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Abstract— Synergistic hybrid feedback refers to a col-
lection of feedback laws that allow for global asymp-
totic stabilization of a compact set through the following
switching logic: given a collection of Lyapunov functions
that are indexed by a logic variable, whenever the cur-
rently selected Lyapunov function exceeds the value of
another function in the collection by a given margin, then
a switch to the corresponding feedback law is triggered.
This kind of feedback has been under development over
the past decade, and it has led to multiple solutions
for global asymptotic stabilization problems on compact
manifolds. The contributions of this paper include a syn-
ergistic controller design in which the logic variable is not
necessarily constant between jumps, a synergistic hybrid
feedback that is able to tackle the presence of parametric
uncertainty, backstepping of adaptive synergistic hybrid
feedbacks, and a demonstration of the proposed solutions
to the problem of global obstacle avoidance.

Index Terms— Hybrid Systems, Adaptive Control,
Robotics, Uncertain Systems

I. INTRODUCTION

A. Background and Motivation

In this paper, we address the problem of designing a
controller for continuous-time plants of the form

ẋp = Fp(xp, up, θ) (1)

where xp ∈ Xp denotes the state of the plant, up ∈ Up is the
input, and θ represents the plant parameters. The main goal is
to design a controller that globally asymptotically stabilizes
a compact set A for the closed-loop system both when the
parameter θ is known, but also when it is only known to
belong to a given compact set Ω.

In the presence of topological obstructions, this objective
is not attainable via continuous feedback and, even though
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it might be attainable through discontinuous feedback, the
resulting closed-loop system may not be robust to arbitrarily
small noise (cf. [1] and [2]). These limitations of continuous
and discontinuous feedbacks constitute the motivation for the
development of synergistic hybrid feedback.

In this paper, we present two novel synergistic hybrid
controllers for global asymptotic stabilization of a compact
set for a closed-loop system. The first controller design
considers that the parameter θ is known, while the second
controller design considers that θ is unknown but belongs to
a known compact set Ω. Additionally, we apply the proposed
controller designs to the problem of global asymptotic stabi-
lization of a compact set for control affine systems and to a
problem of global obstacle avoidance.

B. Literature Review

Synergistic hybrid feedback is a hybrid control strategy
that consists of a collection of potential functions that asymp-
totically stabilize a given compact set by gradient descent
feedback. If, for all equilibria that do not lie within the given
compact set, there exists another function in the collection
that has a lower value and does not share the same equilibria,
then it is possible to achieve global asymptotic stabilization
of the given compact set through hysteretic switching (see,
e.g., [3]).

Synergistic hybrid feedback came to prominence with the
work [4] on quaternion-based feedback for global asymptotic
stabilization attitude tracking, thereby solving the attitude
control problem (cf. [5]). The framework of synergistic
hybrid feedback provides not only a solution to the prob-
lem of attitude control but, more importantly, it provides a
robust solution for global asymptotic stabilization on compact
manifolds. The works [6], [7] and [8] leverage the concepts
at the root of synergistic hybrid feedback and use them to
design controllers that are applicable to a broad class of
systems. However, most of the contributions to this class
of hybrid controllers are on the control of robotic systems,
such as pendulum stabilization [9], vector-based rigid body
stabilization [10], [11], [12], tracking for marine and aerial
vehicle [13], [14], [15], and rigid body trajectory track-
ing [16], [17], [18]. Within the field of robotics, we single out
the problem of obstacle avoidance, which is also addressed
in this paper.

Obstacle avoidance is an important and longstanding prob-
lem that reflects the need to drive the state of a system from
one place to another while avoiding obstacles in its way.
Several solutions to this problem have been proposed over
the last few decades as highlighted in [19]. In particular,
it is possible to find both stochastic [20] and deterministic
approaches [21] to tackle the obstacle avoidance problem.
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However, it was shown in [22] that in a “sphere world,” there
is at least one saddle equilibrium point for each obstacle
within the state space, thus precluding global asymptotic
stabilization of a setpoint by continuous feedback. To address
this limitation, hybrid control solutions to the problem of ob-
stacle avoidance were proposed in [23], [24], [8], [25], [26],
and [27].

Although not directly addressed in this paper, the concepts
of synergistic hybrid feedback have also been used for ob-
server design and optimization in [28] and [29], respectively.

C. Contributions

The contributions in this paper are as follows: 1) We
develop a dynamic synergistic hybrid feedback controller for
global asymptotic stabilization of a broad class of dynamical
systems. Similarly to [18] and [15], we consider that the
distinguishing feature of synergistic hybrid feedback is the
switching logic, thus we depart from earlier works which
were limited to controller variables that were constant during
flows, and we propose a controller design that encompasses
all the aforementioned works on synergistic hybrid feedback
as special cases. The significance of this contribution stems
from the fact that we provide conditions for global asymptotic
stability at the level of the controller data so that practitioners
can easily verify whether the proposed controller design
is applicable to their problem of interest; 2) We provide
a modification to the synergistic controller that takes into
account the presence of parametric uncertainty. In this way,
we extend the results of [30] and [14] to a more general
setting, and we improve the jump dynamics to enable faster
convergence of solutions to the hybrid closed-loop system to
a desired compact set; 3) We demonstrate how a synergistic
hybrid feedback controller can be used to develop an adaptive
synergistic controller for the stabilization of compact sets for
affine control systems under matched uncertainties; 4) We
show that the proposed adaptive controller is amenable to
hybrid backstepping; 5) We apply the proposed controllers
to the problem of global obstacle avoidance in the presence
of parametric uncertainty and illustrate the behavior of the
closed-loop system through simulations.

The paper is organized as follows: in Section III we present
the main assumptions on the plant dynamics. In Section IV-B
provides conditions under which the closed-loop system is
well-posed. In Section IV-C we provide sufficient conditions
for global asymptotic stability of a compact set for the closed-
loop system. In Section V, we develop the concept of robust
synergistic hybrid feedback. In Section VI, we apply the
synergistic approach to the development of an adaptive syn-
ergistic controller for stabilization of affine control systems
subject to matched uncertainties. In Section VII, we apply
the proposed controller to the problem of global obstacle
avoidance. In Section VIII, we present some concluding
remarks.

A preliminary version of this paper was presented at the
2019 ACC with a simpler synergistic controller design for
global asymptotic stabilization of control affine systems and
without the full proofs (cf. [30]). An extended version of this
paper can be found at [31].

II. NOTATION & PRELIMINARIES

The Cartesian Product Rn = R×. . .×R of n copies of the
real line together with scalar multiplication and component-
wise addition of vectors is known as n-dimensional Euclidean
space. The Euclidean metric topology is the one induced by
the metric x 7→ |x| :=

√
x⊤x. The n-dimensional Euclidean

space has the topology generated by a countable basis of open
balls of the form c + ǫB := {x ∈ R

n : |x− c| < ǫ}, where
c ∈ R

n and ǫ > 0. More generally, given a set Ω ⊂ R
n, we

define Ω+ǫB :=
⋃

c∈Ω c+ǫB. The operators ∂S and S denote
the boundary and the closure of a set S, respectively. Given
a function f : Rm → R

n, the preimage of a set U ⊂ R
n

through f is f−1(U) := {x ∈ R
m : f(x) ∈ U}. Similarly,

the image of a set W through f is f(W ) := {y ∈ R
n : y =

f(x) for some x ∈ W}. Given a subset S of X := X1×X2,
the projection of S onto X1 is represented by πX1

(S) :=
{x1 ∈ X1 : (x1, x2) ∈ S for some x2 ∈ X2}. Similarly, the
projection of S onto X2 is denoted by πX2

(S) := {x2 ∈
X2 : (x1, x2) ∈ S for some x1 ∈ X1}. A set-valued map M
from S ⊂ R

m to the power set of some Euclidean space R
n

is represented by M : S ⇒ R
n. The domain of a set-valued

map is given by domM := {x ∈ R
n : M(x) 6= ∅}. Given

a subset S of R
m, a set-valued map M : S ⇒ R

n is said
to be outer semicontinuous (osc) relative to S if its graph,
given by gphM := {(x, y) ∈ S×R

n : y ∈ M(x)}, is closed
relative to S×R

n. The set-valued map M is locally bounded
at x ∈ R

m if there exists a neighborhood Ux of x such
that M(Ux) ⊂ R

n is bounded. It is locally bounded relative
to S if the set-valued mapping from R

m to R
n defined by

M(x) for x ∈ S and ∅ for x 6∈ S is locally bounded at
each x ∈ S. It is convex-valued if M(x) is convex for each
x ∈ S. The tangent cone to a set S ⊂ R

n at a point
x ∈ R

n, denoted by TxS, is the set of all vectors w ∈ R
n

for which there exists xi ∈ S, τi > 0 with xi → x, τi
convergent to 0 from above, and w = limi→∞

xi−x
τi

. Given
a differentiable function F : R

m×n → R
p×q , we define

DF (X) := ∂ vec(F )
∂ vec(X)⊤

(X) for each X ∈ R
m×n, where

vec(A) := [e⊤1 A
⊤ . . . e⊤mA⊤]⊤ for each A ∈ R

m×n and
ei ∈ R

m is a vector of zeros, except for the i-th component,
which is 1. If F has multiple arguments, say (X,Y ) ∈
R

m×n × R
k×ℓ, we define DXF (X,Y ) := ∂ vec(F )

∂ vec(X)⊤
(X,Y )

for each (X,Y ) ∈ R
m×n × R

k×ℓ. If F : Rn → R, then
∇F (x) := DF (x)⊤ for each x ∈ R

n. If F : Rn×R
m → R,

then ∇xF (x, y) := DxF (x, y)⊤ for each (x, y) ∈ R
n × R

m

and ∇yF (x, y) := DyF (x, y)⊤ for each (x, y) ∈ R
n × R

m.
Clarke’s generalized directional derivative of a function V :
R

n → R in the direction v, is defined as follows (c.f. [32,
Eq. (1)]): V ◦(x; v) := lim supy→x

λց0

V(y+λv)−V(y)
λ

.

A hybrid system H with state space R
n is defined in [33]

and [34] as
ξ̇ ∈ F(ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D
(2)

where ξ ∈ R
n is the state, C ⊂ R

n is the flow set,
F : R

n
⇒ R

n is the flow map, D ⊂ R
n denotes the

jump set, and G : R
n

⇒ R
n denotes the jump map. A

solution ξ to H is parametrized by (t, j), where t denotes
ordinary time and j denotes the jump time, and its domain
dom ξ ⊂ R≥0×N is a hybrid time domain: for each (T, J) ∈
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dom ξ, dom ξ ∩ ([0, T ]× {0, 1, . . . J}) can be written in the
form ∪J−1

j=0 ([tj , tj+1], j) for some finite sequence of times
0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where Ij := [tj , tj+1] and the
tj’s define the jump times. A solution ξ to a hybrid system
is said to be maximal if it cannot be extended by flowing nor
jumping and complete if its domain is unbounded.

A set S is said to be forward pre-invariant for a hybrid
system (2) if each maximal solution of (2) starting in S
remains in S. It is said to be forward invariant if it is forward
pre-invariant and each maximal solution from S is complete
(see e.g. [34, Chapters 3 and 7]).

The hybrid basic conditions provide a set of sufficient
conditions for well-posedness and they are as follows (cf. [33,
Assumption 6.5]):

(A1) C and D are closed subsets of Rn;
(A2) F : Rn

⇒ R
n is osc and locally bounded relative to C,

C ⊂ domF, and F(x) is convex for every x ∈ C;
(A3) G : Rn

⇒ R
n is osc and locally bounded relative to D,

and D ⊂ domG.
Given a function V : Rn → R≥0 that is Lipschitz continu-

ous on a neighborhood of C in (2) and uc : R
n → R≥0, we

say that the growth of V along flows of (2) is bounded by uc

if the following holds:
V ◦(ξ; f) ≤ uc(ξ) ∀ξ ∈ C, ∀f ∈ F(ξ) ∩ TξC. (3)

If, for some function ud : Rn → R≥0,

V(ξ′)− V(ξ) ≤ ud(ξ) ∀ξ ∈ D, ∀ξ′ ∈ G(ξ), (4)
then we say that the growth of V along jumps of (2) is
bounded by ud. If both (3) and (4) hold, then we say that the
growth of V along solutions to (2) is bounded by uc, ud. A
function V : Rn → R≥0 is positive definite relative to a set
A if V(x) = 0 ⇐⇒ x ∈ A.

A compact set A is said to be stable for (2) if for
every ǫ > 0 there exists δ > 0 such that every solution
φ to (2) with |φ(0, 0)|A ≤ δ satisfies |φ(t, j)|A ≤ ǫ for
all (t, j) ∈ domφ; globally pre-attractive for (2) if every
solution φ to (2) is bounded and, if it is complete, then
also limt+j→+∞ |φ(t, j)|A = 0; globally pre-asymptotically
stable for (2) if it is both stable and globally pre-attractive.
If every maximal solution to (2) is complete then one may
drop the prefix “pre.”

Given a hybrid system H, a set S ⊂ R
n is said to be:

weakly forward invariant if for every ξ ∈ S there exists at
least one complete solution contained in S; weakly backward
invariant if for every ξ ∈ S, every τ > 0, there exists at
least one maximal solution φ from S such that for some
(t⋆, j⋆) ∈ domφ, t⋆+j⋆ ≥ τ , it is the case that φ(t⋆, j⋆) = ξ
and φ(t, j) ∈ S for all (t, j) ∈ domφ with t+ j ≤ t⋆ + j⋆;
weakly invariant if it is both weakly forward invariant and
weakly backward invariant.

III. PROBLEM SETUP

To stabilize the plant given in (1), we propose the following
state-based hybrid controller

χ̇c ∈ F̂c(xp, χc, xc, uc)

ẋc ∈ Fc(xp, χc, xc)

}
(xp, χc, xc) ∈ C, uc ∈ Uc

χ+
c = χc

x+
c ∈ Gc(xp, χc, xc)

}
(xp, χc, xc) ∈ D

(5)

where χc ∈ X̂c and xc ∈ Xc represent different components
of the state of the controller, F̂c and Fc are the flow maps
associated with χc and xc, respectively, C denotes the flow
set, Gc defines the update law for jumps of xc and D is the
jump set. The key differences between χc and xc are the fact
that χc does not change its value during jumps and also that
the flows of χc depend on a virtual input variable uc ∈ Uc.

If F̂c in (5) defining the dynamics of χc is given, then χc

can become part of the state of (1) and the stated objective
can be attained through the design of a hybrid controller
Hc := (C,Fc, D,Gc) with state xc ∈ Xc and dynamics

ẋc ∈ Fc(x, xc) (x, xc) ∈ C

x+
c ∈ Gc(x, xc) (x, xc) ∈ D

assigning u := (up, uc) ∈ U := Up × Uc via a feedback law
(x, xc) 7→ κ(x, xc), where x := (xp, χc) ∈ X := Xp × X̂c

is the state of the system to control with dynamics described
by the following differential inclusion

ẋ ∈ Fθ(x, xc, u) := Fp(xp, up, θ)× F̂c(xp, χc, xc, uc), (7)

where θ is a constant.
This formulation enables the controller design for sys-

tems whose dynamics depend on the controller state. For
example, given a plant with dynamics ẋp = fp(xp) +
Hp(xp)up +Wp(xp)θ where fp, Hp,Wp are functions with
the appropriate dimensions, suppose that χc represents the
reference trajectory to be tracked and that it is generated by
the system χ̇c = fp(χc) + Hp(χc)ξd for some signal ξd.
Defining u := up and xc := ξd, we have that Fθ(x, xc, u) =
(fp(xp) +Hp(xp)u+Wp(xp)θ, fp(χc) +Hp(χc)xc). More
practically, x can be considered to be the part of the state of
the closed-loop system that remains unchanged during jumps.

Given sets X, Xc, and U, we consider a dynamical system
with state x ∈ X that is governed by the dynamics (7) where
xc ∈ Xc is a controller variable, u ∈ U is the input, θ is a
constant parameter that belongs to a compact set Ω and Fθ

is a set-valued map with the following properties.

Assumption 1. Given sets X, Xc, U, θ belonging to a
compact set Ω, and Fθ as in (7) the following properties
hold:

(S1) Each set X, Xc and U is a closed nonempty subset of
some Euclidean space;

(S2) The set-valued map Fθ is outer semicontinuous, locally
bounded, and convex-valued.

The condition (S1) allows for the use of the analysis
tools for hybrid dynamical systems that are provided in [33]
which consider sets as subspaces of Euclidean spaces with
the Euclidean metric topology. Condition (S2) is used to
prove that the resulting closed-loop system satisfies the
hybrid basic conditions.

Remark 1. Since the sets X, Xc and U are closed relative
to their Euclidean ambient spaces, then any of their closed
subsets are also closed in the ambient space and locally
compact Hausdorff (cf. [35, Lemma 4.29]).

In Section IV, we develop a dynamic synergistic controller
with the objective of globally asymptotically stabilizing a
compact set for the resulting closed-loop system under the
assumption that θ is known. In Section V, we modify the
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dynamic synergistic controller to allow for θ ∈ Ω to be
unknown, when Ω is known.

IV. DYNAMIC SYNERGISTIC HYBRID FEEDBACK

A. Controller Design
Dynamic synergistic hybrid feedback (relative to the plant

in Section III) is a hybrid control strategy that renders a
compact set A ⊂ X × Xc globally asymptotically stable for
the closed-loop system. It is composed of a feedback law

κ : domκ → U (8)

and of the hybrid dynamics that are described in the sequel.
Given a function

V : domV → R≥0 ∪ {+∞}, (9)

satisfying X×Xc ⊂ domV with domV open in the Euclidean
space containing X × Xc,1 and a set-valued map

Dc : X × Xc ⇒ Xc (10)

we define

νV(x, xc) := min{V(x, g) : g ∈ Dc(x, xc)}, (11a)

̺V(x, xc) := arg min{V(x, g) : g ∈ Dc(x, xc)}, (11b)

µV(x, xc) := V(x, xc)− νV(x, xc) (11c)

for each (x, xc) ∈ X×Xc. Given a set-valued map Fc defined
on X × Xc, we define the hybrid controller dynamics as
follows:

ẋc ∈ Fc(x, xc) (x, xc) ∈ C (12a)

x+
c ∈ ̺V(x, xc) (x, xc) ∈ D (12b)

where
C := {(x, xc) ∈ X × Xc : µV(x, xc) ≤ δ(x, xc)},
D := {(x, xc) ∈ X × Xc : µV(x, xc) ≥ δ(x, xc)},

(13)

and δ : X×Xc → R is a continuous function. The switching
logic in (12) implements the following functionality: if the
solutions to the closed-loop system reach a state (x, xc)
where µV(x, xc) is greater than or equal to the predefined
value of δ(x, xc), then the variable xc is reset to some point
g ∈ ̺V(x, xc) and the feedback law changes its value from
κ(x, xc) to κ(x, g). Since the hybrid controller (12) is derived
from κ, V, Dc, and Fc, we represent (12) using the 4-tuple
(κ, V,Dc, Fc).

The hybrid closed-loop system H :=
(C,Fcl, D,Gcl) resulting from the interconnection
between (7) and (κ, V,Dc, Fc) is given by(
ẋ
ẋc

)
∈ Fcl(x, xc) :=

(
Fθ(x, xc, κ(x, xc))

Fc(x, xc)

)
(x, xc) ∈ C

(14a)(
x+

x+
c

)
∈ Gcl(x, xc) :=

(
x

̺V(x, xc)

)
(x, xc) ∈ D.

(14b)

Remark 2. Notice that, if δ(x, xc) ≥ 0 for all (x, xc) ∈
X × Xc, then it follows from the construction of the hybrid
controller (κ, V,Dc, Fc) that V (x, g)−V (x, xc) ≤ 0 for each

1The function V maps values in X×Xc to the one-point compactification
of R

≥0
. More generally, given a topological space X that is noncompact,

locally compact Hausdorff space, and an object ∞ not in X , the one point
compactification of X is a topological space X∗ with the topology: T =
{open subsets of X} ∪ {U ⊂ X∗ : X∗\U is a compact subset of X}.

(x, xc) ∈ D and each g ∈ ̺V(x, xc). In other words, if the
function δ is nonnegative for all (x, xc) ∈ X × Xc, then the
function V does not increase during jumps along solutions
to (14).

The controller design presented in this section is informed
by many preceding synergistic hybrid feedback controllers.
As mentioned in Section I-C, we preserve the switching logic
of the synergistic controllers in [34, Chapter 7], in the sense
that controller switching is triggered when the difference
between the current value of V and its lowest possible value
exceeds a predefined threshold δ > 0. The main difference
between the controller design presented in this paper and
synergistic controllers in the literature is that, here, xc does
not necessarily belong to a finite set. Instead, the flows of
xc are described more generally by a differential inclusion,
and we constrain its jumps using a set-valued map Dc which
is instrumental to the backstepping procedure described in
Section VI-C.

In the sequel, we introduce the assumptions on the con-
troller that allow for the global asymptotic stabilization of
a compact subset of the state space. The proofs of some of
the more standard results within the literature on synergistic
hybrid feedback are omitted due to space constraints, but can
be found in [31].

B. Basic Properties of the Closed-Loop System

In this section, we provide some conditions on (8), (9)
and (10) which ensure that the closed-loop system (14)
satisfies the hybrid basic conditions of [33, Assumption 6.5]
and that maximal solutions to (14) are complete. To this end,
we introduce the following definitions.

Definition 1. Given a compact subset A of X × Xc, κ, V,
Dc and Fc we say that the hybrid controller (κ, V,Dc, Fc) is
a synergistic candidate relative to A for (7) if the following
conditions hold:

(C1) The optimization problem in (11) is feasible for each
(x, xc) ∈ X × Xc, in the sense that, for each (x, xc) ∈
X ×Xc, there exists g ∈ Dc(x, xc) such that V(x, g) <
+∞.

(C2) Fc is outer semicontinuous, locally bounded, and
convex-valued.

(C3) V is continuous, positive definite relative to A, and
V −1([0, c]) is compact for each c ∈ R≥0;

(C4) The set-valued map Dc is outer semicontinuous, lower
semicontinuous, and locally bounded;

(C5) The function κ is continuous and

{(x, xc) ∈ X × Xc : V(x, xc) < +∞} ⊂ domκ.

Given a synergistic candidate relative to A, the condi-
tion (C3) guarantees that sublevel sets of V are compact
and the conditions (C3) and (C4) guarantee that the synergy
gap function µV in (11c) is continuous and that ̺V is outer
semicontinuous, as proved in the next result.

Lemma 1. Given sets X, Xc, U, and Fθ as in (7), suppose
that Assumption 1 holds. Given a compact subset A of X ×
Xc, if (κ, V,Dc, Fc) is a synergistic candidate relative to A
for (7), then the following hold:

1) The function νV in (11a) is continuous;
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2) The set-valued map ̺V in (11b) is outer semicontinuous
and ̺V(x, xc) is compact for each (x, xc) ∈ X × Xc;

3) The function µV in (11c) is continuous.

Proof. It follows from (C4) that Dc is outer semicontinuous,
hence Dc(x, xc) is closed for each (x, xc) ∈ X × Xc. Since
Dc is also assumed to be locally bounded in (C4), we have
that Dc(x, xc) is compact for each (x, xc) ∈ X × Xc. In
addition, the outer semicontinuity and local boundedness
of Dc imply that Dc is upper semicontinuous (cf. [33,
Lemma 5.15]). Since Dc is assumed to be lower semicontin-
uous in (C4), we have that Dc is continuous. Since V is con-
tinuous by condition (C3), it follows from [36, Theorem 9.14]
that νV is continuous and that ̺V is compact-valued and
upper semicontinuous. Since X is locally compact Hausdorff
(cf. Remark 1), it follows from [35, Proposition 4.27] that
each point (x, xc) ∈ X×Xc has a precompact neighborhood
Ux. Since ̺V is compact-valued and upper semicontinuous, it
follows from [36, Proposition 9.7] that ̺V(Ux) is compact. It
follows from the fact that ̺V(Ux) is a subset of the compact
set ̺V(Ux) that ̺V is locally bounded. Since ̺V is compact-
valued it is, in particular, closed-valued, hence it follows
from [33, Lemma 5.15] that ̺V is outer semicontinuous. It
follows from (C1) that νV(x, xc) < +∞ for each (x, xc) ∈
X × Xc, hence the function µV is continuous because it is
the composition of continuous functions.

The hybrid basic conditions in [33, Assumption 6.5] are
very important to the synthesis of hybrid controllers, because
they guarantee that the resulting hybrid closed-loop systems
are endowed with nominal robustness to a wide range of
perturbations/sensor noise and, in particular, they enable
the application of invariance principles for hybrid systems
(cf. [33, Chapter 8]). In the following result, we show that
these conditions follow directly from the regularity of (11c)
and (11) that was proved in Lemma 1.

Corollary 1. Given sets X, Xc, U, and Fθ as in (7),
suppose that Assumption 1 holds. Given a compact subset
A of X × Xc, if (κ, V,Dc, Fc) is a synergistic candidate
relative to A for (7), then the hybrid closed-loop system (14)
satisfies (A1), (A2), and (A3).

C. Global Asymptotic Stability of A
In this section, we present further assumptions on the

hybrid controller (κ, V,Dc, Fc) that allow for the global
asymptotic stabilization of a compact set A for (14).

Definition 2. Given a compact subset A of X ×Xc, we say
that a synergistic candidate relative to A for (7) with data
(κ, V,Dc, Fc), is synergistic relative to A for (7) if:

(C6) The function V is Lipschitz continuous on a neighbor-
hood of C and the growth of V along flows of (14) is
bounded by uc with

uc(x, xc) ≤ 0 ∀(x, xc) ∈ X × Xc;

(C7) The largest weakly invariant subset of

ẋ ∈ Fθ(x, xc, κ(x, xc)) ẋc ∈ Fc(x, xc) (15)

in u−1
c (0), denoted by Ψ, is such that

δ1 := inf{µV(x, xc) : (x, xc) ∈ Ψ\A} > 0. (16)

If one considers V as a Lyapunov function candidate, then
condition (C6) implies that V is nonincreasing along flows
to the closed-loop system (14), implying that there exists a
choice of δ which renders A stable for (14). We say that δ
is positive if δ(x, xc) > 0 for each (x, xc) ∈ X × Xc, and
that a hybrid controller (κ, V,Dc, Fc) is synergistic relative
to A for (7) with synergy gap exceeding δ if it is synergistic
relative to A for (7) and δ(x, xc) < µV(x, xc) for each
(x, xc) ∈ Ψ\A with Ψ defined in (C7). Condition (16)
means that (κ, V,Dc, Fc) is synergistic relative to A for (7)
for some positive δ, and, consequently, all the points in the
largest weakly invariant subset of (15) in u−1

c (0) that are
not in A lie in the jump set of (14), allowing us to prove
that A is globally asymptotically stable for the closed-loop
system (14).

Lemma 2. Given sets X, Xc, U, and Fθ as in (7), suppose
that Assumption 1 holds. Given a compact subset A of X ×
Xc, if (κ, V,Dc, Fc) is a synergistic candidate relative to A
for (7) satisfying (C6) and δ(x, xc) ≥ 0 for each (x, xc) ∈
X ×Xc, then each sublevel set of V is forward pre-invariant
for (14). If, for each (x, xc) ∈ C\D,

(VC) there exists a neighborhood U of (x, xc) such that
Fcl(ξ) ∩ TξC 6= ∅, for every ξ ∈ U ∩ C

then each maximal solution to (14) is complete and, conse-
quently, each sublevel set of V is forward invariant.

Proof. It follows from the discussion in Remark 2 that the
growth of V along jumps of (14) is bounded by ud with

ud(x, xc) ≤
{
−δ(x, xc) if (x, xc) ∈ D

−∞ otherwise
(17)

for each (x, xc) ∈ X × Xc. Together with condition (C6)
it follows that the growth of V along solutions to (14) is
bounded by uc, ud satisfying

uc(x, xc) ≤ 0, ud(x, xc) ≤ 0 (18)

for each (x, xc) ∈ X × Xc. It follows that each solution φ
to (14) with initial condition ξ satisfies V(φ(t, j)) ≤ V(ξ) for
all (t, j) ∈ domφ, hence each sublevel set of V is forward
pre-invariant for (14).

It follows from Corollary 1 that (14) satisfies the hybrid
basic conditions, hence we can use [33, Proposition 6.10]
to prove the completeness of each maximal solution to (14).
Since C ∪D = X × Xc, then there are no solutions to (14)
starting outside the union between the jump and flow sets.
It follows from (VC) that (VC) in [33, Proposition 6.10]
is satisfied, hence each maximal solution to (14) either
“blows up,” leaves C ∪ D in finite time or is complete (cf.
conditions (a), (b) and (c) of [33, Proposition 6.10]). Since
Gcl(D) ⊂ C ∪ D, no solution can leave C ∪ D after a
jump (hence, condition (c) in [33, Proposition 6.10] does
not occur). Since each sublevel set of V is compact and
forward pre-invariant, then solutions to (14) do not “blow
up” (condition (b) in [33, Proposition 6.10] does not occur).
It follows that each maximal solution to (14) is complete.

Lemma 3. Given sets X, Xc, U, and Fθ as in (7), suppose
that Assumption 1 holds. Given a compact subset A of X ×
Xc, if (κ, V,Dc, Fc) is a synergistic candidate relative to A
for (7) that satisfies (C6) and δ(x, xc) ≥ 0 for each (x, xc) ∈
X × Xc, then the set A is stable for (14).
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Proof. Since X × Xc ⊂ domV, it follows that µV(x, xc)
is defined for all (x, xc) ∈ X × Xc; hence, for any given
continuous function δ : X × Xc → R, at least one of
the following conditions holds: 1) µV(x, xc) ≥ δ(x, xc);
2) µV(x, xc) ≤ δ(x, xc). It follows from (13) that C ∪D =
X × Xc ⊂ domV. Since domV is also assumed to be open
in the Euclidean space containing X × Xc, it follows that
domV contains a neighborhood of A ∩ (C ∪D ∪Gcl(D)).
Positive definiteness of V with respect to A and continuity
of V follows from (C3). From condition (C6) and from (17),
it follows that V is locally Lipschitz on a neighborhood of
C and that the bounds [34, Eqs.(3.18), (3.19)] are satisfied.
Since A is compact and the hybrid basic conditions are
satisfied (cf. Corollary 1), it follows from [34, Theorem 3.19]
that A is stable for (7).

Theorem 1. Given sets X, Xc, U, and Fθ as in (7), suppose
that Assumption 1 holds. Given a compact subset A of X×Xc

and a positive function δ : X × Xc → R, if (κ, V,Dc, Fc) is
synergistic relative to A for (7) with synergy gap exceeding δ,
then the set A is globally pre-asymptotically stable for (14).
If, for each (x, xc) ∈ C\D, (VC) is satisfied, then A is
globally asymptotically stable for (14).

Proof. Stability of A is proved in Lemma 3 and complete-
ness of solutions is demonstrated in Lemma 2. The global
pre-asymptotic stability of A for (14) follows from pre-
attractivity of A for (14), which is demonstrated next through
an application of [33, Theorem 8.2].

It follows from Lemmas 3 and 2 that the growth of V along
solutions to (14) is bounded by uc, ud satisfying (18). In
addition, since each sublevel set of V is compact as per (C3),
we have that each solution to (14) is bounded. Thus, it
follows from [33, Theorem 8.2] that every complete solution
approaches the largest weakly invariant set

V −1(r) ∩
(
u−1
c (0) ∪ (u−1

d (0) ∩Gcl(u
−1
d (0))

)
(19)

for some r in the image of V. From (17) and the fact that
δ is positive, it follows that u−1

d (0) = ∅, hence (19) can be
rewritten as

V −1(r) ∩ u−1
c (0). (20)

It follows from (C7), the assumption that (κ, V,Dc, Fc) has
synergy gap exceeding δ and the definition of D in (12)
that the largest weakly invariant subset of (14) in (20) does
not include points that are not in A and, consequently, A
is globally pre-attractive for (14). Global asymptotic stability
of A for (14) follows from global pre-asymptotic stability
if each maximal solution to (14) is complete, which is
guaranteed by Lemma 2 under condition (VC).

Remark 3. Theorem 1 provides conditions which guar-
antee that each maximal solution to (14) is complete.
This means that, each maximal solution φ to (14) satisfies
lim(t,j)∈domφ t + j = +∞. However, we have not ruled
out the possibility of Zeno solutions, i.e., complete solutions
that are bounded in the t-direction. This possibility is ruled
out by [37, Lemma 2.7] because (14) satisfies (A3) and
Gcl(D) ∩D = ∅ when δ is positive.

Note that, if there exists an accumulation point of Ψ\A
in A in a topological sense, then δ1 in (16) is equal to 0.
Therefore, the topology of Ψ and A may preclude global

asymptotic stabilization of A for (14) since (C7) is not
met. Conversely, if one is able to show that δ1 > 0,
then Ψ\A does not have accumulation points in A. With
additional conditions on δ, we are able to show that there
exists a neighborhood of A contained in C. In this case,
asymptotic convergence to A implies that maximal solutions
are eventually continuous, i.e., there exists some (hybrid) time
after which any maximal solution approaching A does not
have any more jumps.

Proposition 1. Given sets X, Xc, U, and Fθ as in (7),
suppose that Assumption 1 holds. Given a compact subset A
of X×Xc, if the hybrid controller (κ, V,Dc, Fc) is synergistic
relative to A and δ := inf{δ(x, xc) : (x, xc) ∈ X × Xc}
satisfies δ ∈ (0, δ1), where δ1 is given in (C7), then there
exists a neighborhood of A that is contained in C.

Remark 4. Note that, if the hybrid controller (κ, V,Dc, Fc)
is synergistic relative to A for (7), then δ can be chosen as
a constant ∆ ∈ R as long as ∆ ∈ (0, δ1). In this case, the
conditions of Proposition 1 hold, thus the fact that δ is state-
dependent does not constrain the global asymptotic stability
results and it provides more flexibility to the design of the
hybrid controller.

V. ROBUST SYNERGISTIC HYBRID FEEDBACK

In this section, we propose a new kind of synergistic hybrid
controller that, unlike the controller of Section IV, is able to
handle the case where θ is unknown, but belongs to a known
compact set Ω. In this direction, we start by defining the
following collection of functions V := {Vθ}θ∈Ω where

(x, xc, θ) 7→ V(x, xc, θ) := Vθ(x, xc), (21)

is a convenient notation that allows us to consider Vθ not
only as a function of (x, xc) but also of θ. Then, we define
a hybrid controller with data (κ,V, Dc, Fc, Gc) as follows:

ẋc ∈ Fc(x, xc) (x, xc) ∈ CΩ (22a)

x+
c ∈ Gc(x, xc) (x, xc) ∈ DΩ (22b)

where

CΩ :=

{
(x, xc) ∈ X × Xc : min

θ∈Ω
µVθ

(x, xc) ≤ δ(x, xc)

}

DΩ :=

{
(x, xc) ∈ X × Xc : min

θ∈Ω
µVθ

(x, xc) ≥ δ(x, xc)

}

(23)
with δ : X × Xc → R continuous, and

min
θ∈Ω

µVθ
(x, xc) = min

θ∈Ω
{Vθ(x, xc)− νVθ

(x, xc)}

= min
θ∈Ω

{
V(x, xc, θ)− min

g∈Dc(x,xc)
V(x, g, θ)

}

for each (x, xc) ∈ X × Xc, in accordance with the defi-
nitions (11c), (11a) and (21). One of the key differences
in the controller (22) relative to the standard synergistic
controller (12) is that flow and jump sets logic requires a
minimization over the unknown parameter θ, which has the
potential effect of delaying controller switching relative to
the case where θ is known. Also, unlike the jump map of the
hybrid controller (12), which is constructed from the data V
and Dc following (11b), the jump map Gc in (22) is left
undefined for the sake of generality. Finally, owing to the
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fact that (22) is derived from κ, V, Dc, Fc, and Gc, we refer
to (22) using the 5-tuple (κ,V, Dc, Fc, Gc).

In the sequel, we demonstrate how this hybrid controller
extends the concept of a synergistic controller in order to
address the case where θ ∈ Ω is not known.

Definition 3. Given a compact set Ω, a continuous func-
tion δ : X × Xc → R, a collection of compact subsets
A := {Aθ}θ∈Ω of X × Xc, and a collection of continuous
functions V := {Vθ}θ∈Ω, we say that the hybrid con-
troller (κ,V, Dc, Fc, Gc) is synergistic relative to A for (7)
with robustness margin Ω if it satisfies the following condi-
tions:

(R1) Each function Vθ : domVθ → R≥0 ∪ {+∞} in V is
continuous and satisfies X × Xc ⊂ domVθ for each
θ ∈ Ω;

(R2) The set-valued map Gc is outer semicontinuous and
locally bounded;

(R3) For each θ ∈ Ω, we assume that

Vθ(x, xc)− Vθ(x, g) ≥ min
θ∈Ω

µVθ
(x, xc) (24)

for each (x, xc) ∈ DΩ and each g ∈ Gc(x, xc);
(R4) For each θ ∈ Ω, the hybrid controller (κ, Vθ, Dc, Fc) is

synergistic relative to Aθ for (7).

Remark 5. Note that the set Ω might be uncountable,
thus the collections A and V are not necessarily finite nor
countable.

Remark 6. The condition (R3) guarantees that

Vθ(x, xc)− Vθ(x, g) ≥ δ(x, xc)

for each (x, xc) ∈ DΩ and each g ∈ Gc(x, xc), which
implies that the function Vθ does not increase during jumps
if δ(x, xc) ≥ 0 for all (x, xc) ∈ X × Xc (cf. Remark 2).

It is possible to construct Gc in (22) from the data V and
Dc, but this requires additional assumptions, as shown in the
following remark.

Remark 7. Suppose that Ω is compact and convex and that
Dc in (10) is convex and compact for each (x, xc) ∈ X×Xc.
Given V := {Vθ}θ∈Ω, suppose that Gc defined as

Gc(x, xc) := arg max
g∈Dc(x,xc)

min
θ∈Ω

{V(x, xc, θ)− V(x, g, θ)}

∀(x, xc) ∈ X × Xc (25)

is outer semicontinuous with V(x, xc, θ) = Vθ(x, xc) for each
(x, xc, θ) ∈ X × Xc × Ω. Furthermore, suppose that, for
each (x, xc) ∈ X × Xc, the function h(g, θ) := Vθ(x, xc) −
Vθ(x, g) is continuous, quasi-concave as a function of g,
and quasi-convex as a function of θ.2 Then, it follows
from [38, Theorem 3.4] that the min and max operations
in maxg∈Dc(x,xc) minθ∈Ω h(g, θ) commute, yielding

max
g∈Dc(x,xc)

min
θ∈Ω

h(g, θ) = min
θ∈Ω

max
g∈Dc(x,xc)

h(g, θ)

= min
θ∈Ω

{
Vθ(x, xc)− min

g∈Dc(x,xc)
Vθ(x, g)

}
.

(26)

2A function (x, y) 7→ h(x, y) on X × Y is quasi-concave as a function
of x if the set {x ∈ X : h(x, y) ≥ c} is convex for each y ∈ Y and
each c ∈ R. The function h is quasi-convex as a function of y if the set
{y ∈ X : h(x, y) ≤ c} is convex for each x ∈ X and each c ∈ R.

It follows from (26) and (11c) that
maxg∈Dc(x,xc) minθ∈Ω h(g, θ) = minθ∈Ω µVθ

(x, xc).
We conclude that, for each θ ∈ Ω, the following holds
Vθ(x, xc) − Vθ(x, g) ≥ minθ∈Ω µVθ

(x, xc), for each
(x, xc) ∈ X × Xc and each g belonging to (25), hence
condition (24) is verified.

The assumption that the hybrid con-
troller (κ,V, Dc, Fc, Gc) is synergistic relative to A

for (7) with robustness margin Ω ensures that the hybrid
closed-loop system
(
ẋ
ẋc

)
∈ Fcl(x, xc) :=

(
Fθ(x, xc, κ(x, xc))

Fc(x, xc)

)
(x, xc) ∈ CΩ

(27a)(
x+

x+
c

)
∈ GΩ(x, xc) :=

(
x

Gc(x, xc)

)
(x, xc) ∈ DΩ

(27b)

satisfies the hybrid basic conditions as proved next.

Lemma 4. Given sets X, Xc, U, and Fθ as in (7), suppose
that Assumption 1 holds. Given a compact set Ω and a
collection of compact subsets A := {Aθ}θ∈Ω of X × Xc

if (κ,V, Dc, Fc, Gc) is synergistic relative to A for (7) with
robustness margin Ω, then the hybrid closed-loop system (27)
satisfies (A1), (A2), and (A3).

Proof. The continuity of µVθ
(for a fixed θ ∈ Ω) is es-

tablished in Lemma 1. It follows from the continuity of
(x, xc, θ) 7→ V(x, xc, θ) = Vθ(x, xc) that is assumed in (R1),
compactness of Ω and from [36, Theorem 9.14] that the
function

(x, xc) 7→ min
θ∈Ω

µVθ
(x, xc) (28)

is continuous on X×Xc. It follows from the continuity of (28)
and of δ that CΩ and DΩ are closed, because they are the
preimage of the closed sets (−∞, 0] and [0,+∞], respec-
tively. It follows from Assumption 1, (C2), and (C5) that
the flow map FΩ is outer semicontinuous, locally bounded
and convex-valued. It follows from (R2) that GΩ is outer
semicontinuous, and locally bounded relative to DΩ.

In the sequel, we demonstrate that, for each θ ∈ Ω,
the set Aθ ∈ A is globally asymptotically stable under
appropriate assumptions on δ. The next result asserts forward
pre-invariance of sublevel sets of Vθ ∈ V for the closed-loop
system (27) when δ is a continuous and nonnegative function.

Lemma 5. Given sets X, Xc, U, and Fθ as in (7), suppose
that Assumption 1 holds. Given a compact set Ω and a
collection of compact subsets A := {Aθ}θ∈Ω of X × Xc,
if (κ,V, Dc, Fc, Gc) is synergistic relative to A for (7) with
robustness margin Ω and if δ(x, xc) ≥ 0 for each (x, xc) ∈
X × Xc, then, for each θ ∈ Ω, each sublevel set of Vθ is
forward pre-invariant for (27). If, for each (x, xc) ∈ CΩ\DΩ,

(VC’) there exists a neighborhood U of (x, xc) such that
Fcl(ξ) ∩ TξCΩ 6= ∅, for every ξ ∈ U ∩ CΩ

then each maximal solution to (27) is complete and, conse-
quently, each sublevel set of Vθ is forward invariant for (27).

Proof. As explained in Remark 6, it follows from (R3)
and (23) that Vθ(x, xc) − Vθ(x, g) ≥ δ(x, xc) for each
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g ∈ Gc(x, xc) and each (x, xc) ∈ DΩ. Hence, the growth
of Vθ during jumps of (27) is bounded by

ud,θ(x, xc) :=

{
−δ(x, xc) if (x, xc) ∈ DΩ

−∞ otherwise
(29)

for each (x, xc) ∈ X × Xc. Since (κ,V, Dc, Fc, Gc) is
synergistic relative to A for (7) with robustness margin Ω,
it follows that (κ, Vθ, Dc, Fc) is synergistic relative to Aθ

for (7) and, due to this assumption, the remainder of the proof
follows closely that of Lemma 2. From condition (C6) it fol-
lows that the growth of Vθ along solutions to (27) is bounded
by uc,θ, ud,θ, with uc,θ(x, xc) ≤ 0 and ud,θ(x, xc) ≤ 0 for
each (x, xc) ∈ X × Xc. This implies that sublevel sets of
Vθ are forward pre-invariant for (27). The completeness of
solutions under (VC’) follows closely the proof in Lemma 2,
thus it is omitted here.

Let Ψθ denote the largest weakly invariant subset of

(ẋ, ẋc) ∈ Fcl(x, xc) (x, xc) ∈ u−1
c,θ(0)

where uc,θ is the upper bound on the growth of Vθ during
flows of (27) as defined in (C6). Given a function δ : X ×
Xc → R and a hybrid controller (κ,V, Dc, Fc, Gc) that is
synergistic relative to A for (7) with robustness margin Ω,
we say that it has synergy gap exceeding δ if, for each θ ∈ Ω
and each (x, xc) ∈ Ψθ\Aθ, δ(x, xc) < µVθ

(x, xc).

Theorem 2. Given sets X, Xc, U, and Fθ as in (7), suppose
that Assumption 1 holds. Given a compact set Ω, a positive
function δ : X × Xc → R, and a collection of compact
subsets A := {Aθ}θ∈Ω of X × Xc, if (κ,V, Dc, Fc, Gc) is
synergistic relative to A for (7) with robustness margin Ω
and synergy gap exceeding δ, then, for each θ ∈ Ω, the set
Aθ is globally pre-asymptotically stable for (27). If, for each
(x, xc) ∈ CΩ\DΩ, (VC’) is satisfied, then Aθ is globally
asymptotically stable for (27).

Proof. For each θ ∈ Ω, it follows from (C3) that each
sublevel set of Vθ is compact and, since it is also forward pre-
invariant as shown in Lemma 5, we have that each solution
to (27) is bounded. In addition, it follows from the proof
of Lemma 5 that the growth of Vθ along jumps of (27) is
bounded by (29) and, since δ(x, xc) > 0 by assumption, it
follows from [33, Theorem 8.2] that each complete solution
to (27) approaches the largest weakly invariant subset of
V −1
θ (r)∩u−1

c,θ(0) for some r in the image of Vθ, which is to
say that each complete solution to (27) approaches Ψθ ∩CΩ.
Since each point (x, xc) ∈ Ψθ\Aθ belongs to DΩ\CΩ by
Condition (C7), it follows that each complete solution to (27)
converges to Aθ, which concludes the proof of global pre-
attractivity of Aθ for (27). The proof of stability of Aθ

for (14) follows closely the proof of Lemma 3. We conclude
that Aθ is globally pre-asymptotically stable for (27). Global
asymptotic stability of Aθ for (27) under condition (VC’)
follows directly from global pre-asymptotic stability and
completeness of solutions, as shown in Lemma 5.

In the next section, we apply the proposed controller to
the design of adaptive synergistic feedback control laws for
a class of affine systems with matched uncertainties.

VI. ADAPTIVE BACKSTEPPING OF SYNERGISTIC
HYBRID FEEDBACK FOR AFFINE CONTROL SYSTEMS

A. Nominal Synergistic Hybrid Feedback

In this section, we apply the controller design of Section V
to the problem of global asymptotic stabilization of a compact
set A ⊂ X × Xc for a control affine system subject to
parametric uncertainty, where X and Xc denote the spaces
of the state and controller variables, respectively. In this
direction, let Fθ in (7) be given by

Fθ(x, xc, u) := f(x, xc) +H(x, xc)u+W (x, xc)θ (30)

for each (x, xc, u) ∈ X ×Xc × U, where u denotes an input
variable subject to the constraint u ∈ U, and

θ ∈ Ω := {θ ∈ R
ℓ : |θ| ≤ θ0} (31)

represents the parametric uncertainty of the model whose
norm is assumed to be bounded by a known parameter
θ0 ∈ R≥0. The controller design in this section is applicable
under the assumption of matched uncertainties stated next.

Assumption 2. There exists a continuously differentiable
function Ŵ such that W (x, xc) = H(x, xc)Ŵ (x, xc) for
each (x, xc) ∈ X × Xc.

In addition, we assume that we are given a synergistic
hybrid controller for the nominal (unperturbed) system as
defined next.

Definition 4. Given a compact set A ⊂ X × Xc and a
continuous function δ : X × Xc → R, the hybrid con-
troller (κ0, V0, Dc, Fc) is said to be nominally synergistic
relative to A for (30) with synergy gap exceeding δ if it
is synergistic relative to A for

ẋ = F0(x, xc, u) := f(x, xc) +H(x, xc)u (32)

with synergy gap exceeding δ, and V0 is continuously differ-
entiable on {(x, xc) ∈ X × Xc : V0(x, xc) < +∞.}.

The dynamical system (32) is obtained from (30) by
considering that there are no perturbations, i.e., θ = 0. It
follows from Theorem 1 that A is globally asymptotically
stable for the closed-loop system H in (14) resulting from the
interconnection of (32) and a nominally synergistic controller
relative to A for (30) when θ = 0. In the following sections,
we employ the results of Sections IV and V in order to
develop a synergistic controller that is able to cope with
parametric uncertainty from a given nominally synergistic
controller.

In the next section, we present variations of the nominal
synergistic controller to deal with parametric uncertainty.

B. Adaptive Synergistic Hybrid Feedback

In this section, we modify the nominal synergistic con-
troller given in Section VI-A to globally asymptotically
stabilize

A1,θ := A × {θ} (33)

for the closed-loop system when θ in (30) is nonzero.3 In
this direction, let θ̂ ∈ R

ℓ denote an estimate of the parameter

3As the controller design exploits ideas in the literature of adaptive control,
we refer the reader to [39] and [40] for an overview of adaptive controller
design and backstepping under the influence of model uncertainty.
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θ that is generated via
˙̂
θ = Γ1 Proj(W (x, xc)

⊤∇xV0(x, xc), θ̂), (34)

where Γ1 ∈ R
ℓ×ℓ is a positive definite matrix and Proj :

R
ℓ × R

ℓ → R
ℓ is given by

Proj(η, θ̂) :=

{
η if p(θ̂) ≤ 0 or ∇ p(θ̂)⊤η ≤ 0(
Iℓ − p(θ̂)∇ p(θ̂)∇ p(θ̂)⊤

∇ p(θ̂)⊤∇ p(θ̂)

)
η otherwise

(35)
for each (η, θ̂) ∈ R

ℓ × R
ℓ,

p(θ̂) :=
θ̂⊤θ̂ − θ20
ǫ2 + 2ǫθ0

(36)

for each θ̂ ∈ R
ℓ, with ǫ > 0 and θ0 > 0 given in (31), and

W as in (30). The function Proj in (35) has the following
properties (cf. [41]):
(P1) Proj is Lipschitz continuous;

(P2) Each solution t 7→ θ̂(t) to ˙̂
θ = Γ1 Proj(η(t), θ̂), from

θ̂ ∈ Ω+ǫB with input t 7→ η(t) satisfies rge θ̂ ⊂ Ω+ǫB;
(P3) Given θ ∈ Ω, (θ− θ̂)⊤ Proj(η, θ̂) ≥ (θ− θ̂)⊤η for each

(η, θ̂) ∈ R
ℓ × R

ℓ;
with ǫ > 0 as in (36). Given a hybrid con-
troller (κ0, V0, Dc, Fc) that is nominally synergistic relative
to A for (30) with synergy gap exceeding δ, and the controller
variable xc,1 := (xc, θ̂) ∈ Xc,1 := Xc× (Ω+ ǫB), we define

κ1(x, xc,1) := κ0(x, xc)− Ŵ (x, xc)θ̂ (37a)

V1,θ(x, xc,1) := V0(x, xc) +
1

2
(θ − θ̂)⊤Γ−1

1 (θ − θ̂) (37b)

Dc,1(x, xc,1) := Dc(x, xc)× (Ω + ǫB) (37c)

Fc,1(x, xc,1) =

[
Fc(x, xc)

Γ1 Proj(W (x, xc)
⊤∇xV0(x, xc), θ̂)

]

(37d)

for each (x, xc,1) ∈ X × Xc,1, where Ŵ comes from
Assumption 2. The hybrid closed-loop system resulting
from the interconnection between (30) and the hybrid con-
troller (κ1, V1,θ, Dc,1, Fc,1), is given by

(ẋ, ẋc,1) ∈ Fcl,1(x, xc,1) (x, xc,1) ∈ C1 (38a)

(x+, x+
c,1) ∈ Gcl,1(x, xc,1) (x, xc,1) ∈ D1 (38b)

where

C1 := {(x, xc,1) ∈ X × Xc,1 : µV1,θ
(x, xc,1) ≤ δ(x, xc)}

D1 := {(x, xc,1) ∈ X × Xc,1 : µV1,θ
(x, xc,1) ≥ δ(x, xc)}

and

Fcl,1(x, xc,1) :=

[
Fθ(x, xc, κ1(x, xc,1))

Fc,1(x, xc,1)

]

∀(x, xc,1) ∈ C1

(39a)

Gcl,1(x, xc,1) :=

[
x

̺V1,θ
(x, xc,1)

]
∀(x, xc,1) ∈ D1

(39b)

where, for each (x, xc,1) ∈ X × Xc,1,

νV1,θ
(x, xc,1) = νV0

(x, xc) (40a)

̺V1,θ
(x, xc,1) = ̺V0

(x, xc)× {θ} (40b)

µV1,θ
(x, xc,1) = µV0

(x, xc) +
1

2
(θ − θ̂)⊤Γ−1

1 (θ − θ̂) (40c)

are the result of (11a), (11b) and (11c), respectively.

Remark 8. The functions (40) are not realizable for the
hybrid controller (κ1, V1,θ, Dc,1, Fc,1), because µV1,θ

and
̺V1,θ

in (40) depend on the unknown constant θ. This
dependence will be removed when we show that there
exists Gc,1 : X × Xc,1 ⇒ Xc,1 such that the hybrid
controller (κ1,V1, Dc,1, Fc,1, Gc,1) with V := {V1,θ}θ∈Ω

is synergistic relative to A1 := {A1,θ}θ∈Ω for (30) with
robustness margin Ω.

To design (22), we start by showing that the hybrid
controller (κ1, V1,θ, Dc,1, Fc,1) is synergistic relative to A1,θ

for (30).

Proposition 2. Suppose that the sets X, Xc, U, and the set-
valued map Fθ in (30) satisfy Assumption 1, and that Assump-
tion 2 holds. Given θ ∈ Ω, a compact set A ⊂ X×Xc, and a
hybrid controller (κ0, V0, Dc, Fc) that is nominally synergis-
tic relative to A for (30), the controller (κ1, V1,θ, Dc,1, Fc,1)
given in (37) is a synergistic candidate relative to A1,θ

for (30).

Proof. The optimization problems in (11) are feasible for
each x ∈ X, because they are feasible for V0, hence (C1) is
satisfied.

Since V1,θ corresponds to the sum of V0 with (θ −
θ̂)⊤Γ−1

1 (θ − θ̂)/2 and both terms are continuous, it follows
that V1,θ is continuous. Since V0 is positive definite with
respect to A and θ̂ 7→ (θ− θ̂)⊤Γ−1

1 (θ− θ̂) is positive definite
relative to θ, it follows that V1,θ is positive definite relative
to A1,θ. It follows from the assumption that V −1

0 ([0, c])
is compact for each c ≥ 0 and radial unboundedness of
θ̂ 7→ (θ − θ̂)⊤Γ−1

1 (θ − θ̂) relative to θ that V −1
1,θ ([0, c]) is

compact for each c ≥ 0, thus proving that V1,θ satisfies (C3).
From (37c), we have that Dc,1(x, xc,1) is the Cartesian

product between Dc(x, xc) and Ω + ǫB for each (x, xc) ∈
X×Xc. Since Dc satisfies (C4) by assumption, we have that
Dc,1 also satisfies (C4). Since κ0 satisfies (C5), then κ1 also
satisfies (C5).

Proposition 3. Suppose that the sets X, Xc, U, and the set-
valued map Fθ in (30) satisfy Assumption 1, and that Assump-
tion 2 holds. Given θ ∈ Ω, a compact set A ⊂ X×Xc, and a
hybrid controller (κ0, V0, Dc, Fc) that is nominally synergis-
tic relative to A for (30), the controller (κ1, V1,θ, Dc,1, Fc,1)
given in (37) satisfies (C6).

Proof. It follows from (37b), (39a) and (P3) that, for each
(x, xc,1) ∈ X × Xc,1 and each fcl,1 ∈ Fcl,1(x, xc,1)

∇V1,θ(x, xc,1)
⊤fcl,1 ≤∇V0(x, xc)

⊤

[
Fθ(x, xc, κ1(x, xc,1))

fc

]

− (θ − θ̂)⊤W (x, xc)
⊤∇xV0(x, xc)

where fc ∈ Fc(x, xc) is the component of fcl,1 that deter-
mines the dynamics of xc, i.e., ẋc = fc. Replacing (30)
and (37a) in (VI-B), it follows from Assumption 2 that

∇V1,θ(x, xc,1)
⊤fcl,1 ≤ ∇V0(x, xc)

⊤

[
F0(x, xc, κ0(x, xc))

fc

]

for each (x, xc,1) ∈ X × Xc,1. From the assumption that the
hybrid controller (12) with data (κ0, V0, Dc, Fc) is synergistic
relative to A for (32), we have that ∇V1,θ(x, xc,1)

⊤fcl,1 ≤ 0
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for each (x, xc,1) ∈ X×Xc,1 and each fcl,1 ∈ Fcl,1(x, xc,1),
which proves (C6).

Since the hybrid controller (κ1, V1,θ, Dc,1, Fc,1) satis-
fies (C6), we have that V1,θ is nonincreasing along solutions
to the closed-loop system (38), but satisfying (C7) requires
further assumptions on the data, as shown next.

Proposition 4. Suppose that the sets X, Xc, U, and the
set-valued map Fθ in (30) satisfy Assumption 1, and that
Assumption 2 holds. Given θ ∈ Ω, a compact set A ⊂ X×Xc,
and a hybrid controller (κ0, V0, Dc, Fc) that is nominally
synergistic relative to A for (30) with synergy gap exceeding
δ, let Ψ denote the largest weakly invariant subset of

(ẋ, ẋc) ∈ Fcl,0(x, xc) =

(
F0(x, xc, κ0(x, xc))

Fc(x, xc)

)

on (x, xc) ∈ E := {(x, xc) ∈ X×Xc : ∇V0(x, xc)
⊤fcl,0 = 0

for some fcl,0 ∈ Fcl,0(x, xc)} and let Ψ1,θ denote the
largest weakly invariant subset of

(ẋ, ẋc,1) ∈ Fcl,1(x, xc,1) (x, xc,1) ∈ E1
with E1 := {(x, xc,1) ∈ X × Xc,1 : ∇V1,θ(x, xc,1)

⊤fcl,1 =
0 for some fcl,1 ∈ Fcl,1(x, xc,1)}. If the projection of
Ψ1,θ\A1,θ onto X × Xc is a subset of Ψ\A, i.e., 4

πX×Xc
(Ψ1,θ\A1,θ) ⊂ Ψ\A, (41)

then the hybrid controller (κ1, V1,θ, Dc,1, Fc,1) in (37) is syn-
ergistic relative to A1,θ for (30) with synergy gap exceeding
δ.

Proof. It follows from the definition of µV1,θ
in (40c) that

µV1,θ
(x, xc,1) is the sum of µV0

(x, xc) with a quadratic
nonnegative term, hence

µV1,θ
(x, xc,1) ≥ µV0

(x, xc) (42)

for each (x, xc,1) ∈ Ψ1,θ\A1,θ and, consequently, we have
that

δ2 := inf{µV1,θ
(x, xc, θ) : (x, xc,1) ∈ Ψ1,θ\A1,θ}

≥ inf {µV0
(x, xc) : (x, xc,1) ∈ Ψ1,θ\A1,θ} .

(43)

The fact that (x, xc,1) ∈ Ψ1,θ\A1,θ implies
(x, xc) ∈ πX×Xc

(Ψ1,θ\A1,θ) together with (43)
allow us to derive the following inequality: δ2 ≥
inf {µV0

(x, xc) : (x, xc) ∈ πX×Xc
(Ψ1,θ\A1,θ)} . It follows

from (41) that δ2 ≥ inf{µV0
(x, xc) : (x, xc) ∈ Ψ\A}

which is greater than zero by the assumption that the
controller (κ0, V0, Dc, Fc) is synergistic relative to A
for (32) with synergy gap exceeding δ. In addition, we
have that µV1,θ

(x, xc,1) ≥ µV0
(x, xc) > δ(x, xc) for

each (x, xc,1) ∈ Ψ1,θ\A1,θ, which proves that the hybrid
controller (κ1, V1,θ, Dc,1, Fc,1) in (37) is synergistic relative
to A1,θ for (30) with synergy gap exceeding δ.

Remark 9. It should be noted that condition (41) is akin to
a persistence of excitation condition, as it guarantees that the
inclusion of the estimator dynamics in (34) does not add new
undesired equilibria to the closed-loop system.

In the next result, we complete the construction of the
robust synergistic controller (22) from the data of a nominally

4Given a subset S of X := X1 × X2, the projection of S onto X1

is represented by πX1
(S) := {x1 ∈ X1 : (x1, x2) ∈ S for some x2 ∈

X2}. Similarly, the projection of S onto X2 is denoted by πX2
(S) :=

{x2 ∈ X2 : (x1, x2) ∈ S for some x1 ∈ X1}.

synergistic controller (κ0, V0, Dc, Fc), by designing a set-
valued map Gc,1 : X × Xc,1 ⇒ X that is outer semicon-
tinuous, locally bounded and satisfies (24).

Proposition 5. Suppose that the sets X, Xc, U, and the
set-valued map Fθ in (30) satisfy Assumption 1, and that
Assumption 2 holds. Given Ω in (31), a compact set A ⊂
X × Xc, and a hybrid controller (κ0, V0, Dc, Fc) that is
nominally synergistic relative to A for (30) with synergy
gap exceeding δ, A1 := {A1,θ}θ∈Ω with A1,θ in (33),
V1 := {V1,θ}θ∈Ω with V1,θ in (37b), then the hybrid con-
troller (κ1,V1, Dc,1, Fc,1, Gc,1) where

Gc,1(x, xc,1) := ̺V0
(x, xc)× Ĝ(θ̂) (44)

for each (x, xc,1) ∈ X × Xc,1, and

Ĝ(θ̂) := arg max
g∈Ω+ǫB

min
θ∈Ω

(θ − θ̂)⊤Γ−1
1 (θ − θ̂)

− (θ − g)⊤Γ−1
1 (θ − g)

for each θ̂ ∈ Ω + ǫB, is synergistic relative to A1 for (30)
with robustness margin Ω and synergy gap exceeding δ.

Proof. In Proposition 4 we demonstrate that the hybrid
controller (κ1, V1,θ, Dc,1, Fc,1) is synergistic relative to A1,θ

as required by Definition 3. It remains to be shown that the
hybrid controller (κ1,V1, Dc,1, Fc,1, Gc,1) satisfies assump-
tions (R1), (R2) and (R3). To prove (R1), one must show that
X×Xc,1 ⊂ domV1,θ. From the definition of V1,θ in (37b), we
have that domV1,θ = domV0×(Ω+ǫB). It follows from the
assumption that the hybrid controller (κ0, V0, Dc, Fc) is nom-
inally synergistic relative to A for (30) that X×Xc ⊂ domV0,
hence X × Xc,1 ⊂ domV1,θ. The function (x, xc,1, θ) 7→
V1(x, xc,1, θ) := V1,θ(x, xc,1) is continuous because it results
from the composition of continuous functions, hence (R1)
holds.

To prove (R2) and (R3), one must show that Gc,1 is outer
semicontinuous, locally bounded and that it satisfies (24).
Since Gc,1(x, xc,1) is the Cartesian product of ̺V0

(x, xc)
and Ĝ(θ̂) for each (x, xc,1) ∈ X × Xc,1 and ̺V0

is outer
semicontinuous and locally bounded as proved in Lemma 1,
to demonstrate that (R2) is satisfied it only remains to be
shown that Ĝ is outer semicontinuous and locally bounded.
Let h(g, θ) := (θ− θ̂)⊤Γ−1

1 (θ− θ̂)− (θ− g)⊤Γ−1
1 (θ− g) for

each (g, θ) ∈ (Ω+ ǫB)×Ω. Since h results from the compo-
sition of continuous functions it is also continuous. It follows
from the compactness of Ω and from [36, Theorem 9.14] that

h(g) := min{h(g, θ) : θ ∈ Ω} ∀g ∈ Ω+ ǫB (45)

is continuous. Since Dc,1 is continuous and compact-valued,
it follows from the continuity of (45) and [36, Theorem 9.14]
that Ĝ is compact-valued and upper semicontinuous. The
remainder of the proof of outer semicontinuity and local
boundedness of Ĝ follows closely that of Lemma 1, thus
it will be omitted.

The fact that Gc,1 satisfies (24) follows from the obser-
vations in Remark 7 by noticing that Ω and Ω + ǫB are
convex and compact spaces and the function h, which can be
rewritten as h(g, θ) = 2θ⊤Γ−1

1 (g − θ̂)− g⊤Γ−1
1 g + θ̂⊤Γ−1

1 θ̂
for each (g, θ) ∈ (Ω+ǫB)×Ω, is quasi-concave as a function
of g and quasi-convex as a function of θ.
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The hybrid closed-loop system resulting from the intercon-
nection between (κ1,V1, Dc,1, Fc,1, Gc,1) and (30) is given
by:

(ẋ, ẋc,1) ∈ Fcl,1(x, xc,1) (x, xc,1) ∈ CΩ,1 (46a)

(x+, x+
c,1) ∈ GΩ,1(x, xc,1) (x, xc,1) ∈ DΩ,1 (46b)

where

CΩ,1 :=

{
(x, xc,1) ∈ X × Xc,1 : min

θ∈Ω
µV1,θ

(x, xc,1) ≤ δ(x, xc)

}

DΩ,1 :=

{
(x, xc,1) ∈ X × Xc,1 : min

θ∈Ω
µV1,θ

(x, xc,1) ≥ δ(x, xc)

}

and

GΩ,1(x, xc,1) :=

[
x

Gc,1(x, xc,1)

]
∀(x, xc,1) ∈ DΩ,1, (47)

Global asymptotic stability of A1,θ for (46) follows from
the application of Theorem 2 and it is summarized in the
next corollary.

Corollary 2. Suppose that the sets X, Xc, U, and the
set-valued map Fθ in (30) satisfy Assumption 1, and that
Assumption 2 holds. Given Ω in (31), a positive function
δ : X × Xc 7→ R, a compact set A ⊂ X × Xc, and a
hybrid controller (κ0, V0, Dc, Fc) that is nominally syner-
gistic relative to A for (30) with synergy gap exceeding δ,
for each θ ∈ Ω, the set A1,θ is globally pre-asymptotically
stable for (46). If, for each (x, xc,1) ∈ CΩ,1\DΩ,1, (VC’) is
satisfied, then A1,θ is globally asymptotically stable for (46).

Proof. It follows from (42) that min{µV1,θ
(x, xc,1) : θ ∈

Ω} ≥ µV0
(x, xc) for each (x, xc,1) ∈ Ψ1,θ\A1,θ. Since

µV0
(x, xc) > δ(x, xc) for each (x, xc,1) ∈ Ψ1,θ\A1,θ as

shown in the proof of Proposition 4, and δ is positive, the
conditions of Theorem 2 apply and we are able to conclude
that A1,θ is globally asymptotically stable for (46).

C. Backstepping
Given a nominally synergistic controller (κ0, V0, Dc, Fc),

we extend the dynamics of the controller in Section VI-B to
include the input u as a controller state:5

ẋc,2 ∈ Fc,2(x, xc,2)

:=








fc
Γ1 Proj(υ(x, xc,2), θ̂)

fu(x, xc,2) +Dxc
(κ1(x, xc,1))fc


 : fc ∈ Fc(x, xc)





(48)
with xc,2 := (xc,1, u) ∈ Xc,2 := Xc × (Ω + ǫB) × R

m,
Γ2 ∈ R

m×m positive definite, ku > 0,

υ(x, xc,2) := W (x, xc)
⊤∇xV0(x, xc)

−W (x, xc)
⊤Dx(κ1(x, xc,1))

⊤Γ−1
2 (u− κ1(x, xc,1)) (49)

for each (x, xc,2) ∈ X × Xc,2, and

fu(x,xc,2) := −Ŵ (x, xc)Γ1 Proj(υ(x, xc,2), θ̂)

− ku(u− κ1(x, xc,1))− Γ2H(x, xc)
⊤∇xV0(x, xc)

+Dx(κ1(x, xc,1))F(x, xc, u, θ̂)
(50)

5Alternatively, one may consider u as a plant state rather than a controller
state, in which case u would remain constant during jumps. We have
included u as a controller variable because it is an approach less often
found in the literature.

which is defined for each (x, xc,2) ∈ X×Xc,2 assuming that
κ0 is continuously differentiable and that F(x, xc, u, θ̂) =
F
θ̂
(x, xc, u) denotes the dynamics (30) with θ is equal to the

estimated value θ̂.
Given the compact set Ω of possible (unknown) values

of θ in (31), a compact set A ⊂ X × Xc, and a nominal
synergistic controller (κ0, V0, Dc, Fc) relative to A for (30)
with synergy gap exceeding δ, the main goal of this section
is to design a controller of the form (22) that is synergistic
relative to A2 := {A2,θ}θ∈Ω for (30) with robustness margin
Ω and synergy gap exceeding δ, where

A2,θ := {(x, xc,2) ∈ X × Xc,2 : (x, xc,1) ∈ A1,θ,

u = κ1(x, xc,1)}.
(51)

In this direction, we define the Lyapunov function

V2,θ(x, xc,2) := V1,θ(x, xc,1)

+
1

2
(u− κ1(x, xc,1))

⊤Γ−1
2 (u− κ1(x, xc,1))

(52)

for each (x, xc,2) ∈ X × Xc,2 and the set-valued map

Dc,2(x, xc,2) := {(gc,1, gu) ∈ Xc,2 : gc,1 ∈ Dc,1(x, xc,1),

gu = κ1(x, gc,1)} (53)

for each (x, xc,2) ∈ X × Xc,2. The choice u = κ1(x, gc,1)
in (53) may seem peculiar, but it turns out that this value
minimizes (52) with respect to u, hence it is suitable for the
jump logic.

From the interconnection between (30) and the hybrid
controller (κ2, V2,θ, Dc,2, Fc,2) with κ2(x, xc,2) = u for each
(x, xc,2) ∈ X×Xc,2, we obtain the hybrid closed-loop system

(ẋ, ẋc,2) ∈ Fcl,2(x, xc,2) (x, xc,2) ∈ C2

:= {(x, xc,2) ∈ X × Xc,2 : µV2,θ
(x, xc,2) ≤ δ(x, xc)}

(54a)

(x+, x+
c,2) ∈ Gcl,2(x, xc,2) (x, xc,2) ∈ D2

:= {(x, xc,2) ∈ X × Xc,2 : µV2,θ
(x, xc,2) ≥ δ(x, xc)}

(54b)

where

Fcl,2(x, xc,2) :=

[
Fθ(x, xc, u)
Fc,2(x, xc,2)

]
∀(x, xc,2) ∈ C2 (55a)

Gcl,2(x, xc,2) :=

[
x

̺V2,θ
(x, xc,2)

]
∀(x, xc,2) ∈ D2. (55b)

Note that, from the definitions (11b) and (11c),
we have the following identities for the hybrid
controller (κ2, V2,θ, Dc,2, Fc,2):

̺V2,θ
(x, xc,2) = {(gc,1, gu) ∈ Xc,2 : gc,1 ∈ ̺V1,θ

(x, xc,1),

gu = κ1(x, gc,1)},

µV2,θ
(x, xc,2) = µV1,θ

(x, xc,1) +
1

2

∣∣∣Γ− 1

2

2 (u− κ1(x, xc,1))
∣∣∣
2

for each (x, xc,2) ∈ X ×Xc,2,6; hence, similarly to (38), the
closed-loop system (54) is impossible to implement due to
dependence on θ in C2, D2, and Gcl,2, but, similarly to the
controller of Section VI-B, this dependence will be removed
with the design of a hybrid controller that is synergistic

6Since Γ2 ∈ R
m×m is assumed to be positive definite, Γ

− 1

2

2
exists and

is unique (cf. [42, Section 8.5]).
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relative to A2 := {A2,θ}θ∈Ω for (30) with robustness margin
Ω (cf. Remark 8).

We are able to prove the following result using arguments
similar to those of Proposition 4.

Proposition 6. Suppose that the sets X, Xc, U, and the
set-valued map Fθ in (30) satisfy Assumption 1, and that
Assumption 2 holds. Given θ ∈ Ω, a compact set A ⊂
X × Xc, and a hybrid controller (κ0, V0, Dc, Fc) that is
nominally synergistic relative to A for (30) with synergy
gap exceeding δ, if (41) is satisfied then the hybrid con-
troller (κ2, V2,θ, Dc,2, Fc,2) is synergistic relative to A2,θ

for (30) with synergy gap exceeding δ.

Proof. Similarly to the proof of Proposition 4, it is possible
to show that properties (C1), (C3) and (C5) follow directly
from the fact that A2,θ is compact and from the assumption
that (κ0, V0, Dc, Fc) is synergistic relative to A for (32).
It follows from the continuity of Dc,1 and κ1 that Dc,2

is continuous. That Dc,2 is compact-valued follows from
compactness of Dc,1 and continuity of κ1, hence (C4) is
satisfied. From the assumption that (κ0, V0, Dc, Fc) is syner-
gistic relative to A for (32), we show in [31] that

∇V2,θ(x, xc,2)
⊤fcl,2 ≤ ∇V0(x, xc)

⊤F0(x, xc, κ0(x, xc))

− ku(u− κ1(x, xc,1))
⊤Γ−1

2 (u− κ1(x, xc,1)) ≤ 0 (56)

for each (x, xc,2) ∈ X ×Xc,2 satisfying V2,θ(x, xc,2) < +∞
and each fcl,2 ∈ Fcl,2(x, xc,2), hence property (C6) is
satisfied. Let Ψ2,θ denote the largest weakly invariant subset
of

(ẋ, ẋc,2) ∈ Fcl,2(x, xc,2) (x, xc) ∈ E2 (57)

with E2 := {(x, xc,2) ∈ X × Xc,2 : ∇V2,θ(x, xc,2)
⊤fcl,2 = 0

for some fcl,2 ∈ Fcl,2(x, xc,2)}. To verify
that (κ2, V2,θ, Dc,2, Fc,2) is synergistic relative to A2,θ

for (48), we need to check that δ2 := inf{µV2,θ
(x, xc,2) :

(x, xc,2) ∈ Ψ2,θ\A2,θ} > 0. It follows from (56) that Ψ2,θ ⊂
{(x, xc,2) ∈ X × Xc,2 : (x, xc,1) ∈ Ψ1,θ, u = κ1(x, xc,1)}
where Ψ1,θ is defined in Proposition 4. It follows from (51)
that

δ2 ≥ inf{µV2,θ
(x, xc,2) : (x, xc,1) ∈ Ψ1,θ\A1,θ,

u = κ1(x, xc,1)}
= inf{µV1,θ

(x, xc,1) : (x, xc,1) ∈ Ψ1,θ\A1,θ}
(58)

which we have shown in Proposition 4 to satisfy δ2 >
0, under assumption (41). In addition, µV2,θ

(x, xc,2) =
µV1,θ

(x, xc,1) ≥ µV0
(x, xc) > δ(x, xc) for each (x, xc,2) ∈

Ψ2,θ\A2,θ, hence the hybrid controller (κ2, V2,θ, Dc,2, Fc,2)
is synergistic relative to A2,θ for (30) with synergy gap
exceeding δ.

To finalize the design of a robust synergistic controller, we
provide the construction of the jump map Gc,2 in the next
proposition.

Proposition 7. Suppose that the sets X, Xc, U, and the
set-valued map Fθ in (30) satisfy Assumption 1, and that
Assumption 2 holds. Given Ω in (31), a compact set A ⊂ X×
Xc, and a hybrid controller (κ0, V0, Dc, Fc) that is nominally
synergistic relative to A for (30) with synergy gap exceeding
δ, A2 := {A2,θ}θ∈Ω with A2,θ in (51), V2 := {V2,θ}θ∈Ω with

V2,θ in (52), the hybrid controller (κ2,V2, Dc,2, Fc,2, Gc,2)
where

Gc,2(x, xc,2) := {(gc,1, gu) ∈ Dc,2(x, xc,2) :

gc,1 ∈ Gc,1(x, xc,1)} (59)

for each (x, xc,2) ∈ X × Xc,2 is synergistic relative to A2

for (30) with robustness margin Ω and synergy gap exceeding
δ.

Proof. In Proposition 6 we demonstrate that the hybrid
controller (κ2, V2,θ, Dc,2, Fc,2) is synergistic relative to A2,θ

with synergy gap exceeding δ as required by Definition 3.
The proof that (R1) is satisfied follows closely the proof of
Proposition 5, hence it is omitted here. The outer semicon-
tinuity and local boundedness of Gc,2 follows from outer
semicontinuity and local boundedness of Gc,1 in addition
to the continuity of κ1, thus (R2) is verified. For each
(x, xc,2) ∈ X × Xc,2 and for each gc,2 ∈ X2, we have that

V2,θ(x, xc,2)− V2,θ(x, gc,2)

≥ min
θ∈Ω

V2,θ(x, xc,2)− V2,θ(x, gc,2).
(60)

From (59), it follows that gc,2 := (gc,1, gu) with gc,1
belonging to (44) and gu = κ1(x, gc,1). Replacing (52)
in (60) and plugging in the aforementioned values of gc,1
and gu, we have that
V2,θ(x, xc,2)− V2,θ(x, gc,2)

≥ max
gc,1∈Dc,1(x,xc,1)

min
θ∈Ω

V1,θ(x, xc,1)− V1,θ(x, gc,1)

+
1

2
(u− κ1(x, xc,1))

⊤Γ−1
2 (u− κ1(x, xc,1))

= max
gc,2∈Dc,2(x,xc,2)

min
θ∈Ω

V2,θ(x, xc,2)− V2,θ(x, gc,2)

(61)
for each (x, xc,2) ∈ X × Xc,2 and each gc,2 := (gc,1, gu) ∈
Gc,2(x, xc,2). Since the max and min operators in (61)
commute as shown in the proof of Proposition 5, it follows
that

V2,θ(x, xc,2)− V2,θ(x, gc,2) ≥ min
θ∈Ω

µV2,θ
(x, xc,2)

for each (x, xc,2) ∈ X × Xc,2 and each gc,2 := (gc,1, gu) ∈
Gc,2(x, xc,2), thus verifying (R3).

The hybrid closed-loop system resulting from the intercon-
nection between (κ2,V2, Dc,2, Fc,2, Gc,2) and (30) is given
by:

(ẋ, ẋc,2) ∈ Fcl,2(x, xc,2) (x, xc,2) ∈ CΩ,2 (62a)

(x+, x+
c,2) ∈ GΩ,2(x, xc,2) (x, xc,2) ∈ DΩ,2 (62b)

where

CΩ,2 :=

{
(x, xc,2) ∈ X × Xc,2 : min

θ∈Ω
µV2,θ

(x, xc,2) ≤ δ(x, xc)

}

DΩ,2 :=

{
(x, xc,2) ∈ X × Xc,2 : min

θ∈Ω
µV2,θ

(x, xc,2) ≥ δ(x, xc)

}

and

GΩ,2(x, xc,2) :=

[
x

Gc,2(x, xc,2)

]
∀(x, xc,2) ∈ DΩ,2.

The global asymptotic stability of A2,θ for (62) follows
from Theorem 2 and it is stated in the next corollary for
the sake of completeness. The proof is omitted because it is
identical to the proof of Corollary 2
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Corollary 3. Suppose that the sets X, Xc, U, and the
set-valued map Fθ in (30) satisfy Assumption 1, and that
Assumption 2 holds. Given Ω in (31), a positive function
δ : X × Xc 7→ R, a compact set A ⊂ X × Xc, and a
hybrid controller (κ0, V0, Dc, Fc) that is nominally syner-
gistic relative to A for (30) with synergy gap exceeding δ,
for each θ ∈ Ω, the set A2,θ is globally pre-asymptotically
stable for (62). If, for each (x, xc,2) ∈ CΩ,2\DΩ,2, (VC’) is
satisfied, then A2,θ is globally asymptotically stable for (62).

In the next section, we apply the controllers proposed in
Sections VI-B and VI-C to global asymptotic stabilization of
a setpoint for a two-dimensional system in the presence of
an obstacle.

VII. SYNERGISTIC HYBRID FEEDBACK FOR ROBUST
GLOBAL OBSTACLE AVOIDANCE

To demonstrate the applicability of the synergistic adaptive
controller of Section VI, we consider the problem of globally
asymptotically stabilizing the origin for a vehicle moving on
a plane with an obstacle N := z0 + rB with z0 ∈ R

2 and
r > 0 such that the origin is not contained in N . We consider
that the evolution in time of the position z ∈ R

2\N of the
vehicle is described by

ż = u+ θ (63)
where u ∈ U := R

2 is the input and θ ∈ R
2 is an unknown

constant. We have shown in [8, Section IV] that ψ(z) :=[
z−z0
|z−z0|

log(|z − z0| − r)
]⊤

is a diffeomorphism between

R
2\N and S1 × R, hence global asymptotic stabilization

of the origin for (63) is equivalent to the global asymptotic
stabilization of ψ(0) for

ẋ = Dψ(ψ−1(x))u+Dψ(ψ−1(x))θ. (64)
with x ∈ X := S1 × R. Before moving to the controller
design, we show that Assumption 1 is verified for the
particular problem at hand.

Proposition 8. Let Xc denote a closed subset of some
Euclidean space. Then, the set-valued map

Fθ(x, xc, u) := Dψ(ψ−1(x))u+Dψ(ψ−1(x))θ (65)
defined for each (x, xc, u) ∈ X × Xc × U satisfies Assump-
tion 1 and
(⋆) The intersection between Fθ(x, xc, u) and the tan-

gent space to X at (x, xc, u) is nonempty for each
(x, xc, u) ∈ X × Xc × U.

Proof. To check that the condition (S1) holds, note that the
sets X, Xc and U are closed subsets of Euclidean spaces. It
follows from the fact that ψ is a diffeomorphism between
R

2\N and S1 ×R that Dψ(ψ−1(x)) is an isomorphism be-
tween the tangent space to R

2\N at ψ−1(x) and the tangent
space to S1×R at x for each x ∈ X (cf. [35, Proposition 3.6]),
thus (⋆) is verified. Since ψ is a diffeomorphism it also
follows that x 7→ Dψ(ψ−1(x)) is continuous, thus Fθ is
also continuous and single-valued, hence it verifies (S2).

The following section presents a hybrid feedback controller
of the form (κ0, V0, Dc, Fc) that is nominally synergistic
relative to

A := {(x, q) ∈ X × Xc : x = ψ(0)}. (66)
for (65) as required by the controller design that is presented
in Section VI.

A. Nominally Synergistic Hybrid Feedback Controller
for Obstacle Avoidance

Inspired by the controller design in [8, Section IV], let

φq(x) :=
[

q2x1−q1x2

1−q1x1−q2x2

x3

]⊤
for each x := (x1, x2, x3) ∈

Uq := {x ∈ X : q1x1 + q2x2 6= 1} with q := (q1, q2) ∈ S1.
The second component of φq(x) is the identity map, while the
first component corresponds to the stereographic projection
of (x1, x2) ∈ S1 from q ∈ S1.

Let controller variable xc be equal to q, i.e., xc = q ∈ Xc,
with Xc := {q ∈ S1 : q⊤x0

12 ≤ γ}, where γ ∈ (−1, 1) is a
controller parameter and x0

12 ∈ S1 is the shorthand notation
for the first two components of x0 := ψ(0). Then, we define

V0(x, q) :=





1

2
|φq(x)− φq(ψ(0))|2 if x ∈ Uq

+∞ otherwise
(67)

for each (x, q) ∈ X × Xc. The definition of Xc above is
instrumental as it implies that x0

12 ∈ Uq for each q ∈ Xc.
Defining Dc(x, q) = Xc for each (x, q) ∈ X × Xc and

ρ(x, q) := − (x1, x2) + q

|(x1, x2) + q|
for each (x, q) ∈ X × Xc satisfying x12 6= −q, the solution
to the optimization problem (11) is given by:

̺V0
(x, q) =





{q ∈ S1 : q⊤x0
12 = 0} if x = −q

ρ(x, q) if ρ(x, q)⊤x0
12 ≤ γ

γx0
12 +

√
1− γ2Π(x0

12)ρ(x, q) otherwise
(68)

for each (x, q) ∈ X×Xc, where Π(q) = I2−qq⊤ for each q ∈
S1. To increase the rate of descent of (67) during flows, we
define Fc(x, q) := −Γ(q)Π(q)∇qV0(x, q) for each (x, q) ∈
X×Xc, where Γ(q) is a nonnegative continuous function on
S1 satisfying Γ(q) = 0 for each q ∈ S1 such that q⊤x0

12 ≥ γ.
Defining the feedback law

κ0(x, q) = −
(
Dψ(ψ−1(x))

)⊤ Dφq(x)
⊤(φq(x)−φq(ψ(0)))

(69)
for each (x, q) ∈ domκ0 = {(x, q) ∈ X × Xc : x ∈ Uq},
we prove that (κ0, V0, Dc, Fc) is synergistic relative to A
for (65) in the next proposition.

Proposition 9. Given A in (66) and a continuous function
δ : X × Xc → R, the hybrid controller (κ0, V0, Dc, Fc)
is nominally synergistic relative to A in (66) for (64) with
synergy gap exceeding δ.

Proof. It follows from (68) that (11) is feasible, hence (C1) is
satisfied. The function Fc is continuous, thus condition (C2)
is verified. Since each chart φq : Uq → R

2 is a diffeomor-
phism, φq(x) = φq(ψ(0)) if and only if x = ψ(0), hence V
in (67) is positive definite relative to (66). Moreover, V0 is
continuous and V −1

0 ([0, c]) is compact for each c ∈ R≥0,
thus (C3) is verified. Since Dc is constant and equal to
the compact set Xc for each (x, xc) ∈ X × Xc, we have
that Dc is outer semicontinuous, lower semicontinuous and
locally bounded, hence (C4) is verified. Condition (C5) is
verified for (69) because domκ = {(x, xc) ∈ X × Xc :
V0(x, xc) < +∞}. This proves that (κ0, V0, Dc, Fc) is a
synergistic candidate relative to A for (64) when θ = 0.
From (11c) and (37b), we have that µV0

(x, q) = +∞ >
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δ(x, q) for each (x, q) 6∈ Uq for any function δ, hence it
follows that each (x, q) ∈ X×Xc satisfying (x, q) ∈ Uq does
not belong to C. Since Uq is open relative to X := S1 × R

for each q ∈ Xc, {(x, q) ∈ X × Xc : x ∈ X\Uq} and C are
disjoint closed sets, and there exists a neighborhood of C
where V0 is Lipschitz continuous. The generalized derivative
of V0 at (x, q) is the direction Fcl,0(x, q) is given by

V ◦
0 (x, q;Fcl,0(x, q)) = −Γ(q) |Π(q)∇qV0(x, q)|2

−
∣∣Dψ(ψ−1(x))⊤Dφq(x)

⊤(φq(x)− φq(ψ(0)))
∣∣2 , (70)

for each (x, q) ∈ C, where Fcl,0 is the flow map for
the closed-loop system resulting from the interconnection
between (κ0, V0, Dc, Fc) and (64) with θ = 0 (cf. (14)). It
follows from (70) that the growth of V0 along the flows of
the closed-loop system is upper bounded by 0, hence (C6)
is verified. It follows from the fact that ψ and {φq}q∈Xc

are
diffeomorphisms that condition (C7) is satisfied with Ψ = A
(cf. [8]), thus completing the proof.

An additional property of the hybrid controller
(κ0, V0, Dc, Fc) is that is has synergy gap exceeding δ
for any continuous function δ satisfying δ(x, xc) < +∞
for each (x, xc) ∈ X × Xc, because Ψ\A = ∅. Therefore,
any choice of a positive δ yields global asymptotic stability
of A for the hybrid closed-loop system resulting from the
interconnection between (κ0, V0, Dc, Cc) and (64) (with
θ = 0).

B. Adaptive Synergistic Feedback for Robust Global
Obstacle Avoidance

More importantly, the synergistic controller
(κ0, V0, Dc, Fc) can be modified according to the procedures
of Section VI to yield a controller that is synergistic relative
to A1 = {A1,θ}θ∈Ω with robustness margin Ω and synergy
gap exceeding δ, because Assumptions 2 and (41) hold for
the application at hand.

Proposition 10. Given Ω ⊂ R
2 in (31), A in (66), a

continuous function δ : X × Xc → R, the hybrid con-
trollers (κ0, V0, Dc, Fc) and (κ1, V1,θ, Dc,1, Fc,1) derived
from (κ0, V0, Dc, Fc) using (37), we have that the hybrid
controller (κ1,V1, Dc,1, Fc,1, Gc,1) with V1 := {V1,θ}θ∈Ω

and Gc,1 in (44) is synergistic relative to A1 := {A ×
{θ}}θ∈Ω for (64) with robustness margin Ω and synergy gap
exceeding δ.

Proof. Assumption 2 is verified with W (x, xc) =

H(x, xc) = Dψ(ψ−1(x)) and Ŵ (x, xc) = I2. To verify (41),
note that

V ◦
1 (x, xc,1;Fcl,1(x, xc,1)) ≤ −Γ(q) |Π(q)∇qV0(x, q)|2

−
∣∣Dψ(ψ−1(x))⊤Dφq(x)

⊤(φq(x)− φq(ψ(0)))
∣∣2 , (71)

with xc,1 = (q, θ̂) ∈ Xc,1 := Xc × (Ω + ǫB). Similarly to
the proof of Proposition 9, the largest weakly invariant set
Ψ1,θ in E1 = {(x, xc,1) ∈ X ×Xc,1 : ∇V1,θ(x, xc,1)

⊤fcl,1 =
0 for some fcl,1 ∈ Fcl,1(x, xc,1)} is such that x = ψ(0).
Then, it follows from (64) that

Dψ(ψ−1(x))(θ − θ̂) = 0. (72)

Since ψ is a diffeomorphism, we have that Dψ(ψ−1(x))
is an isomorphism between the tangent spaces to R

2\N at

ψ−1(x) and to S1 ×R at x, thus (72) is verified if and only
if θ = θ̂. We conclude that Ψ1,θ = A1,θ and, consequently,
πX×Xc

(Ψ1,θ\A1,θ) = ∅ ⊂ Ψ\A with Ψ as in the proof of
Proposition 9, thus (41) is verified.

The fact that the hybrid controller (κ1,V1, Dc,1, Fc,1, Gc,1)
derived from the data of the nominally synergistic controller
(κ0, V0, Dc, Fc) is synergistic relative to A1 for (64) with ro-
bustness margin Ω and synergy gap exceeding δ implies that,
for each θ ∈ Ω, the set A1,θ := A×{θ} is globally asymptot-
ically stable for the hybrid closed-loop system (46) resulting
from the interconnection between (κ1,V1, Dc,1, Fc,1, Gc,1)
and (64). Similarly, we have that, for each θ ∈ Ω, the set A2,θ

in (51) is globally asymptotically stable for the hybrid closed-
loop system (62) resulting from the interconnection between
(κ2,V2, Dc,2, Fc,2, Gc,2) and (64). In the next section, we
illustrate these results by presenting some numerical results
that depict the behaviour of the closed-loop systems.

C. Simulation Results
In this section, we present simulation results of the closed-

loop system resulting from the interconnection between (64)
and the hybrid controllers that are presented in Section VI
considering that there is an obstacle N := z0 + rB with
z0 =

[
1 0

]⊤
and r = 0.5. Furthermore, we consider that

θ =
[√

2/2
√
2/2

]⊤
and that the controller parameters are

ku = 1, Γ1/2 = Γ2 = I2, ǫ = 1, θ0 = 1, and δ(x, q) = 1
for each (x, q) ∈ X × Xc. For this particular choice of Γ1,

we have that Ĝ(θ̂) = min{1, θ0/
∣∣∣θ̂
∣∣∣}θ̂ for each θ̂ ∈ Ω +

ǫB, which is outer semicontinuous and locally bounded. In
addition, we set γ = 0.5 and Γ(q) = max{0, γ− q⊤x0

12} for
each q ∈ S1.

Figure 1 represents the trajectory of the vehicle starting
from rest at z(0) =

[
2 0

]⊤
for each of the controllers

presented in Section VI. It can be verified both through
Figure 1 as well as Figure 2 that the trajectories before and
after backstepping are comparable, since the evolution of
the distance of the vehicle to the desired setpoint is fairly
similar in both cases. The bottom half of Figure 2 depicts
the evolution of the estimation error, which has a smaller
settling time for the closed-loop system with the controller
of Section VI-C than the controller of Section VI-B for this
particular simulation.

Due to the fact that the controller weighs the distance be-
tween the vehicle and the obstacle evenly across all possible
values of (x1, x2) ∈ S1, and because the desired setpoint
is located at the same distance to obstacle as the initial
condition, the vehicle describes roughly a circular trajectory
around the obstacle. It is possible to improve this behaviour
by changing either the synergistic potential function V0 or the
diffeomorphism ψ so as to weigh the distance to the obstacle
differently across different values of (x1, x2) ∈ S1.

To find out more about the simulation and its im-
plementation, you may explore the source code at
https://github.com/pcasau/synergistic.

VIII. CONCLUSION

Synergistic hybrid feedback has taken many forms over
the years, depending on the particular dynamical system
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Fig. 1. Trajectories t 7→ z(t) of (63) for the closed-loop system with
parameters given in Section VII-C.

t

∣ ∣ ∣
θ̂
(t
)
−

θ

∣ ∣ ∣

|z
(t
)|

0 2 4 6 8 10 12 14 16 18 20
0

0.2
0.4
0.6
0.8
1

1.2
0

0.5

1

1.5

2

2.5
Section VI-B with q(0, 0) = −1
Section VI-B with q(0, 0) = 1
Section VI-C with q(0, 0) = −1
Section VI-C with q(0, 0) = 1

Fig. 2. Evolution in time of the distance to the origin (top) and the
parametric estimation error (bottom) for the closed-loop system with
parameters given in Section VII-C.

being studied. The unifying framework for synergistic hybrid
feedback that we presented in this paper captures the most
salient features of existing synergistic hybrid feedbacks in
order to help others distinguish between the particular and the
general in different instances of synergistic hybrid feedback
across the literature. In addition, we provided a controller
design that starts from an existing synergistic controller
and modified it in order to yield an adaptive controller
that is able to compensate for the presence of bounded
matched uncertainties in affine control systems. Furthermore,
we demonstrated that the proposed controller is amenable to
backstepping and can be applied to the problem of global
obstacle avoidance.
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