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Abstract—Edge computing applications have strict require-
ments for latency, throughput, and energy. Increasingly, there
are more safety and security requirements due to system-level
threats that have been discovered in current SoCs. To address
these issues, the research community proposed multiple novel
solutions aimed at patching the uncovered threats. Nowadays,
open hardware SoC platforms have reached an impressive level
of maturity. We believe that such a level of maturity provides
interesting opportunities for the research community for the inte-
gration, development, and evaluation of innovative methodologies
for enhancing the security and safety of next-generation SoCs.
In this paper, we describe some of these opportunities we believe
are relevant, including system-level architectural extensions, fine-
grained timing analysis, and novel methodologies for security and
safety verification. Combined, these methodologies can ease the
certification process in critical systems and eventually contribute
to enhancing security and safety in the next generation of
commercial SoCs for critical-edge applications.

I. INTRODUCTION

Modern edge applications have complex requirements at
the intersection of high performance, energy efficiency, safety,
and security. Safety and security requirements are particu-
larly relevant in modern critical edge applications, such as
automotive, medical, and avionics, to name some examples.
To meet these complex requirements, current SoCs for the
implementation of critical edge applications are complex sys-
tems including several heterogeneous components, such as
processors, hardware accelerators, hardware root of trusts,
shared memories, and 10s, etc. The sample architecture of a
modern SoC is represented in Figure 1 — multiple controllers
C (e.g., processors, hardware accelerators, DMAs, etc.) are
interconnected to multiple shared peripherals P (e.g., DRAM
memories, scratchpads, 10s, etc) through a system interconnect
implementing a modern standard for on-chip communications.
Given their complexity, developing all of the computing com-
ponents in-house is not typically a convenient choice for an
SoC vendor: a modern SoC is generally a composition of
multiple third-party IPs sourced from different vendors or
open-source projects.

The hardware CWE database enumerating the weaknesses
found in commercial systems and maintained by the MITRE
consortium witnesses how modern SoCs are unfortunately rife
with security and safety weaknesses [1]. Such weaknesses
originate from different sources, ranging from bugs in out-
sourced IPs, optimizations for high-performance generating
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dangerous conditions, superficial verification, etc. Recent re-
search works demonstrated how the interactions among the
integrated IPs are a major source of security and safety
concerns — it has been demonstrated how a single misbe-
having/malicious IP component can easily break the whole
system execution, for instance, taking advantage of a combi-
nation of lack of specification in the on-chip communication
standard [2] with mechanisms for high performance deployed
in modern SoC platforms. This generates particularly critical
concerns when the SoC integrates third-party IP modules
originating from external sources.

In this paper, we describe some of the opportunities we
believe are currently particularly relevant for enhancing the
security and safety of SoCs for critical edge applications.
We find opportunities at the intersection of three pillars: (i)
hardware-enabled security and safety, through the integration
of ad-hoc high-performance architectural extensions aimed
at supporting proactive supervision of the computing units;
(i1) fine-grained worst-case timing analysis, supporting real-
time guarantees in timing interactions for critical task execu-
tion; and (iii) property-based security and safety verification,
supporting the system-level verification process of the SoC,
of the functionalities for enhancing its safety and security,
and uncovering potential weaknesses. In the combination of
these three pillars, we aim at the concept of zero-trust system
architectures — in contrast with several modern SoCs, in which
the computing units are implicitly trusted and assumed to
work cooperatively, we support a target specification enforcing
supervised access to the system of the computing units, while
keeping full compliance with the de-facto on-chip communi-
cation standards for supporting best integration compatibility.

We believe that the availability of the full codebase of
fully-featured mature open-hardware platforms represents an
unprecedented opportunity for the development, integration,
and testing in real testbeds of these advanced mechanisms for
enhancing the security and safety of the system. We believe
that this provides a fundamental platform for the extended
research community to have a central role in defining the
architecture of the next-generation SoCs for critical edge
applications and directly influence the industry.
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Fig. 1. The sample architecture of a modern crossbar-based SoC: controllers
C are interconnected to shared peripherals P through a system interconnect.

II. FIRST PILLAR: ARCHITECTURAL HARDWARE
EXTENSIONS FOR SAFETY AND SECURITY

As introduced in Section I, the architecture of a modern SoC
is typically composed of a collection of third-party hardware
IPs. Integration of multiple IPs in a system creates system-
level threats for safety and security, in particular when inte-
grating third-party controller IPs: it has been demonstrated, for
instance, how a single misbehaving or malicious controller IP
can easily exploit lack of specification in the de-facto standard
for on-chip communications [2] to generate conditions ranging
from bandwidth-stealing [3] to Denial-of-Service in accessing
shared resources (e.g., a shared DRAM memory) [4]. Such
conditions have been demonstrated to be capable of affecting
the whole system execution and generating system failures.
Clearly, a system failure is a critical condition to avoid in
the majority of edge critical systems. From the previous
considerations, third-party IP integration can be challenging
in critical systems — given the complexity of current IPs,
verifying the absence of bugs, weaknesses, or undercover
malicious behaviors possibly triggered by the integrated IPs
is not straightforward, also considering that controllers can be
provided by the vendor as encrypted IPs (in these cases, no
direct RTL analysis is possible) and that generally modern
controllers IPs are configurable by software.

An approach to tackle these challenges is the deployment
of ad-hoc hardware defensive mechanisms, specifically aimed
at actively monitoring and supervising the execution of each
computing unit IP. Some examples of such functionalities
involve enforcing an active supervision and control of: (i) the
structure of the transactions issued by each controller IP. This
enables the shielding of the system against bandwidth-stealing-
related threats and enforcing a fair and predictable bandwidth
distribution among the controllers [3]; (ii) the timing in data
provisioning after write requests are generated by the con-
troller IPs [4] or validating write data before the propagation of
a write request [5]. These two solutions shield the system from
potential attempts of Denial-of-Service attacks of the shared
resources; (iii) the address space that can be accessed by each
controller at runtime [6], [7], enforcing a target access control
policy specification supporting the confidentiality and integrity
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Fig. 2. A sample architecture featuring an AXI HyperConnect in a hardware-
accelerated application deployed on a modern FPGA SoC platform. In this
case, the control port of the AXI HyperConnect is connected to the Processing
System (PS) providing security and safety functionalities to a Hypervisor.

of the shared resources and the controllers.

In an SoC deploying a crossbar-based system interconnect,
such as the one represented in Figure 1, the previously
introduced solutions can be seamlessly deployed leveraging
a custom system interconnect enhanced with advanced safety
and security features [8] or enhancing the functionalities of
a standard system crossbar with ad-hoc IPs [9]. The AXI
HyperConnect [8] is an example of an enhanced AXI intercon-
nect featuring advanced functionalities for system-level safety
and security. AXI HyperConnect is a one-to-one substitute
for AXI interconnects deploying all of the standard routing
functionalities of a standard AXI interconnect, enhanced with
advanced features for the active monitoring and supervising
of the computing units and aimed at enforcing secure and
safe system interactions. The AXI HyperConnect works in
synergy with a trusted entity (e.g., a Hardware Root of Trust,
a hypervisor, etc.), enabling dynamic supervising, runtime
management, and proactive reaction to misbehaviors and secu-
rity attacks attempted by the controllers. Such functionalities
provide a crucial feature for critical systems: keeping the
system operational even when faults, misbehavior, or security
attacks are attempted on the system by one or multiple
misbehaving/malicious computing unit controller(s). A sample
architecture deploying the AXI HyperConnect is reported in
Figure 2.

III. SECOND PILLAR: FINE-GRAINED TIMING ANALYSIS
FOR TIMING PREDICTABILITY

Timing predictability is another crucial requirement in crit-
ical systems. Guaranteeing that critical tasks executing on top
of the hardware computing units of the SoC can execute within
predefined time deadlines is fundamental to ensuring the safety
of the system and avoiding dangerous conditions [10]. This
process is particularly relevant when a certification process is
required. As also introduced in Section II, challenges arise in
ensuring the timing predictability of the system interactions
when multiple heterogeneous controllers compete to access
a shared resource, for instance, the central DRAM memory
controller. The architectural hardware extensions described in
previous sections provide a framework for enforcing nominal
and predictable system interactions. However, another impor-
tant matter must be addressed — bounding the legal interference
that the computing units generate on each other during exe-
cution, considering also that critical and non-critical tasks can
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compete in the same system in accessing a shared resource.
Challenges arise when considering modern SoCs, specifically
considering that advanced features such as multiple outstand-
ing transactions and burst transactions are fundamental to
provide the high performance in system interactions required
in modern applications, but also introduce a relevant level of
unpredictability.

To tackle this challenge, recently, multiple system-level
worst-case timing analyses have been proposed. These anal-
yses are capable of providing mathematical upper bounds
on system interactions, considering the features for high
performance deployed in modern AXI-based SoCs and the
possible hierarchical structure of the architecture [11], [12].
The solutions follow a mathematical approach aimed first at
modeling and analyzing the maximum interference suffered by
each computing unit during execution and follow computing
the overall cycle-accurate response time analysis considering
the specific architecture of the target system to provide a
safe upper bound of the system interactions. This approach
has been demonstrated to be effective in real designs and
applications — an example is the application of this approach
to upper-bound the execution time of the AMD Deep learning
Processing Unit (DPU) (part of the AMD Vitis Al framework)
executing Deep Neural Network (DNN) algorithms for au-
tonomous driving applications on a modern commercial FPGA
SoC [13]. A similar approach has also been applied to upper
bound the response time of a Pointer Authentication (PAC)
module extension for ARMv7 architectures on reconfigurable
SoCs platforms [14].

IV. THIRD PILLAR: SECURITY/SAFETY VERIFICATION

As described, the solutions proposed in Section II aim
at enhancing the system-level safety and security of the
system. Given their criticality, these functionalities should be
carefully verified — the verification process provides funda-
mental support for ensuring the safe and secure operations
of the introduced hardware extensions. Recently, property-
based security verification processes have been demonstrated
to be effective in discovering weaknesses and vulnerabilities
when the RTL is available, even in complex scenarios such
as when applied to the OpenTitan open-source hardware root
of trust [15]. As of today, security verification is mainly a
manual process involving, among other steps, the definition
of the threat model, the identification of the security assets,
and the definition and verification of the security properties —
some works have been currently proposed in the direction of
partially or completely automating this process [16]-[18].

Property-based security verification can have a fundamental
contribution in ensuring the security and safety of newly
proposed hardware extensions, providing support with ver-
ifiable hardware properties to the aimed functionalities. To
make an example, property-based security verification has
been effectively applied, for instance, for the verification
of the secure operation of a newly proposed access control
system framework for modern SoCs [6], [7]. Access control
systems are sadly known to be one of the major sources
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of security issues — the MITRE consortium identifies 5 out
of 12 of the most relevant hardware CWE to be related to
access control [19]. In this context, the property-based security
verification enables the verification of the system against the
common bugs and weaknesses by defining properties covering
the common hardware weaknesses enumerated by MITRE and
verifying them with ad-hoc tools [20].

Similar methodologies apply to other hardware extensions
for improving the security of the system, such as the one
summarized in this paper in Section II and future solutions.
Analogous property-based verification methodologies have
also been recently demonstrated for covering safety issues,
for instance, in demonstrating the absence of IPs introducing
the issue of denial-of-service of shared resources introduced
in Section II [21].

V. PUTTING IT ALL TOGETHER IN OPEN PLATFORMS

Open-hardware SoC platforms have reached an impressive
level of maturity, providing rich functionalities for the deploy-
ment of fully functional SoCs. As mentioned in Section I,
we believe that the availability of such mature open-hardware
platforms provides unprecedented opportunities for the devel-
opment, integration, analysis, and testing of the methodologies
discussed in the previous sections, such as: (i) the integration
and demonstration on a comprehensive testbed of the effective-
ness of the proposed architectural extensions (Section II); (ii)
the application of timing analysis methodologies and improve-
ment of the methodologies thanks to the whole availability of
the RTL of the platform (Section III); and (iii) enhancements
in the security and safety verification process, by stimu-
lating knowledge and developments in property definition
and automatic generation on the RTL of complete platforms
(Section IV). Following, some exciting developments we are
actively participating in are briefly summarized.

The Carfield open-hardware project [22] ambitiously aims at
providing a fully open-source platform for automotive-driven
computing architectures closing the gap between RISC-V and
ARM-powered solutions. Carfield is a fully-featured crossbar-
based SoC integrating a safety island embedding three 32-bit
RISC-V cores executing in lockstep, a security island embed-
ding an OpenTitan hardware root of trust [23], a floating point
vector cluster, two RISC-V CVAG6 cores [24], and a full set of
peripherals such as an HyperBus memory controller [25], [26],
scratchpad, and IOs. The resources are interconnected through
the Carfield predictable AXI interconnect, which, seamlessly
with the AXI HyperConnect introduced in Section II, is in
charge not only of implementing the standard routing function-
alities, but also of providing active support to the system-level
safety and security of the platform, implementing an ad-hoc
module [9] deploying a stack of the solutions introduced in
Section II. The Carfield project provides an example of how
the system architecture of a modern SoC can be enhanced with
architectural extensions aimed at enforcing safe and secure
system interactions.

Besides architectural extensions, open-hardware platforms
enable unprecedented opportunities for real-time analysis — the
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full availability of the RTL code of open-hardware platforms
enables fine-grained analysis directly at the RTL level, thus
enabling computing tighter bounds, and thus reducing the
pessimism of the analysis. This has been demonstrated in a
recent research project in which the analysis methodologies
proposed in Section III have been applied to a fully open-
hardware PULP-based platform [27]. The project demonstrates
how the full availability of the RTL code can support tighter
bounds, and therefore higher timing predictability and less
performance waste.

Regarding verification technologies, the availability of the
whole RTL design in open-hardware platforms allows the
development of hardware properties and enhancements in the
verification processes directly on full SoC platforms, without
requiring an industrial partner or hitting NDA walls.

The methodologies discussed in this paper are mainly fo-
cused on crossbar-based SoC. However, the proposed hardware
extensions, timing analysis, and verification methodologies can
be extended to other popular SoC architectures — currently,
we are working on extending them to Network-on-Chip-based
architectures. In this context, our reference is the ESP plat-
forms [28], one of the most mature NoC-based open hardware
platforms currently available.

VI. CONCLUSIONS

This paper describes recently proposed methodologies for
improving the system-level safety and security of SoC plat-
forms for critical applications. The introduced methodologies
are based on three pillars: (i) ad-hoc high-performance archi-
tectural hardware extensions; (ii) fine-grained timing analysis,
and (iii) security and safety verification. The combination of
these three pillars aims at the concept of zero-trust hardware
architectures, aiming at removing the trust implicitly provided
to the computing units while keeping full compliance with the
de facto standard for on-chip communications in modern SoCs
to guarantee compatibility and performance.

The presented methodologies have been applied and are
under application in some of the most relevant open-hardware
SoC platforms. We believe that the availability of such mature
open hardware platforms provides an unprecedented opportu-
nity for the research community to enhance the security and
safety of the next generation of SoC for critical applications.
The described methodologies have been applied to crossbar-
based SoCs and are under application to NoC-based SoCs.
We believe that similar methodologies will be relevant also
in enhancing the safety and security of future chiplet-based
architectures.
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