
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

2023

Adaptive Multiple Distributed Bidirectional Spiral Path Planning Adaptive Multiple Distributed Bidirectional Spiral Path Planning

for Foraging Robot Swarms for Foraging Robot Swarms

Qi Lu
The University of Texas Rio Grande Valley, qi.lu@utrgv.edu

Ryan Luna
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Lu, Qi, and Ryan Luna. "Adaptive Multiple Distributed Bidirectional Spiral Path Planning for Foraging Robot
Swarms." In 2023 20th Conference on Robots and Vision (CRV), pp. 225-232. IEEE, 2023.
https://doi.ieeecomputersociety.org/10.1109/CRV60082.2023.00036

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:william.flores01@utrgv.edu

Adaptive Multiple Distributed Bidirectional Spiral
Path Planning for Foraging Robot Swarms

Qi Lu
Department of Computer Science

The University of Texas Rio Grande Valley
Edinburg, USA
qi.lu@utrgv.edu

Ryan Luna
Department of Computer Science

The University of Texas Rio Grande Valley
Edinburg, USA

ryan.luna01@utrgv.edu

Abstract—The Distributed Deterministic Spiral Algorithm
(DDSA) has shown great foraging efficiency in robot swarms.
However, when the number of robots in the swarm increases,
scalability becomes a significant bottleneck due to increased
collisions among robots, making it challenging to deploy them in
the search space (e.g., 20 robots). To address this issue, we propose
an adaptive Multiple-Distributed Bidirectional Spiral Algorithm
(MDBSA) that enhances scalability. Our proposed algorithm par-
titions the squared search arena into multiple identical squared
regions and assigns robots to regions dynamically based on the
number of regions. In each region, a bidirectional spiral search
path is planned, and when a robot completes its search, it is
assigned to either an unassigned region or a region with one
robot. The two robots will then travel along the path from the
starting and ending points of the spiral path. We evaluated the
performance of robot swarms using the MDBSA algorithm in the
ARGoS robot simulator. Our experimental results show that the
proposed MDBSA algorithm outperforms DDSA. When robots
deliver collected resources to regions instead of the center, it
reduces collisions and significantly improves the scalability of
the robot swarm. Our findings suggest that a multiple-distributed
search strategy is an efficient solution for foraging robot swarms.

Index Terms—Path Planning, Task Partitioning, Distributed
Spiral Search, Foraging Robot Swarms

I. INTRODUCTION

Foraging involves the search for and collection of objects,
and it is a challenging task for many species to retrieve
resources (e.g., seeds, nectar, or water) and bring them back
to their nests, especially when searching for multiple objects
in an unfamiliar environment. Foraging is not only a complex
task for many living organisms but also a metaphor for various
real-world robotics applications, such as search and rescue, hu-
manitarian de-mining, intrusion tracking, agriculture harvest-
ing, infrastructure inspection, and planetary exploration [1]–
[9].

Foraging swarm robotics involves using a large group of
simple robots to search for and retrieve multiple targets
or resources (e.g., minerals, hazardous waste, or survivors)
and transport them to designated locations (e.g., warehouses,
hospitals, or military bases) in order to maximize the collection
of resources within a limited time period. Achieving this goal
requires integrating various autonomous capabilities, including
localization, navigation, image processing, object detection, re-
trieval, and communication, to create a seamless and effective
robot system.

The focus of this work is on designing a search strategy for
robot swarms, which can be classified into two main types:
stochastic search and deterministic search. In stochastic search,
robots use probability-based methods to explore the search
space and find the optimal solution. The Central Place For-
aging Algorithm (CPFA [10]) is an efficient stochastic search
algorithm in swarm robotics. In this algorithm, robots search
for resources randomly and share the discovered information in
the environment to improve the effectiveness of foraging. Per-
formance is optimized using a genetic algorithm. In determin-
istic search, robots follow predefined rules or planned paths to
reach a specific goal. Unlike stochastic search, deterministic
search algorithms do not involve randomness or probability-
based decision-making. They are typically more predictable
and can be more efficient in situations where the search space
is well-defined and structured. For example, in the Distributed
Deterministic Spiral Search Algorithm (DDSA), robots search
for resources on planned squared spiral paths, and all areas in
the search space will be visited once (minimal oversampling)
when robots travel on the planned paths.

The work in [11] compares the stochastic search algorithm
CPFA to the deterministic search algorithm DDSA. The CPFA
takes advantage of sharing detected resource clusters with
other robots, which recruits additional robots to the detected
resource clusters and increases the foraging rate. However, the
results demonstrate that the DDSA performs at least as well as
the CPFA with a small number of robots. In the DDSA, robots
collect the closest targets first and can complete the collection
of the search space. However, the DDSA faces two major
scalability issues. First, as the number of robots increases,
congestion around the central collection zone increases rapidly.
Second, spiral paths cannot be planned for a large number of
robots.

We propose an adaptive path-planning algorithm called
MDBSA (Multiple Distributed Bidirectional Spiral Algorithm)
that can allocate robots to multiple distributed regions for
efficient resource search. The algorithm uses planned squared
spiral paths in the regions for the robots to search for re-
sources. We partition the search arena into equal size regions
based on the number of robots, and each robot is assigned
to a region to search for multiple resources on the spiral
path in their respective region. This approach minimizes

interventions in the swarm. However, since the number of
randomly distributed resources varies in each region, robots
complete their search at different times. Some robots may be
idle, while others keep working. To utilize idle robots and
further improve performance, the algorithm is adaptive. If a
robot completes its search earlier, it can be assigned to a new
unassigned region or one that has already been assigned. In
the latter case, the remaining spiral path in the region will be
shared by the two robots, with one starting from the beginning
point of the spiral path and searching clockwise, and the other
starting from the endpoint and searching counterclockwise.

We implement the MDBSA algorithm in the ARGoS multi-
physics robot simulator [12] for a robot swarm and de-
sign two versions of the MDBSA: MDBSACentralized and
MDBSADistributed . In MDBSACentralized , robots collect re-
sources and deliver them to the central collection zone, while
in MDBSADistributed , robots deliver collected resources to their
respective regions. We expect to see how delivering to the cen-
ter affects foraging performance. We assume that resources can
be transported to the center in a single high-capacity vehicle in
a consequent delivering task. Therefore, the MDBSADistributed
algorithm is designed for optimal performance and serves as
an upper bound for comparison.

We will compare the performance of the two MDBSA
algorithms to the DDSA algorithm using three sets of experi-
ments. The experiments will vary the number of regions, the
number of robots, and the number of distributed resources
to demonstrate the efficiency, adaptation, and scalability of
the algorithms. Our evaluation metrics will be the foraging
performance of the robot swarms, measured as the number of
resources collected per robot, and the collision time, which
measures the total time spent per robot on avoiding collisions
with each other.

The remainder of this paper is organized as follows. In
Section II, we summarize related work in spiral search al-
gorithms. In Section III, we describe the background work
in the deterministic spiral search algorithm. In Section IV,
we describe the design of our proposed adaptive MDBSA
algorithm. In Section V, we present the experimental setup.
In Section VI, we evaluate the results of our experiments.
Finally, we conclude in Section VII with a summary of our
contributions and future work.

II. RELATED WORK

The spiral search behavior, first observed in desert ants
(Cataglyphis fortis) [13], is a method for searching for a target
within a designated area using a spiral trajectory. Each circle
of the spiral represents the detection diameter of the agent.
This search method has been extensively studied and has
desirable optimality features [14]–[18], such as full coverage
of the search area, detection of the nearest targets first,
complete coverage of the area within the spiral, and minimal
oversampling. Detecting the nearest targets first is particularly
important, as it minimizes the travel time to the search point.
The spiral search algorithm can be a useful tool for target
search, especially in scenarios involving stationary targets.

An approach for conducting square search patterns using
a single helicopter has been proposed in a study [19]. Ad-
ditionally, a centralized multi-agent spiral search algorithm,
where agents begin at a central point, has been described
in another study [20]. Furthermore, parallel search methods
utilizing spiral trajectories have also been developed, where
each agent performs an individual spiral search independently
of the other members of the swarm [21].

The spiral search algorithm has gained popularity as a
benchmark and is being used in various real-world applica-
tions, as demonstrated by recent works. For instance, [22]
presented a multi-actor-attention-critic (MAAC) reinforcement
learning method for foraging robot swarms, comparing the
foraging performance of their approach with the DDSA al-
gorithm in simulation. Similarly, [23] implemented DDSA
on multiple physical ground robots and tested it in a large
outdoor environment. Furthermore, [24] developed a multi-
agent target search method for moving and invisible objects
using autonomous underwater vehicles (AUVs), comparing it
to the DDSA algorithm. In their approach, they divided the
original square area into four small squares, with each AUV
performing a spiral search on its small square. In addition, [25]
designed a lawnmower and the DDSA survey algorithm to map
the CO2 of a region of interest using flocking UAVs. Finally,
the theoretical analysis of DDSA’s performance was conducted
in [26], which revealed that it outperformed the deterministic
rotating-spoke and the random-ballistic algorithms.

III. THE DDSA ALGORITHM

The distributed deterministic spiral search algorithm
(DDSA) [11] algorithm differs from the stochastic search
algorithm central place foraging algorithm (CPFA) [10] by
leveraging the optimality of spiral search for single agents
and extending it to a swarm of robots [27]. Unlike CPFA,
DDSA is a geometric approach that employs a planned path
of interlocking square spirals for robots to search for targets,
starting from the central collection zone. When executed with-
out error, noise, or collisions, the DDSA ensures that robots
discover the nearest targets first, reducing transportation costs.
Moreover, the algorithm provides complete area coverage
while minimizing repeated searches of the same location.

To calculate the path for each robot, we consider the number
of robots r, the robot’s ID i, the c-th circle (one revolution
of the spiral), and the interlocking spiral distance g, which
depends on the robot’s target detection range. We generate the
points along the spiral path in the north, east, south, and west
directions in the order of their occurrence in each circle. Once
we generate all four directions’ points in the current circle,
we increase c, and the generated path enables robots to travel
clockwise. Equations 1 and 2 calculate the number of steps
(F) of each spiral path in the north (N) and south (S) directions
for the i-th robot on circle c. The number of steps to the east is
the same as the number of steps to the north, and the number
of steps to the west is the same as the number of steps to the
south.

The number of steps to the east (E) and west (W) directions
is calculated similarly, using a recurrence relation given in
[11], [23]. Solving this relation, we can simplify the DDSA
formulation to the following two equations:

FN
c,i = FE

c,i =

{
i if c = 1
(2c−3)r+2i if c > 1

(1)

FS
c,i = FW

c,i =

{
2i if c = 1
FN

c,i + r if c > 1
(2)

Fig. 1 displays the spiral trajectories of five robots in an
ARGoS simulation. The spiral search pattern commences at
the center, with resources presented as black dots arranged in
different sizes of clusters. The robots with green LED lights
depict the resource-searching and resource-delivery process.
The large red circle represents the center. The colored lines
indicate the paths of the five robots, with only the squared
spiral paths presented here. We do not display the paths
returning to and from the center. The robots will eventually
explore all areas within the search arena.

Fig. 1: The DDSA squared spiral trajectories of 5 robots in
ARGoS, overhead view.

Fig. 2 illustrates how an individual robot transitions through
a sequence of states during its foraging process using the
DDSA algorithm. Initially, the robots are dispersed around
the center, and the center calculates the spiral paths using
the equation provided above. Subsequently, it assigns the path
to each robot sequentially. Once this assignment is complete,
each robot moves to its designated path and initiates the search
for resources along that path. If a robot discovers a resource
during its search, it retrieves and transports it directly to the
center. Upon the robot’s return to the center, it completes one
foraging trip.

During subsequent foraging trips, the robot returns to the
last location where it discovered a target (assuming that the

robot can recall the location from the previous foraging trip)
and resumes its spiral search from that point. If a robot
completes the search along its entire spiral path without finding
a target, it returns to the center and awaits further instructions
until the completion of the foraging task.

Fig. 2: Robots’ states in the DDSA

IV. THE DESIGN OF MDBSA
We divide the square arena into smaller square regions of

equal size and plan spiral paths that fit within each region.
The center serves as a communication hub and interacts with
robots only when they are in the center. Communication
between the center and robots only takes place within short
distances. Robots make independent decisions when they leave
the center, and long-range communication is not possible.
A robot can communicate with another robot in the same
region. The center shares information with the robots about
the allocation of spiral paths and the search progress of other
robots. The robot chooses to either move to an unassigned
region or a region with the longest spiral path that has not
been completed by an assigned robot. The longest spiral path
indicates that the region was recently assigned to a robot
or that many resources are present, and the robot is busy
collecting them, resulting in minimal movement on the spiral
path.

We assume that there are NR ∈ 4k regions, where k ∈ N.
The size of the search arena is L×L meters, where L is the
length and width of the arena. The center of the search arena
is located at (0,0). The center of a region (xi,y j) at row i and
column j can be calculated using the following equation:

(xi,y j) = (
L
2
(1− 2i+1√

NR
),

L
2
(1− 2 j+1√

NR
)) (3)

In each region, there is only one spiral path. We can generate
a single spiral path in each region based on the equations 1
and 2 described above when the number of robots is 1.
Alternatively, we can calculate it using the derived equations
below.

FN
c = FE

c =

{
1 if c = 1
(2c−3)r+2 if c > 1

(4)

FS
c = FW

c =

{
2 if c = 1
FN

c + r if c > 1
(5)

In this work, we make the assumption that a robot can detect
a resource if the distance between the center of the robot and
the center of the resource is less than or equal to 0.13m. To
account for simulated Gaussian noise on the wheel encoder,
we set the distance g between adjacent spiral circles to 0.18m.

Fig. 3 illustrates the state transitions of each robot in the
MDBSA algorithm. The robots begin at the center and are
allocated to regions based on the number of regions and robots.
The MDBSA algorithm adapts to the number of robots and
regions, and two possible cases are presented below.

Fig. 3: Robots’ states in the MDBSA

When the number of robots is less than or equal to the
number of regions, the central server allocates each robot to
a region based on its ID. Once a robot completes its search
in a region, it returns to the center, which then assigns it to a
new region. If all regions are assigned, the center assigns the
robot to a region with the longest remaining spiral path. The
robot then travels on the spiral path from the end, allowing
two robots to search the same path from opposite directions.
If there are no available paths to assign or share, the robot
becomes idle.

Otherwise, the central server allocates one robot to each
region. It then allocates one more robot to each region until
there are no more robots left. Therefore, the maximum number
of robots that can be allocated in a search arena is twice
the number of regions. If the number of robots exceeds this
limit, the search arena can be partitioned into more regions
to accommodate more robots. If a robot completes its search
in a region, it will return to the center. The center will check
whether there is a path that can be shared in the region. If not,
the robot will be idle until there is a path available for it to
search.

We created two versions of MDBSA: MDBSACentralized
and MDBSADistributed . In MDBSACentralized , robots collect
resources in their assigned regions and deliver them to the
center. In MDSADistributed , robots deliver resources to their
regional centers. We assumed that the collected resources
would eventually be delivered to the center from the regional
centers using larger logistic robots. Therefore, the perfor-
mance of MDBSADistributed serves as an upper bound for
MDBSACentralized .

Robots are responsible for searching for resources within
their designated regions. When a robot discovers a resource,
it delivers it to either the central server in MDBSACentralized
or its regional center in MDBSADistributed . Once completed,
the robot returns to the previous location where it found the
resource and resumes its search along the spiral path. If the
robot completes the search within the region, it returns to the
center for a new assignment. The center assigns the robot to
a new unassigned region if one is available. If all regions are
assigned, the robot shares a spiral path with another robot in
a region as previously described. If there are no unassigned
regions, the robot becomes idle.

Fig. 4: The MDBSA squared spiral trajectories of 8 robots are
in 16 (4×4) regions, overhead view.

Fig. 4 shows the squared spiral trajectories of 8 robots
in the MDBSACentralized as they search for resources in the
partitioned arena of 16 regions. Each robot is assigned to
search in a specific region, and their trajectories are shown in
different colors. Robot “R2” completed its search in a region
and its trajectory is shown in blue. It was then assigned to a
new region at the bottom of the arena to continue its search
for resources.

Fig. 5 demonstrates the trajectories of 8 robots in the
MDBSADistributed , where two robots are assigned to each of
the 4 regions. The trajectories show that one robot starts from
its regional center, while the other starts from the end point of
the spiral path. They will eventually meet at some point in their
spiral path and complete the search in the region. Afterward,
they will return to the center and be assigned to new regions.
Each region can accommodate up to two robots, and no region
can be assigned to more than two robots in this case. If a robot
completes its search, it will become idle.

We compared the proposed MDBSA algorithm to the DDSA
algorithm. We aimed to quantify the difference in performance
between MDBSACentralized and MDBSADistributed . Videos of

Fig. 5: The MDBSA squared spiral trajectories of 8 robots are
in 4 regions, overhead view.

the algorithm running in the simulation are available on
YouTube1.

V. EXPERIMENT SETUP

We performed three sets of experiments to assess the
foraging performance and scalability of the proposed MDBSA
algorithm for robot swarms, using the multi-robot simulator
ARGoS [12]. In Experiment 1 (as shown in Table I), we used
8 robots and 160 resources, which were randomly distributed
in the search arena as clusters of various sizes. To obtain a
statistically robust evaluation of performance, we conducted
100 runs for each configuration. The simulation lasted for 12
minutes. We varied the number of regions while keeping other
settings constant. The search space, spanning 8×8 meters, was
partitioned into 4, 16, and 64 equal-sized regions to evaluate
the impact of the number of regions on foraging performance.

TABLE I: Configuration in Experiment 1

Search space (m) 8 × 8
Number of robots 8
Number of resources 160
Number of runs 100
Resource distribution Different sizes of clusters
Number of regions 4, 16, 64
Foraging time (minute) 12

In Experiment 2 (refer to Table II), we used a search space
of 8×8 meters, with 16 equal-sized regions, and 200 resources
randomly distributed in clusters of different sizes. We varied
the number of robots (8, 14, 20, 26, and 32) to evaluate the
scalability of the algorithm.

1https://youtu.be/CzJclBx1co4

TABLE II: Configuration in Experiment 2

Search space (m) 8 × 8
Number of robots 8, 14, 20, 26, 32
Number of resources 200
Resource distribution Different sizes of clusters
Number of regions 16
Foraging time (minute) 16

Experiment 3, as presented in Table III, followed a similar
setting as Experiment 2. We varied the number of resources
to assess the algorithm’s adaptability to different densities of
resources in the search space.

TABLE III: Configuration in Experiment 3

Search space (m) 8 × 8
Number of robots 16
Number of resources 100, 150, 200, 250, 300
Resource distribution Different sizes of clusters
Number of regions 16
Foraging time (minute) 12

VI. RESULTS

Our evaluation focuses on two key metrics: the average
number of collected resources per robot and the time spent
avoiding collisions per robot in each simulation. All of the
figures presented in this work were generated by averaging
the results of 100 independent runs for each configuration. For
experiments 1 and 2, we have conducted the Mann-Whitney U
test for statistical analysis between each pairing of the 3 algo-
rithms. The notch on each plot indicates the 95% confidence
interval of the medians. If the notches of the two boxes do
not overlap, this indicates a statistically significant difference
between the medians. The ‘***’ represents the significant
difference (p < 0.001). The ‘**’ represents a considerable
difference, ‘*’ represents a slight difference, and ‘-’ represents
a negligible difference.

Fig. 6 presents the results for Experiment 1. DDSA’s results
remained the same as the algorithm does not utilize regions.
When using 4 and 16 regions, MDBSACentralized achieved sim-
ilar performance to DDSA regarding the number of collected
resources. However, we observed a decrease of approximately
25% in the number of collected resources using 64 regions.
On average, MDBSADistributed collected around 101% more
resources than DDSA and around 112% more resources than
MDBSACentralized . MDBSADistributed had the lowest standard
deviation, achieving the highest number of collected resources
when using 16 regions. The collision time in MDBSACentralized
increased as the number of regions increased, with both
collision time and standard deviation being the highest among
all algorithms. When using 4 and 64 regions, MDBSADistributed
has approximately 33% less time in collisions than DDSA, and
around 72% less time when using 16 regions. Additionally, it

had the lowest standard deviation in collision time compared
to the other two algorithms.

Fig. 6: Resources collected and collision times per robot in
Exp. 1

Fig. 7 displays the average number of resources collected
per robot per minute in Experiment 1. The results show
that MDBSADistributed outperforms both MDBSACentralized and
DDSA consistently. MDBSACentralized and DDSA exhibit sim-
ilar trends for 4 and 16 regions, with DDSA being slower
to start during the first 2 minutes. However, when using 64
regions, both MDBSACentralized and DDSA consistently have
low performance. As the number of regions increases, a more
pronounced arc is observed in the trend for MDBSADistributed ,
where robots are most efficient at collecting resources during
the first 9 minutes of the simulation.

Fig. 7: Foraging rate per minute in Exp. 1
Fig. 8 presents the results for Experiment 2. We observe

that as the number of robots increases, MDBSADistributed
becomes increasingly more efficient at collecting resources
per robot compared to DDSA. Specifically, MDBSADistributed
outperforms DDSA by ≈ 100% to ≈ 200% in terms of the
number of resources collected per robot as the number of
robots increases. On the other hand, MDBSACentralized collects
≈ 44% fewer resources than DDSA as the number of robots
increases from 14 to 32. Additionally, the standard deviation
in the number of resources collected decreases as the number
of robots increases in all algorithms, except for a few outliers
in MDBSADistributed . Increasing the number of robots has a
significant effect on the collision times for MDBSACentralized ,
with the collision time increasing sharply compared to DDSA.
As the number of robots increases, MDBSADistributed spends
the least amount of time in collisions, achieving ≈ 21% to
≈ 58% less collision time than DDSA.

Fig. 8: Resources collected and collision time per robot in
Exp. 2

Fig. 9 depicts the average number of resources collected
per robot per minute in Experiment 2. Across all algorithms,
there is a decreasing trend in the number of resources collected
per robot as the number of robots increases. This trend is
more pronounced in DDSA and MDBSACentralized across all
minutes. MDBSADistributed shows a noticeable change in trend,
where the decline in resource collection begins earlier as the
number of robots increases. In all simulations except for those
with 4 robots, MDBSACentralized consistently underperforms
against both other algorithms. In simulations with 16 or more
robots, robots collect ≈ 24% fewer resources than DDSA in
MDBSACentralized . Despite the change in the number of robots,
MDBSADistributed collected the most resources on average

Fig. 9: Foraging rate per minute in Exp. 2

during the first 6 minutes.

Fig. 10: Resources collected and collision time per robot in
Exp. 3

Lastly, Fig. 10 displays the results for Experiment
3. MDBSACentralized collects ≈ 30.4% fewer resources
than DDSA. As the total number of resources increases,
MDBSADistributed demonstrates an almost 100% collection
rate on average with a ≈ 60% to ≈ 350% improvement in
the number of collected resources as the number of robots
increases in comparison to DDSA. MDBSACentralized displays
an upward trend with decreasing momentum in the collision
time as the number of resources increases. It contains the
highest collision time per bot in comparison to the others.

VII. DISCUSSION

In this study, we compared the performance of three
foraging algorithms: DDSA, MDBSACentralized , and
MDBSADistributed . Our results show that in all simulated
scenarios, MDBSADistributed outperformed the other two
algorithms in terms of the number of collected resources and
collision time. This is because the travel time for robots is
significantly reduced, and collisions between robots delivering

resources to a central location are avoided in this algorithm.
When using 4 and 16 regions, MDBSACentralized showed
performance comparable to DDSA in terms of the number
of collected resources, but its performance decreased in
the scenario with 64 regions (see Fig.6 and Fig.7). This is
because robots are distributed across smaller regions around
the center, which leads to more collisions. However, in
MDBSADistributed , the performance may experience a slight
decrease since robots spend more time traveling to the center
for new assignments to other regions.

As we increase the number of robots in all three algo-
rithms, the foraging performance per robot decreases due to
increased competition over resources (see Fig. 8). However,
MDBSADistributed is the least affected by this since the reduced
travel time and collisions enable robots to collect resources
more efficiently. DDSA still outperforms MDBSACentralized
because more robots can find resources quickly in the
MDBSACentralized and deliver them to the center, resulting
in more collisions (see Fig. 8). However, the highly efficient
performance of MDBSADistributed implies that delivering to
the center is a major issue. Additionally, we find that the
standard deviations in both the resource collection and col-
lision time decrease as the number of robots increases in all
three algorithms. This suggests that increasing the number of
robots stabilizes the algorithms’ performance, regardless of
their individual performance, as the performance of a smaller
number of robots is more sensitive to the distribution of
resources.

Experiment 3 also showed a similar trend in the stan-
dard deviations of resource collection for DDSA and
MDBSACentralized (see Fig. 10). Increasing the number of
resources further stabilized the two algorithms because the
distribution of resources became closer to random, with each
region having a similar number of resources. However, this
had the opposite effect on MDBSADistributed . Even though this
algorithm outperformed the others, as the number of resources
increased, the standard deviation increased, suggesting some
instability of the algorithm as the environment became increas-
ingly dynamic in terms of resource distribution.

Our experiments have demonstrated that MDBSADistributed
is highly efficient in collecting resources in a scalable
way, outperforming DDSA and MDBSACentralized in terms
of the number of collected resources and collision time.
Experiment 2 showed that as the number of robots in-
creases, MDBSADistributed becomes more efficient, with a
higher foraging rate achieved early on in the simulation.
However, as the number of resources increases in Experi-
ment 3, the standard deviation of resource collection time
increases, indicating some instability in the algorithm. Never-
theless, MDBSADistributed remains highly efficient in collecting
nearly 100% of resources within a 12-minute time frame.
Our findings suggest that a distributed approach, such as
MDBSADistributed , can significantly improve the efficiency and
scalability of resource collection in foraging robot swarms.

The results of this study have significant implications for the
development of foraging robot swarms. The MDBSADistributed

algorithm has the potential to substantially improve resource
collection efficiency, especially in scenarios where resources
are limited or time is critical. Additionally, implementing
a distributed approach can reduce collision time, enhancing
the system’s reliability, scalability, and robustness. Our study
shows that a distributed approach can significantly enhance the
performance of deterministic foraging robot swarms in terms
of efficiency, reliability, scalability, and robustness, making it
highly suitable for time-critical applications. In conclusion,
this study establishes a solid basis for future research into
the advancement of multi-robot systems designed for resource
collection tasks. It has the potential to contribute significantly
to the development of robotic systems that can help address
challenges in areas such as agriculture, disaster response, and
exploration, among others.

This study has opened up several avenues for future research
to build upon its findings. Firstly, the simulations were con-
ducted in a controlled environment, which may not reflect the
complexity and dynamics of real-world scenarios. Hence, it is
necessary to evaluate the algorithm’s robustness in more com-
plex scenarios, such as those with sensor errors or obstacles,
to better understand the algorithm’s performance. Secondly,
the current implementation of MDBSADistributed separates the
foraging and transportation tasks. Future research could focus
on developing a more comprehensive algorithm that integrates
both tasks to improve the efficiency and effectiveness of the
foraging robot swarm system in practical applications. An
integrated approach could be achieved by adding a specialized
transportation vehicle to the system that periodically delivers
multiple resources to the center. Overall, this study provides a
solid foundation for future research to develop more efficient
and effective foraging robot swarm systems for a variety of
applications.

ACKNOWLEDGMENT

This work is supported by the GAANN program
(P200A210144 - 22) from the U.S. Department of Education.
The authors would also like to acknowledge the partial funding
provided by the CREST Center for Multidisciplinary Research
Excellence in Cyber-Physical Infrastructure Systems (MECIS)
through NSF Award No. 2112650.

REFERENCES

[1] A. F. T. Winfield, Towards an Engineering Science of Robot Foraging.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 185–192.

[2] S.-k. Yun and D. Rus, “Adaptive coordinating construction of truss struc-
tures using distributed equal-mass partitioning,” Trans. Rob., vol. 30,
no. 1, pp. 188–202, Feb. 2014.

[3] W. Fink, J. M. Dohm, M. A. Tarbell, T. M. Hare, and V. R. Baker, “Next-
generation robotic planetary reconnaissance missions: A paradigm shift,”
Planetary and Space Science, vol. 53, no. 14–15, pp. 1419 – 1426, 2005.

[4] R. Groß and M. Dorigo, “Towards group transport by swarms of robots,”
International Journal of Bio-Inspired Computation, vol. 1, no. 1-2, pp.
1–13, 2009.

[5] C. W. Bac, E. J. Henten, J. Hemming, and Y. Edan, “Harvesting robots
for high-value crops: State-of-the-art review and challenges ahead,”
Journal of Field Robotics, vol. 31, no. 6, pp. 888–911, 2014.

[6] V. Gazi and K. M. Passino, “Stability analysis of social foraging
swarms,” Trans. Sys. Man Cyber. Part B, vol. 34, no. 1, pp. 539–557,
Feb. 2004.

[7] S. M. Ackerman, G. M. Fricke, J. P. Hecker, K. M. Hamed, S. R. Fowler,
A. D. Griego, J. C. Jones, J. J. Nichol, K. W. Leucht, and M. E. Moses,
“The swarmathon: An autonomous swarm robotics competition,” in 2018
IEEE Intl. Conference on Robotics and Automation (ICRA), 2018.

[8] C. Ju and H. I. Son, “Multiple UAV systems for agricultural applications:
Control, implementation, and evaluation,” Electronics, vol. 7, no. 9,
2018.

[9] D. Albani, J. IJsselmuiden, R. Haken, and V. Trianni, “Monitoring and
mapping with robot swarms for agricultural applications,” in 2017 14th
IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), 2017, pp. 1–6.

[10] J. P. Hecker and M. E. Moses, “Beyond pheromones: evolving error-
tolerant, flexible, and scalable ant-inspired robot swarms,” Swarm Intel-
ligence, vol. 9, no. 1, pp. 43–70, 2015.

[11] G. M. Fricke, P. H. Joshua, D. G. Antonio, T. T. Linh, and E. M. Melanie,
“A Distributed Deterministic Spiral Search Algorithm for Swarms,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 4430–4436.

[12] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, and F. Ducatelle, “ARGoS:
a modular, parallel, multi-engine simulator for multi-robot systems,”
Swarm intelligence, vol. 6, no. 4, pp. 271–295, 2012.

[13] M. Muller and R. Wehner, “The hidden spiral: systematic search and
path integration in desert ants, cataglyphis fortis,” The Journal of
Comparative Physiology, vol. 175, pp. 525–530, 1994.

[14] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey, “Supporting wilderness search and
rescue using a camera-equipped mini uav,” Journal of Field Robotics,
vol. 25, no. 1-2, pp. 89–110, 2008.

[15] G. Dudek, “Spiral search as an efficient mobile robotic search tech-
nique,” in Proceedings of the 16th National Conf. on AI, 1999.

[16] E. Langetepe, “On the optimality of spiral search,” in Proceedings of
the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’10. USA: Society for Industrial and Applied Mathematics,
2010, p. 1–12.

[17] M. A. A. El-Hadidy, “Optimal spiral search plan for a randomly located
target in the plane,” International Journal of Operational Research,
vol. 22, no. 4, pp. 454–465, 2015.

[18] H. M. A. Gabal and M. A. A. El-Hadidy, “Optimal searching for a
randomly located target in a bounded known region,” International
Journal of Computing Science and Mathematics, vol. 6, no. 4, pp. 392–
403, 2015.

[19] A. Ryan and J. Hedrick, “A mode-switching path planner for uav-
assisted search and rescue,” in Proceedings of the 44th IEEE Conference
on Decision and Control, 2005, pp. 1471–1476.

[20] R. Baeza-Yates and R. Schott, “Parallel searching in the plane,” Com-
putational Geometry, vol. 5, no. 3, pp. 143–154, 1995.

[21] A. Hayes, A. Martinoli, and R. Goodman, “Swarm robotic odor local-
ization,” in Proceedings 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 2, 2001, pp. 1073–1078 vol.2.

[22] N. Yang, Q. Lu, K. Xu, B. Ding, and Z. Gao, “Multi-actor-attention-
critic reinforcement learning for central place foraging swarms,” in 2021
International Joint Conference on Neural Networks (IJCNN), 2021, pp.
1–6.

[23] Q. Lu, A. D. Griego, G. M. Fricke, and E. M. Moses, “Comparing
physical and simulated performance of a deterministic and a bio-
inspired stochastic foraging strategy for robot swarms,” in IEEE/RSJ
International Conference on Robotics and Automation (ICRA), 2019.

[24] G. Wang, F. Wei, Y. Jiang, M. Zhao, K. Wang, and H. Qi, “A multi-auv
maritime target search method for moving and invisible objects based
on multi-agent deep reinforcement learning,” Sensors, vol. 22, no. 21,
2022.

[25] J. Ericksen, G. M. Fricke, S. Nowicki, T. P. Fischer, J. C. Hayes,
K. Rosenberger, S. R. Wolf, R. Fierro, and M. E. Moses, “Aerial survey
robotics in extreme environments: Mapping volcanic co2 emissions with
flocking uavs,” Frontiers in Control Engineering, vol. 3, 2022.

[26] A. Aggarwal, D. Gupta, W. F. Vining, G. M. Fricke, and M. E.
Moses, “Ignorance is not bliss: An analysis of central-place foraging
algorithms,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 6510–6517.

[27] R. Baezayates, J. Culberson, and G. Rawlins, “Searching in the plane,”
Information and Computation, vol. 106, no. 2, p. 234–252, oct 1993.

	Adaptive Multiple Distributed Bidirectional Spiral Path Planning for Foraging Robot Swarms
	Recommended Citation

	tmp.1706633966.pdf.xYOn2

