewer large correlation values, than the asym-
metric Laplacians.

To achieve a better fit ot the observed distribution of correlations, we elaborated the asym-
metric Laplacian model in two ways to better capture small correlations (see Methods Sec
5.3.4). First, turbulent flows produce intermittent signals [50] so some very small correlations
may be noise, not actual correlations. Therefore, similar to [43] for single-source concentra-
tion models, we incorporated intermittency using a binary random variable z that indicated
whether an observation y,, was of a correlation r,, drawn from our correlation model p(r,|s), or
noise w:

vz, r,w =zr,+ (1 —2)w. (22)

Second, we generalized the exponential decays in our correlation model of Eq 21 to the gener-
alized inverse Gaussian p(r) o« K1 @ AMD2 hich also includes the Gamma distribution as
a special case.

We fit both intermittent and non-intermittent versions of these models to the correlations
at each frequency and intersource separation separately. Examples of such fits are shown in Fig
7, showing improved agreement with the observed correlations. The performance of the best-
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Fig 7. Modeling the distribution of observed correlations. (A-C) Examples of observed (F 4, thick pink) and predicted cumulative distribution function
for the 5 Hz component of correlations, for three different intersource distances (indicated above each panel). Predictions were for the asymmetric
Laplacian distributions (Fgap, pink) in Eq 21, asymmetric Laplacian with intermittency (F;,;, light blue), and the best-fitting model when testing both
intermittent and non-intermittent versions of the asymmetric Laplacian, Gamma, and generalized inverse Gaussian (Fyy, navy). The parameters of Fyq,
were derived from Gaussian fits to the distributions of Fourier coefficients, the parameters for the remaining fits were found by directly fitting the
correlation data. (D-F) Absolute difference between the predicted and observed cumulative distribution functions in the corresponding panels in the first
row. Data in A-F may be optimistic because fits were computed using some (though not all) of the data they are being qualitatively evaluated against in those
panels. See panel H for performance on held-out data. (G) Fit quality for the asymmetric Laplacian model, measured as 1 minus the largest absolute
difference between the predicted and observed CDFs, computed for all distances and frequencies listed. Higher values indicated better fits. Values may be
optimistic because parameters were both trained and evaluated on the same (full) dataset. Coloured dots correspond to data points shown in the left three
panels. (H) As in panel G, but for the best fitting model when testing both intermittent and non-intermittent versions of the asymmetric Laplacian, Gamma,
and generalized inverse Gaussian, fitted directly to the correlations, and evaluated on unseen data. See Methods Sec 5.2.4.

https://doi.org/10.1371/journal.pone.0297754.9g007
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fitting models on unseen data over the full range of frequencies an intersource distances are
shown Fig 7H, demonstrating a very good fit over the entire range.

2.3 Computing the Fisher information

Having now determined expressions for the distribution of correlations given intersource dis-
tance, we can use Eq 4 to determine the Fisher information. Evaluating that expression
requires not just a form for the correlation distributions themselves, but also for how they
change with intersource distance. These changes in turn are determined by how the various
parameters of our correlation model, Eq 19, change with intersource distance.

The three correlation models we have considered, the asymmetric Laplacian, Gamma and
generalized inverse Gaussian, have 2, 4, and 6 parameters, respectively. The intermittent ver-
sion of each model requires an additional two parameters to capture the intermittency. To
avoid the complexity of modeling how large numbers of parameters change with intersource
distance, we will use our simplest model, the non-intermittent asymmetric Laplacian of Eq 19,
to estimate Fisher information.

The general expression using Eq 19 is complex but simplifies significantly when the out-of-
phase correlation is zero, which is approximately the case for our data. Therefore in what
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Fig 8. Parametric fits to p,(s). (A-D) Bootstrap medians (coloured points) and 5-95th percentiles (coloured bars) of p,,(s) at each intersource distance, and
a few example fits using bootstrap parameters (gray traces), for a few example frequencies. (E) Length scale parameter (on a logarithmic axis) for the fits to
the data in (A-D). Boxes indicate inter-quartile range (IQR), central lines are medians, whiskers extend to last data points within 1.5 IQR, circles are
outliers. Fits were computed for intersource distances up to 1 pitch, indicated by the dotted vertical lines in panels A-D.

https://doi.org/10.1371/journal.pone.0297754.9008

follows, we will use the simplified expressions. The Fisher information is then (see Methods

Sec 5.3.5)
2 (dp, )Y
709 = - () )

As basic checks of this expression we observe that
« It’s non-negative since 0 < p,(s)* < 1;

o It depends on how the correlations change with distance, via the dp,,(s)/ds term, so that
when this dependence is zero, there is no information in the correlations, as expected;

« For a fixed amount of distance dependence dp,,(s)/ds, information is least when there is no
correlation (p,(s) = 0).

Armed with Eq 23, we still require the distance dependence of correlations p,(s) to compute
the Fisher information. To motivate a parametric form for this dependence, we require that at
the very least it should peak at an intersource distance of zero and decrease with distance. A
simple parametric form that meets this requirement is exponential decay with distance s.

p,(8) = (1= b,)en +b,. (24)

The two parameters of the model are the length scale of the decay y,,, and the constant offset b,,
that determines the value at very large intersource distances. In Fig 8 we demonstrate the fit of
this parametric form to some example correlation data.

Interestingly, when we examined the decay of correlation with distance, we observed that
higher frequencies decayed faster than lower frequencies (Fig 9A). We plotted the length

PLOS ONE | https://doi.org/10.1371/journal.pone.0297754  January 10, 2025 15/54


https://doi.org/10.1371/journal.pone.0297754.g008
https://doi.org/10.1371/journal.pone.0297754

PLOS ONE Quantifying spectral information about source separation in multisource odour plumes

A BS 0.05
1.0 1 — 2 Hz % 41 + : o
0 — 5Hz c l o
Sos- — 10 Hz i +
© 20 Hz 2 0.00
2 S 24
S 0.0- 5 + l
(@)
\5 o . i 4 &g D057 é
T T T - T T T T
0 2 4 5 10 15 20 ‘a o
Intersource distance (¢) Frequency (Hz) <?1._0_10 g
C D_
1.0 ] — 2 Hz &
o \ — 5 Hz € —0.15 1 o
9 0.5 — 10 Hz £ 3- ?
© 20 Hz c
I \ S =
§ 0.0 \ c 2 + ~0.204
\\ g
T T T - T T T T T T
0 2 4 5 10 15 20 Sims Surr
Intersource distance (¢) Frequency (Hz)

Fig 9. The decay of correlations with frequency. (A) Normalized correlations at different frequencies. (B) Length constants y of exponential fits to the
decay of correlations for different frequency components. Dots and lines are the bootstrap median and 5th-95th percentiles, respectively (C,D) As in panels
A and B but for surrogate data where all frequencies are equally informative. (E) Bootstrap distribution of coefficients when regressing the length constants
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are [5th- 95th] percentiles, circles are outliers. The simulation data (but not the surrogate data) had very large time constant at 1 Hz so only the data from 2
—20 Hz are shown above and used in the analysis.

https://doi.org/10.1371/journal.pone.0297754.g009

constants of the generalized exponential fits to the decays against frequency (Fig 9B) and
observed that they decreased at about one pitch every 10 Hz (Fig 9E). According to Eq 23,
Fisher information depends on the rate of change of correlations with intersource distance.
Therefore, the differences in decay rates that we observed suggest that the amount of informa-
tion carried by correlations at different frequencies varies. As a comparison, we generated sur-
rogate data with a similar power spectrum to our simulated plumes, but for which all
frequencies were equally informative (see Methods Sec 5.2.7). We observed very little change
in length constants with frequency in this surrogate data (Fig 9C-9E).

Given the parametric form Eq 24 of the distance dependence we derived an analytic expres-
sion for the Fisher information. To simplify the expression we first normalized distance s by
the length-scale parameter y,, and defined

S, = (25)

In Methods Sec 5.3.5 we show that the Fisher information about intersource distance provided
by the #’th harmonic component of correlations can be expressed in terms of normalized dis-
tance s, as

2 (1 b,)e
P+ b, (1-b)em)(1—en)

I(r,,s) = (26)
In Fig 10A we’ve plotted the bootstrap median and 5th-95th percentiles of Fisher information
at a range of distances for a few example harmonics. The heatmap in Fig 10B shows the Fisher
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Fig 10. Fisher information vs. intersource distance. (A) Bootstrap medians (points) and 5-95th percentiles (bars) of Fisher information vs. intersource
distance for five example frequencies. (B) Fisher information heatmap, computed using all the data (i.e. not bootstrapped). Note the nonlinear scaling of
the x-axis.

https://doi.org/10.1371/journal.pone.0297754.9g010
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information computed using all the data (i.e. not bootstrapped) at a broad range of frequencies
and intersource distances.

2.3.1 Which frequencies are more informative?. The Fisher information heatmaps for
our CFD plumes suggest that high frequencies are more informative when sources are close
together. To see what such heatmaps would look like when the ground-truth distribution of
information over frequencies is known, we generated surrogate plume datasets with similar
power spectra to our CFD plumes, but with different distributions of information across fre-
quencies (see Methods Sec 5.2.7).

To do so, we used the fact that the Fisher information depends on the in-phase correlations
pu(s) according to Eq 23, and that these in turn are determined by the correlation (equivalently,
covariance, since coefficients have zero mean) the in-phase Fourier coefficients by Eq 14b. We
therefore generated surrogate data for R odour sources at a given harmonic by sampling from
a zero-mean R-dimensional Gaussian and adjusted the correlation of its dimensions, repre-
senting odour sources, to decay with intersource distance to produce the desired Fisher infor-
mation at that harmonic.

In the first such dataset, all frequencies were set to be equally informative. To achieve this,
we set the correlation between two surrogate sources to decay at the same exponential rate
with their intersource distance at each harmonic (see Table 2). In Fig 11B we have plotted the
Fisher information heatmap for this dataset. The information content varies with intersource
distance, but is homogeneous with frequency, as expected, and unlike that of our CFD plumes
(reproduced in Fig 11A).

Next, we generated a second surrogate dataset in which correlations decayed with inter-
source distance six times faster for the higher half of the frequency range than the lower half.
This should result in the high frequencies being more informative at small intersource dis-
tances. At large intersource distances, high-frequency correlations will have decayed to zero
due to their fast decay rate, yielding little information. Low frequencies will not have decayed
completely to zero and will remain informative. Thus we expected to see high frequencies
being more informative at small intersource distances, and low frequencies more informative
at large intersource distances. This is indeed what we saw when we plotted the Fisher informa-
tion heatmap for this dataset in Fig 11C.

The similarity of the information heatmap for our CFD plumes (Fig 11A) to that of the sur-
rogate dataset where high-frequencies were a priori more informative (Fig 11C), and its dis-
similarity to the heatmap of the dataset where all frequencies were a priori equally informative,
supports the conclusion that for our CFD plumes high frequencies are more informative when
sources are close together.

To emphasize the importance of windowing to these results, in Fig 11D we plot the Fisher
information heatmap for our CFD plumes, but when analyzed with a 1-second boxcar win-
dow. The boxcar window, also known as a rectangular window, weights all samples equally.
The poor spectral leakage properties of this window coupled with the power-law power spec-
trum of our data (S14 Fig) results in the low-frequency information masking that of the higher

Table 2. Summary of surrogate datasets and the power and correlation functions used. The kernel for each dataset
was the product of the power and correlation functions: k(i, j, n) = S(n)G([i — j|, n).

Surrogate Dataset Power S(n) Correlation G(|i - j|, n)
All harmonics equally informative,data power spectrum P(n, o0 =4) 2exp(—|i —j|/12) - 1
High frequencies more informative,data power spectrum P(n, o0 =4) exp(-|i — j|/R(n))

High frequencies more informative,flat power spectrum P(n, a=0) exp(-|i — j|/R(n))

https://doi.org/10.1371/journal.pone.0297754.1002
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Fig 11. Fisher information for simulations and surrogate data. (A) Fisher information heatmap for our simulated plumes (reproduced from Fig 10B). (B)
Heatmap for surrogate data with power spectrum similar to our simulated data and where all frequencies are equally informative. (C) Heatmap for surrogate
data with power spectrum similar to our simulated data and where frequencies >12.5 Hz have the same, higher value of Fisher information than the lower
frequencies. (D) Fisher information for our simulated plumes when using a 1-second boxcar window.

https://doi.org/10.1371/journal.pone.0297754.9011

frequencies. This then results in an heatmap where information appears to be homogeneously
distributed across frequencies, similar to Fig 11B.

From Eq 23, Fisher information depends on the rate at which correlations change with dis-
tance. The fact that correlations decay faster for high frequencies than for low frequencies
means that when sources are closer together, the correlations at high frequencies will be more
informative. This is shown in the left-most panel of Fig 12A, where we have plotted the infor-
mation available at each frequency for an intersource distance of ~ 0.1 pitch. At that inter-
source distance information shows a positive trend with frequency. As sources move farther
apart, high-frequency correlations will have decayed, eventually changing at the same rate with
distance as the slower decaying low-frequency correlations. This will result in all frequencies
being similarly informative, as shown in the middle panel of Fig 12A for an intersource separa-
tion of ~ 1 pitch. As sources move even farther apart, the lower frequencies will become more
informative, as shown in the right panel of Fig 12A for an intersource separation of ~2
pitches. The overall change in the trend as intersource distance increases is shown in Fig 12C
and shows a distinctive elbow shape, so in what follows we will frequently refer to such data as
‘elbow plots.” For surrogate data in which all frequencies are equally informative, trends in
information with frequency are minimal at all intersource separations; see Fig 12B and 12C.
Note that the exponential decay in correlations with frequency means that regardless of which
frequencies are more informative, the absolute amount of information available will decrease
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Fig 12. Fisher information vs. frequency. (A) Base 10 logarithm of the Fisher information at each frequency component (dots) and linear fits (dashed
lines), for intersource separations of ~0.1, 1, and 2 pitches (left, middle and right panel, respectively), for the simulated plumes using a 1-second Hann
window. Coefficients § of the linear fits are stated in the legends. Data have been scaled by the amount shown in each legend to ease comparison. (B) As in
panel A but for surrogate data where all frequencies are equally informative. (C) Bootstrap median (dots) and 5th-95th percentiles (bands) of the coefficients
B of linear fits to the logarithm of Fisher information regressed on frequency for the CFD plumes (blue) and 10 surrogate datasets where all frequencies are
equally informative (gray). Positive coefficients indicate information increases with frequency, negative coefficients that it decreases. Centres of orange
markers indicate the integral length scale (Ly, see Methods Sec 5.2.8) in the vertical direction (orthogonal to the mean flow) of the vertical velocity field,
computed at the midline where the odour sources were located (‘origin’, Ly, = 0.85¢)) and at the probe location (‘probe’, Ly, = 2.6¢). Linear fits were
computed using robust regression, see Methods Sec 5.2.5.

https://doi.org/10.1371/journal.pone.0297754.g012

with intersource distance. This is because information is derived from the rate of change of
correlation with intersource distance, and this decreases as sources move farther apart. This
effect is shown by the decrease in the down-scaling applied to the data in the panels of Fig 12A
and 12B.

The analyses above relied on the use of windows that reduced spectral leakage when the
amount of power in different frequency bands is different, as is the case in real plumes and in
our simulations. By using the Hann window to reduce leakage we were able to distinguish the
different rates at which correlations decay in different frequency bands, and therefore the dif-
ferent amounts of information that they contain. As we show in S7 and S8 Figs these effects
were not limited to the 1-second Hann window used above, and we also observed them when
we used other windows that similarly reduced spectral leakage.

2.3.2 Testing other probe locations and source geometries. The results we have pre-
sented above were computed at a single probe location, located on the midline of the flow
downstream of the odour sources. Because animals will find themselves oriented at a variety of
locations relative to odour sources of interest, it is important to determine the extent to which
our results generalize to other locations within the plume. Therefore, we selected 8 additional
probe locations within the plume, chosen to be dispersed enough to test the generalizability of
our results, while also staying within the plume and avoiding boundary effects (see S1 Fig).
These locations are indicated with coloured ‘x’s in Fig 13A. The blue ‘<’ marks the probe
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Fig 13. Results for other probe locations and source geometries. (A) Plume snapshot and probe locations for the cross-stream source geometry. Sources
are equally spaced at x = 0 along a line transverse to the mean flow. The plumes (colours) are generated by the most distal pair of sources (white ‘0’s). Probe
locations are marked with coloured ‘x’s. The cross-stream source geometry is the one analyzed in most of the Main Text, using the data measured at the blue
probe location. (B) The decay of correlations with intersource distance for a few example frequency bands, at the nine di.erent probe locations in panel A,
indicated by the background colour of each panel. The data in the blue panel is for the principal probe location analyzed in the Main Text and was
previously shown in Fig 9A. (C) Elbow plots for each probe location in panel A, and coloured accordingly. The blue curve is for the principal probe location
analyzed in the Main Text and is the same as in Fig 12C. Only the bootstrap medians, and not the confidence intervals, are shown, for clarity. (D,E,F) As in
panels A-C, but for the oblique source configuration, where sources are equally spaced along a line at 45-degrees to the mean flow. (F,I) As in panels A-C,
but for the streamwise source configuration, where sources are equally spaced along a line parallel to the mean flow.

https://doi.org/10.1371/journal.pone.0297754.9013

location for the results we’ve presented so far, while the remaining ‘x’s mark the new probe
locations within the plume.

We performed the analysis describe in the previous section for each new probe location,
culminating in ‘elbow’ plots like those of Fig 12C indicating whether high or low frequences
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were more informative at each intersource distance. The panels in Fig 13B show how correla-
tions decay with intersource distance at each probe location. These panels reveal that at every
probe location high-frequency correlations decay faster than lower frequency correlations
when sources are close together. In Fig 13C we have overlayed the resulting elbow plots for all
probe locations, showing only the medians for clarity, and coloured according to the probe
locations in Fig 13A. The blue curve is the mean data previously shown in Fig 12C, while the
remaining curves show the results for the new probe locations. All of the curves show the same
qualitative behaviour: each starts at a positive value for 3 at low intersource distance, indicating
that high frequencies are more informative than low frequencies when sources are close
together. As intersource distance increases, all the curves trend downwards, and most eventu-
ally reach negative values of 8, indicating that low frequencies become more informative when
sources are sufficiently far apart.

Our results thus far are for sources located perfectly ‘cross-stream’, transverse to the mean
flow. Natural odour sources will assume many other orientations relative to the mean flow. It
is therefore important to determine whether our results generalize to other source orienta-
tions. To do so, we performed simulations using two new source orientations.

In the first, odour sources were equally spaced on a line at 45 degrees to the mean flow. In
Fig 13D we have plotted a snapshot of the plumes generated by two most distant sources in
this configuration. The panels in Fig 13E show how correlations decay at each probe location
for this source configuration, again revealing that high frequencies decay faster than low fre-
quencies when sources are close together. The resulting elbow plots of Fig 13F reflect this and
show that at all probe locations in this source configuration, high frequences are more infor-
mative than low frequencies when sources are close together.

In the second new source configuration, we placed our sources parallel to the flow (stream-
wise). Fig 13G shows the plumes generated by the most distant sources in this configuration.
The correlation decay results in Fig 13H reveal the same qualitative trends as in the corre-
sponding panels for the previous two configurations, with high-frequency correlations decay-
ing faster than those at low frequencies when sources are close together. This is reflected in the
the elbow plots of Fig 131 which show that high frequencies are more informative than low fre-
quencies when intersource distances are low.

In summary, our analysis of 8 new probe locations and two new source configurations all
reveal the same same qualitative trends that we observed in our original probe location and
source configuration, namely that high-frequency correlations decay faster than low-frequency
correlations when sources are close together (compare Figs 9A, 13B, 13E and 13H), resulting
in high frequencies being the most informative when sources are closer together, with the bal-
ance shifting towards low frequencies as intersource distance increases (compare Figs 12C,
13C, 13F and 13I). We saw the same qualitative trends when we performed our analyses using
longer windows (2-second Hann, S21 Fig), shorter windows (0.5-second Hann, S22 Fig) and
windows with different shape (1-second Kaiser-16, S23 Fig).

Finally, we repeated our entire procedure for a supplementary set of simulations, and
observed the same qualitative effects (524 Fig), though there were exceptions for some probe
locations and source configurations. For example, high frequencies decay more slowly than
low frequencies for small intersource distances at the red and brown probe locations in the
oblique plume (S24E Fig), which may contribute to low frequencies being more informative
for nearby sources than high frequencies at the red probe location (note the inverted elbow in
S24F Fig). Another prominent example comes from the same source configuration but ana-
lyzed using 500 msec. window;, for which the elbows from a few additional probe locations are
inverted (S26F Fig). However, all of these exceptions are for probe locations that are at the
edge of the plume. This is partially due to the fact that odour sources are also closer to the
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probes in the supplementary simulations. Both of these properties may contribute to the
behaviour we observe at those locations.

When computing the Fisher information for the new source geometries above, we contin-
ued to use the in-phase component of the correlations. Initially, we had expected that the out-
of-phase component of the correlations would play a larger role in these new geometries. For
example, in the setting sources are arranged parallel to the flow direction, the velocity of the
flow and the spacing between any pair of sources imply an initial phase difference between
them, which may survive until the flow reaches the probe locations and manifest as strong out-
of-phase correlations. However, we found that the magnitude of the out-of-phase correlations
for the two new source configurations (S18D and S19D Figs) was small and similar to that for
the original, transverse source configuration (S17D Fig), justifying our approximation of the
Fisher information to use only the in-phase correlations for those source geometries as well.

3 Discussion
3.1 Quantifying information in plume correlations

The concentration timeseries from two odour sources measured at a downwind location tend
to become more correlated when the sources move closer together. Therefore, correlations
contain information about the spatial separations of the odour sources that generated them.
Correlations can be decomposed as the sum of component correlations at different frequen-
cies. Recently it was shown that mice can discriminate correlated vs. anti-correlated concentra-
tion timeseries at up to 40 Hz [20]. Could this high bandwidth sensitivity be caused by
additional spatial information those frequencies might carry? Motivated by this question we
set out to quantify the information contained in the component correlations about the spatial
location of odour sources, to determine whether high frequencies contain more spatial infor-
mation than lower frequencies.

Our approach is based on parametric modeling of how component correlations decay with
intersource distance. We first express the component correlation at each frequency in terms of
the corresponding Fourier decomposition coefficients of the odour timeseries being corre-
lated. We then fit parametric models to these correlations and how they change with inter-
source distance. Using these parametric models we then derived a closed form expression for
the Fisher information contained in the component correlations about the intersource dis-
tance in terms of the correlation of the Fourier coefficients and how these change with inter-
source distance (Eq 23).

We applied our approach to two computational fluid dynamics simulations of two-dimen-
sional grid turbulence to determine which frequency bands were most informative about rela-
tive source locations. To verify our approach we also applied it to several surrogate datasets
which we constructed to contain different patterns of spatial information in their component
correlations. Analyzing our data using a 1-second Hann window to reduce spectral leakage, we
observed that high-frequency correlations decayed faster than those at low frequencies (Fig 9).
This meant that high frequencies were more informative when sources were less than ~ 1
pitch apart, and low frequencies when sources were farther apart than this Fig 12. We saw this
effect for other similar leakage-reducing windows (S7 and S8 Figs), and not in surrogate data
in which all frequencies were equally informative.

We tested the generalizability of our analysis by testing two additional source configura-
tions and eight additional probe locations. In all of these cases, we found broad agreement
with our orginal simulation, showing high frequencies were more informative than low fre-
quencies Fig 13 when sources were close together. We observed the same qualitative effects
when we tried different window sizes (S21 and S22 Figs) and window shapes (523 Fig).
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We repeated this procedure for our Supplementary simulations, and again saw the same
qualitative effects as in the Main simulations for most source configurations and probe loca-
tions (see S24 Fig). There were, however, exceptions. For example, the high-frequency correla-
tions at the red and brown probe locations in the oblique plume shown S24E Fig decay more
slowly than the low-frequency correlations, which may contribute to high frequencies being
less informative for discriminating sources close together using the plume signal at the red
location. However, these and the other exceptions we found (e.g. in S26E Fig) all occured at
the edges of the plume, where odour signals are more sparse. In addition, the sources in the
Supplementary simulations are closer to the probes than those in our Main simulations. These
two effects may account for the unusual signal properties we measured there.

In summary, in all 9 probe locations for all three different source geometries, three different
window sizes and two window shapes, we saw the same effect in our Main simulations,
namely, that high frequencies were more informative than low frequencies when sources were
close together. We also observed this at most corresponding points in our Supplementary sim-
ulations, with the exceptions occuring at plume edges. We therefore believe our results are
robust for probe locations within the plume.

3.1.1 Implications of statistical assumptions. To determine the Fisher information con-
tained in correlations about source separation, we required a probabilistic model of these cor-
relations and how they vary with source separation. In our initial approach, we made
simplifying assumptions about the Gaussianity of the plumes and their interactions and
derived the predicted correlation distributions to be an asymmetric Laplacian (Eq 19). While
this distribution fit the data well (Fig 7), we found that it deviated from the observations sys-
tematically due to its inability to describe the high probabilities of low correlation events (i.e.
intermittency). This is perhaps unsurprising given that instantaneous plume distributions are
known to be non-Gaussian [43] with the exception of large distances from the source, exhibit-
ing transitions from exponential-like behaviors near the source through a log-normal transi-
tion to the far-field Gaussian regime [24]. To address these deficiencies in the correlation
models, we then modeled the correlations directly using the asymmetric Laplacian as a tem-
plate. We firstly extended it to incorporate intermittency by attributing very small correlations
to noise. Secondly, in addition to the asymmetrical Laplacian, we also evaluated the ability of
the Gamma and generalized inverse Gaussian distributions to describe the distribution of
observations flagged as true correlations. We found that the extended models were able to cap-
ture the observed correlation distributions quite well across all source separations and frequen-
cies (Fig 7H). The improved fits also indicate that the joint distribution of coefficients is not
mulitvariate Gaussian. An interesting avenue for future investigation would be to determine
the joint distribution of Fourier coefficients that would predict the same parameteric form for
the distribution of correlations as our model when we fitted the correlations directly.

Ideally, we would have used these more sophisticated correlation models to compute the
Fisher information; however, this computation would require describing how additional
parameters depend on intersource distance, greatly increasing the difficulty of our analysis.
We therefore used the simpler Gaussian assumption to compute the Fisher information.
Would our findings hold if we used more accurate assumptions to derive Fisher information?
Our simplified analysis suggested that an important quantity that determines Fisher informa-
tion is the speed with which correlations decrease with intersource distance. A robust observa-
tion in our data, independent of any statistical assumptions, was that high-frequency
correlations decreased more rapidly than low-frequency correlations. Because Fisher informa-
tion is a measure of how rapidly the distribution of an observed quantity (like correlations)
changes with respect to variations in estimated parameter (like intersource distance), the faster
changes in high-frequency correlations with intersource distance that we observe will likely
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mean that more sophisticated computations of Fisher information using more accurate statis-
tical models will still yield our core observation that high frequencies are more informative
than low frequencies at small source separations.

3.1.2 Other considerations. We aimed to determine whether high frequencies contained
more spatial information than low frequencies. We found that this was the case when sources
were close together. At intermediate source separations, all frequencies were equally informa-
tive. Low frequencies were more informative when odour sources were far apart. However, the
absolute amount of information in these latter cases was much lower, and presumably more
easily obscured by noise. Thus, when correlations contain enough spatial information to rise
above the noise floor, it may be contained mainly in high frequencies. Therefore the sensitivity
to high-frequency correlations recently observed in mice [20] may endow animals with fine
spatial resolution when locating odour sources in the environment. We note, however, that
diffusion acts to smear out high-frequency information more quickly than low-frequency
information, given the sharper concentration gradients associated with these fluctuations. The
distance that high-frequency information can persist in a given olfactory context is therefore
set by the mean wind speed, the strength of turbulent straining, and the odourant molecular
diffusivity.

To test the generalizability of our results we additionally analyzed plumes generated by
sources arranged oblique and streamwise to the mean flow. An interesting result of this analy-
sis was that the roll-off of the elbows shifted to larger intersource distances as the source sepa-
rations transitioned from cross-stream to streamwise configurations (compare Fig 13C, 13F
and 13I). In our developing grid turbulence flows, local integral length scales grow with
streamwise distance (see SIA Fig), and these length scales relative to the source size set the
plume dispersion characteristics. Therefore, sources separated in the cross-stream direction
are introduced into similar length scales in the flow and thus disperse similarly, while sources
separated in the streamwise direction disperse under the influence of different length scales in
the flow. Furthermore, for the array of fixed probe locations considered here, sources sepa-
rated in the cross-stream, oblique, and streamwise directions are located at different relative
streamwise and lateral distances from the probe locations. These two effects likely drive the dif-
ferent roll-off behaviors observed in the elbow plots for different source configurations. Future
work could investigate these connections.

We observed that correlations dropped approximately exponentially with intersource dis-
tance, see e.g. Fig 3C. This exponential decrease with intersource distance has been previously
observed in the fluid dynamics literature [52]. These correlations are composed of the compo-
nent correlations at each frequency component. Therefore, there is considerable latitude in the
way the component correlations may decay: they are bounded by the variance at each fre-
quency and must sum at each intersource separation to the overall correlation at that separa-
tion. Nevertheless, we observed that the component correlations all had the same, nearly
exponential form (Fig 9A). Explaining the reason why the component correlations decay expo-
nentially would be an interesting topic of future work.

Our work highlights the importance of window shape when analyzing signals where infor-
mation is distributed across the frequency spectrum and where spectral power spans a wide
range. Our information measures were computed for 1-second windows. Longer windows
would reduce leakage effects, but would lengthen the time needed for behvioural decisions. An
interesting question is how the distribution of spectral changes depends on the time windows
used—or in ethological terms, which frequencies the olfactory system should attend to if
odour source localizations have to be made quickly. We leave the investigation of these impor-
tant questions to future work.
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Fisher information is a ‘local’ measure about how a given signal can distinguish a given
parameter value from neigbouring values. Our expression for Fisher information Eq 23 is
accordingly local and depends on the value of component correlations p,,(s) at a given inter-
source separation and how they change around that point. To actually evaluate the Fisher
information we used parametric fits to these component correlations (Eq 24). In contrast to
the local nature of Fisher information, these parameteric fits are ‘global’ in that the fitted value
at each intersource separation is influenced by all the data, not just those local to the separa-
tion. For example, deviations at large intersource separations can affect the length constant y
of the fit, which will in turn affect the value of Fisher information reported for small inter-
source distances (and all others). It will therefore be useful to investigate whether fitting
approaches that are more local, such as splines, produce better estimates of the Fisher
information.

We chose to compare the two plumes by computing their Pearson correlations. We chose
the Pearson correlation because it is insensitive to the mean and scale of the signals being com-
pared and only registers their covariation, and it is this covariation that reflects the relative sep-
aration of the odour sources. By our choice of Pearson correlation we do not mean to imply
that it is the optimal measure for decoding intersource distance. It is, rather, a simple measure
whose information content provides a lower bound for the total information present in the
interacting plumes about source separation. Other measures, for example those based on event
timings (see e.g. [53]) may be more effective for odour source localization.

We used Fisher information as our information measure. An obvious alternative is mutual
information between the intersource distances and correlations. One advantage of Fisher
information is that it is based on the likelihood function p(r,|s) only and does not require the
specification of a prior distribution on intersource distances. Mutual information requires the
joint distribution p(r,, s) of intersource distances and correlations and thus does require a
prior on intersource distances—or alternatively a prior p(r,,) and likelihood p(s|r,,) for correla-
tions, which seem harder to specify. However, this is not a major shortcoming as a prior on
intersource distances would not be hard to motivate or to determine empirically for a given
environment. The type of information provided by Fisher and mutual information are also dif-
ferent. Fisher information is ‘local’ in the unknown parameter (intersource distance) and indi-
cates how discriminable a given value of that parameter is from another value infinitesimally
close. Hence it is a function of the unknown parameter, as seen in Fig 10. It also bounds the
variance of unbiased estimates of intersource distance from correlations, and would thus be
particularly relevant if the animal needs to accurately localize the relative locations of odour
sources. Mutual information is a ‘global” measure in that its computations involves averaging
over the full joint distribution of intersource distances and correlations. We leave the task of
determining which of these two measures of information is most relevant for quantifying the
spatial information in plumes to future work.

3.2 Dispersion, coalescence, and coherent flow structures in naturalistic
plumes

Our multisource plume datasets were generated in two-dimensional, spatially-decaying grid
turbulence. The statistics of these plumes are broadly consistent with those observed in diverse
naturalistic olfactory contexts, regardless of interesting phenomenological differences between
two-dimensional and three-dimensional turbulent flows [54]. These consistencies include the
observation of positive correlation regimes far from the source with clear source separation
effects (Fig 3), the importance of intermittency in describing correlation distributions (Fig 7),
the success of exponential-like distributions in describing correlations (Eq 19 and Fig 7), and
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red and ¢;;, in blue). (B) The corresponding attracting LCS quantified through the backwards-time FTLE field (grey) and “reaction rate” of the odour pair
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the exponential decay of correlations with increasing source separation (Fig 8). Given these
broad consistencies, the analytical toolbox we present for quantifying the Fisher information
in the spectral components of correlations about source separations is likely well-suited for
applications to many odor landscapes relevant to diverse olfactory contexts.

Given the evidence for spectral information contained in correlations about source separa-
tion, what are the dynamical processes that drive these correlations? Lagrangian coherent
structures (LCS) provide an intuitive framework for understanding the physical processes that
drive coalescence of initially-distant odour sources and thus the statistics of their correlations.
LCS arise from a dynamical systems view of fluid turbulence, where stable and unstable mani-
folds arise in regions of exponential fluid straining [55]. These manifolds represent repelling
and attracting regions of the flow, respectively. Attracting structures are regions of dispropor-
tionate importance in odour dispersion because they closely correspond to spatial regions in
which single odours evolve and initially distant odours coalesce in chaotic flow environments
[56]. A representative instantaneous attracting LCS computed using the backwards finite-time
Lyapunov exponent (FTLE) is shown in Fig 14 alongside the underlying flow-field. Ridge lines
in the FTLE field show strong spatial correlations with odour pair coalescence.

The exact structures of LCS and their evolution in space and time will vary among turbulent
flows occurring in diverse odor landscapes. The LCS dynamics will largely determine the cor-
relations between initially-separate odour sources, and therefore the specific flow signature
inherent in the LCS field will manifest in any analysis of plume information. Thus, we suggest
that LCS be used to properly contextualize our analyses and findings in order to better relate
our findings to naturalistic plumes. A full quantitative linking between spectral plume infor-
mation and statistical characteristics of the LCS field could be an intriguing subject for future
work.
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3.3 Connections to optimal navigation and control

Our framework for quantifying spectral information about source separation may have impli-
cations for optimization of multi-source search strategies, both in an olfactory context and
more widely in optimal navigation and control applications. In olfactory search, an important
goal is not just to find a strategy to reach the target source, but to find the optimal strategy to
locate the source, namely, one that minimizes time to arrival. Model-based approaches for
search optimization rely on the agent possessing an internal model of probability distributions
characterizing the environment (presumably through instinct in biological contexts). Con-
cretely, recent research situated olfactory search within optimality theory by framing it as a
partially-observable Markov decision process (POMDP), using Bayesian updates to source
location belief based on an internal model of odor detection likelihood across plume regions
[57]. This POMDP strategy optimized for a simplified single-source scenario, and in the more
complicated multi-source case, integrating a model of inter-source distance likelihood based
on high bandwidth signal correlations could prove useful in optimizing the search.

Even in model-free reinforcement learning approaches, the insights from our findings can
be incorporated to enhance the agent’s policy development. By structuring rewards around the
acquisition of high-resolution odor signals and their correlations, agents can learn to incorpo-
rate information gain about inter-source distances in their strategies. The selection between
model-based and model-free approaches involves consideration of the trade-off between strat-
egies that are most efficient in specific environments, versus those that are more robust to
changes in, or imperfect knowledge of, the search environment. Typically, model-based
approaches tend to be more efficient if the search landscape matches the agent’s internal
model (i.e. result in lower mean arrival times), while model-free approaches tend to be more
robust to external perturbations of the expected environment (i.e. result in shorter tails in
arrival time distribution across a variety of scenarios) [58]. Our study could potentially
improve optimal strategy development in either context, by improving the agent’s internal
model in model-based approaches, or by guiding reward structure and/or observation resolu-
tion in model-free approaches.

Optimal navigation is often situated in optimal control contexts, in which control policies
guide an agent’s movement based on continuous feedback from the environment [59]. Control
policies could potentially benefit from leveraging high-bandwidth odor correlations to adjust
the control policies dynamically. For instance, when high-frequency information indicates
that sources are close together, control systems could fine-tune the agent’s trajectory to exploit
this data for rapid convergence to the source. Conversely, when sources are farther apart, con-
trol policies could be adjusted to rely more on low-frequency signals, which are more stable
over longer distances. More generally, recent investigations of optimal control in the naviga-
tion of complex environments suggested that search strategies improve with the amount of
information available to the agent [60]. Our findings identify an additional source of informa-
tion about relative source locations available at the local level, information that may provide
significant value in multi-source search control strategies.

4 Conclusion

In conclusion, we have outlined an approach for quantifying the spectral information in odour
plume correlations about odour source locations. Our analysis revealed that high frequencies
are more informative about intersource distance than low frequencies for sources that are
close together. We tested the robustness of our findings at nine probe locations for three differ-
ent source configurations, three time window lengths and two window shapes, using two dif-
ferent simulated two-dimensional turbulent flows, and saw the same qualitative effects in all
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settings except occasionally at plume edges. Owing both to the variety of odour landscape
characteristics in naturalistic plume environments and to the preeminent role of CFS in driv-
ing both dispersion and coalescence processes in natural as well as simulated plumes, we
expect that the method and findings outlined here will also be applicable to describing the spa-
tial information contained in three-dimensional plumes.

5 Methods

All of our simulation data, and the code for our simulationes and analyses are provided at
https://github.com/stootoon/fisher-plumes.

5.1 Computational fluid dynamics

We numerically modeled two-dimensional grid-turbulence in a wide wind tunnel and intro-
duced an array of unique odour sources to generate chaotic multisource plumes (Fig 2). These
data allowed us to i. investigate spectral correlations between odour sources as a function of
source separation, ii. compute spectral Fisher information content encoding source separation
and location, and iii. evaluate spatial structure in these entities. To test the robustness of the
analyses to generalized plume environments, we conducted a second set of numerical simula-
tions using different flow and odour parameters yielding an additional plume dataset with dif-
ferent spatiotemporal characteristics. Below we detail the CFD methods used for all analyses in
the Main Text. We provide an alternative set of supplemental data derived from other numeri-
cal implementations in the Supporting Information Sec S3.1 in S1 File.

5.1.1 Model domain, simulations, and meshing. The model domain (Fig 2) consists of a
wide rectangular wind tunnel (0.62 m x 0.4225 m, x by y) with a mixing grid cylinder array dis-
tributed across the flow development inlet section (0.12 m in streamwise length). An array of
16 odour sources (8 source pairs mirrored about the domain centerline at y=0) of width Ly was
distributed spatially across a transect a short distance downstream of the mixing grid at x =0,
covering a range of source separations s for analysis (Table 1). Source y-locations were con-
strained to the central 1/4 of the total inlet width to minimize walls effects, i.e. any impacts on
cross-stream plume spread due to growth of the velocity boundary layer along the lateral walls.
A uniform inlet velocity upstream of the mixing grid produces a chaotic flow field downstream
through the nonlinear interactions of wake structures shed by the mixing grid. Simulations
spanned a dimensional duration 70 s consisting of i. a 10 s start up period to establish fully cha-
otic flow conditions throughout the model domain and ii a subsequent 60 s analysis period
containing dynamic multispecies plumes generated by the source array issuing into the chaotic
flow environment.

Numerical simulations were performed via finite element discretization of the Navier-
Stokes and continuity equations (Eqs S1 and S2 in S1 File) governing fluid flow, and the cou-
pled, non-reactive advection-diffusion equation (Eq S4 in S1 File) governing odour transport
and diffusion (see Sec S2 in S1 File). The COMSOL Multiphysics package (ver. 6.0) was used
to generate the mesh in the model domain described below and to solve the system of equa-
tions resulting from the weak-form discretization of the governing equations, subjected to pre-
scribed initial and boundary conditions described below. Geometric, flow, fluid, and odourant
properties for model runs in the domain depicted in Fig 2 are summarized in Table 1.

The unstructured finite-element mesh contained 289,607 total triangular and quadrilateral
elements (110 elements/cm” on average), locally refined in spatial regions with strong fluid
velocity or odour concentration gradients, notably along the solid surfaces of the mixing grid
cylinders and lateral walls and near the finite-width odour sources where strong initial odour
gradients persist. The level of mesh refinement (increasing model degrees of freedom) was
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Table 1. Summary of model geometry, flow, fluid, and odourant properties used for multisource plume simula-
tions. Properties are for air and common airborne odourants at ~ 20°C.

Model Geometry

total domain size [m, x x y] 0.62 x 0.4225
inlet section length, plume domain length [m] 0.12,0.5
pitch ¢ [m] 0.025
small cylinder diameter ¢; [m] 0.01
large cylinder diameter ¢, [m] 0.015
Flow, Fluid, and Odourant Properties

mean ambient flow speed U, [m/s] 0.1
fluid density p [kg/m?] 1.2
dynamic viscosity y [Pa*s] 1.80E-05
odour molecular diffusivity D [m?/s] 1.50E-05
odour source concentration [mol/m°] 1
odour source width L [m] 0.005
nearest-neighbor source separation [m, on-center] 0.0075
centerline source y-locations at x = 0 [+/- m: start, spacing, end] 0.00375, 0.0075, 0.05625
Key Dimensionless Parameters

Reynolds numbers Re [based on ¢, ¢,, and ¢, respectively] 70,100, 170
Schmidt number Sc 1

https://doi.org/10.1371/journal.pone.0297754.t001

iterated to a final spatial resolution sufficient to resolve the smallest anticipated fluid velocity
and odour concentration gradients. The final mesh implemented for all model runs had typical
maximum and minimum element sizes (spatial resolution) of approximately 2 mm and 0.2
mm, respectively, with approximately 35 and 10 mesh elements per pitch ¢ and per source
diameter L respectively.

5.1.2 Initial and boundary conditions. Initial conditions were u* =0, p* =0and ¢* =0
everywhere. The mixing grid and lateral walls were no-slip conditions, u* = 0, with zero total
odour flux normal to the surfaces, —n - (J + u*c*) = 0, where the diffusive fluxis J = —-n - DV ¢*
and u*c* is the advective flux (n is the unit vector normal). The velocity inlet condition was
normal, uniform flow with speed U,, u = U,n and the outlet condition on the downstream end
of the domain was zero pressure p* = 0. For solver stability we ramped the inlet velocity from
zero to U, over short interval in time. Odour sources of strength ¢* = 1 were introduced as
constant concentration constraints from finite-width locations (Table 1), where the source
profile at the origins was a smoothed top hat. The inlet and outlet odour boundary conditions
were no diffusive flux normal to the boundary -n - J = —n - DV¢* =0.

5.1.3 Discretization, solvers, and convergence. Lagrangian shape functions were used
for weak-form discretization of the fluid velocity, pressure, and odour concentration fields.
The order of the integration scheme was matched to the element order for all dependent vari-
able (first-order here). The time-dependent solver employs an implicit backward differentia-
tion formula (BDF) method with maximum second order schemes, balancing numerical
stability and damping tendencies for our smoothly varying velocity and scalar concentration
gradients. BDF methods use variable-order, variable step-size backward differentiation and are
known for their stability [61, 62]. The variable step size taken by the solver was informed by a
prescribed absolute tolerance for the nonlinear solver and an implicit formulation of the mesh
Courant-Friedrichs-Lewy (CFL) number. The solution sequence for the resulting systems of
equations was fully-coupled in all dependent variables (fluid velocity and pressure, scalar con-
centration) for each solver iteration using an affine invariant form of the damped Newton
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method [63]. The nonlinear systems of equations were solved iteratively with specified conver-
gence criteria using the direct PARDISO solver optimized for parallelized solutions of sparse
systems of equations [64, 65]. The discretization schemes and solvers detailed above on the
described mesh yielded good numerical stability and solution convergence with acceptable
memory and computation requirements.

5.1.4 Lagrangian coherent structures. To investigate the dynamics of the Lagrangian
flow structures responsible for odour mixing we computed backwards finite-time Lyaponov
exponent (FTLE) fields per [55]. The computation followed the methods described in [56],
and the resulting backwards time FTLE fields provided a proxy for the attracting LCS in the
flow. The integration time T;cs was set to 0.6 seconds based on preliminary investigations of
the spatially-varying integral time scales. The temporal resolution of the LCS computation
matched the resolution of the underlying velocity data (20 ms), and the initial spatial resolu-
tion the Lagrangian tracer grid was 250 ym. These integration parameters yielded well-defined
FTLE fields with strong ridge lines that were in good qualitative agreement with spatial regions
odour pair coalescence, suggestive of convergence in the FTLE computation.

5.2 Numerical methods

5.2.1 Computing plume correlations. Fourier decomposition and windowing of plumes.
To compute the correlations between a pair of plumes, a short-time Fourier transform (STFT)
was applied to each plume using the scipy.signal.stft [66]. The STFT was computed
for a specified window length using rectangular (boxcar) windows, with an overlap of half the
window length, and using no padding or boundary. The application of different window
shapes was implemented through the detrending function supplied to the STFT. The detrender
first applied the desired window before z-scoring the result through mean-subtraction fol-
lowed by scaling by its standard deviation. This detrending was performed so that the coeffi-
cients of the decomposition of two signal into trigonometric coefficients could be easily
combined as in Eq 59 to yield the components of the Pearson correlation contributed by each
harmonic. The conversion of Fourier coefficients to their trigonometric equivalents is
completely standard so we have provided the derivation in the Supporting Information. The
derivation shows that a signal x[n] of length L with discrete Fourier transform coefficients X
[k] = uy + jvi can be expressed in terms of sines and cosines as

5]

x[n] = Z a, cos (2nkn/L) + b, sin (2rnkn/L), (27a)
k=0
u if ke {0,L/2},
a, = { k { /2 (27b)
2u, otherwise.
bk = —21/1(7 (27C)

where | -] is the floor function.

Computing correlations from Fourier coefficients. The component of the correlation between
two plumes for a given time window in a given harmonic was computed by combining the
sine and cosine coefficients from each source according to Eq 3. To compute the full Pearson
correlation we summed the harmonic correlations over all harmonics as in Eq 2. To compute
the distribution of correlations at a given intersource distance we pooled all correlations for all
time windows computed for all pairs of sources separated by the given intersource distance.
Cumulative distribution functions for some of this data are plotted in the top panels of Fig 7.
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We fitt the distribution of correlations.

5.2.2 Modeling the dependence of Fourier coefficients on intersource distance. To
compute the empirical distribution of the Fourier coefficients from two sources at a fixed
intersource distance s and for a given harmonic #, we first listed all pairs of sources that were
the desired distance apart. Our source locations only differed in the y-coordinate, and we used
a signed distance, so dist(y;, y;) £ y; — y;. Therefore, a desired intersource distance d yielded a
list of ordered pairs of sources (y;, y;) such that y; — y; = d. We then concatenated the sine and
cosine coefficients in the given harmonic for all time windows across all sources in the first
coordinate of each pairing. This yielded a vector of length

N(s) = 2 x (#time windows per source) X (#ordered pairs a distance s apart),  (28)

where the factor of 2 is because of the concatenation of both sine and cosine coefficients. The
length is a function of intersource distance s because the number of pairs a given distance
apart was distance-dependent. We then stacked this vector on top of the same concatenation
of data applied to the sources in the second coordinate of each pairing. This yielded a 2 x N(s)
matrix Data,,(s),

n'th Fourier coefficient from first source in all ordered pairs a distance s apart

Data,(s) = ,
n'th Fourier coefficient from second source in all ordered pairs a distance s apart (29)

N(s) elements

where each element of the first row was one Fourier coefficient computed in one time window
from one source, and the corresponding element in the second row was the corresponding
coefficient for another source a distance s apart. We plotted some of this data in Fig 6.

The columns of Data,(s) represent samples from the joint distribution p(a,, c,|s) of Fourier
coefficients for the n’th harmonic, from sources a distance s apart. To fit a zero-mean bivariate
Gaussian to Data,(s) as in Eq 14b we computed the principle variances A,,(s) and y,,(s) along
the major (y = x) and minor (y = —x) axes, respectively. To determine these we computed the
variances of the projections of the data on the unit vectors [1,1]"/v/2 and [1, —1]" /v/2, respec-
tively,

(30a)

%wbw(ﬂﬂm%®>

V2

_ var 1] Data,(s)
w,(s) = Var< 7 > (30b)

We computed the variance ¢2 as the mean of the principle variances at s = 0,

0 () 2,0 (31)
n 2 2

This is equivalent to computing the pooled variance of all coefficients from all sources for the
given harmonic.

5.2.3 Parametric fits to p,(s) as a function of distance. We next fit each p,,(s) to the
parametric form in Eq 24 by non-linear least squares using curve fit from the scipy.
optimize package [66]. The parameters to be learned were the length scale 1 and the offset
b. We constrained the parameters to be non-negative, and initialized z to 1 and b to 0. All
other parameters to curve fit were kept at their default values. Because the data sometimes
exhibited changes in length scale with intersource distance (see e.g. Fig 8B) we only used the
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data for intersource distances up to one pitch to compute fit parameters. Some example fits
and parameters learned are in Fig 8.

5.2.4 Fitting the distribution of correlations. We fit intermittent and non-intermittent
versions of three different models to the correlation data. The models differed in the probabil-
ity distributions they used to fit the correlations. Each model was based on a probability distri-
bution on non-negative values. To extend the domain to cover negative values, the same base
distribution was used but applied to the absolute value of the negative values, and with new set
of parameters to cover these values, and the overall distribution normalized to one. That is, for
a base distribution on non-negative values with parameters 6,,

1

po(x[0,) = mf(xv 0,), xe[0,00) (32)

the extended distribution was defined as

1 flx,0,) x>0
P ) = Z ) { (1,0 x<0. )
For example, the asymmetric Laplacian distribution in Eq 21 corresponds to a base Exponen-
tial distribution, with parameters A = (1 + p,/(s))/2 covering the positive correlations, and y =
(1 = pu(s))/2 covering the negative correlations.

Note: In what follows we will frequently refer to the extended models by their base distribu-
tions, so e.g. Exponential when referring to the asymmetric Laplacian distribution.

Evaluating models by comparing CDFs. We evaluated correlation models by comparing
their predicted cumulative distribution functions (CDFs) to those we observed.

To compute the empirical CDF for a set of N observed correlations, we first sorted the val-
ues in ascending order, to yield

sorted data = {r,,---,ry}.
We then computed the empirical CDF evaluated at each data point r; as
Fou(r;) = i/N. (34)
The predicted CDF can be derived using the probability density function of Eq 95, which is

p010) =pUylz=1,0)p(z = 1|0) + p(y|z = 0,0)p(z = 0[6)
= p([0)1 +n(10)(1 — ),
where p and 7 are the correlation and noise distributions, respectively (see Eq 99 for a particu-

lar case). The CDF is then a linear combination of the CDFs for the correlation and noise dis-
tributions:

(35)

Fyrea(r:) = Foore (1)1 4 i (1) (1 = 1) (36)

When comparing CDFs the R” value can be overly optimistic since both CDFs start at zero
and increase monotonically to 1. Therefore, we compared CDFs more stringently by comput-
ing the largest absolute difference in their values, which is bounded below by 0 and above by 1.
That is, we computed

Fthuahty =1- miax |Fpred(ri) - Fdata(ri)|' (37)
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When numerically computing the predicted CDFs we sometimes encountered values out-
side of the valid [0, 1] range. This was particularly the case when using scipy.stats.
geninvgauss to compute the CDF of the generalized inverse Gaussian. Therefore, when
computing fit quality we only used the subset of points for which the CDF values were valid.

Fitting models using expectation-maximization. To fit models with intermittency we
had to determine which of a set of observed correlations {y;, . . ., yn} at a given harmonic and
intersource distance were attributed to noise. From Eq 95 this requires determining the values
of the binary latent variables {z;, . . ., zy} corresponding to each of the observations. To fit the
parameters 0 of a model while accounting for these latent variables, we used the Expectation-
Maximization algorithm [67]. Initialized with an initial guess of the model parameters, this
algorithm consists of repeatedly estimating the values of the latent variables (the ‘E’-step), then
using those estimates to update the estimates of the model parameters (the ‘M’-step). Below,
we summarize the parameter updates. Derivations are supplied in Sec S5 in S1 File.

The E-step update for all models at the t+ 1’st iteration has the simple form

1—1,

1 if log P16, > log ,
- n(v0,) L (38)

it+1

0 otherwise.

Here p(y;|6;) and 11(y;, 6;) are the probabilities of the observation y; under the correlation, and
noise, distributions, respectively, 6, is the current estimate of the model parameters, and 1, is
the current estimate of the intermittency parameter. The E-step therefore declares an observa-
tion y; to have been a correlation rather than noise if its probability according to the correla-
tion distribution is greater than its probability according to the noise distribution by a
threshold that depends on the current estimated intermittency level. For the non-intermittent
models, all observations were marked as being correlations.

During the M-step model parameters were updated using the current estimate of the latent
variables {z1 , z, 5, . . ., Zn,}. All models had two parameters that related to intermittency: the
intermittency level 1, and the standard deviation o of the noise distribution. These parameters
were updated the same way for all models. For the non-intermittent models,  was fixed at 1,
and o at 0. Otherwise, these parameters were updated as described below.

To update the intermittency level ¢, it is helpful to define the data intermittency at time ¢ as

N
7 Zi:l Zi,t ) (39)

! N

The intermittency level is updated by balancing the data intermittency against a prior on inter-
mittency, 7,

_ Noig+ N1, o1, +7,

= = 40
! Noa+ N o+1 (40)

1
This can be interpreted as weighting Nor observations with an intermittency of 7, against N
observations at the data intermittency 7,. The hyperparameter 7, was fitted using grid search
(see below). The hyperparameter ¢, which sets the relative strength of the prior, was fixed at 1.

We updated the noise level by setting its variance to be the mean sum of squares of the
observations attributed to noise in the E-step. Intuitively, this is because under our assumption
that the noise distribution has mean zero, the mean sum of squares of the noise observations is
an estimate of its variance. If the E-step did not flag any observations as noise we set the esti-
mated noise variance to a small fraction of the variance of the observed correlations. We did
this because setting the noise level to exactly zero would mean that the estimated noise

PLOS ONE | https://doi.org/10.1371/journal.pone.0297754  January 10, 2025 34/54


https://doi.org/10.1371/journal.pone.0297754

PLOS ONE

Quantifying spectral information about source separation in multisource odour plumes

variance would remain at zero for all future iterations. This is because the probability of any
non-zero observations would be 0 under this degenerate noise distribution, so all observations
in the next E-step would also be flagged as correlations and not noise, leaving the noise vari-
ance stuck at zero.

Letting N° = >0 (1 — z,,) be the number of observations attributed to noise after the cur-

rent E-step,

[T a N N0
ol = K (41)
a;/1000 otherwise,

where ¢? is the variance of the observed correlations.

The rest of the parameters varied by model so their updates will be described for each
model separately.

Exponential model. In addition to the intermittency parameters, the Exponential model had
two parameters, A and y, describing the decay rate of the positive, and negative, correlations,
respectively. The M-step updates for these parameters had the closed form

1 T 1 D —
o= N110° (NT il NENC | Iytl), (42a)
1 T N =T T 6
U, = max m Nt |y[ | + Nt Nt |)/[ ||yt ‘ 7]_0 . (42b)

Here N, = >0 z,, is the number of observations that were designated as correlations in the

E-step. These can be split into N, positive and N~ negative correlations, and [y| and |y, | are
the averages of the absolute values of the corresponding observations. The maximum opera-
tions prevents 4, from being set to zero when the E-step did not designate any observations as
noise. The added factor of 10~® in the denominators prevents division by zero when N, = 0 i.e.
all observations were estimated to be noise.

Gamma model. The Gamma model has all the parameters of the Exponential model, plus
two shape parameters, k and m, to describe the positive and negative correlations. To update
the parameters during the M-step we minimized the negative log likelihood of the observations

that were marked as correlations in the E-step:

Ay kym,} = argmin L, (A, u, k, m) (43a)

LA u, k,m) = log (T(m)u + T'(k)A")

NS (] —
TR ('yi' ~ (k1) log |yr|)

N,+10°° (43b)
N, (bl —
: L (m—1)logly-| |
+Nt _|_ 1078 < 'u (m ) Og |yt >

The minimization was performed using Nelder-Mead method as implemented by the
scipy.minimize [66] function. The bounds of the search were [107%, 10] for A and u, and
[0, 10] for k and m. The search was initialized at the parameter values from the previous itera-
tion, clipped to lie within these bounds.

Generalized inverse Gaussian. The Generalized inverse Gaussian model has all the parame-
ters of the Gamma model, plus two additional shape parameters, o and f, for the positive and
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negative correlations, respectively. During the M-step we performed a damped update of the
parameters towards the minimum of the negative log likelihood of the observations that
marked as correlations in the E-step:

{7\'t7 #[7 kt7 mt? at? ﬁt} = 5 {7\‘[—17 #[717 kt717 mt717 0(1717 ﬁ[—l} + (1 - 5) argmin L[(7\'7 M? k7 m? a? ﬂ)
L (A pkym, o, f) - = log (20K, (k, &) + 2uK,(m, B))

v

N/ T, A, ek
_ — (ke — - -~ 44a
+Nt+10_8 ((k 1)log (&) — (k= 1)log ly/| + ooy + 5 o] (44a)
N7 — PB— Pul
N S — 11 — 11 [ PPy T il
+Nt+1078 <(m )log (1) — (m—1) Ogly[|+2#|y[|+ 5 |y7|)7

where K, (a, b) is the modified Bessel function of the second kind of real order a evaluated at b.
Damping was used to aid convergence, with the damping factor & fixed at 0.5. The minimiza-
tion was performed the same way as for the Gamma model, with the new parameters ¢ and
bounded to [107°, 10]. The search was initialized at the parameter values from the previous
iteration, clipped to lie within these bounds.

Ancestral initialization. The Gamma distribution subsumes the Exponential distribution,
because the former reduces to the latter when the shape parameter is set to 1. In turn, the gen-
eralized inverse Gaussian distribution subsumes the Gamma distribution, because the former
reduces to the latter when its § parameter (the coefficient of 1/x in the argument of the expo-
nential) is set to zero. Because models with fewer parameters can be easier to fit, to aid the fit-
ting process we fit our models ancestrally. That is, to fit a model using the Gamma distribution
we first fit the data using an Exponential distribution, and then initialized the Gamma fit with
the parameters of the Exponential, initializing the shape parameter of the Gamma to zero. Sim-
ilarly, when fitting a generalized inverse Gaussian, we initialized its # parameter at zero, and
initialized the remaining parameters from those of the best fit Gamma. The Gamma in turn
was initialized with the parameters of the best fit Exponential.

Evaluating models using nested cross-validation. We fit a range of models to the corre-
lation data by testing all combinations of the following hyperparameters:

o Whether the model was intermittent or not;

o If intermittent, the mean of the prior Beta distribution on the intermittency parameter, for
the values {0.1,0.2, ..., 0.9}.

« The base probability for the correlations, whether Exponential, Gamma, or Generalized
Inverse Gamma.

The remaining hyperparameters, listed below, were held constant at the stated values

o The minimum (0) and maximum (10) shape parameters for the Gamma and Generalized
Inverse Gaussian distributions.

o The strength (1) of the Beta prior on intermittency.

We characterized these models in two ways. First, we estimated the performance of each
model in fitting the correlation data. To do so, we repeatedly split the data into training (67%)
and test (33%) sets. Each model was fitted to the training set and evaluated on the test set. Its
performance was estimated as its average performance over three such random splits.

Secondly, we estimated the rank of each model, so that we could say e.g. which model was
best overall, or which was the best among those with intermittency. One way to do this would
be simply by ranking the performances we computed above. However, doing so would risk
overfitting. To see why, note that by ranking the models we are in effect fitting the
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hyperparameters. Ranking the models using the same data used to evaluate their performance
would then mean estimating performance with the same data used to fit the (hyper)parame-
ters, risking overfitting.

To estimate the rank of each model while avoiding making this estimation on the same data
that was used to estimate performance, we performed an inner loop of cross validation for
each iteration of the outer loop. In each iteration of the inner loop, the training set provided by
the outer loop was further split at random into a training subset (67%) and a validation set
(33%). Models for every setting of the hyperparameters were fit on the training subset, and
evaluated on the validation set. Models were ranked by their mean validation performance
over three such random splits. The resulting model ranks were then averaged over iterations of
the outer loop.

To see why this nested cross-validation procedure avoids overfitting, observe that each iter-
ation of the outer loop yields, first, an estimate of model performance as computed on the test
data, and second, model rank as determined from the training data by the inner cross-valida-
tion loop. Therefore, in each outer loop iteration, model rankings and model performance are
estimated using different data. We then reduce the noise in these estimates by averaging over
iterations of the outer loop.

5.2.5 Regressing information on frequency. To produce the results in Fig 12 we
regressed, for each value of intersource distance, Fisher information on frequency. The Fisher
information at some intersource distances exhibited outliers that overly influenced the results
of a standard linear regression, as judged by visual inspection. In addition to filtering out data
points for which the computed Fisher information had NaN, infinite, or negative values, we
took two measures to make the results more robust to these outliers. First, we limited the
range of frequencies considered to be 1 Hz to 15 Hz. This was because some of the data, partic-
ularly in the supporting simulations, showed sudden drops in Fisher information above ~ 15
Hz. Secondly, we replaced ordinary linear regression with robust regression. We used Huber
regression, as implemented in scikit-learn’s 1inear model.HuberRegressor. We used
the default parameters, except for max _iter which we set to 10,000.

5.2.6 Bootstrapping procedure. To estimate the variability of the various statistics used
in our approached we computed their bootstrap distributions. These statistics were computed
from the trigonometric form of the Fourier decompositions computed for each plume in each
time window. Therefore we first computed these coefficients for all time windows, and then
created each bootstrap dataset by sampling time windows with replacement until we had as
many time windows as the original dataset. We generated 50 bootstrap datasets in this way.
We then computed our various statistics using the data for the time windows chosen for each
bootstrap dataset. This then gave us as many point estimates of each statistics as bootstrap
datasets, from which we computed e.g. the 5th, 50th and 95th percentiles of Fisher information
shown in Fig 10A.

5.2.7 Generating surrogate data. In brief, we generated surrogate data consisting of artifi-
cial plumes with covariance structure similar to real plumes but for which we could adjust the
amount of spatial information. To generate these plumes we randomly generated coefficients
according to the bivariate normal model of Eq 14b using covariance kernel K(#, s) to relate the
coefficients from plumes a distance s apart. Specifically,

(a,c,) =(b,d,) =0d@m,n)K(n,s), (45)

where as usual, a,, and ¢, are the cosine coefficients for the m and »’th frequency components,
generated by two plumes a distance s apart, b, and d,, are the corresponding sine coefficients,
and expectations are taken over time windows, and the 6 function 6(m, n) ensures that
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coefficients for different harmonics are uncorrelated. We combined these coefficients with
their corresponding sine and cosine waveforms to generate the surrogate signals.

In detail, we generated signals for M sources, each of length 2| L/2| + 1, by first creating the
kernel relating the trigonometric coefficients of their Fourier decompositions. The signals had

zero-mean, therefore for each source, we needed to specify | L/2] sine and cosine coefficients,

1.2...|L/2]
2(L/2]

fundamental up to the Shannon limit. The kernel needed to specify how each harmonic at

corresponding to the normalized frequencies , covering all positive harmonics of the

every source was correlated with each harmonic at every other source, a total of M*|L/2]? val-
ues. We organized these values into a symmetric kernel matrix of size M|L/2| x M|L/2]. The
elements of this matrix were determined as

K[Mn +i,Mn + j| = k(i,j,n), (46)

where k(i, j, n) was the desired covariance of the trigonometric coefficients for the »’th har-
monic for sources i and j (see below). We assumed coefficients at different harmonics were
uncorrelated.

To compute cosine coefficients with covariance K, we first computed the Cholesky decom-
position K = LL”. We then generated M|L/2] i.i.d. samples from a standard normal, u, and
determined the cosine coefficients as ¢ = Lu. We generated a second set of samples, v, from the
standard normal in the same way, and used those to produce the sine coefficients s = Lv.
Indexing these coefficients by source m and harmonic n, we produced the signals at each
source by combining the coefficients with their corresponding trigonometric waveforms,

x [ = tﬁcm cos <ﬁt> +s, sin (ﬁt) te0,1,--,2|L/2]. (47)

Kernel functions. We used several different kernel functions k(i, j, n) to generate the sur-
rogate data in the text. Each of these kernel functions was the product of a term S(n) determin-
ing the power at the #’th harmonic, and a function G(i, j, n) determining the correlation
between sources i and j, that in some cases depended on the harmonic. In every case, this cor-
relation function was a function only of the absolute difference s = |i — j| of the sources, so it
simplified to G(s, n). Thus our kernels were of the form

k(i j,n) = G(|i — jl, n)S(n). (48)

Our kernels differed by whether they used a flat power spectrum or one similar to that of
the simulations. We captured both cases by using a 1/f power spectrum:

P(n, o) = max (mfﬁ 1) . , (49)

where f, was the sample rate in Hz. The maximum operation provides a frequency cutoff at 1
Hz below which the power is set to 1. To achieve a ‘white’ spectrum, we set & = 0. To achieve a
‘pink’ spectrum similar to our CFD simulations, we set a = 4.

Our surrogate data also differed in the correlation functions used. For the data where all fre-
quencies were equally informative, we set

G(li—jl.n) = G(|i = jl) = 2exp (=[i —jl/12) — 1. (50)

For the data where the high frequencies were more informative for sources close together than
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the lower frequencies, we set

12 n<|L/2]/2,
G(Ji — jl, n) = exp (~i — JI/R(n), R<n>={ < L2l (51)

2 otherwise.

Thus the length scale of decay was 6 times shorter for high harmonics (those in the upper half
of the range) than for low harmonics.

The table below summarizes the surrogate datasets and the power and correlation functions
used in each.

5.2.8 Computing integral length scales. We computed integral length scales from veloc-
ity autocorrelation functions as defined in [68]. For example, to compute the integral length
scale in the y-direction at a location (x, y) of interest, we first computed the y-velocity autocor-
relation function in the y direction at that location by computing the time average of the prod-
uct of the y-velocity at the location of interest, u,(t;x, y) and that at a fixed positive
displacement r in the y-direction, u,(t;x, y + r). That is, we computed

Q) (r;x,y) = (u,(t;x, y)u (t; %,y + 1)), (52)
We also computed the symmetric average in the negative y-direction,

Q,(rix,y) = (u,(t:x,y)u,(£:x,y = 7)), (53)
We then averaged these two to arrive at the autocorrelation for a single, positive value of r

+ (4 .
ny(r; x,)/) _ ny(ﬁ xv}’) ‘; ny(i’, Xy)’) - (54)

Ife.g. (x, y + r) was not in the domain, then Q) would not be computed and Q,, took the value
of Q, and similarly if (x, y — r) was not in the domain.

We then computed the longitudinal velocity correlation function by normalizing the veloc-
ity correlation function by its value at r = 0

ny(r; x? y)

fy(ﬁx;)’) = ny(o;xJ/) .

(55)
Finally, we computed the integral length scale by integrating this function from 0 to co:
Lixy) = [ flrixy) dr (56
0

The r values we used were discrete and spaced Ar = 0.02¢ apart, so we approximated the inte-
gral above as

N-1
L, = Zf(nAr; x,y)Ar, (57)
n=0

where N was the number of r values used.
In S20 Fig we have plotted the longitudinal velocity autocorrelation functions in the x and y
directions, and the corresponding integral length scales, for two locations of interest.
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5.3 Analytical methods

5.3.1 Decomposing Pearson correlation. We can express two concentration profiles x(#)
and y(t) observed over a window of width T in terms of their Fourier decompositions,

x(t) = i a, sin (2nnt/T) + b, cos (2nnt/T) (58a)
y(t) = i ¢, sin (2nnt/T) + d, cos (2nnt/T). (58b)

Using the orthogonality of different harmonics of the fundamental frequency we can
express the Pearson correlation in terms of the Fourier components as

1 [ (x(t) = %) (y(t) — 7) dt ZO@ a,,+b,d 1Z°° 3
_ = — n-n n’n — — . 59
r T 26}(0}/ 2 n:l aVlC?’l + bﬂdVl - er ( )

0,0,

n=1

5.3.2 Relating the coefficients at one source to those at another. To determine the
uncertainty about the coefficients c,, d,, of a component waveform at a second source,

y,(t) = ¢, cos (wt) 4+ d, sin (wt), (60)
given the coefficients a,, b,, of a first,
x,(t) = a, cos (wt) + b, sin (wt), (61)

we express the former as the sum of a deterministic component formed of a scaled and phase-
shifted version of the component waveform from the first source, plus noisy residual. That is,

v,(t) = p,la,cos (wt+0,) + b, sin (ot + 0,)] + £(¢), (62)

where f3, and 0, are the best-fit scaling and phase-shift of the first source. These can be found
to satisfy (see below)

(a,c,) = (b,d,) = a*B, cos (0,), (63a)

(b,c,) = —(a,d,) = 0®B, sin (0,), (63b)

where as usual expectations are over time windows.

The residual £(t) therefore captures the uncertainty remaining about the second component
waveform, given knowledge of the first. To determine its statistical properties we express it by
subtracting Eq 62 from Eq 61 as

£(t) = c, cos (wt) + d, sin (wt) — f,[a, cos (wt +0,) + b, sin (wt + 0,)]. (64)

This is a linear combination of sinusoidal waveforms at the same frequency w, so we can write
itas

(t) = ¢, cos (wt) + d, sin (wt). (65)
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By performing trigonometric expansions, the coefficients are found to be

¢, = ¢, = B,la, cos (0,) + b, sin (6,)], (66a)

d, =d,— ,[b,cos (0,) — a,sin (0,)] (66b)

For n > 0, a,, b, ¢, and d,, have mean zero (Eq 8). Therefore the coefficients above, and in
turn £(t), as linear combinations of zero-mean random variables, are also zero mean.

To determine the variance of the residuals, we first show in Supporting Information Sec
$6.2in S1 File that the coefficients ¢, and d, are uncorrelated. Therefore, from Eq 65, the resid-
ual variance is the scaled sum of the variances of the coefficients. To compute these variances,
we have

var(,) = ((c, = B,[a, cos (0,) +b,sin (0,)])")
(c;) + B, cos (0,)°(az) + B sin (60,)(b) — 2, cos (0,){a,c,) — 2B, sin (0,)(b,c,)

=+ ﬂ:ai — 20’3[33 cos (0,,)2 — 20?1/33 sin (9,,)2
o= o
— var(d,), (69)

where we’ve used the relations in Eq 66 to express coefficient correlations in terms of 3, and
0, and the final equality follows by temporal stationarity. We then arrive at

var(e) = var(¢,)( cos (wt)*) + var(d,)(sin (wt)*) = 62(1 — f2) 2 . (69)

Knowledge of the mean and variance would completely specify the probability distribution of
the residual if it were a Gaussian random variable. Although it can be expressed as a linear
combination of the Gaussian random variables a,, b,, ¢, and d,, (Eq 64), these latter variables
are not necessarily independent. Therefore, their combination is not necessarily Gaussian. To
enforce this requirement we made the assumption 2.2.

To determine the scaling 3, and phase-shift 8,, we equate Eq 62 an Eq 62 and match coeffi-
cients of cos(wt) and sin(wt), to get

¢, = B,a,cos (6,) + b,sin (0,) (70a)

d,=p,[b,cos(0,) —a,sin(0,)]. (70Db)

Correlating these equations against a,, and b,, respectively, and using Eq S29 in S1 File and the
definition Eq 10 of the coefficient variances of,, we get

(a,c,) = B,(a,) cos (0,) = a,p, cos (6,), (71a)

(b,d,) = B, (82) cos (0,) = 628, cos (0,). (71b)
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Correlating against b,, and a,, respectively, and using Eq S30 in S1 File, we get

(b,c,) = B,(b;) sin (0,) = o;, sin (0,), (72a)
(a,d,) = =B, (a,) sin (0,) = =, 5, sin (6,). (72b)

5.3.3 Deriving the distribution of correlations. Here we derive the distribution p(r,,|s) of
the component correlations 7, for the #’th harmonic for sources separated by a distance s,
given our assumptions about the distribution of Fourier coefficients, a,, and b,,, from the first
source and c,, and d,, from the second source.

Accounting for location dependence. We must first account for the fact that the distribu-
tion of correlations is formed by the contribution of all pairs of sources separated by the given
distance. To do so, we first assign integer indices to the sources. A pair of sources is then (3, j),
the distance between them, Dj;, and the number of pairs a distance s apart, N,. We can then use
the rules of probability to express the distribution of correlations in terms of the contributions
from each pair

= ZP((i,j)IS)P(fnl(ivj)y s)- (73)

The first term in the summand is the probability of the pair (i, j) being selected given the
sources are a distance s apart. Because pairs at this distance will be selected uniformly and all
others will not,

/N, if D, =s,
p((i,j)ls) = { (74)

0 otherwise.

Our decomposition then simplifies to

pirls) =5 D p(rl(i.j).9). (75)

§ (i):Djj=s

The summand is the distribution of correlations, given the pair of sources generating them
and the distance between those sources. However, once the pair generating the correlations is
specified the distance between the pair is redundant and we can remove it from the condition-
ers, yielding

= > prlGi0)- (76)

s (i,j):Dy=s

The new summand is the distribution of correlations generated by a given pair of sources.
This in turn is related to the Fourier coefficients from each source. Let a,,, b,, be the cosine and
sine coefficients from the first source in the pair, and ¢, d,, the corresponding coefficients
from the second source. Then

l.] /p |an7bn7cn7d) ( Vl7 n7 n’d ‘(l ])) dandbndcnddn' (77)
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p(c,dla,b) =

p(r|

The distribution of correlations for a given intersource distance is then

p(rn /p |an7bn7cn7dn) ( n7 n7 n7dn|(l ])) dandbndcnddn' (78)
D =s

This expression depends explicitly on the identity of the sources, because the joint distribu-
tion of coefficients generated by each pair of sources can be different for each pair. To empha-
size the relationship of coefficients from one source to those from the other we decompose the
joint distribution as,

p(a,b,,¢,,d,[(i,j)) = p(a,, b,li) p(c,.d,|a,, b, (i.)))- (79)

To quantify effects that depend only on the relative location of sources, rather than the specific
locations of specific sources we made location our independence assumptions. The first was
that the distribution of coefficients from a source was the same for all sources, so

p(a,;b,li) = p(a,,b,). (80)

The second was that the distribution of coefficients c,, d,, from source j given the coefficients
a,, b, from source i depends only on the distance between them,

P( Cos n|an7 n’( )) :P( Cur n|an7bn7D) (81)

Substituting these two assumptions into Eq 79, and that result into Eq 79 yields Eq 5.
Deriving the distribution of correlations. Dropping the n subscripts and the condition-
ing on s for clarity,

p(rls) = / 5(r %ac - %bd)p(c, dla, b)p(a, b) da db dc dd. (82)

From Eq 12 We have that
p(cla, b)p(dja,b) = N (c: fa cos (¢) + fbssin (), 1”)N'(d; —Basin (¢) + b cos (¢),7) (83)
By defining z = (a, b), x = (¢, d) we can write Eq 83 as

cos(¢) sin(¢)
[— sin (¢)  cos (¢) 1 '

p(x|z) = N(x; fRyz,n*), R, 2 (84)

Combining this with Eq 10 to get p(z) we have

s) = /dxdz o(r — %z -x) p(z)p(x]z) = /dz/\/(z; 0,0%) / dx é(r — %z -x) N(x; BR,z,11°). (85)

where we’ve used Eq 10 to specify p(z). The integrand in Eq 85 is rotationally invariant in z
since any rotation in z is matched by x through the & function. So we can compute Eq 85 by
computing it for one radial slice of z, say z = z ¢; = (2, 0), and multiplying the result by 27.
Switching z to polar coordinates z = (z, 6), for which

p(z) dz = (2n6*) " exp (—2°/20°)2dzd02q(z)zdzd0, (86)

we have

p(rls) = 2= /00C dz q(z)z/ dx 6(r — %x -z) N(x; Rz, 1%). (87)
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To compute the latter integral, we switch x from (¢, d) to (u, t) coordinates, defined for z = (z,

0) as
2u/z dc 2271 07 [du
T L A
t dd 0 1]Lldt

Then the area element dcdd becomes 2z ' dudt and we have for the latter integral in Eq 87,

/dx(c7 d) 6(r — %x -z) N(x; BR 2, n’) =2z" / dx(u,t) o(r — %x -z) N(x; PRz, %) (89)
=2z / dt/du o(r —u) N(x; fR,z,n°)  (90)

- / dt N (x(r. 1); fR,2, 7). (o1)

Now for our slice z = (z, 0), x(r, ) — fR,z = (£ — Pz cos (¢),t + Pzsin (¢)), so

z

e—ﬁ [(%’—ﬁz cos c‘a)2+(t+[}z sin ((/)))2}

N(x(r,t); PRz, n*) = = N (2r/z; Bz cos ¢, n*) N (t; — Bz sin ¢, 11°). (92)

2mn?

Hence Eq 91 evaluates to
g/ dt N'(x(r, t); PRz, n*) = %N(Qr/z; Bz cos b, n*) / dt N (t; —Pzsin ¢,n°) = %J\f@r/z; Bz cos ¢, n*). (93)

Substituting this in for the latter integral in Eq 87, we have

exp [j— (ﬂ cos (¢) — sgn(r) |/ cos ()" + ﬁ)

p(rls) = 4\:71/DC dz N'(z;0,6%) N'(2r/z; Bz cos ,n°) = - i
0 a’\/ B* cos (¢)2+%

Finally, to arrive at Eq 19, we simplify the length constant of the exponential by relating n* in
Eq 69 to Zin Eq 20 as n° = 0 °Z* — 0°B*cos(¢)?, and use the definition of p in Eq 15 to get

7,72 0'2p2 _ o2 0'4p2 _7

feos(0) s ey 2 7m0 Z sz ST )

5.3.4 Improving the model of correlations. Our correlation model captures intermit-
tency by introducing a binary random variable z that determined whether the observation y,
was of a correlation r,,, or noise w. That is,

yn|z,rn,w:zrn+(1—z)w, (95)
so that when the masking variable z = 1, we observe a ‘true’ correlation r,, and when z = 0, we

observe an instance of noise instead. We assume that the masking variable z obeys a Bernoulli
distribution,

z ~ Ber(1,(s)). (96)
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The intermittency parameter z,,(s) € [0, 1] determines the fraction of observations we deem to
be true correlations, and can depend both on the harmonic #n and the intersource distance s.
The true correlations r,, are drawn from the asymmetric Laplacian distribution of correlations
in Eq 21,

rn ~ p(rnls)7 (97)
while the noisy observations w come from a zero-mean Gaussian
w e~ N(w;0,v,(s)%). (98)

Like the intermittency parameter, the variance v2(s) of the noise can depend on both the har-
monic and intersource distance. The predicted distribution of correlations for our ‘intermit-
tent asymmetric Laplacian’ model is then a linear combination of the ‘true’ correlation
distribution p(r,|s) and the noise distribution determined by the intermittency parameter ,,(s)

q(r,ls) = 1,(s) p(r,ls) + (1 = 1,(s)) N(7,;0,v,(5))- (99)

Setting 1,,(s) to 1 corresponds to our initial asymmetric Laplacian model, while setting it zero
represents a fully intermittent case where all correlations are in fact noise. The amount of
intermittency and the variance of the noise were determined from the data (see Methods, Sec
5.2.4).

To demonstrate the effect of including intermittency in our model we have added the CDFs
for the distributions in Eq 99 fitted to the data in Fig 7A-7C to the corresponding panels in
those plots (light blue traces), revealing an improved qualitative agreement. In Fig 7D-7F we
have added the deviations between the data CDFs and those of the new model that includes
intermittency. The panels show that both the positive and negative deviations have been
reduced, as expected, but not eliminated.

The fact that both positive and negative deviations remain in Fig 7D-7F indicates that the
data have more small values than even augmentation with intermittency can capture. There-
fore, we extended our model by replacing the Exponential distributions in Eq 21 that consti-
tute the positive and negative halves of the asymmetric Laplacian with distributions that had
higher densities near zero, but that included the Exponential as special cases. One candidate is
the Gamma distribution, p(r) L™ Just like the Exponential distribution, the Gamma dis-
tribution has a scale parameter, A for the positive correlations above. In addition, it introduces
a shape parameter, k > 0. When k = 1, the Gamma distribution reduces to the Exponential dis-
tribution. When k < 1, the density approaches infinity as r — 0. This singularity at 0 aids in
modeling the large number of low correlation values we observe. Analogously to Eq 21, we
‘sandwich’ two Gamma distributions together so that we can also cover negative values (see
also Methods Sec 5.2.4), and arrive at our correlation distribution

k—1 =1,/
riten r, >0,

1
r.ls) =
p(r,ls) Z(k,\) + Z(m, p) Ir |’”’1e—\rn\/#

(100)
r, <O0.

Here Z is the normalizing function of the Gamma distribution, k and X are the shape and scale
parameters for the positive correlations, and m and y are the corresponding parameters for the
negative correlations. We have omitted the dependence of these parameters on the harmonic n
and the intersource distance s for clarity.

Another probability distribution, which includes the Gamma (and therefore the Exponen-
tial) as a special case, is the generalized inverse Gaussian. The parameterization of this distribu-
tion that we use gives the probability density function p(r) oc *~'e~*""**1/2 This distribution
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introduces a further shape parameter @ > 0 and a term proportional to 1/r in the argument of
the exponential that provide additional flexibility in modeling small observations. The scale of
the distribution can be taken to be the length constant of the r term in the exponential, 2A/c.
Keeping this constant while reducing oA towards zero, one approaches the Gamma distribu-
tion. As before, we sandwich two such distributions together to arrive at our distribution of
correlations,

rﬁ—le—x(r"/)&k/rn)/Z r >0

n = Y

1
p(r,ls) =
Z(k, by er) + Z(m 1, B) | |yt g s <,

(101)

Here Z is the normalizing function of the generalized inverse Gaussian distribution, k, A, and @
are the parameters for the positive correlations, and k and g and j are the corresponding
parameters for the negative correlations. As before, we have omitted the dependence of these
parameters on the harmonic 7 and the intersource distance s for clarity.

Our elaborated models of the correlations were thus of the same form as Eq 99, with p(r,)|s)
set to either asymmetric Laplacian, or sandwiched versions of the Gamma, or generalized
inverse Gaussian distributions.

5.3.5 Fisher information. To compute Fisher information for the distribution in Eq 19,
we need (dropping subscripts for clarity),

|r]
1 =—log(Z) 20— .
o8Pk 8 (%) Z + sgn(r)a2p
Then, defining A = op
01 7! 7/ 7\‘/
Tlgpl) _ 2 g ZE B0 (102)
Os z (Z + sgn(r)\)
Now defining A, = 0’p_, we have Z' = A, X /Z° so
0log p(rls) AN AN, + Zisgn(r)N
R 20+ : 103
os 2 Z3(Z + sgn(r)))? d Bl (103)
Then the square is
dlo r|s 2 )
(BEID) — o i+ 8 (o0

We need to compute the expectation of this with respect to r under p(r|s). We can split this
into the contributions from each component.
Constant term. The expectation of the constant term is just

l ’\ 2 2
a? = KLKJ‘ = i (klxj‘) = |:£:| . (105)

zv 2\ 7 Z
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00

rexp (—2r/t) dr = = we have

0B olrl), = 258, () + 22 (e, o = 2L EH P L BL(EZ =Y

Linear term. Defining I)(1) £ [/

Z

106
DO ) 2000 (0 W 2 (106)

Z7 YAWVA VA Z Z zZ)

Quadratic term. Defining I,(t) 2 [ r* exp (—2r/17) dr = %we have
BL(Z+X)+ B L(Z -\
<ﬁ?gn(r)r2> = ﬁi<r2>r20 + ﬁ2—<r2>r<0 = - 2( ) Z 2( ) (107)
XL%'/L / ’ 7\'L7\'IL ! ’

1 (57+k>+<7ﬁ'x L[ 2 g

S Z Z+ Z—\ CZ| Z+h Z—n ]

Fisher Information. Collecting terms, we arrive at

P e s T

This expression simplifies significantly if we assume that A, (s)~0, since then Z ~ %, Z' ~ 0,

and
Z(s) LM + " (L1 2 (110)
S| ~<— | —— —| =0 =
o2 |e2+ L o2 — L p o2+ a2p 62— a?p 1—p?’

which is Eq 23. For p = (1 — b)e™*” + b as in Eq 24 we get, in terms of normalized distances
s=s/y,
2 (1—Db)e*

O = i pr - peni e’ (1)

which is Eq 26.

Supporting information

S1 File. Supplementary text.
(PDF)

S1 Fig. Time-averaged statistics of simulated flow field. (A) horizontal (top) and vertical
(bottom) components of the mean velocity (left) and integral length scale (right) over the sim-
ulated plume domain. (B) mean turbulent isotropy (top) and turbulent kinetic energy (bot-
tom) over the simulated plume domain.

(TIF)

S2 Fig. Location independence. p-values of the energy test measuring the difference between
the distribution of coefficients at one source (‘First source’) and those at another, at each fre-
quency. Each column corresponds to the comparison for one pair of sources.

(TTF)
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S3 Fig. Joint distribution of coefficients. p-values of the energy test measuring the difference
between the distributions of coefficients from all pairs of sources at a given intersouce distance
(indicated on the x-axis), for each frequency. Each column corresponds to the comparison of
one pair of sources. There were multiple pairs of odour sources at each intersource distance,
indicated by the sizes of each block. Colours as in S2 Fig.

(TIF)

S4 Fig. Gaussian coefficients. p-values of the energy test measuring the difference between
the distribution of coefficients at each source to those of a bivariate Gaussian with the same
mean and covariance, at each frequency. Colours as in S2 Fig, white indicates p < 0.001.
(TIF)

S5 Fig. Stationarity. (A) p-values for the energy test comparing the distribution of sine coeffi-
cients to that of the cosine coefficients, at each source and frequency. (B,C) p-values of the
Wilcoxon signed-rank test for whether the medians of the distributions of the sine, and cosine,
coefficients is zero, for the data from each each source and each frequency. (D) p-values of the
Wilcoxon signed-rank test for whether the median of the product of the sine and cosine coeffi-
cients is zero. Colours as in S2 Fig, white indicates p < 0.001.

(TTF)

S6 Fig. Conditional Gaussianity. p-values of the energy test measuring the difference between
the conditional distribution of coefficients at one source given those at another (the ‘condi-
tioning source’), and a bivariate Gaussian with the same mean and covariance, for each fre-
quency. Each column corresponds to the comparison for one pair of sources. Colours as in S2
Fig, white indicates p < 0.001.

(TIF)

S7 Fig. Frequency decomposition of correlations for the Main Text data, using a Kaiser-16
window. Compare to Fig 9.
(TIF)

S8 Fig. Fisher information vs. frequency for the Main Text data, using a Kaiser-16 window.
Compare to Fig 12.
(TIF)

S9 Fig. Description of the second set of computational fluid dynamics simulations. (A)
Domain schematic and simulation parameters. Flow was from left-to-right. Vorticity was
introduced into the flow by twelve cylindrical obstacles, vertically spaced evenly at a horizontal
distance of 20 cm from the inlet (see also panel B). Point odour sources were placed at various
vertical locations on the dashed line 40 cm horizontally from the flow inlet. Flow over these
sources carried the odours to downstream probes. (B) Details of the obstacles and the simula-
tion mesh. The cylindrical obstacles were 38 mm in diameter and evenly spaced 38 mm apart.
The resulting center-to-center distances of 76 mm defined the pitch. The domain was discre-
tized using a mesh with 2 mm resolution.

(TIF)

$10 Fig. Probe locations and source geometries. The full set of simulations and probe loca-
tions used in our study. Each panel shows a snapshot of the plumes from the most distal
sources, with the two source locations indicated by the white ‘0’s. All simulations used 16
equally spaced sources, inclusive, between the two distal locations indicated, except for the
simulations in panel F, which used 32 sources. The nine probe locations in each simulation are
marked with “x’. (A) The main simulations used in our study, with sources transverse to the
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direction of the flow. The principal probe location that we discuss in the Main Text is at the
blue x’. (B) Simulations with sources at 45 degrees to the flow. (C) Simulations with sources
parallel to the flow. (D) The principal supplementary simulations we analyze in the main text,
with sources transverse to the flow. The principal probe location that we analyze is at the blue
%’. (E) Supplementary simulations with sources at 45 degrees to the flow. (F) Supplementary
simulations with sources parallel to the flow. This set of simulations used 32 sources, rather
than 16.

(TIF)

S11 Fig. Example plumes and concentration profiles for the supplementary set of simula-
tions. Compare to Fig 3.
(TIF)

$12 Fig. Frequency decomposition of correlations for the second set of simulations, using
a 1s Hann window. Compare to Fig 9.
(TIF)

$13 Fig. Fisher information vs. frequency for the data in the second set of simulations,
using a 1s Hann window. Compare to Fig 12. The fits are at for intersource distances of 0.1,
0.4 and 0.7 ¢. The intersource distances for the supplementary data start at lower pitch values
than for the data in the Main Text because the pitch for the supplementary simulations is ~ 3x
larger.

(TIF)

$14 Fig. Amplitude spectra of odour concentration profiles from all odour sources mea-
sured at the probe location, for the two simulated flows and the three surrogate datasets
used in the text. Discrete Fourier transforms were computed for consecutive 1-second win-
dows that overlapped by 500 msec, amplitudes were averaged and scaled to have the same
value at 1 Hz. Surrogate datasets are indexed by their information content (‘all=": all frequen-
cies equally informative; ‘high>low’: high frequencies more informative than low frequencies).
The surrogate datasets (all =) and (high > low) were used in Fig 11 panels B, and C, respec-
tively.

(TIF)

S15 Fig. Modeling the distribution of observed correlations. As in Fig 7 but showing the fits
to the 1 Hz data, highlighting the poor fits to the data.
(TIF)

S16 Fig. Modeling the distribution of observed correlations. As in Fig 7 but showing the fits
to the 1 Hz data, and when computing all statistics over 2-second Hann windows instead of
the 1-second windows used in Fig 7.

(TTF)

$17 Fig. Coupling of concentration profiles from two sources at each frequency as a function
of intersource separation, expressed in terms of (A) phase and (B) strength of the coupling.
(C) Strength (saturation) and phase (hue) together. (D) Out-of-phase correlations, computed
as 3 sin(6).

(TIF)

S18 Fig. As in S17 Fig but for sources that are arranged parallel to the flow (see e.g. Fig
13A).
(TIF)
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S19 Fig. As in S17 Fig but for sources that are arranged at 45 degrees to the flow (see e.g.
Fig 13C).
(TIF)

$20 Fig. Velocity autocorrelation functions and corresponding integral length scales (Ly)
for the simulations in the Main Text, evaluated along the midline (y = 0) at x = 0 (the x
location of the odour sources, labeled ‘origin’) and at the probe location (labeled ‘probe’).
(A) Velocity in the x-direction (parallel to the mean flow) autocorrelated along the same direc-
tion. There are fewer data points at the ‘probe’ location since the largest x-displacement at that
location is to the origin, while the largest x-displacement for the ‘origin’ extends past the probe
location. (B) Velocity in the y-direction (perpendicular to the mean flow), autocorrelated
along the same direction. The maximum displacement is approximately half that of panel A
because the data in that panel spans the entire width of the simulation domain, while the data
in this panel only extends from the midline to the upper and lower boundaries.

(TIF)

$21 Fig. Elbow plots for other probe locations and source geometries. As in Fig 13 but using
a 2-second Hann window.
(TTF)

$22 Fig. Elbow plots for other probe locations and source geometries. As in Fig 13 but using
a0.5-second Hann window.
(TIF)

$23 Fig. Elbow plots for other probe locations and source geometries. As in Fig 13 but using
a 1-second Kaiser-16 window.
(TIF)

$24 Fig. Elbow plots for other probe locations and source geometries, for the supplemen-
tary dataset. As in Fig 13 but for the Supplementary simulations.
(TIF)

$25 Fig. Elbow plots for other probe locations and source geometries. As in 524 Fig but
using a 2-second Hann window.
(TTF)

$26 Fig. Elbow plots for other probe locations and source geometries. As in 524 Fig but
using a 0.5-second Hann window.
(TIF)

$27 Fig. Elbow plots for other probe locations and source geometries. As in 524 Fig but
using a 1-second Kaiser-16 window.
(TIF)
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