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Abstract—Signal recovery often involves separating and real-
izing multiple superimposed signals at once. Separating multiple
images that have been superimposed is a challenging signal
recovery problem. This situation arises when a detector, such as
a microphone, receives multiple signals simultaneously. In order
to recover the original signals, a signal separator needs to be ap-
plied. In this paper, we will explore machine learning techniques
for separating such signals. In particular, we investigate two
approaches: an autoencoder approach and a transformer-based
approach, and test their accuracy in recovering two separate
images from noisy low-resolution superimposed measurements.

Index Terms—Image separation, machine learning, deep learn-
ing, denoising, transformers

I. INTRODUCTION

Image separation is a common signal separation problem
in the domain of signal processing. Commonly referred to
as ‘blind source separation’ (BSS), the problem involves
separation of source signals with very little information about
the sources or the multiplexing operation [1], [2].

Much of the early literature focuses on separation of tem-
poral signals, such as audio [3], [4] or video [5]. However,
BSS has gained momentum in the field of images and tensors,
which may have no temporal component whatsoever (see [6]).
There is also literature which uses deep learning for blind
source separation [7]. In contrast, for practical applications
in digital imaging, noises can be caused by sudden change
in light intensity, increase in temperature of the imaging
apparatus or electrical fluctuations during transmission of the
signal. Typically this type of noise is modeled as additive
white Gaussian noise (AWGN). In the event that the imaging
apparatus records the images with low resolution, the images
may be compressed as well. Thus, in addition to BSS, the
image noise and compression need to be tackled.

In this paper, we explore two deep learning strategies
to address all of these issues simultaneously. The paper is
organized as follows: In Sec. II, we discuss the blind source
problem formulation, in Sec. III, we discuss the proposed
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Fig. 1. Schematic of the imaging system. Two images (A and B) are
superimposed using a beam splitter observed at the detector of a low-
resolution camera, resulting in a downsampled measurement with additive
white Gaussian noise.

approaches for separting the signals, in Sec. IV, we describe
the numerical experiments of the proposed apporaches and in
Sec. V and Sec. VI, we discuss the results and conclude the
paper respectively.

II. PROBLEM FORMULATION

The blind source multiplexed problem can be formulated as

y = D(z) + g, (1)

where D(z) is the downsampling operator and

z = x(1) + x(2),

i.e., z is the resulting image of superimposing two images x(1)

an x(2). The vector g ⇠ N (0,�2) is additive white Gaussian
noise with zero mean and variance �2. These operations
describe the linear model of observing noisy low-resolution
images that are superimposed at the detector stage (see Fig.
1).

Related work: In [8], the authors use a stacked autoencoder
with fully connected layers. However, the size of the net-
work can get prohibitively expensive for larger images. Also,
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(a) Convolutional Separator (ConvSep) model

(b) ConvSep training procedure (c) ConvSep testing procedure
Fig. 2. Illustration of the Model I: Convolutional Separator (ConvSep) approach. (a) ConvSep contains an encoder, a decoder, an expander, and two separators.
The colored box represents the output from a convolutional operator. (b) During training, the superimposed and clean images, Z, are available to the ConvSep
network to perform the separating operation. (c) During testing, the superimposed, clean images are not available to the network. Instead the output, Ẑ, from
the decoder, D, is fed to the separators, S1 and S2.

the authors focus on weighted multiplexing problem without
denoising and downsampling. In [9], [10], the authors use
a convolutional neural network for denoising images. They
use two approaches to denoise the images - an autoencoder
with convolutional layers and a recurrent neural network
with convolutional layers as hidden units. This was able to
tackle the problem of reducing the footprint of the network
by replacing the linear layers with convolutional layers. In
addition, the authors were able to realise the noise in the
images as a temporal component. Our first method is based

on this approach.

Attention-based transformers have gained much momentum
in the last few years. The concept of transformers was intro-
duced in [11] for natural language processing (NLP) [12], [13].
With increased improvement in NLP applications, the use of
transformers was pervasive in many different fields, such as
image denoising [14], [15], protein structure prediction [16],
and sentiment analysis [17]. However, this approach has not
been applied in an image separation regime.
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Fig. 3. Illustration of the Model II: Limited-informed Generative Trasnformer (LiGT) approach. This transformer-based model is composed of a compressor,
a transformer and an expander. Each colored box represents the output from a convolutional operator.

III. PROPOSED APPROACH

In this section, we describe the two approaches, the corre-
sponding loss functions, and their respective datasets.

Model I (ConvSep): In [8], the authors use a fully-connected
stacked autoencoder architecture to denoise the images. This
significantly increases the model footprint and the time taken
to train the models. To tackle this problem, we propose
the Convolutional Separator (ConvSep) model. The novelty
of the model lies in its convolution operation; convolution
operators occupies a smaller memory footprint than a fully
connected autoencoder, resulting in a much faster to training
response. In this approach, we take the compressed, noisy
realization, and expand the dimensions using an encoder-
decoder operation. Then we use two separators that separate
the image into their two parent images. The ConvSep model
is illustrated in Fig. 2(a).

During the training operation, the superimposed image is
available to perform the image expansion step. For more
details on how this model operates, please refer Fig. 2(b).

Model II (LiGT): The second proposed method, which we
call Limited-informed Generative Transformer (LiGT), is a
transformer based model which expands, cleans and separates
the mutliplexed signal at once. Fig. 3 shows the disam-
biguation operation for LiGT. The features of the image are
extracted using a Compressor. This feature is then fed to the
Transformer encoder. The transformer decoder extracts the
cross-attention between the features and the output encoder.
The output of the transformer decoder is fed to the Expander,
which expands the dimensions of the output from the trans-
former decoder into the two parent images.

The novelty of the method lies in using the transformer with
a limited data setting. To the knowledge of the authors, this is
the first time a transformer based approach has been used to
denoise and separate images. Unlike the ConvSep model, the
superimposed, clean and upsampled image is not available to

the model, thus lacking information. In addition, the memory
footprint of the model is also smaller in comparison to the
ConvSep model.

Loss function: We optimize the network parameters using
HuberLoss, which is defined as

L�(x̂,x) =

(
1
2kx̂� xk21 if kx̂� xk1 < �

�(kx̂� xk1 � 1
2�) otherwise

, (2)

where � 2 R makes the loss function ‘differentiable’ at pro-
hibitively small values of the absolute difference, x̂ 2 Rn⇥n is
the reconstructed realization and x 2 Rn⇥n is the true image.
We choose a value of � = 1 for our experiments.

The loss function for Model I: ConvSep is given by

LConvSep = L(ẑ, z) + L(x̂1,x1) + L(x̂2,x2), (3)

where L(z, ẑ) is the loss between the denoised and upsampled
superimposed ground truth and reconstructed images, L(x̂,x)
is the loss between the reconstructed image x̂ and the ground
truth image x. This model has a total of 2,846,224 parameters.

The loss function for Model II: LiGT is given by

LLiGT = L(x̂1,x1) + L(x̂2,x2). (4)

This model has a total of 2,301,865 parameters.

Dataset: We use the MNIST dataset [18] in our experi-
ments. To generate our data, we randomly choose two images
x(1)
i ,x(2)

i 2 R28⇥28 from the MNIST data and superimpose
them to obtain zi 2 R28⇥28, which is then downsampled
by a factor of 2 and to which AWGN is added to yield the
noisy low-dimensional superimposed images yi 2 R14⇥14. For
Method I, the dataset is given by D1 = {x(1)

i ,x(2)
i , zi,yi}Ni=1.

For Method II, the noisy, downsampled and superimposed
observation is directly mapped to the two clean realizations
and the intermediary data zi is not used. The dataset is thus
given by D2 = {x(1)

i ,x(2)
i ,yi}Ni=1.
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Fig. 4. Numerical experiments on 5 images from the MNIST dataset. Row 1: Noisy input images y. Rows 2 and 3: Final reconstructions x̂1, x̂2 using
Method II (LiGT). Rows 4 and 5: Final reconstructions x̂1, x̂2 using Method I (ConvSep). Rows 6 and 7: Ground truth images x1, x2. MSE and SSIM
values for both Methods I (ConvSep) and II (LiGT) are presented for each image.
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(a) MSE (b) SSIM
Fig. 5. Box plots of the collective results for Method II: LiGT (in green) and Method I: ConvSep (in yellow). (a) Mean-squared error (MSE). (b) Structural
similarity index metric (SSIM).

IV. EXPERIMENTS

In this section we describe the testbed and the training
procedures for both the models. All the architectures were
implemented using PyTorch [19]. Training and testing were
performed using two NVIDIA 1080 Ti GPUs. The networks
were trained using the Adam optimizer [20].
Training: During training, the superimposed, compressed and
noisy images are fed to both the models. For the LiGT model,
these images are directly mapped to the clean and separated
images. For the ConvSep model, the downsampled and noisy
superimposed observation is fed to the encoder E for the D
to yield the clean, upsampled superimposed construction ẑ.
The clean, upsampled superimposed image z is then fed to
the separators S1 and S2 to yield x̂1 and x̂2.
Testing: During testing, the operation of LiGT matches the
training procedure. However, for the ConvSep model, the
upsampled superimposed construction ẑ is directly fed to
separators S1 and S2 (see Fig. 2(c) for illustration).

V. RESULTS

In this section, we present the results from the two ap-
proaches. Fig. 4 shows the results for both the approaches.
The first row shows the superimposed images, downsampled
with added noise. The second and third row show the separated

images using the LiGT model, the fourth and fifth row show
the images separated using the ConvSep model. The last two
images show the ground truth images. We can notice that the
MSE for the LiGT model is much lower than the ConvSep
model. It can also be noticed that the LiGT model was able to
improve of the structural integrity of the image better than the
ConvSep model. Fig. 5 presents the overall MSE and SSIM
results. The average MSE loss for the ConvSep model was
4.66 ⇥ 10�2, and the average MSE loss for the LiGT model
was 3.00 ⇥ 10�2. The SSIM value for ConvSep model was
0.75 and the SSIM value for LiGT model was 0.72.

VI. CONCLUSION

In this paper, we presented two approaches for image
disambiguation. The first approach (ConvSep) uses an RNN-
inspired convolutional neural network to denoise and upsample
in one stage and disambiguate the images in another stage. The
second approach (LiGT) is a transformer-based model which
denoises, upsamples and disambiguates the image simultane-
ously. Experiments and results show that the transformer-based
model was able to outperform the RNN inspired approach with
a smaller model footprint.
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