
Quasi-Adam: Accelerating Adam using
quasi-Newton approximations

Aditya Ranganath
Lawrence Livermore
National Laboratory
Livermore, CA, U.S.

Email: ranganath2@llnl.gov

Irabiel Romero Ruiz
Applied Mathematics

University of California, Merced
Merced, CA, U.S.

iromeroruiz@ucmerced.edu

Mukesh Singhal
Electrical Engineering
and Computer Science

Merced, CA, U.S.
msinghal@ucmerced.edu

Roummel Marcia
Applied Mathematics

University of California, Merced
Merced, CA, U.S.

rmarcia@ucmerced.edu

Abstract—Adam is arguably one of the most commonly used

approach in deep learning and machine learning. With good

regret bounds and empirical convergence proofs, the approach

has produced many state-of-the-art models over a variety of

problems. However, the method only uses gradient information

at each iterate in addition to some moving averaged gradients

and its corresponding moments from the past. In this paper, we

propose a method that builds upon Adam and incorporates quasi-

Newton matrices for approximating second derivatives. These

Hessian approximations satisfy the so-called secant equation,

which is the first-order Taylor series expansion of the gradient

along the direction of the change in iterates. Judicious choices

of quasi-Newton matrices can lead to guaranteed descent in

the objective function and improved convergence. In this work,

we integrate search directions obtained from using these quasi-

Newton Hessian approximations with the Adam optimization

algorithm. We provide convergence guarantees and demonstrate

improved performance through an extensive experimentation on

a variety of applications.

Index Terms—Machine learning, deep learning, optimization,

image-processing

I. INTRODUCTION

Stochastic gradient-based optimization plays a vital role
in deep learning and machine learning. Most deep learning
problems are cast as an optimization problem as follows:

min
⇥

NX

i=1

f(xi,yi;⇥), (1)

where f : Rn
! R is a nonlinear and nonconvex function,

⇥ 2 Rn is the vector of parameters of the neural network, xi

is the input observation and yi is the corresponding label.
Gradient-based optimization methods are one of the most

commonly used approaches in deep learning. This is owing
to their fast computational nature (computing the gradient
is asymtotically equal to a forward pass through the neural
network) and stochastic nature (the gradients are evaluated
only at certain input points). Due to these factors, it was able
to propel research advances in the intersection of deep learning
and optimization (see [1]). In recent years, a mutlitude of

exponentially moving average and moment approaches have
been proposed to optimize neural networks (see e.g. [2], [3],
[4], [5]). The main objective of exponentially moving average
is to limit the reliance of the update on the past gradient
information instead of recent gradient information.

Quasi-Newton approximations, on the other hand, explicitly
use information from the past (steps and change in gradients)
to build an approximation of the Hessian. This approximation
induces the curvature information using the secant informa-
tion. We discuss this in detail in Sec. III. However, computing
a step using quasi-Newton updates can be expensive due to
its size and operations required. To overcome this, a limited-
memory approach is generally used. Limited-memory BFGS
(L-BFGS) is a very common approach where the Hessian
approximation always stays positive-definite. We discuss this
further in Sec. III. In recent work, quasi-Newton approaches
have proven to be more deep learning friendly (see [6]).

In this paper, we propose quasi-Adam, a combination of an
exponentially moving average and moment approach with the
L-BFGS quasi-Newton update. The paper is divided into the
following sections: In Sec. II, we discuss exponential moving
average methods such as Adam and AdaGrad. In Sec. III,
we discuss the quasi-Newton approaches, and their compact-
representations. In Sec. IV, we provide the pseudo-code of the
proposed approach and discuss the space and time-complexity
of it. In Sec. VI, we discuss the experimental setup, testbed,
datasets we will be using and models used for each dataset
and the results of these experiments. In Sec. VII, we discuss
the results obtained in Sec. VI and provide explanation and
hypotheses based on the results. In Sec. VIII, we finally
provide our concluding statements.
Notation. We denote the gradient of f(⇥) in (1) at the t

th

iteration by gt = rf(⇥t) and the Hessian approximation by
Bt ⇡ r

2
f(⇥t) 2 Rn⇥n. We denote the exact inverse of Bt

by Ht, i.e., Ht = B
�1
t . The learning rate is denoted by ↵t,

and the scalar g2t corresponds to g
2
t = kgtk

2
2. The matrix I is

the n⇥ n identity matrix.

753

2024 International Conference on Machine Learning and Applications (ICMLA)

1946-0759/24/$31.00 ©2024 IEEE
DOI 10.1109/ICMLA61862.2024.00107

2
0

2
4

 I
n

t
e

r
n

a
t
io

n
a

l
C

o
n

fe
r
e

n
c
e

 o
n

 M
a

c
h

in
e

 L
e

a
r
n

in
g

 a
n

d
 A

p
p

li
c
a

t
io

n
s
 (

IC
M

L
A

)
|

 9
7

9
-8

-3
5

0
3

-7
4

8
8

-9
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
IC

M
L
A

6
1

8
6

2
.2

0
2

4
.0

0
1

0
7

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on March 24,2025 at 05:48:56 UTC from IEEE Xplore. Restrictions apply.

II. EXPONENTIAL MOVING AVERAGE METHODS

Given a loss function f(⇥), gradient-based optimization
approaches generate a sequence of iterates {⇥t} that are
computed using the following update:

⇥t+1 = ⇥t + ↵tpt,

where ↵t is the learning rate and pt is the search direction. For
gradient-descent methods, pt = �gt. For highly nonlinear and
nonconvex functions, such as the typical neural network loss
function, large learning rate (or step sizes) do not guarantee
a reduction in the loss function, causing a non-monotone
behavior within the loss function. Likewise, a small learning
rate leads to slow convergence. To tackle this problem, the
concept of momentum and moment was introduced.

Momentum is the process of weighted averaging the gradi-
ents gt over time t. Given the initial momentum vector m0

be initialized as a vector of zeros, the expression for mt can
be written as

mt = (gt,mt�1),

where t 2 [1, T] and computes the weighted average
between gt and mt�1. This was first introduced by [7]
and adapted by [4] and [Sutskever, unpublished 2012] in a
deep learning setting, with some minor modifications. The
motivation was to damp the non-monontone behaviour in
regions of high curvature by averating over gradients with
conflicting directions.

Hinton further improved upon the momentum based ap-
proach (see [8]) by employing a Root-Mean-Square (RMS)
moving average which computes the weighted sum of g2t over
t. Given the initial moment v0 = 0, the expression for vt can
be written as

vt = �(g
2
t ; vt�1),

where � is a weighted sum of vt�1 and g
2
t . The generalized

expression for an exponential moving average update is written
as

pt = �
 (gt,mt�1)

�(g2t , vt)
. (2)

This moment term allows for the gradient to be normalized
(in some way), helping the learning rate to work better. This
propelled the use of momentum and moments in most mordern
deep learning optimization algorithms.

The first major breakthrough was brought out by [2] who
proposed Adam. The authors introduced an exponential de-
caying approach to the gradient update and the exponential
moving average update employing and employed different
weighted averages on the momentum and their moments.

Given �1,�2 2 (0, 1), the momentum vector mt is defined
as

mt =
1

(1� �t
1)

✓
�1mt�1 + (1� �1)gt

◆
, (3)

and vt is defined as

vt =
1

(1� �t
2)

✓
�2vt�1 + (1� �2)g

2
t

◆
. (4)

Using (3) and (4), the Adam update is given by

pAdam = �
mt
p
vt + ✏

, (5)

where ✏ = 10�8 is a scalar.
Thus, Adam uses an exponential moving average of the mo-

mentum and moments. Through the remainder of the paper, we
explore the questions - Can we imporove upon an exponential
moving average algorithm by inducing an approximation to the
curvature information ? In Sec. III, we explore quasi-Newton
appraoches to answer these questions.

III. QUASI-NEWTON METHODS

Second-order approaches have the potential to exploit cur-
vature information from second-order (Hessian) matrices. The
iterate updates are defined using

pt = �[r
2
f(⇥t)]

�1
gt.

We note that the Hessian matrix [r2
f(⇥t)]�1 is n⇥n, which

is computationally infeasible to form when n is very large. To
tackle with the dimensionality problem, users generally resolve
to a finite difference method (see [9]) or the Pearlmutter tech-
nique (see [10]). These methods can be used in conjunction
with a trust-region type approach (see [11]), which safeguards
the step size, and a conjugate-gradient method which requires
only Hessian-vector products without explicitly forming the
Hessian. However, using the true Hessian can give rise to other
issues, such as matrix singularity and non-positive definiteness.

Quasi-Newton approaches, on the other hand, only use ap-
proximations to the Hessian, which satisfy the secant equation
given by

yt�1 = Btst�1, (6)

where

yt�1 = rf(⇥t)�rf(⇥t�1) and st�1 = ⇥t�⇥t�1.

The L-BFGS method (see [12]) is one of the most com-
monly used quasi-Newton updates for Bt due to the guaran-
teed positive-definiteness of Bt. Since we only work with the
inverse of the Hessian to find the direction of descent, we will
be only working with Ht = B

�1
t .

The matrix Ht is recursively defined as

Ht=

✓
I�

st�1y
>
t�1

y
>
t�1st�1

◆
Ht�1

✓
I�

yt�1s
>
t�1

y
>
t�1st�1

◆
+

st�1s
>
t�1

y
>
t�1st�1

, (7)

with

H0 =
y
>
0 s0

y
>
0 y0

I.

We observe here that Ht represents an n ⇥ n matrix, which
can get computationally expensive to store. Hence, this matrix
is never stored explicitly. Rather, we only store the steps st�1

and the change in gradients yt�1. Since (7) is only a two-rank
update, it can be written as

Ht = �t�1I+ �t�1Mt�1�
>
t�1, (8)

754

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on March 24,2025 at 05:48:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Quasi-Adam Method
Require: ↵,�1,�2 2 [0, 1), f(⇥),⇥0, m0 0, v0 0, t

0
while ⇥t 6= ⇥⇤

do

Compute pAdam step using (5).
Compute pL-BFGS step using (9).
Update ⇥t+1 ⇥t � ↵t(pAdam + pL-BFGS).

end while

where �t�1 = y
>
t�1st�1/y

>
t�1yt�1,

�t�1 =
⇥
st�1 �t�1yt�1

⇤
,

and

Mt�1 =


⇢t�1 + �t�1⇢

2
t�1kyt�1k

2
2 �⇢t�1

�⇢t�1 0

�
,

with ⇢t�1 = (s>t�1yt�1)�1. The search direction computed
using the L-BFGS update is given by

pL-BFGS = �Htgt. (9)

The steps are only accepted when Ht is positive definite,
which is imposed when s

>
t�1yt�1 > 0. Thus the matrix is

invertible and provides a direction of descent.
Recently, practical L-BFGS methods have been proposed

in a deep learning setting (see [6], [13], [14]). However, it is
a common problem that L-BFGS performs very poorly on a
variety of stochastic problems because of the use of stochastic
gradients.

IV. PROPOSED APPROACH

From Sec. II and Sec. III, we take motivation from both
approaches and define our new update rule called quasi-

Adam. We present the update step in Algorithm 1. The
approach uses a combination of both directions pAdam and
pL-BFGS to improve the current step. In particular, the update
step is given by

⇥t+1 = ⇥t � ↵t

✓
m̂t
p
v̂t + ✏

+Htgt

◆
. (10)

For the proposed approach, we use a memory size of 1.
In the following sections, we discuss the space and time
complexity of the proposed approach. The space and time
complexity is presented as a modification to Adam - we only
discuss the additional overhead for the proposed approach to
Adam.

Space Complexity: Since we are only using 1 memory from
the past, the space complexity is limited to O(n). We consume
O(n) memory for saving the previous iterates weights from
the model and O(n) for saving the gradients from past iterates,
which gives us O(2n) ⇡ O(n) asymptotically.

Time complexity: We need to perform the matrix vector
product Htgt in (9). The matrix �

>
t�1 is 2⇥ n, which means

�
>
t�1gt requires O(2n) operations. Each element in Mt�1

is a scalar, which means Mt�1 is a 2 ⇥ 2 matrix. Thus
Mt�1�

>
t�1gt can be computed in O(4 + 2n) operations.

Finally �t�1Mt�1�
>
t�1gt can be computed in O(4 + 4n)

operations.

V. CONVERGENCE

We analyze the convergence of the proposed approach using
the framework by [15]. Given an arbitrary sequence of convex
functions C = {c1, c2, . . . , cT }, the goal is to predict the
parameter ⇥t by optimizing it over the previous function ct�1.
This process of identifying an optimal ⇥t over ct�1 is defined
as an online algorithm. If ⇥t is selected by an algorithm A,
we define the cost incurred by the algorithm A as

LA(T) =
TX

t=1

ct(⇥t). (11)

In order to define the offline algorithm, we define a feasible
convex set F .

Definition 1: A set F ✓ Rn is convex if for all ⇥,⇥0
2 F ,

r⇥+ (1� r)⇥0
2 F for all r 2 [0, 1].

When the information on C and the convex subset F is
available, the process of identifying the optimal ⇥ 2 F is
defined as offline algorithm (often also described as a static
feasible solution).

Now, we formally introduce and define the regret function
RA(T).

Definition 2: Given an algorithm A and a convex program-
ming problem (F , C), if {⇥1,⇥2 . . .} are vectors selected by
algorithm A, then the cost of A until time T is given by (11).
The cost of a static feasible solution ⇥ 2 F until time T is
given by

L⇥(T) =
TX

t=1

ct(⇥).

The regret of an algorithm A until time T is defined as

RA(T) = LA(T)�min
⇥2F

L⇥(T).

The goal is to prove that the average regret RA(T)/T
approaches 0 as T !1.

For this, we begin by expanding the proposed update in
(10):

⇥t+1 = ⇥t �
↵t

1� �t
1

✓
�1,t
p
v̂t
m̂t�1 �

�1,t
p
v̂t
gt +Hgt

◆
,

where �1,t = �1�
t�1

,� 2 (0, 1). Here, v̂t is the exponential
moving average, defined as

v̂t =
vt

1� �t
2

,

with �2 2 (0, 1], m̂t is the bias-corrected first moment estimate
defined as

m̂t =
mt

1� �t
1

,

where �1 2 (0, 1], mt is the biased first moment estimate
given by

mt = �1mt�1 + (1� �1)gt,

vt is the biased second moment update given by

vt = (1� �2)
tX

i=1

�
t�i
2 g

2
i ,

755

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on March 24,2025 at 05:48:56 UTC from IEEE Xplore. Restrictions apply.

We now make some mild assumptions for the iterates and their
corresponding gradients.

Assumption 1: The distance between any ⇥t generated by
the proposed approach is bounded. This means that k⇥m �

⇥nk2  D.
Assumption 2: The gradients of function ft are bounded.

This means, krft(⇥)k2  G.
For the L-BFGS update, a step is acceptable if the condition

s
>
t yt > 0 holds. We formally state this as a theorem below.

Theorem 1: For a convex set F and sequence of con-
vex functions C = {c1, c2, . . .}, and for some step st =
⇥t+1 � ⇥t, where ⇥t,⇥t+1 2 F , and change in gradient
yt = rct(⇥t+1)�rct(⇥t), where ct 2 C computed using a
symmetric positive definite L-BFGS approximation, st and yt

will always satisfy the curvature condition s
>
t yt > 0.

In practice, the condition s
>
t yt > 0 (please refer Sec. III)

is enforced by requiring s
>
t yt � " for some small " > 0. It

follows from Theorem 1 that kstk, kytk 6= 0 and that there
exists some cl 2 R such that 0 < cl  y

>
t yt.

Given ↵t = ↵/
p
t, we state the following theorem:

Theorem 2: Given Assumptions 1 and 2 hold, we get and
upper bound on the regret as

R(T) 

D
2

2↵(1� �1)

nX

i=1

p
T v̂T +

(�1 + 2)↵G

(1� �1)
p
1� �2(1� �)2

nX

i=1

kg1:T,ik+

n

(1� �1)(1� �)2


D

2
G

2↵
+

D
2
G

2
+

2D2
G

5

c2l

+
4↵D2

G
5

c2l

�
.

From Theorem 2, the corollary follows:
Corollary 1: Quasi-Adam achieves the following guarantee:

R(T) = O(
1
p
T
).

Thus, lim
T!1

R(T)! 0.

VI. EXPERIMENTAL SETUP

A. Testbed
All the experimenst were conducted using PyTorch (see

[16]) libraries using two NVIDIA 1080 Ti graphics cards over
an Intel i7-7700K CPU. For Adam, we conducted a variety
of experiments to choose the hyperparameter based on the
applications. The experiments included different batch size
{256, 512, 1, 024, 2, 048, 8, 192}, with different learning rates
{10�5

, 10�4
, 10�3

, 10�2
, 10�1

, 0.9}. We present results with
the best hyperparameters for Adam and the proposed approach
for each experiment. To understand the performance change
between the proposed approach and Adam, we present the
results where this change is most prominent. This is reflected
in the first half of the training response. We observe that both
the methods eventually converge to the same result after a
large number of epochs.

B. Models

We use three different types of networks - an MNIST
classifier for classifying MNIST and Fashion-MNIST dataset,
ResNet34 to classifiy images in the SVHN dataset and an
Autoencoder for MNIST and Fashion-MNIST reconstruction.
MNIST classifier: We design a shallow neural network to
classify the MNIST dataset. The model has two convolutional
layers, and three fully-connected dense layers. Each convo-
lutional layer is followed by a maxpooling layer and ReLU
activation function. Fully connected layers are followed by a
ReLU activation function.
Resnet34: Resnet34 ([17]) is a deep learning model with
34 blocks, which contain two convolutional layers with skip
connections between blocks and ReLU activation layers in
between. The network contains approximately 21.8 million
parameters. The network was designed to train over the
ImageNet dataset. Since we are using SVHN here, the network
has been modified accordingly.
Autoendcoder: The encoder has a shallow 3 layer convolu-
tional architecture and the decoder has a shallow 3 convolu-
tional tranpose layer. The main purpose of the network is to
reconstruct the images from its original image. The images
are fed to the encoder, which compresses the image. This
is then inflated/expanded by the decoder. The network has
87,125 parameters. We use the same network architecture for
FMNIST reconstruction.

C. Datasets

We use three different datasets for two types of tasks -
MNIST, FMNIST and SVHN.
MNIST: MNIST is a dataset of 28 ⇥ 28 pixel handwritten
digits from (0-9). These images are greyscaled single channel
images with 5,000 training examples, 1,000 validation exam-
ples and 1,000 testing examples per class.
Fashion-MNIST: The Fashion-MNIST dataset (see [18]) con-
sists of 28⇥28 pixel black-and-white images of clothing items
such as shirt, automobile, shoes etc. The dataset has 10 classes
and 6,000 images per class. This is further parted into 4,000
training examples, 2000 testing examples and 1,000 testing
examples per class.
Street View House Number: The Street View House Number
(SVHN) (see [19]) is a dataset with of street view images
(numbers in addresses) extracted from Google Street View
images. The dataset contains 32 ⇥ 32 RGB images of these
street view images, cropped and separated into individual
numbers ranging from (0-9). The training set contains 73,257
images while the testing set contains 26,032 images.

D. Experiments

Experiment I: MNIST image classification. We use the
MNIST classifier to classify the MNIST dataset and use cross-
entropy as the loss function. We train the network with a batch-
size of 256 and 512 images and a cross-entropy loss function.
We use a learning rate of 1⇥10�2 for Adam and quasi-Adam.

756

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on March 24,2025 at 05:48:56 UTC from IEEE Xplore. Restrictions apply.

(a) Batch-size = 256 (b) Batch-size = 512
Fig. 1. Experiment I: MNIST image classification results for Adam and the proposed method, quasi-Adam. (a) Testing accuracy for batch-size of 256.
(b) Testing accuracy for batch-size of 512. The y-axis represents the classification accuracy and the x-axis represents the batch-iteration. Note that for both
batch-sizes, quasi-Adam outperforms Adam.

(a) Batch-size = 256 (b) Batch-size = 512
Fig. 2. Experiment II: Fashion-MNIST image classification results for Adam and the proposed method, quasi-Adam. (a) Testing accuracy for batch-size of
256. (b) Testing accuracy for batch-size of 512. The y-axis represents the classification accuracy and the x-axis represents the batch-iteration. Note that for
both batch-sizes, quasi-Adam outperforms Adam.

We present the testing response after each batch-iteration in
Fig. 1.
Experiment II: Fashion-MNIST image classification. We
use FashionMNIST dataset with the MNIST classifier. This is
possible since the dimensions of the images are the same.
We use a learning rate of 1 ⇥ 10�2 for both Adam and
quasi-Adam, and a cross-entropy loss function. We present
the testing accuracy for each batch-training iteration with a
size of 256 and 512 images in Fig. 2.
Experiment III: SVHN image classification. For this task,
we use the ResNet34 neural network. We train with a batch
size of 256 and 128 images. We use the negative log-likelihood
loss function with a learning rate of 1⇥ 10�2 for both Adam

and quasi-Adam. The results presented in Fig. 3 show the
testing accuracy after each batch-training iteration.
Experiment IV: MNIST image reconstruction. For this task,
we use the autoencoder to reconstruct the images. We use a
batch-size of 256 images and the Mean-Squared Error (MSE)
loss function with a learning rate of 10�2 for Adam and quasi-
Adam. We observe both the training loss and the testing loss
for each of the tasks. The results in Fig. 4 show the testing
accuracy after each batch-iteration.
Experiment V: FMNIST image reconstruction. For the au-
toencoder reconstruction experiment, we use the autoencoder
from Experiment IV (the images are of the same dimensions).
We use the same learning rate of 1⇥ 10�3 for Adam and the

757

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on March 24,2025 at 05:48:56 UTC from IEEE Xplore. Restrictions apply.

(a) Batch-size = 256 (b) Batch-size = 128
Fig. 3. Experiment III: SVHN image classification results for Adam and the proposed method, quasi-Adam. (a) Testing accuracy for batch-size of 256.
(b) Testing accuracy for batch-size of 128. The y-axis represents the classification accuracy and the x-axis represents the batch-iteration. Note that for both
batch-sizes, quasi-Adam outperforms Adam.

(a) Training loss (b) Testing loss
Fig. 4. Experiment IV: Autoencoder MNIST Reconstruction for Adam and the proposed method, quasi-Adam. (a) Training loss. (b) Testing response. The
x-axis represents the number of epochs and y-axis represents the average mean-squared error loss for each epoch. Note that in both training and testing
responses, quasi-Adam outperforms Adam.

proposed approach and the MSE loss function. We present the
training and the testing response in Fig. 5.

VII. DISCUSSION

The results from Sec. VI elucidates the performance im-
provement of quasi-Adam over Adam. This can be attributed
to both participating approaches - Adam and L-BFGS. The
Adam approach uses an exponential moving momentum mt

and a exponential moving moment vt. This allows for the
learning rate to work better at providing an adequate descent
in the loss function in addition to treating the non-monotone
behaviour of the loss function. However, it only exploits the
gradient information, which is still a steepest descent direction.
This may cause the iterates to dampen in a plateau region of

the manifold, commonly referred to as saddle points. The L-
BFGS approach, on the other hand, is able to provide a descent
direction which exploits the curvature information using the
secant equation. Since the Hessian information is induced in
this matrix Ht in (9), the iterate potentially escapes this saddle
point and addresses the sadle point problem more effectively.
However, computing a large memory Hessian approximation
can be computationally expensive.

The proposed approach was able to tackle both the problems
- escaping saddle points and containing computational ex-
pense. This combination of methods yielded an improvement
in training performance across a variety of applications. Thus,
convergence can be expedited with a very small computational
overhead.

758

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on March 24,2025 at 05:48:56 UTC from IEEE Xplore. Restrictions apply.

(a) Training loss (b) Testing loss
Fig. 5. Experiment V: Autoencoder FMNIST Reconstruction results for Adam and the proposed method, quasi-Adam. (a) The training loss. (b) Testing
response. The x-axis represents the number of epochs and the y-axis represents the average mean-squared error loss for each epoch. Note that in both training
and testing responses, quasi-Adam outperforms Adam.

VIII. CONCLUSION

In this paper, we proposed a new algorithm which uses a
quasi-Newton update in conjunction with a moment estimation
update. We show that the curvature information from the quasi-
Newton approach improve upon an exponential moving aver-
age method. Through thorough experimentation, we were able
to show that the proposed approach was able to outperform
Adam. We provided concrete convergence proofs and discuss
the complexity analysis for space and time. We found quasi-
Adam to be robust and suited across a variety of applications
in the field of machine learning.

ACKNOWLEDGMENT

R. Marcia’s research is partially supported by NSF Grants
DMS 1840265 and CCF 2343610. This work was performed
under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract
LLNL-PROC-869166.

REFERENCES

[1] R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a
crowded valley-benchmarking deep learning optimizers,” in Interna-
tional Conference on Machine Learning, pp. 9367–9376, PMLR, 2021.

[2] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[3] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods
with dynamic bound of learning rate,” arXiv preprint arXiv:1902.09843,
2019.

[4] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.,” Journal of machine
learning research, vol. 12, no. 7, 2011.

[5] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” arXiv preprint arXiv:1904.09237, 2019.

[6] D. Goldfarb, Y. Ren, and A. Bahamou, “Practical quasi-newton methods
for training deep neural networks,” Advances in Neural Information
Processing Systems, vol. 33, pp. 2386–2396, 2020.

[7] Y. Nesterov, “A method for solving the convex programming problem
with convergence rate O(1/k2),” Proceedings of the USSR Academy of
Sciences, vol. 269, pp. 543–547, 1983.

[8] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent,” Cited on,
vol. 14, no. 8, p. 2, 2012.

[9] J. Martens et al., “Deep learning via hessian-free optimization.,” in
ICML, vol. 27, pp. 735–742, 2010.

[10] B. A. Pearlmutter, “Fast exact multiplication by the hessian,” Neural
computation, vol. 6, no. 1, pp. 147–160, 1994.

[11] A. Ranganath, O. DeGuchy, M. Singhal, and R. F. Marcia, “Second-
order trust-region optimization for data-limited inference,” in 2021 29th
European Signal Processing Conference (EUSIPCO), pp. 2059–2063,
IEEE, 2021.

[12] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[13] A. S. Berahas, M. Jahani, P. Richtárik, and M. Takáč, “Quasi-newton
methods for machine learning: forget the past, just sample,” Optimization
Methods and Software, vol. 37, no. 5, pp. 1668–1704, 2022.

[14] X. Wang, S. Ma, D. Goldfarb, and W. Liu, “Stochastic quasi-newton
methods for nonconvex stochastic optimization,” SIAM Journal on
Optimization, vol. 27, no. 2, pp. 927–956, 2017.

[15] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the 20th international conference
on machine learning (icml-03), pp. 928–936, 2003.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[18] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[19] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

759

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on March 24,2025 at 05:48:56 UTC from IEEE Xplore. Restrictions apply.

