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A B S T R A C T

In this study, we investigate a control problem involving a reaction–diffusion partial differential
equation (PDE). Specifically, the focus is on optimizing the chemotherapy scheduling for
brain tumor treatment to minimize the remaining tumor cells post-chemotherapy. Our findings
establish that a bang-bang increasing function is the unique solution, affirming the MTD
scheduling as the optimal chemotherapy profile. Several numerical experiments on a real brain
image with parameters from clinics are conducted for tumors located in the frontal lobe,
temporal lobe, or occipital lobe. They confirm our theoretical results and suggest a correlation
between the proliferation rate of the tumor and the effectiveness of the optimal treatment.

1. Introduction

Glioblastoma multiforme (GBM) is an extremely invasive brain tumor, typically associated with life expectancies ranging from
to 12 months [1–3]. Chemotherapy is an essential aspect of postoperative treatments. After undergoing surgery for diagnostic

and therapeutic purposes, patients often face the recurrence of tumors, necessitating postoperative strategies like radiotherapy
and chemotherapy to mitigate tumor progression [4–6]. Developing optimized chemotherapy scheduling is imperative to enhance
conventional treatments and increase patient survival rates.

In regular chemotherapy plans, medications are given using MTD, with breaks for rest periods in between when patient recover
from side effects. This raises the question of whether this chemotherapy scheduling is optimal, meaning it results in fewer surviving
tumor cells [5,7,8]. To investigate this, a mathematical model for tumor evolution during therapy is essential. Deterministic models
ased on reaction–diffusion partial differential equations (PDEs) provide a suitable tool for studying patient-specific tumor kinetics
bserved on magnetic resonance imaging (MRI). These models have been developed during the past decades and shown success in
etermining the patients probable to benefit from extensive surgery, quantifying treatment response using untreated virtual controls,
stimated survival time for the patients, the effect of chemotherapy on tumor growth, and some other aspects, see [6,9–11] and the
eferences there in. The PDE models are based on parameters such as dispersal or diffusion rate, proliferation rate, and the spatial
istribution of tumor cells, all of which can be obtained for each patient using MRIs.
In this paper, we employ a variant of the model developed in [9] and the references therein to address the question of determining

ptimal chemotherapy scheduling. Several researchers have addressed the question of optimal chemotherapy profiles, with most of
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them considering ordinary differential equations to model the evolution of tumors during treatment. However, this approach often
leads to neglecting the essential characteristic of GBM, which is its invasion into neighboring tissue, [12–16], to name just a few.
To consider the invasion or diffusion of the tumor, PDEs should be used to model its behavior [17]. Recently the authors of [16]
employed a reaction–diffusion PDE to examine the temporal behavior of GBM in the presence of chemotherapy. The study addressed
the question of determining optimal chemotherapy strategies to inhibit the growth of GBM. The authors formulated the problem as
an optimal control problem for a reaction–diffusion PDE. The objective function was defined as the total population size of the tumor
throughout a cycle of chemotherapy. Using a gradient based numerical method, the authors showed that a MTD type scheduling
which starts at the maximum dose and terminates with a rest period is a (local) optimizer.

The formulation of the objective function as the total population size of the tumor in a cycle of chemotherapy, while
athematically tractable, may lack practical relevance from a biological standpoint. In clinical contexts, the significance often lies
n the number of tumors at the end of the cycle which is an indicator of survival for a patient [7,8,17]. In this study we consider
he population size of the tumor on the final day of the cycle as the objective function. While [16] considered a homogeneous
rug delivery to brain tissue, in this paper we consider heterogeneous drug delivery to GBM, a more biologically relevant scenario.
s it is computationally intensive to perform many real brain simulations, we analytically determine the global optimizer, which
orresponds to the current practice of MTD-type scheduling in clinics. It is noteworthy that obtaining analytical solutions in the
ontext of optimal control for PDEs is quite rare [18]. Deriving analytical formulas for chemotherapy profiles is a novel development
n this context.
Moreover, we consider the PDE in a more general form compared to what was considered in [6,10,11,16]. This general form

llows for the consideration of more complex models for brain tumors, taking into account the intricacies of tumor growth dynamics
ithin the brain.
Our optimal chemotherapy profile suggests a ‘‘bang–bang’’ strategy, commencing at a rest period and concluding with the
aximum allowable dose. It is the profile that is now using in clinics, see for example [17, Section 11]. Although the results of [16]
lso suggest a bang–bang profile, it is not the optimal strategy while we want to minimize the population size of the tumor at the end
f a cycle of chemotherapy. Furthermore, based upon the model we have considered, our findings indicate that the optimal strategy
s unique, with no room for further improvement. Our results also serve as a new validation for the models proposed in [9,17] in
tudying tumor behavior. By considering the optimal strategy alongside alternative scheduling approaches, we numerically solve
1) on an actual brain image to compute tumor cell density and total population size at the end of the chemotherapy cycle. Various
umor locations are examined, and computations utilize parameters sourced from clinical data. These analyses yield insights into
reatment efficacy.
The organization of the paper is as follows. In Section 2, a mathematical formulation of the tumor growth subjects to a

chemotherapy treatment is presented. The existence of an optimal solution is established in Section 3 and the optimal chemotherapy
cheduling is derived in Section 4. We perform numerical calculations and report the results in Section 5 which provide insights
nto treatment efficacy. In Section 6, we conclude our findings and discuss possible future directions.

. Mathematical formulation

This section is dedicated to the mathematical formulation of the optimal chemotherapy profile as an optimal control problem
or a PDE.
Let B ⊂ R𝑛 be the brain domain with smooth boundary. Let 𝑢(𝐱, 𝑡) be the density of brain tumor cells in 𝐱 at the moment 𝑡

and 𝐧 be the outer normal unit vector to 𝜕B. We will consider the following model describing the growth of the brain tumor cell
population under the influence of chemotherapy [10],

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑢 − ∇ ⋅ (𝐷(𝐱)∇𝑢) = 𝜌(𝐱)𝑢
(

1 − 𝑢
𝐾(𝐱)

)

− 𝐶(𝑡)𝜂(𝐱)𝑢, (𝐱, 𝑡) ∈ B × (0, 𝑇 ),

𝜕𝐧𝑢 = 0, (𝐱, 𝑡) ∈ 𝜕B × (0, 𝑇 ),
𝑢(𝐱, 0) = 𝑢0(𝐱), 𝐱 ∈ B,

(1)

here 0 < 𝐷(𝐱) ∈ 𝐿∞(B), is the diffusion coefficient or invasion rate, 0 < 𝜌(𝐱) ∈ 𝐿∞(B) is proliferation rate, and 0 < 𝐾(𝐱) ∈ 𝐿∞(B)
epresents the carry capacity of the tissue, which provides an upper limit on the number of tumor cells capable of occupying any
ubic millimeter of brain.
It should be noted that one of the most significant aspects of (1) is its consideration of the heterogeneous structure of brain

tissue. Experimental observations have shown that glioma cells migrate more rapidly in white matter than in the gray matter of
the human brain. This observation justifies the consideration of 𝐷 as a function of space 𝐱, such that 𝐷(𝐱) = 𝐷𝑔 in gray matter and
𝐷(𝐱) = 𝐷𝑤 in white matter. Let B𝑔 stands for the gray matter region and B𝑤 white matter region, respectively. Then, B𝑤 and B𝑔
form a partition of brain B, i.e., B𝑤 ∪B𝑔 = B and B𝑤 ∩B𝑔 = ∅ [17]. Therefore, we have

𝐷(𝐱) ∶=
{

𝐷𝑔 if 𝐱 ∈ B𝑔 ,
𝐷𝑤 if 𝐱 ∈ B𝑤,

with 𝐷𝑤 > 𝐷𝑔 > 0.
In (1), the function 𝐶(𝑡) denotes the proportion of dose delivery or chemotherapy effort to patient at time 𝑡. For example,
2

𝐶(𝑡) = 0, 0.5, 1 indicate no drug delivery, half dose and full dose administration, respectively. In this way, 𝐶(𝑡) shows the temporal
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profile of chemotherapy applied to a patient for 𝑡 ∈ (0, 𝑇 ), where 𝑇 is the length of a single cycle of chemotherapy. In this paper,
e incorporate the effects of heterogeneity in the vascular structure of brain tissue, resulting in heterogeneous drug delivery [10].
o account for this heterogeneity, we introduce the function 𝜂(𝐱) in the model, defined as

𝜂(𝐱) ∶=
{

𝐶𝑔 if 𝐱 ∈ B𝑔 ,
𝐶𝑤 if 𝐱 ∈ B𝑤,

here 𝐶𝑔 and 𝐶𝑤 represent the effectiveness of chemotherapy reaching the brain tissue, with the maximum allowable dose
dministered in the gray matter region B𝑔 and the white matter region B𝑤, respectively. The function 𝑢0(𝐱) represents the density
of tumor cells at the onset of treatment.

In light of the clinical chemotherapy limits ensuring patient safety, the chemotherapy function 𝐶(𝑡) and its cumulative amount
∫ 𝑇
0 𝐶(𝑡)𝑑𝑡 satisfy the following properties:

0 ≤ 𝐶(𝑡) ≤ 1, for 0 ≤ 𝑡 ≤ 𝑇 , and ∫

𝑇

0
𝐶(𝑡)𝑑𝑡 = 𝛾, (2)

where 0 < 𝛾 < 𝑇 represents the total amount of chemotherapy effort in a cycle of chemotherapy. So, we define the admissible set as

A = {𝐶 ∈ 𝐿∞(0, 𝑇 ) ∶ (2) holds } ,

onsisting all possible chemotherapy profile.
Our goal is to determine optimal chemotherapy strategies that result in the smallest tumor population at the end of a

hemotherapy cycle. Mathematically, one should consider

𝐽 (𝐶) = ∫B
𝑢𝐶 (𝐱, 𝑇 )𝑑𝐱,

here we use the notation 𝑢𝐶 to emphasize the solution 𝑢 of (1) depends on 𝐶. Then, 𝐽 (𝐶) represents the total population of tumor
cells at the final time 𝑇 as our objective functional and we should find a solution for

min
𝐶∈A

𝐽 (𝐶). (3)

The solution of (3) yields the optimal chemotherapy scheduling, resulting in the lowest amount of tumor cells at the end of treatment.

3. Existence of an optimal solution

To determine the optimal solution of (3), we first need to establish the existence of such a solution. To do so, we require a
mathematical framework and specific notations.

We begin by introducing a space of functions that will be utilized throughout the paper. The set 𝐻1(B) consists of functions
whose function and weak derivatives belong to 𝐿2(B). The dual space of 𝐻1(B), denoted as 𝐻1(B)∗, is then defined. The set of
functions 𝐿2 (0, 𝑇 ;𝐻1(B)

)

is defined as the set of functions 𝑢 ∶ [0, 𝑇 ] → 𝐻1(B) such that

‖𝑢‖𝐿2(0,𝑇 ;𝐻1(B)) ∶=
(

∫

𝑇

0
‖𝑢(., 𝑡)‖2

𝐻1(B)
𝑑𝑡
)

1
2
< ∞.

By replacing the norm in this definition with the norm of 𝐻1(B)∗, we obtain the definition of 𝐿2 (0, 𝑇 ;𝐻1(B)∗
)

. A function
𝑢 ∶ [0, 𝑇 ] → 𝐻1(B) belongs to 𝐿∞ (

0, 𝑇 ;𝐻1(B)
)

if

‖𝑢‖𝐿∞(0,𝑇 ;𝐻1(B)) ∶= ess sup
0≤𝑡≤𝑇

‖𝑢(., 𝑡)‖𝐻1(B) < ∞.

The space 𝐶([0, 𝑇 ];𝐻1(B)) is defined as the set of continuous functions 𝑢 ∶ [0, 𝑇 ] → 𝐻1(B) such that

‖𝑢‖𝐶([0,𝑇 ];𝐻1(B)) ∶= sup
0≤𝑡≤𝑇

‖𝑢(𝑥, .)‖𝐻1(B) < ∞.

or more information on these function spaces, refer for instance to [19].
Now, we define the solution of (1) in the weak sense as follows.

efinition 1. We say a function 𝑢 ∈ 𝐿2 (0, 𝑇 ;𝐻1(B)
)

with 𝑢𝑡 ∈ 𝐿2 (0, 𝑇 ;𝐻1(B)∗
)

and 𝑢(𝐱, 0) = 𝑢0(𝐱) is a weak solution of (1) if

∫B
𝜕𝑡𝑢𝜙 𝑑𝐱 + ∫B

𝐷(𝐱)∇𝑢 ⋅ ∇𝜙 𝑑𝐱 = ∫B

(

𝜌(𝐱)𝑢
(

1 − 𝑢
𝐾(𝐱)

)

− 𝐶(𝑡)𝜂(𝐱)𝑢
)

𝜙 𝑑𝐱, (4)

or all 𝜙 ∈ 𝐻1(B) and almost every 0 ≤ 𝑡 ≤ 𝑇 .

The existence, uniqueness, and nonnegativity of the solution to problem (1) is classical and one can find a proof for instance
in [18–21]. Moreover, it is straightforward to show that there exists a positive constant 𝐴 independent of 𝑢 and 𝐶 such that
3

‖𝑢‖𝐿∞(0,𝑇 ;𝐿2(B)) + ‖𝑢‖𝐿2(0,𝑇 ;𝐻1(B)) + ‖𝜕𝑡𝑢‖𝐿2(0,𝑇 ;𝐻1(B)∗) ≤ 𝐴, (5)
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where 𝐴 is a generic constant in this paper. In view of the fact that 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻1(B)) and 𝑢𝑡 ∈ 𝐿2(0, 𝑇 ;𝐻1(B)∗), we infer that
𝑢 ∈ 𝐶([0, 𝑇 ];𝐿2(B)) [18,19,21]. Moreover, in view of [22, Theorem 3.1], we find that if 𝑢0 ∈ 𝐻1(B), then 𝑢(𝑥, 𝑡) is a bounded function
on B𝑇 ∶= B × (0, 𝑇 ), or there exists 𝐴 > 0 such that ‖𝑢‖𝐿∞(B𝑇 ) ≤ 𝐴 where 𝐴 depends solely on ‖𝐷‖𝐿∞ , ‖𝜂‖𝐿∞ , |B|, 𝑇 , 𝑛, ‖𝜌‖𝐿∞(B),
𝐾‖𝐿∞(B), and ‖𝑢0‖𝐿∞(B).
Mathematically, the first question in addressing an optimization problem is to determine the existence of a solution within

he admissible set of functions. We address the existence of a solution for the minimization problem (3). This existence can be
emonstrated through the application of the standard variational method, detailed in references such as [18,19].

heorem 1. Assume that 𝑢0 ∈ 𝐻1(B). There is 𝐶⋆ ∈ A with 𝑢⋆ ∶= 𝑢𝐶⋆ such that

𝐽 (𝐶⋆) ≤ 𝐽 (𝐶), for all 𝐶 ∈ A,

i.e., problem (3) has a solution.

Proof. Recall that 𝐽 (𝐶) ≥ 0 for every 𝐶 ∈ A in view of the non-negativity of 𝑢𝐶 . Define 0 ≤ 𝐽 = inf𝐶∈A 𝐽 (𝐶), and consider a
minimizing sequence {𝐶𝑘}∞1 such that lim𝑘→∞ 𝐽 (𝐶𝑘) = 𝐽 . Set 𝑢𝑘 ∶= 𝑢𝐶𝑘

. Invoking (5) we have

‖𝑢𝑘‖𝐿∞(0,𝑇 ;𝐿2(B)) + ‖𝑢𝑘‖𝐿2(0,𝑇 ;𝐻1(B)) + ‖𝜕𝑡𝑢𝑘‖𝐿2(0,𝑇 ;𝐻1(B)∗) ≤ 𝐴, for 𝑘 = 1, 2, 3,… . (6)

In view of (6) and by passing to a sub-sequence, it is inferred that there is 𝑢⋆ ∈ 𝐿2(0, 𝑇 ;𝐻1(B)) such that

𝑢𝑘 ⇀ 𝑢⋆ weakly in 𝐿2(0, 𝑇 ;𝐻1(B)), (7)

𝜕𝑡𝑢𝑘 ⇀ 𝜕𝑡𝑢
⋆ weakly in 𝐿2(0, 𝑇 ;𝐻1(B)∗), (8)

𝑢𝑘 → 𝑢⋆ strongly in 𝐿2(B𝑇 ). (9)

Remember that {𝐶𝑘}∞1 is a bounded sequence in 𝐿∞(0, 𝑇 ), see (2). Passing to a sub-sequence, there is 𝐶⋆ ∈ 𝐿∞(0, 𝑇 ) such that

𝐶𝑘 ⇀ 𝐶⋆ with respect to the weak star topology on 𝐿∞(0, 𝑇 ). (10)

We show that indeed 𝐶⋆ ∈ A. In view of (10), it is concluded that ∫ 𝑇
0 𝐶⋆(𝑡)𝑑𝑡 = 𝛾. Let 𝐵 = {𝑡 ∈ [0, 𝑇 ] ∶ 𝐶⋆(𝑡) > 1} and let |𝐵| > 0.

Due to the fact that 𝐶𝑘(𝑡) ≤ 1 almost everywhere in [0, 𝑇 ] and (10), one can see that

0 < ∫

𝑇

0

(

𝐶⋆(𝑡) − 1
)

𝜒𝐵(𝑡)𝑑𝑡 = lim
𝑘→∞∫

𝑇

0

(

𝐶𝑘(𝑡) − 1
)

𝜒𝐵(𝑡)𝑑𝑡 ≤ 0,

which is a contradiction. Consequently, we infer 𝐶⋆(𝑡) ≤ 1 in [0, 𝑇 ]. A similar argument demonstrates that 𝐶⋆(𝑡) ≥ 0 for 𝑡 ∈ [0, 𝑇 ].
Hence, we conclude that 𝐶⋆ belongs to A.

Next step is to show that 𝑢⋆ is the unique solution of (1) corresponding to 𝐶⋆. It is obvious that for any 𝜙 ∈ 𝐻1(B𝑇 ), 𝑢𝑘 satisfies

∫B𝑇

𝜕𝑡𝑢𝑘𝜙 𝑑𝐱𝑑𝑡 + ∫B𝑇

𝐷(𝐱)∇𝑢𝑘 ⋅ ∇𝜙 𝑑𝐱𝑑𝑡 = ∫B𝑇

(

𝜌 − 𝐶𝑘(𝑡)𝜂(𝐱)
)

𝑢𝑘𝜙𝑑𝐱𝑑𝑡 − ∫B𝑇

(

𝜌
𝐾(𝐱)

)

𝑢2𝑘𝜙𝑑𝐱𝑑𝑡.

Passing 𝑘 → ∞, we observe that

∫B𝑇

𝜕𝑡𝑢
⋆𝜙 𝑑𝐱𝑑𝑡 + ∫B𝑇

𝐷(𝐱)∇𝑢⋆ ⋅ ∇𝜙 𝑑𝐱𝑑𝑡 = ∫B𝑇

(

𝜌(𝐱)𝑢⋆
(

1 − 𝑢⋆

𝐾(𝐱)

)

− 𝐶⋆(𝑡)𝜂(𝐱)𝑢⋆
)

𝜙𝑑𝐱𝑑𝑡, (11)

in view of (7)–(9). It is classic that the variational form in (11) is equivalent to the variational form in Definition 1, see for
instance [19], and so 𝑢⋆ = 𝑢𝐶⋆ .

The last step is to show that 𝐶⋆ is a minimizer. Let us define 𝑓𝑘(𝑡) ∶= ‖𝑢𝑘(., 𝑡)− 𝑢⋆(., 𝑡)‖2
𝐿2(B)

≥ 0. From the continuity of solutions
of (1) with respect to time and (9) we have

𝑓𝑘 ∈ 𝐶[0, 𝑇 ], and 𝑓𝑘 ⟶ 0 strongly in 𝐿1(0, 𝑇 ). (12)

According to (12), there exists a sub-sequence of 𝑓𝑘, still denoted by 𝑓𝑘 for simplicity, that 𝑓𝑘 ⟶ 0 for all 𝑡 ∈ [0, 𝑇 ] and consequently
𝑢𝑘(⋅, 𝑇 ) ⟶ 𝑢⋆(⋅, 𝑇 ) strongly in 𝐿2(B). This yields that

𝐽 = lim
𝑘→∞

𝐽 (𝐶𝑘) = lim
𝑘→∞∫B

𝑢𝑘(𝐱, 𝑇 ) 𝑑𝐱 = ∫B
𝑢⋆(𝐱, 𝑇 ) 𝑑𝐱 = 𝐽 (𝐶⋆), (13)

and so 𝐶⋆ is a solution for the optimization problem (3). □

4. Determining the optimal chemotherapy profile

In this section we address the question of finding an analytical solution for (3). It is worth noting that obtaining analytical
solutions for PDE-constrained optimization problems is uncommon. Typically, such solutions require prior knowledge of the
optimizer, which is often not available. We will calculate the solution which is the optimal chemotherapy scheduling that minimizes
4

the population size of the tumor on the last day of the chemotherapy cycle. To accomplish this, we first establish an adjoint equation.
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Then, utilizing its solution, the adjoint state, we derive a necessary optimality condition which furnishes us with the information
needed to determine the optimal solution. To have more information regarding this approach refer to [18].

For 𝐶 ∈ A, let 𝑝(𝐱, 𝑡) represent the adjoint state where satisfies the following PDE, which we refer to as the adjoint equation.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑝 + ∇ ⋅ (𝐷(𝐱)∇𝑝) +
(

𝜌(𝐱) − 2𝜌(𝐱)
𝐾(𝐱)

𝑢 − 𝐶(𝑡)𝜂(𝐱)
)

𝑝 = 0 in B × (0, 𝑇 ),

𝜕𝑝
𝜕𝐧

= 0 on 𝜕B × (0, 𝑇 ),

𝑝(𝐱, 𝑇 ) = 1 in B.

(14)

n (14), 𝑢 = 𝑢𝐶 is the solution of (1) corresponding to 𝐶. Eq. (14) has a unique solution in the weak sense defined in
efinition 1, [18–21].

emma 1. Let 𝐶 ∈ A and consider 𝑢 = 𝑢𝐶 be the corresponding solution of (1). There exists a nonnegative weak solution 𝑝 ∈
𝐿2 (0, 𝑇 ;𝐻1(B)

)

with 𝜕𝑡𝑝 ∈ 𝐿2 (0, 𝑇 ;𝐻1(B)∗
)

for the problem (14).

Now we need a sensitivity analysis of our problem. Let 𝜖 > 0, ℎ ∈ 𝐿∞(0, 𝑇 ) be given such that 𝐶𝜖 = 𝐶 + 𝜖ℎ ∈ A for small enough
𝜖. Denote by 𝑢 and 𝑢𝜖 the solutions of problem (1) associated with 𝐶 and 𝐶𝜖 respectively. Setting 𝑤𝜖 = (𝑢𝜖−𝑢)∕𝜖, it is straightforward
to check that 𝑤𝜖 is the weak solution of

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑤𝜖 − ∇ ⋅
(

𝐷(𝐱)∇𝑤𝜖
)

−
(

𝜌(𝐱) − 2𝜌(𝐱)
𝐾(𝐱)

𝑢𝜖 − 𝐶𝜂(𝐱)
)

𝑤𝜖 = −ℎ𝜂(𝐱)𝑢𝜖 in B × (0, 𝑇 ),

𝜕𝑤𝜖
𝜕𝐧

= 0 on 𝜕B × (0, 𝑇 ),

𝑤𝜖(𝐱, 0) = 0 in B.

(15)

Similar to the proof of Theorem 1, we can show that lim𝜖→0 𝑢𝜖 = 𝑢𝐶 in the weak scenes in 𝐿2(0, 𝑇 ;𝐻1(B)). In view of this fact,
we establish the following lemma.

Lemma 2. There exists function 𝑤 such that lim𝜖→0 𝑤𝜖 = 𝑤 in the weak scenes in 𝐿2(0, 𝑇 ;𝐻1(B)). In addition, 𝑤 is the unique weak
solution of

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑤 − ∇ ⋅ (𝐷(𝐱)∇𝑤) −
(

𝜌(𝐱) − 2𝜌(𝐱)
𝐾(𝐱)

𝑢 − 𝐶𝜂(𝐱)
)

𝑤 = −ℎ𝜂(𝐱)𝑢 in B × (0, 𝑇 ),

𝜕𝑤
𝜕𝐧

= 0 on 𝜕B × (0, 𝑇 ),

𝑤(𝐱, 0) = 0 in B,

(16)

here 𝑢 = 𝑢𝐶 .

roof. If we show that there exists a constant 𝐴 > 0 such that

‖𝑤𝜖‖𝐿2(0,𝑇 ;𝐻1(B)) ≤ 𝐴, (17)

‖𝜕𝑡𝑤𝜖‖𝐿2(0,𝑇 ;𝐻1(B)∗) ≤ 𝐴, (18)

hen we can conclude that there is a sub-sequence, let say 𝑤𝜖𝑖 , and 𝑤 ∈ 𝐿2 (0, 𝑇 ;𝐻1(B)
)

such that

𝑤𝜖𝑖 ⇀ 𝑤 weakly in 𝐿2(0, 𝑇 ;𝐻1(B)), (19)

𝜕𝑡𝑤𝜖𝑖 ⇀ 𝜕𝑡𝑤 weakly in 𝐿2(0, 𝑇 ;𝐻1(B)∗). (20)

Whenever we have (19)–(20), then similar to that in the proof of Theorem 1, one can conclude that 𝑤 is the solution of (16) in the
eak sense.
We start by establishing (17). Multiplying both sides of (15) by 𝑤𝜖 and integrating yields

1
2
‖𝑤𝜖‖

2
𝐿2(B)

+𝐷𝑔 ∫

𝑡

0
‖∇𝑤𝜖‖

2
𝐿2(B)

𝑑𝑡 ≤ ‖𝜌‖𝐿∞(B) ∫

𝑡

0
‖𝑤𝜖‖

2
𝐿2(B)

𝑑𝑡 + ‖ℎ𝜂𝑢𝜖‖𝐿∞(B) ∫

𝑡

0 ∫B
|𝑤𝜖|𝑑𝑡𝑑𝐱, (21)

or all 0 ≤ 𝑡 ≤ 𝑇 . Now employing the inequality 𝑎𝑏 ≤ (𝑎2 + 𝑏2)∕2 for real numbers 𝑎, 𝑏 for the last integral, we arrive at the following
nequality

1
2
‖𝑤𝜖‖

2
𝐿2(B)

+𝐷𝑔 ∫

𝑡

0
‖∇𝑤𝜖‖

2
𝐿2(B)

𝑑𝑡 ≤ ‖𝜌‖𝐿∞(B) ∫

𝑡

0
‖𝑤𝜖‖

2
𝐿2(B)

𝑑𝑡 +
‖ℎ𝜂𝑢𝜖‖𝐿∞(B)

2

(

𝑇 |B| + ∫

𝑡

0
‖𝑤𝜖‖

2
𝐿2(B)

𝑑𝑡
)

, (22)

hich yields that

‖𝑤𝜖‖
2
2 ≤ 𝐴1

𝑡
‖𝑤𝜖‖

2
2 𝑑𝑡 + 𝐴2, for all 0 ≤ 𝑡 ≤ 𝑇 ,
5

𝐿 (B) ∫0 𝐿 (B)
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f

where 𝐴1 and 𝐴2 are positive constants independent of 𝑡. Now, in view of this inequality and Grönwall’s inequality, one can infer
that

‖𝑤𝜖‖𝐿2(B) ≤ 𝐴, (23)

nequalities (22)–(23) leads us to the fact that

∫

𝑡

0
‖∇𝑤𝜖‖

2
𝐿2(B)

𝑑𝑡 ≤ 𝐴, for all 0 ≤ 𝑡 ≤ 𝑇 ,

nd so ‖𝑤𝜖‖𝐿2(0,𝑇 ;𝐻1(B)) ≤ 𝐴 where 𝐴 is a constant independent of 𝜖. This completes the proof of (17).
To prove (18), we multiply both sides of (15) by a test function 𝜙 ∈ 𝐿2 (0, 𝑇 ;𝐻1(B)

)

and integrate such that

∫

𝑡

0 ∫B
𝜕𝑡𝑤𝜖𝜙𝑑𝐱𝑑𝑡 = −∫

𝑡

0 ∫B
𝐷∇𝑤𝜖 ⋅ ∇𝜙𝑑𝐱𝑑𝑡 + ∫

𝑡

0 ∫B

(

𝜌(𝐱) − 2𝜌(𝐱)
𝐾(𝐱)

𝑢𝜖 − 𝐶𝜂(𝐱)
)

𝑤𝜖𝜙𝑑𝐱𝑑𝑡

− ∫

𝑡

0 ∫B
ℎ𝜂𝑢𝜖𝜙𝑑𝐱𝑑𝑡.

In view of (17) and (23), it is straightforward to conclude from the last equation that
|

|

|

|

|

∫

𝑡

0 ∫B
𝜕𝑡𝑤𝜖𝜙𝑑𝐱𝑑𝑡

|

|

|

|

|

≤ 𝐴‖𝜙‖𝐿2(0,𝑇 ;𝐻1(B)),

which leads to

‖𝜕𝑡𝑤𝜖‖𝐿2(0,𝑇 ;𝐻1(B)∗) < 𝐴,

where 𝐴 is a constant independent of 𝜖. This is the proof for (18). □

We need the following technical lemmas to determine the optimal chemotherapy.

Lemma 3. (i) Let 𝑢 be the solution for Eq. (1). Then

∫B
𝑢(𝐱, 𝑡) 𝑑𝐱 ≥ 𝑒−𝛼𝑇 ∫B

𝑢0(𝐱) 𝑑𝐱 (24)

for each 0 ≤ 𝑡 ≤ 𝑇 , where 𝛼 = ‖𝑢‖𝐿∞(B𝑇 )‖
𝜌
𝐾
‖𝐿∞(B) + ‖𝜂‖𝐿∞(0,𝑇 ). (ii) Let 𝑝 be the solution of the adjoint PDE (14). Then, we have

∫B
𝑝(𝐱, 𝑡) 𝑑𝐱 ≥ 𝑒−𝑇 ‖𝜌‖𝐿∞(B)

∫B
𝑝(𝐱, 0)𝑑𝐱, for each 0 ≤ 𝑡 ≤ 𝑇 . (25)

Proof. (i) Let 𝑡 ∈ [0, 𝑇 ], and 𝐼(𝑠) ∶= ∫
B
𝑢(𝐱, 𝑠) 𝑑𝐱; then from (4) for 𝜙 ≡ 1 we get

𝐼 ′(𝑠) = ∫B
𝑢𝑠 𝑑𝐱 = ∫B

(

𝜌(𝐱)𝑢
(

1 − 𝑢
𝐾(𝐱)

)

− 𝐶(𝑠)𝜂(𝐱)𝑢
)

𝑑𝐱 ≥ −∫B

(

𝜌(𝐱)𝑢
𝐾(𝐱)

+ 𝐶(𝑠)𝜂(𝐱)
)

𝑢 𝑑𝐱 ≥ −𝛼𝐼(𝑠),

or a.e., 0 ≤ 𝑠 ≤ 𝑇 . Then, Grönwall’s inequality yields 𝐼(𝑡) ≥ 𝑒−𝛼𝑡𝐼(0) which implies (24). (ii) The reasoning is similar to that of part
(i) and we omit it. □

Now we can determine the unique analytical solution for (3). The next theorem provides a practically implementable formula
for the optimal profile of chemotherapy.

Theorem 2. Let 𝐶⋆ ∈ A represent a solution for problem (3). Then we have

𝐶⋆(𝑡) =

{

0 if 0 ≤ 𝑡 < 𝑇 − 𝛾
1 if 𝑇 − 𝛾 ≤ 𝑡 ≤ 𝑇 .

(26)

In particular, the solution is unique.

Proof. Let 𝑢 = 𝑢𝐶⋆ . Assume 𝑝 is the adjoint state, the solution of (14), corresponding to 𝐶⋆, and 𝑤 is the solution of (16)
corresponding to 𝐶⋆. Multiply both sides of (14) by 𝑤 and multiply both sides of (16) by 𝑝. Now integrate both resulting equations
with respect to time and space over B. Add the resulting equations, it is easily verified that

∫B
𝑤(𝐱, 𝑇 ) 𝑑𝐱 = −∫

𝑇

0 ∫B
ℎ𝜂𝑝𝑢 𝑑𝐱𝑑𝑡. (27)

Let ℎ ∈ 𝐿∞(0, 𝑇 ) be given such that 𝐶⋆ + 𝜖ℎ ∈ A for small enough 𝜖. In view of Lemma 2, it is straightforward to calculate the
Gâteaux derivative of the cost functional 𝐽 (𝐶) at 𝐶⋆ in the following form

(𝐽 ′(𝐶⋆), ℎ)𝐿2(0,𝑇 ) = lim
𝐽 (𝐶⋆ + 𝜖ℎ) − 𝐽 (𝐶⋆)

= 𝑤(𝐱, 𝑇 ) 𝑑𝐱
6

𝜖→0 𝜖 ∫B
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= −∫

𝑇

0
ℎ(𝑡)

(

∫B
𝜂(.)𝑝(⋅, 𝑡)𝑢(⋅, 𝑡) 𝑑𝐱

)

𝑑𝑡 = −∫

𝑇

0
ℎ(𝑡)𝛹 (𝑡)𝑑𝑡, (28)

where 𝛹 (𝑡) ∶= ∫
B
𝜂(.)𝑝(⋅, 𝑡)𝑢(⋅, 𝑡) 𝑑𝐱. This reveals that for a minimizer 𝐶⋆ we have

𝐽
(

𝐶⋆ + 𝜖
(

𝐶 − 𝐶⋆)) − 𝐽
(

𝐶⋆) = 𝜖 ∫

𝑇

0

(

𝐶⋆ − 𝐶
)

𝛹 (𝑡)𝑑𝑡 + 𝑜(𝜖), as 𝜖 → 0,

nd so we obtain

∫

𝑇

0
𝐶⋆𝛹 (𝑡)𝑑𝑡 − ∫

𝑇

0
𝐶𝛹 (𝑡)𝑑𝑡 ≥ 0, for all 𝐶 ∈ A,

hich means that any minimizer of (3) is a maximizer of the linear functional L(𝐶) ∶= ∫ 𝑇
0 𝐶(𝑡)𝛹 (𝑡)𝑑𝑡 for 𝐶 ∈ A.

One can observe that for any admissible control 𝐶 we have

𝛹 (𝑡)
𝑑𝑡

= ∫B
𝜂
(

𝑢𝜕𝑡𝑝 𝑑𝐱 + ∫B
𝑝𝜕𝑡𝑢

)

𝑑𝐱

= ∫B

(

−∇ ⋅ (𝐷(𝐱)∇𝑝) −
(

𝜌(𝐱) − 2𝜌(𝐱)
𝐾(𝐱)

𝑢 − 𝐶𝜂
)

𝑝
)

𝑢𝜂 𝑑𝐱

+ ∫B

(

∇ ⋅ (𝐷(𝐱)∇𝑢) +
(

𝜌(𝐱) − 𝜌(𝐱)
𝐾(𝐱)

𝑢 − 𝐶𝜂
)

𝑢
)

𝑝𝜂 𝑑𝐱 = ∫B
𝜂(𝐱) 𝜌(𝐱)

𝐾(𝐱)
𝑝𝑢2 𝑑𝐱 > 0,

where the last inequality is obtained in view of (24) and (25). This means that 𝛹 (𝑡) is strictly increasing in 𝑡.
In view of strict monotonicity of 𝛹 , we show that function 𝐶⋆ with formula (26) is the unique maximizer of L(𝐶) for 𝐶 ∈ A and

so it is the unique minimizer of (3). Consider 𝑓 ∈ A. Then, we have

L(𝐶⋆) − L(𝑓 ) = ∫

𝑇

0

(

𝐶⋆(𝑡) − 𝑓 (𝑡)
)

𝛹 (𝑡)𝑑𝑡 = −∫

𝑇−𝛾

0
𝑓 (𝑡)𝛹 (𝑡)𝑑𝑡 + ∫

𝑇

𝑇−𝛾
(1 − 𝑓 (𝑡))𝛹 (𝑡)𝑑𝑡

> 𝛹 (𝑇 − 𝛾)∫

𝑇−𝛾

0
−𝑓 (𝑡)𝑑𝑡 + 𝛹 (𝑇 − 𝛾)∫

𝑇

𝑇−𝛾
1 − 𝑓 (𝑡)𝑑𝑡

= 𝛹 (𝑇 − 𝛾)
(

𝛾 − ∫

𝑇

0
𝑓 (𝑡)𝑑𝑡

)

= 0, (29)

here the strict inequality comes from the fact that 𝛹 (𝑡) is strictly increasing. Therefore, 𝐶⋆ is the unique maximizer of L and this
ompletes the proof. □

The optimal formula obtained in (26) suggests a bang–bang profile for chemotherapy which is clinically known as an MTD
rotocol. It says that if one starts a chemotherapy cycle with a rest period and then administers the chemotherapy agent with the
ighest allowable dose from time 𝑇 − 𝛾 until the last day of treatment, it yields the smallest amount of tumor on the final day of
he cycle.
The assertion of uniqueness in Theorem 1 implies that if we examine the chemotherapy profile proposed provided in (26), there

s no opportunity for improving the chemotherapy based upon the information provided by the model in (1).

. Numerical experiments

In this section we consider the optimal profile obtained in (26) and one other possible profile of chemotherapy for the PDE
odel (1). We also consider the case with no treatment. Utilizing data derived from clinical experiments involving various patients
nd employing the model on an actual brain image, we assess the outcomes of (1) across three distinct chemotherapy scenarios and
alidate the analytical result obtained in Theorem 1.
Note that one of the most significant aspects of (1) is its consideration of the heterogeneous structure of brain tissue. Experimental

bservations have shown that glioma cells migrate more rapidly in white matter than in the gray matter of the human brain.
his observation justifies the consideration of 𝐷𝑤 = 5𝐷𝑔 [17]. The vascular makeup of the brain is varied, with capillary density
otably higher in gray matter compared to white matter by approximately 3.5 times. Consequently, drug delivery to white matter
s anticipated to be substantially lower than to gray matter. Due to this fact, we set 𝐶𝑔 = 3.5𝐶𝑤 and 𝐶𝑤 = 2.40 × 10−2 day−1 in this
aper [23].
We have established the duration of a chemotherapy cycle as 42 days, with a chemotherapy period within each cycle spanning 15

ays [10]. This implies 𝑇 = 42 days and the total chemotherapy effort 𝛾 = 15. We are examining 12 patients with varying biological
arameters. In addition to the chemotherapy profile outlined in (26), we are exploring two alternative scheduling options for these
atients, i.e., no treatment and uniform scheduling of treatment which means 𝐶(𝑡) ≡ 15∕42. Using the chemotherapy scenarios, we
etermine the solutions to (1) and compute the corresponding value of 𝐽 . One can see the three different profiles of chemotherapy
n Fig. 1.
The parameters used are reported in Table 1, sourced from [24]. We assumed that what has been reported in [24] for the

iffusion is the invasion rate in the gray matter.
In our computations, we assume 𝐾(𝐱) ≡ 𝐾, thus scaling the solution of (1) by 𝐾 allows us to set 𝐾 = 1.
7
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Fig. 1. Three different chemotherapy profiles: no treatment (left), uniform treatment (middle), and optimal scheduling (right), as described by (26).

Fig. 2. Three different initial populations of tumor cells: (left) 𝐱𝟎 = (105, 45) (middle) 𝐱𝟎 = (140, 100) (right) 𝐱𝟎 = (108, 165).

Table 1
Patient clinical data [24].
Patient 𝐷𝑔

(

mm2∕day
)

𝜌 (1∕day)

1 5.05 × 10−2 9.62 × 10−2

2 2.06 × 10−2 3.47 × 10−2

3 7.59 × 10−2 9.84 × 10−2

4 2.16 × 10−2 4.18 × 10−1

5 2.44 × 10−2 1.38 × 10−1

6 2.96 × 10−2 3.75 × 10−2

7 1.34 × 10−1 3.80 × 10−2

8 3.46 × 10−2 2.20 × 10−2

9 1.80 × 10−2 4.67 × 10−2

10 1.49 × 10−1 1.00 × 10−1

11 5.17 × 10−2 1.20 × 10−1

12 5.29 × 10−3 5.30 × 10−2

We assume that initially the tumor is located in the frontal lobe, temporal lobe, or occipital lobe. Moreover, at first day treatment
he tumor cells have a Gaussian initial distribution with a maximum cell density, 𝑎, at the center, 𝐱0, of the tumor; that is,

𝑢0(𝐱) = 𝑎 exp
(

−
|𝐱 − 𝐱0|2

𝑏

)

,

where 𝑏 is a measure of the spread of tumor cells [17]. See Fig. 2. Since we can experimentally track the profile of tumor cells
above a certain detection level, we assume that this detection level is 80 percent of the carrying capacity. We also assume that the
radius of the detected tumor is 15 mm, which is the average radius at which a tumor is identified [17, Section 11]. In view of these
assumptions, we choose 𝑎 = 1 and 𝑏 = (15)2∕(− log(0.8)) which implies that the initial tumor radius is 15 mm.

We compute the solution of (1) using three different chemotherapy profiles and calculate the corresponding values of 𝐽 . The
omputations are performed on a brain image using an MRI dataset included in MRIcron, a cross-platform NIFTI format image
iewer developed by Professor Chris Rorden and his group [25]. First, we use MATLAB to load the dataset and generate an axial
iew of the ‘‘ch2bet.nii’’ image, which has dimensions of 181×217×181 mm3, at the slice 𝑧 = 95 mm. We then apply the segmentation
pproach described in [26] to identify grey matter (GM) and white matter (WM) regions. Following this, we prepare a triangular
esh for finite element analysis to solve Eq. (1) on the brain.
There different initial distributions of tumor cells considered in this paper are shown in Fig. 2. The location of the center of the

initial tumor and its initial population size can be found in the figure.
8
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Fig. 3. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations in
rows, for patient 5.

To implement the finite element method for solving our PDE, we utilized MATLAB function solvepde. We performed
computations for all patients listed in Table 1, considering three different initial tumor locations in the frontal lobe, temporal lobe,
or occipital lobe, as mentioned in Fig. 2. However, we are only presenting the results for four different cases from various tumor
grades while the remaining cases are presented in Appendix. The different tumor grades include high grade (high 𝜌 and high 𝐷),
intermediate grade (high 𝜌 and low 𝐷 or low 𝜌 and high 𝐷), and low grade (low 𝜌 and low 𝐷) [17].

We selected patient 10 as a high grade tumor, patients 5 and 7 as intermediate grade, and patient 8 as a low grade. However,
it is important to note that the selection is not the only option; one can choose different patients. The results of our numerical
computations at the last day of chemotherapy, i.e., 𝑢(𝐱, 𝑇 ), are shown in Figs. 3–6. In these figures, the first column illustrates the
tumor without treatment, the second column corresponds to uniform treatment, and the last one depicts the optimal treatment as
defined in Eq. (26). Each row in the figures represents the results corresponding to one of the initial locations of the tumor mentioned
bove. The value of 𝐽 for each case has been calculated and presented in the figures. The results for the other patients from Table 1
re presented in Appendix for the information of the reader.
All of these figures confirm the effect of treatment on tumor growth, while tumors can grow drastically without treatment.

ur results show that the population size of the tumor is smaller with the chemotherapy profile suggested by (26) compared to
he uniform dose delivery. This finding is in line with Theorem 1, which states that the treatment scheduling in (26) is minimal.
owever, one can observe that the efficacy of the optimal treatment in reducing tumor size on the last day of treatment, i.e., 𝐽 , varies
or tumors with different parameters and locations. This raises the question of which parameters, invasion rate and proliferation
ate, correlate with the efficacy of the optimal treatment.
To address the question, we have plotted the relative difference

(

𝐽 (0) − 𝐽 (𝐶⋆)
)

∕𝐽 (0) with respect to 𝜌 in Table 1 for different
umor locations in Fig. 7. The relative difference indicates the reduction in the size of the tumor in the last day of the optimal
reatment compared to the size of the tumor without treatment. The linear regression line 𝑎 + 𝑏𝜌 is also plotted in the figure, and
ou can find the formula of the line for each tumor location in the caption of the figure.
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Fig. 4. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations in
rows, for patient 7.

6. Conclusions and discussions

In this study, we addressed the question of whether the MTD chemotherapy scheduling, a common practice in clinics, is optimal
or if there is room for improvement. To do so, we used a reaction–diffusion PDE to model the evolution of the tumor in a cycle of
chemotherapy. Considering the total population of tumor cells at the end of the cycle as our objective function, we formulated the
question into a PDE-constrained optimization problem or an optimal control problem involving a PDE.

We have demonstrated that the optimization problem has a unique solution and have derived an analytical solution, which is
rare in the context of PDE-constrained optimization. The optimal chemotherapy profile suggested by our results is a ‘‘bang–bang’’
increasing profile, as presented in Formula (26). Clinically, the optimal profile suggests starting the chemotherapy cycle with a rest
period, followed by administering the medicine in the last days of the cycle at the highest allowable dose. This is what we known as
MTD strategy in clinics for chemotherapy and a profile of it for a cycle can be found in [11, Figure 1] which is same as our optimal
profile. This means that our results confirm and validate the MTD strategy in clinics. This result can be considered as a validation
for the model (1) as it has been studied and improved during the past two decades, see for instance, [9].

Our numerical results validate our analytical results and confirm that the profile in (26) yields the smallest population size for
tumor at the end of the treatment.

Fig. 7 shows a linear correlation between the proliferation rate 𝜌 and the effectiveness of the optimal chemotherapy strategy in
reducing tumor size at the end of treatment. This indicates that the optimal strategy is more successful in reducing tumor size for
tumors with a higher proliferation rate compared to cases with no treatment. We observe a consistent linear correlation across all
locations. However, it is worth noting that the slope of the linear regression may vary between different locations.

It appears that the influence of the invasion rate on the effectiveness of the optimal treatment is correlated in a more complex
manner than what can be observed using our current model. This suggests the necessity of modifying the model (1). Nevertheless,
we are confident that the model can be effectively utilized to analyze and enhance the current trends in radiotherapy for brain
10

tumors. This could pave the way for new research in this direction.
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Fig. 5. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations in
rows, for patient 8.
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Fig. 6. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations in
rows, for patient 10.

Fig. 7. The relative difference
(

𝐽 (0) − 𝐽 (𝐶⋆)
)

∕𝐽 (0) with respect to 𝜌 for different tumor locations: (left) 𝐱𝟎 = (105, 45) (middle) 𝐱𝟎 = (140, 100) (right) 𝐱𝟎 = (108, 165).

Appendix

In this appendix, we will present the results of our numerical implementations for patients 1–4, 6,9, and 11–12 in Figs. 8–15
respectively.
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Fig. 8. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations in
rows, for patient 1.
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Fig. 9. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations in
rows, for patient 2.
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Fig. 10. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations
in rows, for patient 3.
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Fig. 11. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations
in rows, for patient 4.
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Fig. 12. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations
in rows, for patient 6.
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Fig. 13. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations
in rows, for patient 9.
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Fig. 14. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations
in rows, for patient 11.
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Fig. 15. Three different chemotherapy treatments are listed in columns, along with their corresponding tumor populations for three different tumor locations
in rows, for patient 12.
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