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Abstract

Novice programmers often face challenges in designing computa-
tional artifacts and fixing code errors, which can lead to task aban-
donment and over-reliance on external support. While research
has explored effective meta-cognitive strategies to scaffold novice
programmers’ learning, it is essential to first understand and as-
sess students’ conceptual, procedural, and strategic/conditional
programming knowledge at scale. To address this issue, we propose
a three-model framework that leverages Large Language Models
(LLMs) to simulate, classify, and correct student responses to pro-
gramming questions based on the SOLO Taxonomy. The SOLO
Taxonomy provides a structured approach for categorizing student
understanding into four levels: Pre-structural, Uni-structural, Multi-
structural, and Relational. Our results showed that GPT-40 achieved
high accuracy in generating and classifying responses for the Rela-
tional category, with moderate accuracy in the Uni-structural and
Pre-structural categories, but struggled with the Multi-structural
category. The model successfully corrected responses to the Rela-
tional level. Although further refinement is needed, these findings
suggest that LLMs hold significant potential for supporting com-
puter science education by assessing programming knowledge and
guiding students toward deeper cognitive engagement.
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1 Introduction

Novice programmers often struggle with designing computational
artifacts and fixing code errors, leading them to rely on external
support or abandon tasks. To enhance their persistence and reduce
frustration, researchers have explored scaffolding strategies to im-
prove how novices approach programming [4]. However, in order
to provide effective approaches to scaffold students’ programming
learning process, it is important to first evaluate their conceptual,
procedural, and strategic/conditional programming knowledge. In
addition, students in introductory programming classes often ex-
hibit varying levels of background knowledge, experience, and
understanding. This variation poses challenges for instructors who
want to tailor their support to meet the diverse needs of their stu-
dents.

To address these challenges, one approach is to develop a scal-
able, and efficient way for ascertaining students’ understanding, so
instructors can better tailor their support. One such method that
has gained significant attention is the Structure of the Observed
Learning Outcome (SOLO) taxonomy, a framework widely studied
by CS educators for providing a consistent approach to evaluating
students’ levels of understanding [1]. It’s often applied to assess
programming skills such as code comprehension, code writing, and
algorithmic design [2] through individual assessments.

Moreover, recent advances in large language models (LLMs)
have enabled the automation of code generation and error cor-
rection, providing new opportunities to support novice learners
at scale [3]. In this study, we propose a three-model framework
that leverages the capabilities of LLMs to simulate, classify, and
correct student responses, effectively reflecting their programming
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knowledge. Specifically, we aim to examine this research question:
To what extent is the Large Language Model (GPT-4o0) effective in
simulating, classifying, and correcting student responses based on
the SOLO Taxonomy in computer science education?

2 Methods

In our three-model framework, based on respective prompts, the
first model stimulates 100 student responses by referring to real
students’ responses, the second model classifies these 100 responses
using the SOLO Taxonomy, and the third corrects those responses to
help students progress from surface-level understanding to deeper
cognitive engagement. Details about the SOLO Taxonomy, dataset,
prompts, and human evaluation can be found below.

SOLO Taxonomy. We adopted the SOLO Taxonomy by modi-
fying it to focus on the types of knowledge demonstrated during
code comprehension and excluding the “extended-abstract” level,
as it involves broader conceptual connections beyond the scope
of basic programming tasks and we did not expect students at
this intro-level stage to relate the program to more abstract or ad-
vanced contexts. In this study, the four categories in the Taxonomy
are as follows: Pre-structural refers to a lack of correct answers
and understanding of basic constructs like loops and conditionals.
Uni-structural describes a correct answer but with an unclear un-
derstanding of the program’s purpose, as well as the roles of loops
and conditionals. Multi-structural involves a correct answer and
an understanding of loops and conditionals, but only a partial and
unclear understanding of the overall program’s purpose. Finally,
Relational denotes a correct answer with a full understanding of
the program, including the roles of loops and conditionals.

Dataset. This study collected data from ten undergraduate com-
puter engineering students through a think-aloud session, where
they analyzed a program calculating the sum of even Fibonacci num-
bers. Their responses were categorized into four SOLO Taxonomy
levels to assess their understanding of programming constructs.

Prompt. These are the key components of our prompts: 1) the
program used in the previous think-aloud study; 2) the program
output, detailing its purpose, logic, and key elements to clarify
code functionality and expected results; 3) definitions of the four
categories of the SOLO Taxonomy; 4) a Q&A section with examples
of actual student responses from the previous think-aloud study
for each category; and 5) our prompt description, which guides the
generation of student responses in line with the SOLO Taxonomy
definitions, following a specified format for consistency.

Model One: Simulating Student Responses. In the first model,
we used GPT-4o to generate student responses that mirrored the
SOLO levels by including all five components in the prompt. For
each of the four categories, we first generated five student responses,
resulting in 25 in total. These responses were reviewed by one au-
thor who conducted the previous think-aloud study independently
to ensure that the generated outputs accurately reflected the target
SOLO Taxonomy level. After validation, we expanded the simula-
tion to generate 100 responses across all four categories.

Model Two: Classifying Student Responses. The second model
classifies the 100 simulated responses according to the SOLO Tax-
onomy. The prompt includes all components except for Q&A as
we do not want to disrupt the model’s classification. After getting
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100 responses’ classifications, the same author reviewed these 100
students’ responses no matter which category they were in Model
One and Model Two.

Model Three: Correcting Student Responses. Based on the
human classification of these 100 student responses, we prompted
GPT-40 to modify the students’ responses to align with the Re-
lational category definition with human evaluation. This prompt
includes all components except for the program output, as we aim
to avoid directly providing GPT-40 with the fully correct answers
to the program.

3 Results

The results from our three-model framework illustrate varying
levels of success across the different SOLO Taxonomy categories.
Model 1, which focused on generating student responses, performed
exceptionally well in the Relational category, achieving 100% accu-
racy with all 25 responses. In the Uni-structural category, 88% (22
out of 25) of responses were correct, while performance dropped to
60% (15 out of 25) in the Pre-structural category. However, Model 1
struggled significantly with the Multi-structural category, failing to
generate any accurate responses. Similarly, Model 2, which focused
on classifying 100 student responses, achieved 100% accuracy in
the Relational category. The Uni-structural category showed lower
accuracy at 66% (19 out of 29 responses correctly classified), and
the Pre-structural category performed better at 92% (11 out of 12).
Like Model 1, Model 2 struggled with the Multi-structural category,
where no responses were correctly classified.

Model 3, which aimed to correct student responses in the Pre-
structural and Uni-structural categories (as there were no human-
validated responses in the Multi-structural category from Model
1), successfully transitioned 10 randomly selected responses to the
Relational level. Upon human evaluation, all 10 responses were
validated as correct. These results demonstrate that while GPT-40
performed well in generating and classifying responses at the Re-
lational level, it faced challenges in the Multi-structural category,
where understanding tends to be more fragmented. The model’s
ability to move from lower levels to the Relational level shows
the potential of LLMs in computer science education, assessing
programming knowledge and promoting deeper engagement. How-
ever, further refinement is needed to address gaps in understanding,
especially in the Multi-structural category.
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