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Abstract

Aims

Methods
and results

Conclusion

Neural network classifiers can detect aortic stenosis (AS) using limited cardiac ultrasound images. While networks perform
very well using cart-based imaging, they have never been tested or fine-tuned for use with focused cardiac ultrasound
(FoCUS) acquisitions obtained on handheld ultrasound devices.

Prospective study performed at Tufts Medical Center. All patients >65 years of age referred for clinically indicated trans-
thoracic echocardigraphy (TTE) were eligible for inclusion. Parasternal long axis and parasternal short axis imaging was ac-
quired using a commercially available handheld ultrasound device. Our cart-based AS classifier (trained on ~10 000 images)
was tested on FoCUS imaging from 160 patients. The median age was 74 (inter-quartile range 69—80) years, 50% of patients
were women. Thirty patients (18.8%) had some degree of AS. The area under the received operator curve (AUROC) of the
cart-based model for detecting AS was 0.87 (95% CI 0.75-0.99) on the FoCUS test set. Last-layer fine-tuning on handheld
data established a classifier with AUROC of 0.94 (0.91-0.97). AUROC during temporal external validation was 0.97 (95% Cl
0.89-1.0). When performance of the fine-tuned AS classifier was modelled on potential screening environments (2 and 10%
AS prevalence), the positive predictive value ranged from 0.72 (0.69-0.76) to 0.88 (0.81-0.97) and negative predictive value
ranged from 0.94 (0.94-0.94) to 0.99 (0.99-0.99) respectively.

Our cart-based machine-learning model for AS showed a drop in performance when tested on handheld ultrasound imaging
collected by sonographers. Fine-tuning the AS classifier improved performance and demonstrates potential as a novel
approach to detecting AS through automated interpretation of handheld imaging.
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Graphical abstract

Neural Network trained on
~10000 cart-based TTE images

Automated Detection of Aortic Stenosis from
Handheld Ultrasound Devices

Fine-tuned on imaging from
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Previously developed machine-learning aortic stenosis classifier was fine-tuned to work with handheld ultrasound imaging. The new optimized classifier can

enable AS detection upstream of traditional echocardiography laboratories.

aortic stenosis ® echocardiography ® diagnosis ® machine learning
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Introduction

Aortic stenosis (AS) is a major public health problem that is under-
diagnosed and under-treated.! Cardiac auscultation, the current ap-
proach to initial detection of AS, is limited by poor sensitivity and spe-
cificity. The symptoms of AS are often non-specific, mortality risk
might increase earlier than previously recognized,3 and many patients
present late in the disease course® leading to worse outcomes after
treatment.® With the widespread availability of effective treatments
for AS® and emergence of trials of medical therapies to halt progres-
sion,” better methods of diagnosing AS are needed.

There is substantial research focused on developing novel methods
to improve the diagnosis of AS.2 Our group has previously developed
a machine-learning (ML) classifier to detect AS based on limited cardiac
ultrasound images.” One use case of our AS classifier (as well as
others'®) is to process handheld ultrasound imaging upstream of trad-
itional echocardiography laboratories. While these classifiers excel at
classification tasks using cart-based imaging, they have never been stud-
ied using imaging from handheld ultrasound devices.

Model performance often degrades with data shifts'’ and model
transportability must be rigorously assessed." For the AS classification
task, existing neural networks have not been assessed on focused car-
diac ultrasound (FoCUS) that is proposed as the intended use case.
Here, we study the transportability of an automated AS classifier to
FoCUS acquisitions from a commercially available handheld ultrasound
device.

Methods

Study design

Prospective study performed from January 2023 to February 2024 at Tufts
Medical Center Cardiovascular Imaging and Hemodynamic Laboratory.

This study was approved by the institutional review board at Tufts
Medical Center. All imaging [comprehensive transthoracic echocardigraphy
(TTE) and FoCUS using a handheld device] was performed by trained,
American Registry for Diagnostic Medical Sonography certified cardiac so-
nographers from 2023 to 2024.

Inclusion criteria

All patients > 65 years of age referred for clinically indicated TTE were eli-
gible for inclusion. Participants were not selected for inclusion based on im-
age quality and represent an unselected population.

Image acquisition

Participants in the study underwent clinically indicated TTE by trained car-
diac sonographers as part of routine care. Following the TTE, FoCUS that
included parasternal long axis (PLAX) and parasternal short axis (PSAX) im-
aging was obtained using the Butterfly |Q + (Butterfly Network Inc.,
Burlington, MA) handheld device. Handheld imaging was also done by a
trained sonographer.

Diagnostic labels

The reference AS grade (none, mild, moderate, and severe) for this study
was extracted directly from the clinical interpretation of the comprehensive
TTE done during the same encounter. TTE imaging was interpreted by ex-
perienced echocardiographers in a manner consistent with current
guidelines."

Data pre-processing

FoCUS were downloaded from the Butterfly Network Cloud. Following
the pre-processing steps, we extracted and standardized the frames of
each video to a resolution of 112 X 112 pixels. For this study, the classifica-
tion task of interest was the binary task of distinguishing between ‘any AS’
(including mild, moderate, or severe AS) vs. ‘no AS’ to provide the most
useful output for a screening environment (i.e. to identify patients who
should be referred for comprehensive TTE).
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Baseline classifier

As previously described,” we developed a weighted averaging classifier for
AS with two components: a view classifier and a diagnosis classifier. This
classifier is intended to make study-level AS diagnoses given all 2D images
from a routine cart-based patient scan, without needing to filter by view
type. Each 2D image is fed into the view classifier and the diagnosis classifier.
The view classifier provides a probability that each image shows a relevant
view (PLAX or PSAX) of the aortic valve that can be used for assessing AS.
For each image the diagnostic classifier outputs a probability distribution
over three possible severity levels: ‘no AS’, ‘early AS’ (comprising mild
and mild-moderate AS), and ‘significant AS’ (comprising moderate,
moderate-severe, and severe AS). Following our prior work, we employ
prioritized view weighting to make ‘study-level’ diagnosis predictions.
Specifically, we calculate a weighted average of the AS severity level prob-
ability vectors across all images in a study, with weights determined by the
relevant view probability from the view classifier.

The view and diagnosis classifiers each use a wide residual network back-
bone with 28 layers containing 5931 683 parameters.’* As in prior work,
we obtained three instances of each classifier, each trained on one of the
three train/test splits of our original cart-based dataset. For each split, neural
networks were trained on data from 338 patients (average n =10 253 la-
belled images), validated on 119 patients (average n = 3505 labelled images),
and performance was assessed on a test set of 120 patients (average n = 3511
labelled images).

View classifiers were trained to minimize a five-class cross entropy
summed over all view-labelled images in the labelled set. Diagnosis classifiers
were trained via multitask training, in which the loss function includes both a
primary three-class cross entropy for AS severity level and an auxiliary five-
class cross entropy for view. Each model was trained via stochastic gradient
descent until the validation balanced accuracy for its primary task did not
improve for at least 30 epochs.

Training on the established three data splits yields three model instances
(pairs of view and diagnosis classifiers). In this work, we derive the final diag-
nosis prediction for a new study via an ensemble approach, averaging the
study-level diagnosis predictions generated by the three model instances.

Advanced classifier via supervised attention

multiple-instance learning

Our group has developed improved neural network architectures for pre-
dicting study-level AS severity'>"® on cart-based imaging. Unlike the simplistic
weighted average approach described above, these new methods make use
of modern attention-based multiple-instance learning (MIL) to more flexibly
combine many 2D images or videos and make one coherent study-level pre-
diction. We call our architecture SAMIL-V (supervised attention MIL),"® using
the -V suffix to indicate use of 32-frame videos rather than single frame
images. We pre-trained this SAMIL-V architecture in semi-supervised
fashion'® on the provided three train/test splits of our cart-based data.

Last-layer fine-tuning on handheld imaging

After pre-training on cart-based data, we adapt each SAMIL-V neural net
classifier to handheld ultrasound imaging. For simplicity, we treated all video
encoders and intermediate layers as frozen. Only the last layer’s parameters
were updated. That last layer consumes a study-level embedding vector and
predicts AS severity levels via a linear-softmax transformation. The weight
and bias parameters of this last layer were initialized to the optimal values
from cart-based training, then fine-tuned to minimize 3-class cross entropy
on the handheld data while applying L2 regularization to last layer weights.
The L2 penalty strength hyperparameter was tuned via grid search to maxi-
mize an estimate of held-out area under the received operator curve
(AUROC) from four-fold cross-validation on available training data.

Statistical analysis

To obtain robust estimates of performance, we repeat all evaluations over five
separate train/test splits of the 160 FoCUS scans in our dataset. Each split is
drawn randomly and independently (not mutually exclusive). To create each
split, we stepped through each AS severity level (none, early, significant) in
turn and randomly assigned FoCUS patient-scans with that severity into train
and test sets. This class-stratified strategy ensures the overall distribution of AS

severity levels remains similar across the train and test sets. Each split’s test set
contains roughly 50 scans (37-42 ‘no AS’ and 10 ‘any AS’), with remaining
scans in training set. Reported performance metrics represent an average
over the test sets from five separate data splits.

The performance of the automated AS networks on FoCUS was as-
sessed by AUROC as the primary metric. We also present area under
the precision recall curve (AUPRC). Performance of the model was tested
for the binary classification of ‘any AS’ vs. ‘no AS’. To adapt pre-trained
models to this task, we aggregated predicted probabilities of finer-scale se-
verity levels when needed.

Confusion matrices were created, and we report sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV). To
model performance in a screening environment we tested network per-
formance at 2 and 10% AS prevalence rates.

External validation

A temporal external validation was done for our top-performing model on
a distinct handheld FoCUS cohort of 41 scans acquired at Tufts Medical
Center from April 2024 to August 2024.

Results

Baseline characteristics

One hundred sixty patients were enrolled in the study. Baseline char-
acteristics of the patients are shown in Table 1. The median age was
74 (inter-quartile range (IQR) 69-80) years and 50% of the patients
were female. One hundred sixteen patients (72.5%) self-identified as

Table 1 Baseline characteristics
Patient characteristic Value
Age (years) 74 (69-80)
Sex (female) 50%
Race
White 73%
Black 9%
Latino 1%
Other 18%
Height (cm) 168 (160-175)
Weight (kg) 76 (64-89)
BMI 26.6 (23.7-30.3)
Systolic BP (mmHg) 132 (121-148)
Diastolic BP (mmHg) 73 (65-81)
Other conditions
Hypertension 84%
Hyperlipidemia 84%
Congestive heart failure 36%
Diabetes 25%
Prior Ml 16%
Prior PCI 11%
Prior CABG 8%
Prior CVA 9%
Prior MV replacement 3%

Baseline characteristics of patients scanned with the Butterfly |Q + device. All values
reported as median (IQR) unless otherwise specified.

BMI, body mass index; MI, myocardial infarction; PCl, percutaneous coronary
intervention; CABG, coronary artery bypass grafting; CVA, cerebrovascular accident;
MV, mitral valve.
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‘white’. Twenty patients (11.1%) had a left ventricular ejection fraction
(EF) <40%. In the entire cohort, 30 patients (18.8%) had some degree
of AS. Of those, 6 (3.8%) had ‘early AS’ and 24 (15%) had ‘significant AS’.
The aortic valve hemodynamic measurements of patients with AS are
shown in Table 2. Seventeen patients (10.6%) had a prosthetic aortic
valve; these patients were excluded from the analysis.

Baseline model performance on handheld

ultrasound imaging

For the task of classifying no AS vs. any degree of AS, the cart-based
weighted average classifier” had an AUROC of 0.87 (95% Cl 0.75—
0.99) on handheld imaging, as shown in Figure 1. This represents a
20% drop in discrimination compared with that network’s performance

Table 2 Aortic valve hemodynamics

on cart-based imaging test sets.” In the handheld imaging cohort, the
sensitivity for detecting any degree of AS was 1.00 (1.00-1.00), the spe-
cificity was 0.22 (0.08-0.36), the PPV was 0.25 (0.21-0.29), and NPV
was 1.00 (1.00-1.00) (Table 3).

Fine-tuned model performance on

handheld ultrasound imaging

For the last-layer fine-tuned SAMIL-V classifier, the AUROC for differ-
entiating between no AS and any degree of AS on handheld ultrasound
imaging was 0.94 (0.91-0.97) as shown in Figure 1. The sensitivity for
detecting any degree of AS was 0.42 (0.30-0.54), the specificity was
0.99 (0.98-1.0), the PPV was 0.93 (0.84-1.0), and NPV was 0.87
(0.85-0.89).

Imaging parameter Early AS (n=6)

Significant AS (n = 24) All AS (n=30)

LVEF (%) 56.0 (43.0-60.0)
SV index (mL/m?) 37.6 (33.8-45.5)
Valve area (AVA, cmz) 14 (1.3-14)
V2 max (m/s) 24 (21-27)
AV mean gradient (mmHg) 9.4 (7.2-133)

Dimensionless index (VTI) 0.46 (0.41-0.50)

Dimensionless index (Vmax)

0.43 (0.43-0.47)

60 (55.0-65.0)
38.0 (29.8-46.5)

62.5 (60.0-67.5)
36.9 (31.8-46.1)

09 (0.8-1.2 1.1 (0.8-1.3)
34 (3.0-38) 28 (2.1-3.3)
27 (19.4-38.0) 18 (11-28)

0.36 (0.25-0.50)
035 (0.28-0.45)

0.26 (0.22-0.31)
0.28 (0.23-0.32)

Hemodynamic parameters for patients with AS imaged with the handheld ultrasound device. Early AS represents progressive AS (mild, mild/mod), Significant AS includes moderate and
severe AS.
LVEF, left ventricular ejection fraction; SV, stroke volume; V2, continuous wave Doppler peak velocity; AV, mean gradient is the aortic valve mean gradient; VTI, velocity time integral.
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Figure 1 Receiver operator curves differentiating between no AS and any AS. Receiver operator curves in the test set. To obtain robust estimates of
performance, we repeat all evaluations over five separate train/test splits of the 160 FoCUS scans in our dataset. Each split is drawn randomly and
independently. SAMIL-V is the classifier fine-tuned using handheld imaging. W.Avg is the original cart-based classifier.

Table 3 Validation AUROC on handheld imaging and cart-based imaging

Architecture Pre-trained Fine-tuning AUROC on FOCUS AUPRC
Baseline (cart-based) Yes: TMED-2 None 0.87 (0.06) 0.49 (0.09)
SAMIL-V Yes: TMED-2 with SSL Last-layer 0.94 (0.03) 0.83 (0.07)

Summary performance metrics of the original cart-based network and the model that is fine-tuned for handheld ultrasound imaging. Performance metrics are presented as the mean (SD)
values over the tested data splits. The bold values represent the top performing models.

TMED-2, Tufts Medical Echocardiogram Database of cart-based echocardiograms; SSL, semi-supervised learning; AUROC, area under the receiver operator curve; FoCUS, focused
cardiac imaging; AUPRC, area under the precision recall curve.
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Fine-tuned model performance on
held-out temporal validation cohort

Forty-one patients were prospectively collected as an external
temporal validation cohort. In this cohort, there was 6 cases of AS.
The fine-tuned SAMIL-V classified has an AUROC of 0.97 (0.89-1.0)
for detecting AS, PPV was 1.0 (95% CI 1.0-1.0), NPV was 0.92
(95% CI 0.88-0.97).

Modelling performance in a screening
environment

The prevalence of any degree of AS in each split’s test set was adjusted
to 2 and 10% by sampling with replacement the ‘no AS’ cases (Figure 2).
We selected 2 and 10% values to simulate expected prevalence rates in
potential screening environments. The AUROC for detecting any de-
gree of AS was not significantly affected by decreasing prevalence, while
the AUPRC and PPV decrease as expected as prevalence drops. At a

prevalence of 2%, the AUROC was 0.94 (0.93-0.94), AUPRC was
0.56 (0.55-0.58), PPV was 0.72 (0.69-0.76), NPV was 0.99 (0.99-
0.99). At a prevalence of 10%, the AUROC was 0.94 (0.93-0.95),
AUPRC was 0.74 (0.70-0.78), PPV was 0.88 (0.81-0.97), and NPV
was 0.94 (0.94-0.94). Confusion matrices of the results are shown in
Figure 2.

Discussion

The primary finding from this study is a notable drop in discriminatory
performance when a cart-based ML model is tested on handheld im-
aging done by expert imagers. AS classifiers can be successfully adapted
to handheld ultrasound imaging via efficient last-layer fine-tuning, yield-
ing useful performance at identifying patients who should be referred
for comprehensive echocardiography. These results lay the ground-
work for improving detection of AS upstream of traditional echocardi-
ography laboratories.

Split 1 Split 2 split3 Split 4 Splits
Cart-based NN
2% AS
prevalence
SAMIL-V
Cart-based NN
10% AS
prevalence
SAMIL-V 3
5 5 Eoe 2 5 5 5 5 6 a
||| | ]
Cart-based NN J, -
18% AS “ 0 10 ' 0 10 q 0 10 i o 10 ‘ o 10
prevalence s
(default)
SAMIL-V
»" i 3 5 6 4

Figure 2 Confusion matrices at different prevalence of AS (2, 10, and 18%). Confusion matrices for the cart-based network and the fine-tuned
SAMIL-V networks at varying disease prevalence. To obtain robust estimates of performance, we repeat all evaluations over five separate train/test
splits of the 160 FoCUS scans in our dataset. Each split is drawn randomly and independently. The 2 and 10% prevalence are simulated by upsampling
with replacement ‘no AS’ cases from the actual observed test set in each split. NN is neural network.
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Our baseline cart-based classifier showed a decrement in discrim-
inatory performance when tested on handheld ultrasound imaging.
This is a concern (and potential barrier to use) because handheld da-
tasets more closely approximate the proposed use case for detect-
ing AS upstream of traditional echocardiography laboratories.
Additional work is needed to assess our fine-tuned model in the in-
tended use environment upstream of the echocardiogram labora-
tory with imaging done by non-experts. If the original cart-based
model (without fine tuning) is applied to groups with low disease
prevalence (i.e. patients in a primary care screening environment),
the number of false positives is likely to out-number true positives
and screening would lead to low-value follow-up testing. While
thresholds for ultimate binary classification can be adjusted to
decrease the number of false positives, there would be an expected
decrease in sensitivity and cases of AS would be missed. Final thresh-
old optimization should be done in collaboration with the clinicians
who will use these predictions.

We present an improved AS classifier that is fine-tuned on FoCUS
imaging from handheld ultrasound devices and therefore optimized
for the intended clinical use case. This new classifier shows substan-
tially improved performance over the original cart-based baseline
for use with FOCUS handheld scans to detect patients with AS
who should be referred for comprehensive echocardiography and
follow-up cardiology care. These performance gains were achieved
by developing comprehensive yet efficient methods that incorporate
recent advances in MIL, semi-supervised learning, and (most import-
antly) transfer learning. Despite relatively small sets of available
labelled data, our top-performing classifier demonstrates discrimin-
atory performance that can enable disease screening for high-risk
populations.

Care for patients with AS is rapidly changing. There are now effect-
ive treatments for severe symptomatic AS that are widely available."”
These treatments have recently been studied for asymptomatic pa-
tients'® and there are ongoing trials of medical therapies to halt pro-
gression of AS.” Despite these innovations, a large proportion of
patients with AS are undiagnosed’ and many present late in the dis-
ease course once left ventricular dysfunction or significant comorbid
conditions are present. Outcomes are worse because of our current
approach to diagnosis. An ML-powered automated approach to AS
diagnosis that leverages fine-tuning on handheld ultrasound imaging
can improve the diagnosis of AS. This improvement could in turn shift
case detection upstream of traditional echocardiogram laboratories
and improve the yield of comprehensive transthoracic echocardio-
graphic imaging. Our work shows that ML classifiers should be tested
(and may need to be fine-tuned for handheld ultrasound) before they
can be deployed. Without testing and optimization, these networks
may be costly and may not improve care. While these networks auto-
mate image interpretation, providers must still be trained to acquire
FoCUS, and care pathways for timely comprehensive imaging and
follow-up care must be re-defined.

This study has some limitations. While the FoCUS dataset size is
modest, to our knowledge this is the largest handheld cardiac im-
aging database that has been presented. We anticipate the perform-
ance will increase as training cohort size increases. The FoCUS
imaging in this study was obtained by trained cardiac sonographers;
however in order to move case identification upstream of traditional
echocardiogram laboratories, non-experts must be trained to
acquire imaging. The image quality obtained by non-expert imagers
is likely to be lower quality than the images in this study. Additionally,
the feasibility of incorporating FoCUS in screening environments
(who should acquire imaging and how to identify high-risk patients)
requires more study. Model abstention'? (i.e. when models should
withhold low confidence predictions) is an area that needs additional
study as well.

Conclusion

A new ML classifier that is fine-tuned for handheld ultrasound imaging
acquired by sonographers shows improved performance for detecting
AS compared with a cart-based classifier. These methods overcome
concerns about transportability to handheld imaging and represent
progress towards improving detection of AS upstream of traditional
echocardiogram laboratories.
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