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Abstract

Automated vehicles are expected to influence human drivers’ behavior. Accordingly, capturing such changes is critical for
planning and operation purposes. With regard to car-following behavior, a key question is whether existing car-following
models can replicate these changes in human behavior. Using a data set that was collected from the car-following behavior of
human drivers when following automated vehicles, this paper offers a robust methodology based on the concept of dynamic
time warping to investigate the critical parameters that can be used to capture changes in human behavior. The results indi-
cate that spacing can best substantiate such changes. Moreover, calibration and validation of the intelligent driver model
(IDM) suggest its inability to capture changes in human behavior in response to automated vehicles. Thus, an extension of the
IDM that explicitly models stochasticity in the behavior of individual drivers is applied, and the results show such a model can
identify a reduction in uncertainty when following an automated vehicle. This finding also has implications for a stochastic

extension to other models when analyzing and simulating a mixed-autonomy traffic flow environment.
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Automated vehicles (AVs) have increased their presence in
the emerging mobility system through their ability to sense,
evaluate, and predict the surrounding environment meticu-
lously, navigate and plan trajectories comprehensively, and
accurately perform the corresponding maneuvers. Based
on their improved performance with regard to perception,
motion planning, and control compared with human driv-
ers, AVs have the potential to revolutionize future mobility
in a fundamental way by promoting safety (/-3), increas-
ing throughput and maintaining stability (4), reducing
emissions (5, 6) and fuel consumption (7), and providing
critical mobility to the elderly and disabled (8). The AV
industry has also burgeoned since technology giants, such
as Google’s Waymo and transportation network company
leaders Uber and DiDi, began collaborating and compet-
ing with the traditional automobile manufacturers, for
example, General Motors and Ford (9).

Despite all the potential advantages AVs offer, full
market penetration is beyond their scope in the near
future (10); accordingly, a mixed traffic environment
with different levels of autonomy is expected in a

transition phase. The behavior of humans and AVs are
known to be fundamentally different because each fol-
lows different logic and mechanisms. Therefore, utilizing
the benefits of AVs hinges on characterizing the interac-
tions between humans and AVs in mixed-autonomy
traffic.

When investigating AVs’ influence on traffic flow,
early research focused on the unique features of AVs and
the corresponding implications for macroscopic charac-
teristics of traffic flow. Rajamani and Shladover (/1)
conducted a comparative experimental study on the min-
imum time headway between human-driven vehicles and
AVs. The results suggested that AVs can maintain a
shorter time gap, which implies a potential increase in
capacity. Chen et al. (/2) provided a theoretical

'Department of Civil and Environmental Engineering, University of lllinois
at Urbana-Champaign, Urbana, IL

Corresponding Author:
Alireza Talebpour, ataleb@illinois.edu


us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981231192999
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981231192999&domain=pdf&date_stamp=2023-08-25

Zhang and Talebpour

813

formulation of equilibrium operational capacity in
mixed-autonomy traffic, considering AVSs’ penetration
rate, platoon size, spacing characteristics, and lane poli-
cies. In another study, Talebpour and Mahmassani (4)
presented a comprehensive acceleration model and a
simulation framework to shed light on traffic flow
dynamics, including stability and throughput under dif-
ferent market penetration rates, when both connected
and AVs were involved.

In analyzing the interactions between humans and
AVs, many previous studies have focused on AV opera-
tions but rather overlooked the possible behavioral
changes in human drivers. For example, Van Arem et al.
(13) extended adaptive cruise control to cooperative
adaptive cruise control (CACC) by allowing information
exchange via wireless communication, and proposed a
safe acceleration logic. Later, Wang et al. (/4) presented
a car-following model for CACC that considered more
vehicles in the platoon. However, the above studies did
not model human drivers’ behavior explicitly. Therefore,
until recently, the question of whether and to what extent
the introduction of AVs will influence the behavior of
human drivers remained uncertain. Among all the deci-
sions that define vehicle interactions, car-following,
which dictates how vehicles accelerate in response to the
speed, distance, or relative velocity of surrounding vehi-
cles, is probably the most basic. Thus, the studies that
focused on human—AV interactions mainly considered
the car-following behavior itself, and did not take more
complex behavior such as lane changing into account.
Cui et al. (15) investigated the possibility of a single AV
stabilizing the traffic flow, assuming human drivers
maintained their behavior patterns. Later, Stern et al.
(16) designed an experiment on a circular track with a
single AV in the platoon and provided evidence of AVs’
ability to dampen stop-and-go waves, even with a less
than 5% market penetration rate. This series of works
demonstrated that AVs could increase traffic flow stabi-
lity by preventing shock wave formation and spread. In
a more recent study, Zhao et al. (/7) performed car-
following experiments to compare human-following-
human and human-following-AVs, and the results indi-
cated that subjective trust in AV technologies would
have an impact on driver behavior. Under different
experimental settings, Rahmati et al. (/8) conducted an
empirical study with a three-vehicle fleet focusing on the
human drivers in human—AV interactions. A series of
comparative car-following experiments revealed the exis-
tence of behavioral changes in human drivers after the
introduction of AVs. Zheng et al. (/9) then showed in
simulation that the uncertainty in human drivers’ beha-
vior decreases as the penetration rate of AVs increases.

One of the key aspects missing from studies focusing
on human—AYV interactions is the ability of car-following

models to capture such changes in behavior and the accu-
rate modeling of human behavior in response to AVs.
Indeed, the previous studies remain silent on the evalua-
tion and validation of the ability of car-following models
to capture such behavioral changes effectively. Therefore,
an investigation of the existing models, especially those
commonly used by researchers and practitioners, will
complement the literature and will be essential in charac-
terizing human—AV interactions. To address the afore-
mentioned questions, the major contribution of this
study is to investigate whether commonly used models in
non-AV traffic can capture human drivers’ behavioral
changes, and if not, what special considerations and
extensions to the models are needed. These findings can
provide insights for characterizing human—AV interac-
tion and will increase the reliability of simulation frame-
works in modeling mixed traffic.

The paper is organized as follows. The next section
elaborates on the experiment and data utilized in this
study. Following this, the methodologies employed are
described: a data-driven dynamic time warping (DTW)
analysis to examine the behavioral difference between
following an AV and a human-driven vehicle that
includes speed, acceleration, relative speed, spacing, and
time headway; and a model-based method to calibrate
and validate stochastic car-following models. The data-
driven DTW analysis will investigate which drivers’
behavior measurements can best substantiate changes in
driver behavior, and the model-based method will fur-
ther examine whether car-following models can capture
such changes. The paper then presents the results and an
associated discussion. Finally, the paper concludes with
some summary remarks and offers a few suggestions for
future research.

Data Description

This section is a brief version of the experimental setup
described in Rahmati et al. (/8). To model the potential
impact of AVs on human drivers in mixed traffic, previ-
ous studies have focused mainly on capacity analysis.
For example, Chen et al. (/2) classified car-following
into four scenarios to formulate the equilibrium capacity
based on whether the leader and follower vehicle were
automated. This modeling technique also provides
insights for designing a car-following experiment to com-
pare the different behavior patterns when a human is fol-
lowing an AV or another human-driven car (H).

This study utilizes the data collected by Rahmati et al.
(18). Figure 1 shows the vehicle platooning settings in
their experiment. Two scenarios were defined to study
the human drivers’ behavior when the leading vehicle
was automated or conventional. In both scenarios, the
control vehicle (vehicle 1) was driven by the same driver
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Figure |. Data collection scenarios (/8).
Note: H = human-driven car; AV = automated vehicle.

who followed a fixed speed profile to preserve the consis-
tency in other latent variables in each experiment. The
follower (vehicle 3) was the test object in each experi-
ment, and the measurements of the driver’s behavior
were documented as time series data. The leader (vehicle
2) was operated differently between the two scenarios. In
scenario A, the leader (vehicle 2) executed the speed pro-
file of a human driver, whereas in scenario B, the vehicle
executed the speed profile of an AV. To generate realistic
speed profiles for vehicles 1 and 2, five leader—follower
pair trajectories were extracted from the NGSIM US-
101 data set (20). Moreover, the speed profile for the AV
in scenario B was determined by a deterministic accelera-
tion modeling framework determined by Van Arem et al.
(13) and represented by the following equation:

al(t) = kaay_1(t — ) + k(Vu1(t — T) — vu(t — 7))
+ kd(S,,(f — ’T) — Sref)

where ad(?) is the acceleration of vehicle 7 in meters per
square second, v, is the speed of vehicle » in meters per
second, T is the reaction time in seconds, s, is the spacing
in meters, S, is the maximum among the safe following
distance syqz, the following distance based on the reaction
time Sgyem, and the minimum distance s,,;,,, which is set
to 2.0 m in Van Arem et al. (13). Sgqr and Sggen are com-
puted as follows:

2
_ Yua 1 1
Ssafe = 2 (agec - aiiﬂ) (2)

Ssystem = VT (3)

where n and n— 1 represent the AV and its leader, respec-
tively, a%c is the deceleration of vehicle n in meters per
square second, and k, = 1.0, k, = 0.58, and k; = 0.1 are
model parameters whose values were recommended in
Van Arem et al. (13).

———  Scenario A

Scenario B

IObO
time (100ms)

0 500 1500 2000

Figure 2. Sample speed profile for vehicle 2 under the two
scenarios (/8).

To account for the range limitation of the sensors and
the maximum deceleration for the AV and its leader, the
maximum safe speed v, is defined by the following
equations:

2
n—

= 4)

A-xn = (xnfl —Xp — nfl) + VnT + 2adec
n—1

Ax = min{r, Ax, } (5)

Vimax = 1/ —2a¢¢Ax (6)

where x, is the location of vehicle #n, /, is the length of
vehicle n, r is the sensor detection range (note that r is
set to 90 m in Rahmati et al. [/8]), and a%° is the maxi-
mum deceleration of vehicle n. Finally, the acceleration
of the AV at time ¢ is computed as follows:

a,(t) = min{aff(t), k(Vimax — Vn(t))} (7>

where & is a model parameter, and &£ = 1.0 as given in
Rahmati et al. (18).

The speed profile in scenario A is drawn directly from
lead—follower pairs in the NGSIM US-101 data set to
represent human drivers, and in scenario B, the NGSIM
data are taken as inputs to compute the corresponding
speed profile based on Equations 1 through 7. The speed
profile of an AV shares a similar pattern to a human-
driven vehicle but it is generally smoother, as shown in
Figure 2.

The experiment was performed on the AV testing
track at Texas A&M University’s RELLIS campus, with
nine drivers operating the test object vehicle (vehicle 3 in
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Figure 1) under the two scenarios and five different
speed profiles. The AV used in this study was Texas
A&M University’s automated Chevy Bolt, which can fol-
low any given speed profile. Other vehicles used were
conventional cars with no automation. To avoid any bias
during experiments, the drivers of the test object vehicle
were not aware of the type of their leading car during
experiments, and they were simply told to follow the
leader along a given straight route. The driving behavior
measurements, including speed, acceleration, location,
spacing, time headway, and relative speed (the velocity
difference between vehicle 2 and 3), were collected at a
frequency of 10Hz. After preprocessing, 45 samples in
scenario A and 44 samples in scenario B remained. For
more information about the data collection, please refer
to Rahmati et al. (18).

Methodology

This section presents two steps for addressing whether
an extension to non-AV models is needed to capture the
behavioral change of human drivers in mixed traffic. The
first step is a data-driven analysis to measure the differ-
ence between the two scenarios (i.e., human-following
and AV-following), and the second step is a model-based
method to investigate how capturing stochasticity in
human decision-making has an impact on the ability of
the models to capture such behavioral changes.

Data-Driven Method: DTW Analysis

The drivers’ behavior consists of a collection of time
series data, including (a) speed, (b) acceleration, (c) long-
itudinal locations, (d) relative speed, (e) spacing, and (f)
time headway. An intuitive way of measuring the differ-
ence between following a human-driven vehicle and an
AV is to use the Euclidean distance, and according to
Esling and Agon (217), the Euclidean distance and other
L, norms have been the most popular metrics. For exam-
ple, taking the longitudinal locations, given two sets of
experimental results under two car-following scenarios
with driver i and speed profile j, this paper follows the
definition of the Euclidean distance of locations pre-
sented by Rakthanmanon et al. (22).

£y (1 x") =\ [ o - o ®)

where i is the index of drivers (i = 1,2, ...,9), j is the index
of speed profiles (j = 1,2, ...,5), x;/() is the longitudinal
locations following a human-driven vehicle at time #, and
x;"(2) is the longitudinal locations following an AV at
time ¢. Here, the two location trajectories being compared
are truncated into the same length before evaluating the

Figure 3. lllustration of the computational difference between
the Euclidean distance (red dotted lines from t = 0 to t = 5At)
and dynamic time warping (blue dotted lines from t = 6At to

t = 14At).

distance, which means only those data points with the
same time ¢ will be considered in Equation 8.

However, the Euclidean distance may not suffice to
quantify the difference between the collected time series
data in this study for two reasons. The first is the inabil-
ity to measure the dissimilarity of time series with differ-
ent lengths accurately, which is an innate shortcoming of
Euclidean distance (22). If the Euclidean distance were
to be used as the metric in the illustrative example in
Figure 3, all the information contained in the data points
in X7 before t = 0 would be lost. There is no guarantee
that each driver spends the same amount of time during
experiments when following an AV or a human-driven
car. Indeed, the drivers were told to follow the leader
without more information or instructions to ensure
unbiasedness. Therefore, the two time series being com-
pared may not have identical lengths, which leads to
early termination according to Equation 8; thus, the
result is made smaller by not accounting for all data
points. Second, from the collected data, time series data
may share similar patterns and extreme values, but one
is shifted along the time axis; in this case, Equation 8 will
yield an unrealistically large value. More elaborations on
the above issues will be given in the following analysis
and in the numerical results in the Results and Analysis
section.

Figure 3 demonstrates why the Euclidean distance has
intrinsic shortcomings in evaluating the differences in
time series data accurately. Here, X4” and X are similar
to each other but out of phase (i.e., with a time delay).
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When Equation 8 is used to compute the difference, data
points at the start of x” are not included, and the match-
ing patterns between two turning points (from ¢t = 3Az to
t = 9A¢) are not finely captured. To address this short-
coming, another alignment technique different from
one-to-one vertical matching called DTW is utilized to
evaluate the difference in human drivers’ behavior when
following an AV as opposed to another human-driven
vehicle. Bellman and Kalaba (23) first raised the idea of
matching the time series among sections by locally warp-
ing the time axis, and it is now commonly used in time
series data mining (24).

In the light of DTW’s ability to calculate the optimal
matching and measure the difference in time series data,
following the guidelines provided by Hosseini et al. (25),
this study develops a DTW formulation to quantify the
behavioral changes in human drivers when following an
AV. For a given driver and speed profile, denote 4 and
H as driving behavior (e.g., speed) time series data fol-
lowing an AV or human-driven vehicle, respectively
(A = [al,ag,a3, ...,am] and H= [hl,hz,h3, ,hn])
Here, m and n are the magnitudes. Because m,n € N and
are not necessarily equal, the local cost matrix D € R™ <"
is defined to find the optimal matching:

DeR" " idy= |l a—b| :\/m 9)

i€l :m]jel:n]

where dj; is an element in the local cost matrix D.

Based on the local cost matrix, a warping path
(W = [wy, wa, W3, ..., Wi, ..., wg]), Tepresents a set of map-
ping relationships between 4 and H. An element in the
warping path wy = (ir,ji) € [1 : m] X [1 : n] means a;,
and 4;, form a pair in the optimal matching. Therefore,
the objective function in this DTW formulation is as
follows:

(10)

where DTW (A4, H) is the DTW distance, defined in Senin
(24) and d,,;, is the (ir,ji) -th elements in the local cost
matrix D.

The DTW distance is the accumulated total cost of
the optimal warping path. In contrast to the Euclidean
distance calculated by Equation 8, the DTW distance is
computed based on optimal matching, which will yield
more plausible measurements in the difference between
time series 4 and H. The constraints are as described in
Senin (24):

wi = (1, 1), (11)
wg = (m,n), (12)

(i =D <1,Yw = (i,)), wr +1 = (I',)), (13)
(j/ _]) = 1,VW]( = (17])9 Wi+1 = (i/’j/)a (14)
(i —i)=0,%Ywp = (i), wi+1 = (@], (15)

(j/ _]) =0, \V/Wk = (19])9 Wi+1 = (ilaj/)» (16)

The given six constraints instantiate three key
assumptions first formally proposed by Sakoe and Chiba
(26): (a) Boundary assumption: Equations 11 and 12
ensure the warping path starts at the first point and ends
at the last point of the two time series, which is an
assumption of alignment in DTW; (b) Continuous
assumption: Equations 13 and 14 ensure a match with
neighboring points, which implies that every time step
should be included in the optimal warping path; and (c)
Monotonous assumption: Equations 15 and 16 preserve
the time orders and essentially make sure time does not
go backward.

So, the optimization problem defined by Equations 10
through 16 is reduced to a shortest path problem given
the sink, source, and edge costs. The Bellman—Ford algo-
rithm is suitable for solving such problems, and to
address the constraints, a dynamic programming (DP)
method is used. Denote the cumulative distance as c(i, ),
which represents the sum of local cost along the warping
path from (1, 1) to (i,5). Then, the recurrent relationship
for this DP is as follows:

C(l,]) = dlj + mll’l{C(Z - 1&.] - 1),C(l - l,j),C(i,j - 1)}
(17)
The pseudo-code for the DP algorithm in computing

the cumulative distance matrix C € R™*" described in
Senin (24) is presented below.

Algorithm | CumulativeDistanceMatrix(A,H,D)

m|A|
n—[Hl
New array C[l..m, |...n]
Initialize C[I,1] =0
fori= l;ism;i ++ do
Cli, 1] < Cli—1,1] + DJi, 1]
end for
forj=1;j<n;j ++ do
C[l,j] < C[l,j— 1] + DI[I,]]
10: end for
Il: fori= Il;i=m;i++ do
12: forj= I;j<n;j++ do
Cli,j] < Dli,j] + min{C[i— 1,j— 1],

NVONDDDRWN T

13:
Cli— Lj.Cli,j— 1]}
14: end for
15: end for
16: Return C
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Table I. A Piece-Wise Linear Speed Example for the ED(VA’, VH) and DTW(VA", VH) Calculations

Time (s) 20 22 24 26 28 30 32 34 36 38 40 42 44
Speed following a human-driven vehicle (km/h) 14 18 22 26 20 14 8 2 8 14 20 26 NA
Speed following an AV (km/h) NA 8 13 18 23 19 I5 I 7 3 9 15 21
Note: AV = automated vehicle; NA = not available.
@ ] (b) ]
20 » 20{ /  /J&N\ 0 #F777 /
~ 4 /I S S, .
/ el
;1.}' 10 4 ‘% 10 A B
51— Following HV 51— Following HV
—— Following AV — FollowingAv VW __--7
20 22 24 26 28 30 32 34 36 38 40 42 44 20 22 24 26 28 30 32 34 36 38 40 42 44
Time(s) Time(s)
Figure 4. Matching patterns for the Euclidean distance and the DTW distance of speed, respectively: (a) ED(VH, VA); and (b)
DTW(VH, V).
Note: DTW = dynamic time warping; H = human-driven car; AV = automated vehicle.
To compute the local cost matrix D € R"*” as an  DTW distance in Equation 10, the result is

input to the above algorithm, a time complexity of
O(mn) is expected. It is clear that algorithm 1 also runs
in O(mn), and can calculate the cumulative distance
matrix C € R"*" correctly. Given the cumulative dis-
tance matrix, the optimal warping path W can be recov-
ered in O(n) time by tracing back from C[m, n]. Thus, the
total runtime is in O(mn).

Table 1 shows an example of two time series contain-
ing speed information. This pair of speed data is a piece-
wise linear approximation from the experiment data by
driver No. 1 under speed profile 334. Each speed series
spans over 22s and has 12 time steps. Following the defi-
nition of the Euclidean distance and the approach to cal-
culating it provided in the seminal work by
Rakthanmanon et al. (22), only paired data occurring at
the same time in both time series will be used for com-
puting distances. Figure 4 shows the matching patterns
in the Euclidean distance. Eleven pairs of points
are plugged into Equation 8, which vyields
ED(VAY, V) = 27.80km/hr. For the DTW distance, the
optimal matching pattern is calculated by solving the
shortest path problem in the local distance matrix.
Fourteen pairs of points are included in the calculation,
as shown in Figure 4. According to the definition of

DTW (VA" V1) = 9.38km/hr. The DTW distance evalua-
tion includes all the data points, and the first and last
time steps are truncated for the Euclidean distance.

From this simplified example, the evaluation process
indicates that the DTW distance has an advantage over
the Euclidean distance in measuring the difference
between two time series with different lengths but similar
patterns, which is a feature of the empirical data set uti-
lized in this paper. Because Rahmati et al. (/8) have
revealed the existence of changes in human behavior in
mixed traffic, this study aims to identify which beha-
vioral parameter(s) (i.e., acceleration, speed, relative
speed, spacing, and time headway) can best substantiate
such changes using the DTW analysis framework.
However, two normalization steps are still needed to
compare different behavior parameters with heteroge-
neous lengths and units.

The DTW distance is an accumulation of errors, so
longer time series data inherently have a larger DTW dis-
tance, and using the DTW distance defined in Equation
10to measure the difference between two scenarios
directly may yield biased results. To address this issue,
Giorgino (27) defined the length-normalized DTW dis-
tance (NDTW) as follows:
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DTW (4, H)

(18)

where | - | is the magnitude of a dataset.

The measurements of the driving behaviors have dif-
ferent units and need to be normalized to unitless quanti-
ties within the same range (e.g., [0, 1]) for comparison
purposes. Therefore, a unity-based normalization method
is adopted in this study. The maximum and minimum
values of each measurement set will act as inputs.
Because these inputs will be susceptible to abnormal val-
ues, the three-sigma rule of thumb is used to remove any
outliers before conducting the unity-based normalization.
Accordingly, this study uses the unity-based normalized
DTW distance (UNDTW) defined below for the analysis
in later sections:

UNDTW(A, H) =
NDTW(A, H) — NDTW(A, H),,, (19)
NDTW(A, H),,,. — NDTW(A, H),,,,

where NDT%,H) is the length-normalized DTW dis-
tance without outliers determined by the three-sigma rule
of thumb.

In summary, in quantifying the behavioral differences,
the DTW analysis framework can better capture the
matching patterns and can relax the assumption of iden-
tical data length, compared with Euclidean distance. The
DTW formulation is reduced to a shortest path problem,
which is solvable in polynomial time using DP. More
numerical results and analyses will be presented in the
Results and Analysis section.

Model-Based Method: Stochastic Car-Following Models

The major questions this study aims to address are
whether commonly applied models are able to capture
the behavioral change in human drivers identified in
Rahmati et al. (/8), and if not, how to extend the origi-
nal models to accommodate the changes. Car-following
behavior has been studied extensively. Most commonly
used car-following models are deterministic, with deliber-
ately designed structures and parameter settings, and
they include the intelligent driver model (IDM) (2§),
Gipps’ model (29), and Newell’s car-following model
(30). Although these models have been developed with
refined properties, they may not capture the intrinsic
uncertainty of human drivers. To this end, several sto-
chastic extensions of these models have been developed.
For example, the parsimonious car-following model (37)
added white acceleration noise to Newell’s car-following
model to address random errors in drivers’ acceleration
processes.

This study utilizes the IDM (28) and its stochastic ver-
sion proposed by Treiber and Kesting (32) as representa-
tives of deterministic and stochastic car-following
models. Note that the analyses presented in the next sec-
tion can be replicated with any car-following model. The
model specifications are presented in the following

equations:
4
a(f
an(’) = Qmax ll - (V ()> ]
Vdes

2
Smin + Vn(t) Tdes + ;n(/—;)’i‘:;)i)\
e Xn + I(t) - ln + l(t) - X,,,(t)

where n represents the n* vehicle, and n + 1 is its leader,
a,(1) is the acceleration of vehicle » at time ¢, v,(¢) is the
speed of vehicle n at time ¢, Av,(¢) is the relative speed,
computed as v,(t) — v, + 1(¢), x,(¢) is the longitudinal loca-
tion of vehicle » at time ¢, [, + 1(¢) is the length of the lead-
ing vehicle at time ¢, vy, is the desired speed, #4, is the
desired time headway, s,,;, is the minimum physical gap
between the leader and the follower, a,,,, i1s the maximum
acceleration, and by is the desired deceleration m/s.

Vdes (km/hr), taes (5€C), Spin (M), Amax (m/SZ)’ and bges
(m/s*) are the parameters to be calibrated. To do so, the
study follows the method designed in Hamdar (33) and
chooses the mean absolute percentage error (MAPE) of
speed as the metric, computed as follows:

1A, — Vi,
MAPE, = — " |-2bs_—sim| 5 100 21
' lezl Vi)hs ( )
where v, is the observed speed from the car-following

experiment, and v/, is the speed calculated based on the
calibrated IDM.

To minimize the MAPE of speed, this study uses a
genetic algorithm because of the nonlinearity in the
objective function. Moreover, as a metaheuristic method,
genetic algorithms have good converge performance. To
analyze further how stochasticity influences the model’s
ability to capture the behavioral change, this study
adopts the stochastic IDM from Treiber and Kesting
(32) and Bhattacharyya et al. (34), and uses the para-
meter opy; to model the stochasticity of an individual
driver explicitly. This paper assumes the distribution of
the output acceleration is a normal distribution, given by

a~N(a|a1DM, O'%DM> (22)

where ajpy, and ojpy, are the mean and standard error,
respectively. From the vehicle kinematics, we have:

Vi+1 = V¢ + arAt (23)
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Figure 5. A demonstration on computing the warping path in DTW: (a) three-way plot, with the two speed time series placed
perpendicularly and the warping path displayed in the center; and (b) density plot, with the local cost matrix displayed in the heat map and

the corresponding warping path shown as a blue line.

Note: DTW = dynamic time warping; HV = human-driven vehicle; AV = automated vehicle.

where At is the unit time (A7 = 0.1sec in this study). We
can then derive the speed distribution from Equations 22
and 23, according to:

Ve + 1~N (v + aput, AtZO'%DM) (24)

where ajpy, is calculated based on Equation 20. opy, is
calibrated to minimize the MAPE of speed over 10 simu-
lation runs with independent random seeds, following the
similar routine described in Treiber and Kesting (32).

It is worth noting that the performance measure can
be set at speed or spacing, and previous research suggests
that calibrating deterministic models against spacing also
yields acceptable results (35, 36). However, the stochastic
extension of IDM proposed by Treiber and Kesting (32)
provides a distribution of speed explicitly, and if the
simulated spacing were to compute numerically, a quad-
rature error would be introduced when evaluating the
location at each time step. Therefore, to ensure consis-
tency when calibrating the deterministic and stochastic
IDM models, this study uses speed as the performance
measure following the calibration process introduced by
Treiber and Kesting (32). The calibration and validation
results will be presented in the next section.

Results and Analysis

The primary goal of this study is to analyze the changes
in human driver behavior in a mixed-autonomy traffic
environment and to evaluate whether commonly used
models are capable of capturing such changes. To this

end, we designed a data-driven DTW analysis framework
and take the IDM as an example to address the impor-
tance of stochasticity based on nonparametric hypothesis
tests.

DTW

The power of DTW comes from finding the optimal
matching patterns before calculating the sum of errors.
Thus, the core is to find the warping path W. A sample
from the collected speed data (driver 1 under speed pro-
file 334 [18]) is provided to illustrate how the optimal
matching pattern is computed. Figure 5« is a three-way
plot, and the warping path in the center shows the map-
ping between the two cases: following an AV or another
human-driven vehicle. The path in the plot is a continu-
ous line starting from the origin and extending upward
to the right until the end. This finding also provides vali-
dation of the proposed algorithm in obeying all three
assumptions about DTW presented in the Methodology
section. Figure 5b is a density plot, which uses a heat
map to visualize the local cost matrix D € R™*". Going
from the bottom left to the upper right corner, the path
with the least total cost is going to be the one drawn in
blue, which chooses to go through the ”valley.”

Figure 6 shows an example of how a human driver
reacts with respect to the leader’s speed. The shift along
the time axis in the follower’s speed curve between the
two cases can be observed, especially between 20 and 40s
from the start of the experiments. Such a phenomenon
may be explained by the difference in driving behavior of
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(a) Driver 1 following an AV (b) Driver 1 following an HV
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Figure 6. Speed and the leader’s (driver |) speed under speed profile 334: (a) following an AV; and (b) following a human-driven vehicle.

Note: AV = automated vehicle; HV = human-driven vehicle.
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Figure 7. A demonstration of the matching patterns from the DTW analysis on speed: (a) original plot; and (b) plot with 30 unit offsets

for the following AV case.

Note: DTW = dynamic time warping; AV = automated vehicle; HV = human-driven vehicle.

AVs and human-driven vehicles and the human response
to this. The DTW analysis framework proposed in this
study will first find the matching patterns and align the
two time series data before evaluating the differences.
This approach will address the time shift issue because of
possible errors in time recording that occurred during
data collection. Figure 7 further shows what the match-
ing patterns look like. The two speed—time curves have
very similar patterns and extreme values. Thus, to
demonstrate the alignment better, an offset of 30 is
added to the following AV case and the dotted lines pres-
ent the matching between the two speed time series data.
Following the same analysis framework, the normal-
ized DTW distance of five data categories is calculated
and shown in Figure 8. A total of 44 drivers—speed pro-
file pairs are investigated, and among all five behavior

categories, the spacing evidently has a larger distance,
which can be interpreted as a more significant difference
in maintaining spacing when the leading vehicle is an AV
or not. This is not detectable when looking at the aggre-
gated descriptive statistics of spacing. Mahdinia et al.
(37) conducted such an analysis on the same data set,
and based on their results, we do not have sufficient evi-
dence to say the spacing has a statistically significant dif-
ference when following an AV as opposed to a human-
driven vehicle. This may be a result of neglecting the time
series properties in the analysis of descriptive statistics.
On the contrary, acceleration has the poorest perfor-
mance in capturing the changes in human behavior.
Acceleration often acts as the output in car-following
models, and is rather insensitive to the desired speed and
the parameters controlling the gaps (spacing and time
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Figure 8. Boxplot showing the unity-based normalized DTW
distance with different data categories.

Note: DTW = dynamic time warping; UNTDW = unity-based normalized
dynamic time warping distance.

headway in the case of this study), according to Treiber
and Kesting (38). The dispersion of speed and relative
speed are similar to each other in Figure 8. This phenom-
enon can be predicted if speed and relative speed are
strongly linearly correlated, which happens in stable traf-
fic in which the leading vehicle has almost a constant
speed.

The DTW analysis can also detect abnormal values in

headway is from the experiment of driver 2 under speed
profile 211 (/8). Figure 9a depicts a regular headway time
series under speed profile 211. However, in Figure 95, the
vehicle has a headway of more than 500s and should be
removed in the following model-based method when cali-
brating the car-following models. The DTW analysis
framework mentioned above was developed from a
Python package called dtw (27). In summary, 85 driver—
speed profiles were selected for the following study.

Stochastic IDM

Evidence from previous studies and the above analysis
shows that human drivers’ behavior will change when
interacting with AVs in mixed traffic flow. The rest of
this paper will calibrate and validate the IDM car-
following model, which has been widely applied in previ-
ous research and used by existing simulation platforms.
In this study, the IDM and stochastic IDM are cali-
brated with a genetic algorithm. The population is initia-
lized with 30 parents and 900 child chromosomes. The
mutation rate is 10% and Figure 10 shows the MAPE
converges to less than 10% after 20 generations.

The distribution of the parameters calibrated for the
IDM and the corresponding kernel density estimation
are shown in Figure 11. The parameters can easily be
perceived as not normally distributed based on the histo-
grams, which violates the assumption of the ¢-test.

the data set. For example, one of the outliers of time Therefore, to determine if the distribution of the
(a) Regular: Driver 7, speed profile = 211 (b) Abnormal: Driver 2, speed profile = 211
22.5
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Figure 9. Comparison of headway data: (a) regular headway under speed profile 21 I; and (b) the outlier identified by DTWV analysis.
Note: DTW = dynamic time warping; AV = automated vehicle; HV = human-driven vehicle.
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Figure 10. Convergence over generations in a genetic algorithm.
Note: MAPE = mean absolute percentage error.

parameters for human drivers’ behavior when following
an AV is significantly different from the distribution of
the parameters when following a human-driven vehicle,
the two-sample Kolmogorov—Smirnov (K-S) test is con-
ducted on 85 realizations (42 from following a human-
driven vehicle and 43 from following an AV). The
hypothesis testing results are summarized in Table 2.
The null hypothesis Hy for both models is the same: the
driving behavior parameters when following an AV and
a human-driven vehicle are no different. Between the
two models, all the parameters in the deterministic IDM
(model 1) do not reject the null hypothesis, meaning we
do not have sufficient confidence to say they are differ-
ent. Combining the findings from the DTW analysis and
the literature, the behavioral change is not captured by
the IDM. As for the stochastic IDM (model 2), the p-
value for opy, is less than 0.01, and the null hypothesis
is rejected, which means two opy, are not from the same

Vaes (following AV)(u = 92.6560, 0 = 22.6403) Vges (following HV)(u = 85.2503, 0 = 22.6403)

tges (following AV)(u =1.5280, 0 = 0.3678) tges (following HV)(u = 1.5205, 0 = 0.3932)
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Figure 1 1. The distributions of IDM parameters.

Note: IDM = intelligent driver model; AV = automated vehicle; HV = human-driven vehicle.
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Table 2. K-S Test Results

Following HV Following AV
K-S test
Mean SD Obs. Mean SD Obs. p-value
Model I: IDM
Vdes 85.2503 27.7736 42 92.6560 22.6403 43 0.3432
tdes 1.5205 0.3932 42 1.5280 0.3678 43 0.9821
Smin 3.0963 1.2173 42 2.9840 1.3073 43 0.7993
Amax 1.0013 0.0010 42 1.0015 0.0013 43 0.6094
bdes 2.3426 0.3331 42 24161 0.2571 43 0.2823
Model 2: stochastic IDM
Vdes 86.0557 26.3680 42 94.8700 19.9632 43 0.1694
tdes 1.5254 0.3766 42 1.5322 0.3369 43 0.1804
Srmin 29361 1.2132 42 2.8247 1.2661 43 0.7992
Amax 1.0187 0.0163 42 1.0144 0.0131 43 0.4393
bdes 2.4054 0.2252 42 2.3948 0.2526 43 0.9952
OIpM 0.3812 0.0824 42 0.1090 0.0492 43 < 0.0001

Note: IDM = intelligent driver model; HV = human-driven vehicle; AV = automated vehicle; K-S = Kolmogorov—Smirnov; SD = standard deviation; obs. =
observations. This shaded cell is to highlight the last parameter is the only one that rejects the null hypothesis.

distribution under a 99% confidence level. As shown in
Table 2, drivers have a statistically significant lower level
of uncertainty when following an AV, compared with
following a conventional car. This result is further elabo-
rated by the cumulative distribution functions (CDFs) in
Figure 12. The hypothesis test results and corresponding
p-values are listed above, and a clear gap is presented in
the CDF plot of opy,.

This finding provides validation of the methodology
presented in the Methodology section, that is, employing
a stochastic extension of deterministic models to address
the changes in human behavior in mixed traffic. This
also suggests that whenever the IDM is used to model
AV-human-driven vehicle interactions, caution should
be exercised because it may not capture the behavioral
changes in human drivers.

Conclusion and Discussion

With the associated advances in sensing, computing,
navigation, and control technology, AVs have drawn sig-
nificant attention from both researchers and practitioners
and have made an impact beyond the transportation
arena. However, because of the low degree of public
acceptance and other critical deployment issues, there is
still a long way to go before a fully autonomous trans-
portation system will be operational, especially for road
traffic. Instead, it is expected that there will be a mixed
traffic environment with different levels of autonomy. It
has been perceived that human driving behavior will
change in response to AVs, but whether existing models
can capture such behavioral changes has not received
proper investigation.

With a focus on car-following behavior, this paper
uses a data set collected from human drivers’ car-
following behavior when following an AV (/8). Two
approaches were adopted: a data-driven method based
on DTW; and a model-based method introducing sto-
chasticity to the existing models.

For the data-driven method, this paper developed a
robust DTW analysis framework, which first calculates
the optimal matching between two behavioral time series
data, and then uses the normalized DTW distance to
quantify behavioral changes in human drivers. Next, we
follow the same routine with other drivers’ behavior
recorded in the data set, including acceleration, speed,
relative speed, time headway, and spacing (/8). The
results show that spacing has the best performance in
measuring changes in human drivers’ behavior, whereas
there is little difference in acceleration between the two
scenarios.

In the model-based analysis, a genetic algorithm is
used to calibrate the IDM by minimizing the MAPE. The
calibrated parameters of the IDM do not obey normal
distributions, so to assess whether the parameters of the
IDM are different when the leader is an AV, this paper
uses a two-sample K-S test. The hypothesis testing shows
parameters defined in the IDM cannot capture the beha-
vioral changes. Thus, an extended IDM that explicitly
models the stochasticity when a driver performs accelera-
tion (32, 34) is calibrated using a similar approach. Then
K-S test result shows that the newly introduced para-
meter opy, is different when following an AV as opposed
to a conventional car. Drivers who follow an AV will
have a lower level of uncertainty when driving.

This study introduces a new perspective on a DTW-
based method for measuring the changes in drivers’
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Figure 12. Cumulative distribution function for the six parameters in the stochastic IDM.
Note: IDM = intelligent driver model; AV = automated vehicle; HV = human-driven vehicle.

behavior when interacting with AVs. It is worth noting
that the original DTW proposed by Bellman and Kalaba
(23) does not account for the correlation in multivariate
time series. However, the driving behavior measurements
have correlations. For example, the spacings and relative
speeds have high correlations, and applying DTW
directly may risk losing correlation information. Bankoé
and Abonyi (39) and Hosseini et al. (25) discussed the
potential for using feature selection methods to address
this problem. For future research, orthogonalization
methods, for example, principal component analysis,
may be applied to construct new uncorrelated features
before conducting the DTW analysis described in the
Methodology section.

This study also heralds a new chapter of research in
the area of investigating whether widely-adopted models
can capture changes in human drivers’ behavior in
response to AVs. Thus, more models will be tested to
identify the common features a model should possess to
characterize the interactions in mixed-autonomy traffic.
Finally, lane-changing behavior and other more complex

interactions still remain undiscovered, and offer consid-
erable potential for research.
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