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An emerging recognition of the critical zone

Long before the term ‘critical zone’ (CZ) was coined by Gail Ashley (Jordan et al. 2001) to encompass
Earth’s biological and geological features from the top of the vegetative canopy to the depths of
circulating groundwater, many scientists have recognized that both biotic and abiotic actors are
centrally important for understanding many of Earth’s most fundamental processes (Schaffer 2020).
Scientists such as Alexander von Humboldt (1769-1859), Charles Darwin (1809-1882), Jacques-Joseph
Ebelmen (1814-1852), Vasily Dokuchaev (1846-1903), Vladimir Vernadsky (1863-1945), Arthur Tansley
(1871-1955), Hans Jenny (1899-1992), Robert Berner (1925-2015), and James Lovelock (1919-present)
worked across centuries and continents to demonstrate how momentary- and molecular-scale biotic
actions (e.g., photosynthesis, respiration, production of organic acids, root growth) generate powerful
chemical and physical forces that when scaled up govern environmental conditions of the planet.
Indeed, it was a botanist familiar with plants’ consumption of CO, — Eunice Newton Foote — who first
developed and published the concept of greenhouse gases warming the planet (Foote 1856; Sorenson
2011), an idea developed as well by John Tyndall (1861). Today, we can recognize how these individuals
and their colleagues integrated a diversity of ideas from biotic and abiotic processes into their work, a
hallmark of today’s CZ science.
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Tansley’s introduction of the ecosystem concept (1935) offered an intellectual home for those
interested in the systemic interaction of biota with the abiotic (Richter and Billings 2015). Ecosystem
ecology, a particular branch of the broader field of ecology, is defined as the study of life as it interacts
with the abiotic world (Sher and Molles 2022). In the nearly 100 years since the coinage of ‘ecosystem’
(Tansley 1935), this discipline has developed a literature, conceptual and mathematical models, and
subdisciplines that have enhanced our understanding of how the biotic and abiotic interact on Earth’s
surface (e.g., Hutchinson 1940; Odum 1968; Bormann and Likens 1967; Markewitz et al. 1998; O’Neill
2001; Pataki et al. 2003; Lovett et al. 2006; Morford et al. 2016). Concomitant with these developments,
scientific institutions such as departmentally-organized universities and scientific societies, journals, and
funding agencies also evolved, promoting more disciplinary approaches to science (Richter et al. 2018a).
As a result, scientists began to face strong pressures to self-identify with particular disciplines. This
development countered the ecosystem approach, which is defined by its interdisciplinarity.

Perhaps because ecosystem ecology was linked by its name to other, purely biological subdisciplines of
ecology (e.g., population and community ecology), it has often been assumed to be a fundamentally
biological pursuit. Many contemporary ecosystem ecologists have been trained in and remain focused
on biologically-focused areas such as photosynthesis, plant respiration, microbial cycling of organic
matter, and plant-microbe interactions, and often lack training in the chemical, physical, and geologic
dimensions of ecosystems. One manifestation of this problem is the superficial coverage of the
belowground component of ecosystems (Mobley et al. 2015, Richter et al. 2018). This feature was noted
by Binkley (2006), who highlighted that reviews of the ecological literature omit mention of soil, the very
medium from which terrestrial ecosystems derive most of their required resources. Most ecological
studies of soil focus on soil microbes and fauna interacting with each other or their organo-substrates,
or on roots and their interactions with microbes — all important but largely biologically-focused
endeavors (e.g., Baldrian 2019; Hart et al. 2020).

This biological focus of many ecosystem-trained scientists and the institutions in which many function
can limit our understanding of the interactive nature of many Earth surface processes. Multiple
examples demonstrate this assertion. First, rock- and mineral-derived nutrients are critical factors
driving biological activity in terrestrial systems (Schlesinger and Bernhardt 2020); with the exception of
N, even nutrients derived from organic matter recycling originally are released from mineral weathering.
Second, the inherited geologic structures of bedrock strongly controls ecosystem water storage and
transmission to groundwater and streams (Leone et al., 2020). Third, landscape position and
geomorphological characteristics constrain light availability (Bilir et al. 2021). These well-studied
phenomena demonstrate the degree to which an ecosystem’s ability to capture nutrients, water, and
light — and thus its productivity — is dictated by chemical and physical site characteristics.

A fourth phenomenon exemplifies an especially rapidly expanding branch of CZ science that, like the
first three, clearly links biotic and abiotic processes. Multiple investigations reveal the importance of
dust nutrient inputs to ecosystems as key promoters of ecosystem productivity. This feature of
terrestrial ecosystem nutrition has been known for years (e.g., Lovett 1994; Chadwick et al. 1999;
Soderberg Compton 2007), but recent CZ studies help expand this concept to more fully reveal the
importance of dust-derived inputs to many ecosystems. Where highly weathered soils would otherwise
promote relatively low productivity, dust can serve as an especially critical nutrient source (Gallardo et
al. 2020; Chadwick et al. 1999). In addition to inoculating recipient sites with dust-bound microbial
populations (Maltz et al. 2021), dust can travel great distances (Yu et al. 2015; Eger et al. 2013) to
provide nutrients like P to biota (Marcon et al. 2021; Vogel et al. 2021) at supply rates that can outpace
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that of bedrock itself in some systems (Aciego et al. 2017). Dust also can influence soil structure (Derry
and Chadwick 2007) and generate meaningful material thickness within soil profiles (Lin and Feng 2015;
Marcon et al. 2021). Dust inputs are not an important source of nutrition in all systems (e.g., Uhlig et al.
2017), but the nutrient subsidies provided by dust in many may be sufficient to mitigate rock and
mineral weathering that would otherwise supply nutrients. This echoes the hypothesis suggesting that
OM-derived nutrients can mitigate rock and mineral weathering (Brantley et al. 2011). More broadly,
evolution of dust-focused CZ literature rests within a concept central to ecosystem, and thus CZ, science
— that nutrients are either obtained internally through de novo weathering or OM recycling, or from
external sources, and that nutrient sources thus dictate weathering rates.

The interactive nature of many of Earth’s CZ processes is further demonstrated by biological phenomena
influencing multiple physical and chemical attributes of the CZ, going far beyond the role of vegetation
as a key sink for atmospheric CO, and nutrients. Roots, for example, both help prevent erosion (Stone
and Kalisz 1991) on timescales of seasons to decades and help promote soil creep over longer timescales
(Pawlik 2013; Brantley et al. 2017). Roots and the soil microbial communities they nurture generate
organic acids and CO; that contribute to the weathering of soil minerals and bedrock (Landeweert et al.
2001; Marschner and Rengel 2007; Hasenmueller et al. 2017). Roots and microbes are also capable of
recycling organic matter-bound nutrients, mitigating subsequent weathering processes as nutrient
demand is met partially by organic matter decay (Hauser et al. 2020). Holistic terrestrial ecosystem
studies thus must embrace some combination of physical and chemical sciences (e.g., lithology,
mineralogical weathering, physical geography, geomorphology, hydrology) along with the biological
phenomena that interact with these features.

The emergence of the CZ paradigm (Jordan et al. 2001; Brantley et al. 2007) promoted an
interdisciplinarity already evident in the works of scientists such as Humboldt and Darwin (Schaffer
2020; Richter and Billings 2020). The explicit linkage of the bio- and geosciences in CZ studies provides
the scaffolding needed to address environmental puzzles at a diversity of scales (Billings and Sullivan
2020; Sullivan et al. 2021). Realization of the CZ approach is hardly trivial: Implementing studies that
integrate the bio- and geosciences requires collaboration among practitioners who represent
disciplinary siloes, speak distinct vocabularies, and view scientific puzzles through separate lenses
(Richter et al. 2018a; Figure 1). These traits can impede even well-intentioned collaborations (Watson
2017). However, many lessons have emerged by bridging the bio- and geo-focused disciplines to
examine the ‘critical zone ecosystem’ (Richter and Billings 2015).

Here, we describe findings that emphasize how life, emphasizing vegetation and microbes, responds to
and shapes the physical environment in which it persists, yielding feedbacks for Earth’s climate,
primarily through modifications to hydrologic functioning. We focus on the interactions of biota and the
physical and chemical features of soil pedons and landscapes as they drive ecosystem-scale hydrologic
fluxes. We acknowledge that the flowpaths for soil water are also the same conduits through which soil
gases flow (Jury and Horton 2004) and are thus key to understanding ecosystem functions (e.g.,
Hasenmueller et al. 2015). In the current work, we emphasize hydrologic flows due to their importance
for vegetative water uptake and thus productivity, flows of soil organic C and nutrients, and soil
weathering processes. These processes all reflect diverse disciplines that coalesce in Earth’s soils (Figure
1). We focus on hydrologically-relevant features because of the long history of individual disciplines
telling us about the large-scale importance of these processes, and because of emerging research
highlighting the importance of the intersection of these disciplines for projecting future ecosystem
functioning on a rapidly changing Earth. The knowledge we spotlight reveals Earth’s CZ as a
fundamentally ecological problem.
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Soil and landscape constraints on CZ hydrologic functioning

Within a given climate regime, hydrologic function is strongly influenced by the properties of and
interactions between biotic and abiotic components of the CZ (Black, 1997; Bennett and Klironomos,
2018; Dawson et al., 2020; Figure 2). Here we adopt a physically-oriented, catchment-scale definition for
hydrologic function as the partitioning, storage, and discharge of water (Wagener et al., 2007;
Wlostowski et al., 2020). Although different locations within the CZ contain both biotic and abiotic
components, it is the interaction between these components in the soil environment that exerts a
strong control on hydrologic function through its effect on soil hydraulic properties. This near-surface
soil environment is subject to steep and dynamic energy and soil moisture gradients that drive the
relatively rapid flux of water and the temporal variations in the direction and velocity of this flow (Weil
and Brady 2017). As soil biota (e.g., microorganisms, plant roots, and macrofauna) respond to these
variable near-surfaces fluxes of water, they shape the organization of soil particles and pores (Sullivan et
al. 2021) and thus influence the development of soil horizons especially within shallow depths where
the soil biological activity is concentrated. This modification happens primarily through the production
of soil organic C (SOC), the formation and stabilization of soil aggregates, and the direct and indirect
creation of macropores that perforate the soil. However, the ability of biota to modify the soil
environment is constrained by the physical and rheological properties of the material, which are largely
controlled by soil texture.

Soil texture is important to the hydrologic functioning of the CZ because it directly affects the relative
surface area of the soil and the soil pore-size distribution. Pore size (i.e., effective pore diameter) and
relative surface area control the affinity of water to the soil matrix and impart a potential energy to the
soil water (i.e., matric potential; Hillel, 1998). Matric potential, in combination with components such as
gravitational and hydrostatic pressure potential, governs the total potential energy of the soil water.
Differences in the total potential energy state drive infiltration and the movement of water through the
CZ. Thus, texture strongly affects water flux through soil by governing potential energy gradients. Soil
texture also affects the ability of the soil to conduct water because of its control over surface area and
the porosity of the soil matrix (especially, pore size and tortuosity). That is, as the soil particle-size
distribution becomes finer, so do the pores between those particles, reducing the hydraulic conductivity
of the soil. As the soil dries, air is introduced, bounding the soil water between the air-water interface
and surfaces of the soil particles; this modifies the lengths and tortuosity of the paths that the water
must follow to move through the soil, further reducing the hydraulic conductivity (Jury and Horton,
2004). Therefore, soil texture—both on its own and in conjunction with degree of saturation of the
soil—is critical for understanding the retention and flux of water in the CZ due to its influence on both
the total potential energy gradient driving flow and the conductivity of the soil through which the water
moves.

Macroporosity of the soil is another important determinant of fluxes of water through the CZ. Although
there are different classifications of macropores that depend on their origin and shape, here we restrict
our discussion to macropores that are large (often greater than a few hundred micrometers), planar or
tubular, and continuous; these macropores function as potential pathways for the preferential
transmission of water (Jarvis and Larsson, 2001; Giménez and Hirmas, 2017; Figure 2). Macropores of
this type result from either biotic or abiotic processes in the soil. Abiotic processes include the drying
and concomitant shrinkage of the soil matrix especially in fine-textured materials, the formation of
aggregated structural units (e.qg., clay tactoids, clusters of clay and silt domains, and subsurface peds like
angular blocks and prisms) due to the cohesion of the soil particles or precipitation of inorganic cements
(e.g., CaCOs, opaline Si, or Fe-oxides), and the reinforcement of preferential pathways by the
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development of surface coatings (Thoma et al., 1992; Jarvis and Larsson, 2001). This latter process is
largely due to the illuviation of clay (e.g., argillans, expanded on below) or the reorientation of the soil
fabric at the pore surface from mechanical pressures (e.g., fabric hypocoatings; Stoops, 2003). Biotic
processes responsible for the formation of macropores include the activity of fossorial fauna (Platt et al.,
2016), the growth and subsequent decay of roots (Giménez and Hirmas, 2017), and the formation of
stable aggregates through, for instance, the egestion of soil particles by earthworms (Johnson-Maynard
and Strawn, 2016), enmeshing of particles by mycorrhizal fungi and fine roots (Jastrow et al., 1998; Rillig
and Mummey, 2006), or secretion by soil microorganisms of extracellular polymeric substances (EPS)
that glue soil particles together (Costa et al., 2018).

Macropores created through the processes outlined above typically make up only a minor fraction of
the soil volume, but have an inordinate effect on water flux through the soil in saturated and even
unsaturated conditions (Watson and Luxmoore 1986; Nimmo 2012). The reason for this phenomenon is
that volumetric flow through a pore is proportional to the fourth power of its radius (i.e., Poiseuille’s
law). Watson and Luxmoore (1986) demonstrated this principle by reporting that, under ponded
conditions, macropores may be responsible for 96% of the water flow though only accounting for 0.32%
of the soil’s volume. Where these macropores intersect the land surface (e.g., open biopores or
aggregated surface soil horizons), they are important for the infiltration of water into the soil and the
potential for runoff generation, and, thus, the loss of sediments and nutrients through erosion (Beven
and Germann, 1982; Smettem et al., 1991; Léonard et al., 2004). Recent findings have shown that soil
macropores are sensitive to shifts in climate, likely driven by soil biota (Hirmas et al., 2018; Caplan et al.,
2019). Given the large control over water flow that macropores exhibit, even small changes to these
pores in response to climate is likely to affect the water cycle and the hydrologic function of the CZ via
changes to infiltration, aquifer recharge, and the lateral redistribution of water by runoff (Hirmas et al.,
2018).

As soils form in response to the addition, loss, transformation, and translocation of mass and energy,
soil horizons develop that are distinguished from each other on the basis of macromorphological
properties exhibited as color, consistence, texture, structure, and porosity (Schaetzl and Randall, 2005;
Buol et al., 2011; Turk et al., 2012). Differences between vertically adjacent soil horizons in the
expression of these latter properties create layered conditions that are important for water flow
through the vadose zone. This is because the boundaries between horizons, especially if they are abrupt,
can represent significant discontinuities in soil hydraulic conductivity and water content (Hillel, 1998).
The discontinuities — for example, a coarse-textured A horizon above a clay-enriched Bt horizon — act
to retard the rate of soil water infiltration due to the reduced saturated hydraulic conductivity of the
lower compared to the upper layer (Radcliffe and Sim(inek, 2010). However, even in cases where fine-
textured layers or horizons with concentrated organic matter overlie more conductive, coarse-textured
materials (e.g., an O horizon directly over an E horizon, or a clay-rich horizon over a sandy horizon), the
boundary between these horizons forms an obstacle (often temporary) to the wetting front that reduces
infiltration. This is due to the differences in potential energy of the soil water across the boundary of the
two layers with the fine-textured material imparting a sufficiently lower total potential energy compared
to the underlying layer (Radcliffe and Sim(inek, 2010). The water hangs at this boundary until the
saturated zone behind the leading edge of the wetting front increases sufficiently for the added
hydrostatic pressure to overcome the matric forces holding the water. In addition to effects on
infiltration, differences in soil hydraulic properties through and across horizons strongly influence the
generation of preferential flow (Dyck and Kachanoski, 2010).
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At a broader scale, ecosystems, soils, and landforms coevolve to shape the soil-geomorphic properties
of the landscape (Wysocki et al., 2012). For example, slope curvature affects soil thickness and the
concentration/dispersion of surface water (e.g., Patton et al., 2018), and elevation controls snow
accumulation, rainfall, and evapotranspiration (e.g., Wigmosta et al., 1994). These features and the soil
properties discussed above all constrain the hydrologic functioning of the CZ by driving the lateral
redistribution of water and sediments along topographic gradients from ridges to valleys and by
controlling the radiative conditions, and, thus, the soil temperature, effective moisture, and ecological
properties corresponding to land-surface aspect (Fan et al., 2019). The lateral fluxes of water along
topographic gradients occur both at the land surface and within the subsurface, controlling the vertical
distribution of plant-available water and, therefore, plant rooting depth across the landscape (Fan et al.,
2017). Milne’s (1936) concept of the soil catena that was used in part to explain different drainage
classes along a hillslope (Wysocki et al., 2012) is especially useful for understanding this relationship. A
catena is a chain of adjacent and geomorphologically-related soils along a hillslope, from summit to
base, perpendicularly transecting the topographic contours (Schaetzl and Anderson, 2005). Within this
framework, soil morphological differences at different hillslope positions are explained by the lateral
and vertical fluxes of surface water, groundwater, and sediments. Indeed, catenas can be
conceptualized as hillsheds that undergo soil creep (Brecheisen et al. 2021). The movement of soil
material and redistribution of water from steeply sloping positions to the base of hillslopes give rise to
textural differences on the landscape that control CZ hydrologic functioning such as soil water retention
(Figure 3).

All of these soil and landscape physical constraints on CZ hydrologic functioning are both the product of,
and influence, biotic functioning. Soil geomorphic properties of landforms, and the soil properties of soil
profiles, strongly affect the lateral and vertical distribution of water and, thus, the distribution of
vegetation across the landscape and the distribution of roots within a profile. However, the influence of
vegetation on both surface and subsurface hydrology significantly affects landform evolution and soil
formation as well (e.g., Williamson et al., 2006; Chamberlin et al., 2019). Indeed, rooting depths appear
sensitive to the different vertical distributions of soil moisture that result from hillslope-driven fluxes
(Fan et al., 2017) and the properties of a given profile. In well-drained summit positions, for instance,
the pool of plant-available water is largely contained at relatively shallow depths (i.e., from the
infiltration of rainwater) with the water table too deep for plant roots to access; this is in contrast to
poorly-drained toeslope positions that favor wetland species due to the creation of permanent water-
logged conditions from a water table that is near or above the land surface at the base of the hillslope
(Fan et al., 2017). Between these two ends of the hillslope, plant-rooting distributions are affected by
the relative positions of infiltration-controlled soil moisture and the capillary fringe above the water
table, with plant roots sensitive to the seasonal changes in water table depth in upper backslope and
footslope positions (Fan et al., 2017). Thus, without a transdisciplinary knowledge base embracing
geomorphology, soil science, and vegetation water uptake patterns, CZ water balance would remain
poorly understood.

Roots as direct, biotic drivers of CZ hydrologic functioning

Ecohydrological considerations

Discerning root water uptake patterns must be informed by root biology and the soil and landscape
constraints on soil physical properties described above. Historically, root water uptake has been the
purview of ecophysiologists and ecosystem ecologists with training in ecophysiology, and to a certain
extent soil physicists. However, plant water availability and root water uptake impose cascading
influences on whole-CZ structure and function. It has long been recognized that the physical and
biogeochemical changes that occur with changes in species composition and root architecture co-evolve
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with topography, geology, soil, and climate to control the trajectory of catchment hydrology (e.g.,
Harman & Troch 2014). Understanding such connections and non-linear feedbacks is particularly
important as we confront the need to forecast Earth system evolution in the face of accelerating climate
change and human perturbations (Sullivan et al. 2018a). Thus, in addition to the role of landscape
position influencing system hydrology discussed above, we must also emphasize that vegetation plays a
role in governing water flows as well.

With ample nutrient availability, vegetative growth tends to be optimized where water availability is
balanced by evaporative demand (Roebroek et al., 2020). Though at the largest scale this is governed by
the overall climate, within each climate zone, the local CZ (e.g., the landscape features discussed above)
exerts strong governance over water abundance and depth to the water table. If rooting networks are
able to access this groundwater, plants can flourish in what might otherwise be sub-optimal conditions
(Fan, 2015). This action can result in an altered position of the water table, even in low landscape
positions, as plants meet their evaporative demands (Sullivan et al., 2011). The depth of this drawdown
is a function of the soil’s water holding capacity, which can be impacted by plant-induced clogging of
pores, or perhaps pore generation (Sullivan et al., 2016). Thus, the relationship between vegetation and
groundwater or water table position, and factors that possibly alter water availability and position, can
have significant impacts on how the CZ-ecosystem functions.

An additional layer of complexity in ecohydrologic processes has been hinted at for decades and is
emphasized in recent, explicitly CZ-focused work. In multiple ecosystems, rock water extraction by
vegetation has been observed (Anderson et al. 1995; Sternberg et al. 1996; Bornyasz et al. 2005). More
recently, neutron probe data from the mountainous western U.S. demonstrate a meaningful reliance of
some vegetation on deep rock moisture — water retained in the weathered rock vadose zone (Rempe
and Dietrich, 2018; McCormick et al. 2021). Given that rates of root growth into the subsurface can
outpace rates of soil loss from erosion, roots thus not only influence water storage in these zones, but
also govern the detachment of bedrock and the initiation of soil formation (Roering et al., 2010), factors
that feedback to govern the generation of porosity and thus water storage. In the Anthropocene, rates
of forest harvesting may be outpacing the rate at which root growth by trees impart their ability to
fracture or detach bedrock in working forests (Roering et al., 2010).

The human influence in the Anthropocene is also evident via shifting rooting depth and/or rooting
function at a diversity of scales. Given the role of roots as soil architects, human activities that modify
root activities are likely altering the physical structure of the subsurface. Within a given biome, changes
in environmental conditions that shift the amount and timing of plant water use (e.g., via changes in
plant water use efficiency, the depth to which water is extracted, or the frequency with which soils may
undergo wetting and drying) may alter aggregate formation and stability, and thus soil structure (Degens
and Sparling, 1995; Denef et al., 2001; Bronick and Lal, 2005; Cosentino et al., 2006; Park et al., 2007).
Where permafrost thaws or alpine tundra warms, more deeply rooted, woody vegetation can develop
(Wilmking et al., 2006). Woody encroachment of deeply-rooted shrubs into grasslands in warmer
climates is also accelerating (Saintilan and Rogers, 2015). Globally, estimates suggest that an additional
~19,200 km?3 of soil have become rooted in regions experiencing root deepening in the Anthropocene
(Hauser et al., 2022; Figure 4). These root-deepening phenomena have the potential to sculpt the
subsurface in ways that influence water flow through the subsurface (Sullivan et al., 2022). Root
shallowing also is an important Anthropocene phenomenon; roots are absent from an estimated 30,100
km?3 of soil today compared to soil volumes rooted by potential vegetation (Hauser et al., 2022). Roots
have been removed from an estimated 13,700 km?3 of this volume where perennial systems have been
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replaced with annual agriculture, a landscape feature expected to expand in the future (Hauser et al.,
2022; Figure 4).

The net effect of human activities in the Anthropocene thus has been a shallowing of roots, and a
decline in the soil volume directly mined by roots for water and nutrients (Hauser et al., 2022). This
feature prompts the question of how soil formation processes are transformed as root shallowing limits
the production of weathering agents, particularly given the long time periods over which root
regeneration occurs (Billings et al., 2018). More generally, this phenomenon highlights the fundamental
role of an ecological consideration — rooting depth — as an agent of soil engineering at depth and thus of
CZ functioning.

Ecophysiological considerations

The water uptake patterns permitted by local climate and physical landscape- and pedon-scale features,
described above, are the scaled-up result of processes occurring at the momentary and cellular
temporal and spatial scales, respectively. The dynamics of plant water uptake and loss are rapid. Indeed,
while water accounts for up to 95% of the fresh weight of herbaceous plants, the majority of water
absorbed by most plant species (~ 98%) is lost to the atmosphere via transpiration within minutes of
being absorbed from the soil. Thus, plants need enormous amounts of water to offset transpiration
losses and facilitate C uptake (and photosynthesis). While some species can absorb a significant portion
of water through leaf pores (as dew or vapor) (Berkelhammer et al., 2013; Hill et al., 2021), the vast
majority of plant species rely on root uptake to meet water demands. Roots provide several key
functions for plants, including anchorage to the terrestrial surface, but the functional consequences of
water and nutrient absorption from the soil are key determinants of nutrient, C, and water recycling
within ecosystems and serve as a link between belowground and aboveground physiological processes
(Jackson et al., 2000).

Plant roots absorb water from the soil based on the hydrostatic pressure gradients established from soil
matric to leaf water potentials. Water flows down this potential energy gradient as long as the potential
energy in the leaf that is established by water lost via transpiration is lower than that in the soil. As the
soil dries, the potential energy gradient from soil to leaf declines, resulting in less plant-available water.
In this situation, plants: (1) close leaf stomata to reduce the water potential gradient, (2) lower the leaf
water potential (by increasing transpiration) to re-establish a larger pressure gradient from soil to leaf
allowing for greater potential extraction of water from soil spaces, or (3) utilize water from potentially
wetter zones of the soil. The degree of leaf stomatal control used to regulate transpiration flux has been
commonly described as isohydric or anisohydric (Tardieu and Simonneau, 1998; McDowell et al., 2008).
Isohydry refers to a strategy of stomatal regulation to maintain a constant water potential prior to
wilting and prior to the establishment of air embolisms and cavitation in the xylem vasculature. Thus,
isohydric strategies reduce transpiration to minimize the chance of wilting and hydraulic failure, but
with a cost of reduced C assimilation and growth. Plant species that utilize anisohydric strategies
regulate transpiration at the expense of potential hydraulic failure to maintain the hydrostatic pressure
gradient as soils dry and water is less available. Thus, anisohydric species are able to maintain C
assimilation but at greater risk of desiccation. Strategies of isohydry or anisohydry vary by species and
genotypes according to changes in soil water availability, which in turn vary across catenas and
landscapes (Figure 5). While these strategies present dichotomous endpoints of acclimation to low
water availability, most plant species exhibit aspects of each, with examples of isohydric behavior during
specific periods of growth or portions of a season and anisohydric behavior during others (Klein, 2014).
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Root traits have long been examined to try to understand plant, and thus ecosystem, functions. The root
trait most frequently reported as a predictor of ecosystem function has been maximum rooting depth,
which has been reported for a diversity of species and varies with biogeography (Stone and Kalisz,1991;
Schenk and Jackson, 2002; Schenk and Jackson, 2005; Tumber-Davila et al., 2022). However, if we want
to improve our ability to predict how species coexist within ecosystems or how global environmental
changes may impact communities in space and time, other characteristics of root systems beyond
maximum rooting depth require consideration (Kong et al., 2014; Nippert and Holdo, 2015). For
example, not all roots are created equal. Angiosperm species can be tap-rooted or fibrous, with
branching tap-roots more common in eudicots, and dense fibrous root systems more common in
monocots (Blair et al., 2013). Fibrous and tap-rooted species have inherently different morphologies,
with different root densities within a given layer of the soil, varying depth distributions of roots, and
varying root diameters within depth distributions of the soil (Jackson et al., 1996; McCormack et al.,
2015). Species with tap roots tend to have roots of larger diameter, with a deeper maximum rooting
depth but reduced fine root density at any particular depth compared to fibrous root systems (Jackson
et al., 1996). Species with fibrous root systems tend to be more efficient at absorbing water, can
typically resist lower water potentials (Craine et al., 2013), and have higher root turnover (lower
longevity). Even within species (and genotypes), these root morphological traits have high variability
(Chen et al., 2013; Kumordzi et al., 2019), highlighting the need for greater investigation of what drives
this variability in root morphological traits.

In addition to differences in root system morphology, the functional attributes (i.e., physiology,
including water absorption) of roots vary among species, locations, and temporal periods of the growing
season. Using stable isotopes as natural tracers of resource uptake, plant scientists have discovered that
root presence at a particular soil depth does not equate to water uptake (root function) from roots that
exist within a particular depth (Dawson and Ehleringer, 1991; Nippert and Knapp, 2007; Case et al.,
2020). This result implies that just because a plant species has roots within a particular zone of the soil it
does not mean that water is being absorbed from that soil zone. Interestingly, this outcome has been
documented for many plant species that have roots in portions of the soil profile with plant-available
water. For many herbaceous species, deep roots typically contribute very little to the overall plant water
budget despite roots being present at depth. It remains unclear why plants possessing roots in zones of
the soil with available water may not use that reservoir. As previously described, water moves primarily
by mass flow to roots and root hairs down a pressure potential gradient. Following absorption, water
can move towards the vascular cylinder via apoplastic (between cells) and symplastic (from cell to cell
across membranes) movement pathways. However, once water reaches the endodermis, only
symplastic transport is possible across the Casparian Strip (CS) (Geldner, 2013). Plant biochemists still
have a limited understanding of how water movement is regulated across the CS, but transport across
this barrier can be turned on and off (Geldner, 2013, Barberon et al., 2016). Thus, vascular plants have
the ability to regulate water transport through cellular mechanisms associated with transport across the
endodermis. Finally, the microanatomical features of roots vary within an individual based on root
order, depth in the soil, and phenological stage (Nippert et al., 2012). For herbaceous species, this
typically means reduced hydraulic conductivity (and reduced rates of water transport) from deeper soil
depths (Nippert et al., 2012, O’Keefe et al., 2021). To better understand how, when, and where root
functionality occurs requires a greater understanding of the variability in root micro-anatomical
features.

Microanatomy is a historically overlooked aspect of plant roots that links physiology and whole-root
system morphology — and thus to CZ-ecosystem functioning. The microanatomical characteristics
provide insights into the larger functional contexts of root systems. Root traits like the ratio of cortex to
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stele, vessel size, vessel number, xylem wall thickness, and hydraulic conductance, all provide clues
towards understanding the investment in safety vs. efficiency of water transport through root systems
(Freschet et al., 2020). In the seminal work by Wahl and Ryser (2000), the authors used root
microanatomical traits (e.g., cross sectional area, number of xylem, xylem wall thickness) with
aboveground processes like relative growth rate. This work illustrated tradeoffs in safety vs. efficiency of
water transport in root microanatomy that predicted whole plant growth traits for perennial grasses
(Wahl and Ryser, 2000). Based on these observations, subsequent studies have highlighted how the
internal root structure sets a foundation for the whole root system function (Nippert et al., 2012,
Wargowsky et al., 2021, O’Keefe et al., 2021). Relationships between root microanatomy and
aboveground physiology / growth vary by within communities (O’Keefe et al., 2021), plant functional
type (Wargowsky et al., 2021) and phylogeny (Valverde-Barrantes et al., 2021) and are an active topic of
investigation. Because microanatomical images of roots require more preparation time than whole root
systems, they have been utilized much less than other traits. For this reason, there is much remaining to
discover with regard to linking the internal anatomy of roots to the broader water and nutrient uptake
patterns of plant species and communities (Freshet et al., 2020).

As described so far, plant roots vary in both morphology (whole-plant and microanatomical) and
physiology among plant types, species, and ecosystems, and the biological focus of this knowledge base
is clear. Unsurprisingly, these root differences translate to variability in resource uptake, subsurface
porosity, and weathering within the soil profile in space and time. For these reasons, inferring root
functional processes (e.g., water uptake) is rarely as intuitive as measuring maximum rooting depth, or
root biomass and yet has great importance for projecting whole CZ-ecosystem functioning. Improving
linkages between root physiology and CZ-ecosystem properties requires better measurements of root
longevity, associating roots to species (in mixed-species environments), quantifying growth rates and
biomass by depth through time, and linking these features to the dynamic physical and chemical
properties of the soil. Resolving these biologically-focused frontiers in the context of the abiotic
constraints on CZ hydrology will undoubtedly assist with linking root presence and activities with
ecosystem modification, and further our understanding of how root structure and function regulate
pools of water and nutrients and fluxes of water, C, and nutrients in the CZ (Brantley et al., 2017,
Dawson et al., 2020). Specifically, such efforts are necessary for understanding how ecological processes
feedback to CZ hydrologic functioning.

Roots and microbes as indirect biotic drivers of CZ hydrologic functioning

In addition to the direct effect of roots on water uptake throughout soil profiles and across landscapes,
roots are active sculptors of the subsurface (Figure 6). As such, they represent key agents linking the
biotic to the abiotic realms within a CZ. Roots have significant impacts on the depth to which water can
infiltrate and the position of the water table. Specifically, roots promote flow. Macropores,
acknowledged above as a soil constraint on hydrologic functioning, are often formed via root growth
(Angers and Caron, 1998; Zhang et al., 2015; Lucas et al., 2019) and reinforced via deposition and
accumulation of clay films (Sigen et al., 1997). After root shrinkage, saturated films on root surfaces or
along pore walls provide evidence of flow in these pores (Bogner et al., 2010). Where roots persist at
depth, development of preferential flow paths is thought to trigger a positive feedback by enhancing the
water drainage to depth (D’Odorico et al., 2012; Viglizzo et al., 2015; Pawlik et al., 2016). Not only do
roots generate pores, but their growth can both build and destroy soil aggregates through enmeshing
small particles or cleaving apart big aggregates (Lu et al., 2020), a process that alters the size and
distribution of macropores. Because roots control soil-hydraulic properties and the generation of
preferential flow, small changes in rooting depth distributions can alter water flow significantly (Beven
and Germann, 2013; Noguchi et al., 1997). Indeed, given that roots transform far more soil volume than
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rhizosphere dimensions might initially suggest (Richter et al., 2007), extant aggregate size distributions
and pore networks likely represent the legacy of past generations of roots.

Root growth also imparts an important impact on the translocation of clay minerals and clay-sized
particles, a process that influences both soil water flows and storage. Though clay-rich horizons can
develop as clay forms within the horizon, in many locations clay accumulates in a horizon with illuviation
from upper horizons (Weil and Brady, 2017; Calabrese et al., 2018). The downward movement of clay-
sized particles and clay minerals is linked to climate, occurring where effective precipitation is sufficient
to promote downward movement of particles through the profile (Goddard et al., 1973; Honeycutt et
al., 1990; Lawrence et al., 2021) and likely facilitated by seasonal wetting and drying. However, the
downward transport of clay across horizons also is governed by the generation of flow paths through
which clay illuviation can proceed (Rebertus and Buol, 1985). The resulting clay-rich horizons influence
profile water dynamics via lower saturated hydraulic conductivity and thus enhanced water storage, and
depth-dependent hydraulic conductivity due to the textural discontinuities with neighboring soil
horizons (Richter and Markewitz, 2001; Figure 7). Clay-rich horizons also can result in a layer of soil
difficult for roots to penetrate (Gao et al., 2016). In this indirect way, then, roots govern their own
hydrologic environment.

Microbes, too, sculpt the soil. Soil microbes exude compounds that can serve as binding agents (Tisdall
and Oades, 1982). The complex mix of exudation compounds (e.g., polysaccharides, organic acids,
enzymes, diverse waste products, often referred to collectively as EPS (see above)) is composed of
materials critical for soil aggregate formation and preservation (Jastrow et al., 1998). Microbial
necromass is emerging as an important feature for aggregate formation and preservation. The remnants
of dead soil microbes appear to persist in soil far longer than some plant-derived compounds (Liang et
al., 2017), potentially serving as glue adhering mineral and organic particles together into aggregates
(Buckeridge et al., 2021); the observation that microaggregates tend to harbor relatively old organic C
(Romkens et al., 1998) suggests that smaller aggregates may retain microbial necromass to a greater
extent than in larger aggregates. Thus, necromass and the exudates of living microbes govern soil void
geometries by influencing soil aggregate formation and durability. Like all soil microbial activities, these
processes are especially prevalent in and around the rhizosphere, but any such microbial actions
whether in bulk or rhizosphere soil can be important for structural change.

Additional microbial actions further can drive soil structure. Soil microbes induce soil organic matter
(SOM) decay via exo-enzymes, and transform some of the C into CO; and released nutrients and C into
biomass. As SOM is transformed from a solid into a solute, and then into either a gaseous or microbial
form, soil aggregates can collapse (Bronick and Lal, 2005). The fate of the non-decayed SOM that had
resided within collapsed aggregates is unclear, though it is presumed that the removal of aggregate
structural protection (Six and Paustian, 2014) means that any remaining SOM experiences a greater
probability of undergoing decay. Whether aggregate collapse associated with SOM decay promotes a
loss or a gain in soil porosity is a matter of some debate. Over broad spatial scales, higher
concentrations of SOM generally correlate with greater porosity (Franzenluebbers 2014). However, the
transformation of a solid material into a gaseous or solute form results in the presence of small pores in
the space where that solid material previously existed. The net effect of SOM mineralization within an
aggregate on soil aggregate stability and size distribution is unclear, though some studies suggest that
pore opening dominates (X. Zhang, P. Sullivan, S. Billings et al., unpublished data). Discerning the
conditions under which SOM decay induces porosity gains or losses is a current research focus.
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Another mechanism by which both soil microbes and roots can influence soil structure is via the
exudation of organic acids and CO,. Organic acids release nutrients from minerals (Aoki et al., 2012;
Keiluweit et al., 2015; Lugli et al., 2019), often via ligand exchange (Ganor et al., 2009; Keiluweit et al.,
2015; Hasegawa et al., 2015). Carbon dioxide, once dissolved into the carbonic acid system, can also
induce acid-promoted rock and mineral transformations (e.g., Keller, 2019). Acid transformations of rock
are a key feature of long-term soil development (Brantley et al. 2012; Dontsova et al. 2020; Hauser et al.
2020). Indeed, over long timescales, such momentary-scale processes can enhance soil porosity in the
regolith and bedrock itself, and ultimately promote soil production from rock. Thus, microbial and root
acid losses can be important determinants of soil structure over diverse timescales.

Because roots and microbes influence soil structure, and because soil microbes tend to proliferate near
roots, any change in rooting depth distributions has the potential to alter soil aggregate and void
arrangement, and thus CZ functioning (Figure 2). Recent work highlighting the role of humans during the
Anthropocene in regionally-dependent deepening or shallowing of roots indicates the massive scale at
which these phenomena are occurring (Hauser et al., 2022). Ecosystem process models, reactive
transport models, and continental-scale models of biosphere-atmosphere exchanges of energy and
water offer the opportunity to test hypotheses probing the effects of modified abundances of deep root
influences on soil structure (Sullivan et al., 2022). Modeling efforts like these will further strengthen the
intellectual ties among ecosystem ecologists and the diversity of investigators working on CZ problems.

Conclusion

Understanding the CZ as an ecological problem and designing research that invokes the CZ paradigm
offers us a way forward as we attempt to project future environmental processes in the Anthropocene.
In this chapter, we provide examples of biotic-abiotic processes across a diversity of scales that govern
CZ functioning and that are impossible to understand and predict without the use of the CZ paradigm.
We specifically focus on hydrologic functioning given water’s importance in both the biotic and abiotic
realms.

By describing the influence of soil texture and macroporosity on hydrologic flow patterns, we highlight
how fundamental CZ constraints (Field et al., 2014; here, the particle surface area present in a soil
profile and the capacity of that soil to move water with relatively little tension) can govern the storage
and fluxes of a critical resource — water. In turn, water fluxes through a soil profile influence the extent
and pace of soil horizonization, which can result in varied capacity of soil at a given depth to store and
release water (Figure 7). Roots also contribute to soil development in numerous ways (Figure 6), among
them their capacity for perforating soil and thus generating pores through which fluids can flow. Of
course, roots also drive water loss from soils. Combined, these actions — root growth and water uptake —
promote movement of soil particles at small (~nm to cm) scales, further modifying the soil pore
networks through which liquids and gases flow. Widespread changes in rooting depth in the
Anthropocene (Figure 4) likely have modified pore networks in meaningful but unquantified ways.
Microbes further contribute to these dynamics, in multiple ways. One salient role of soil microbes is
their mineralization of soil organic C into CO,. This mineralization removes a structural agent from the
soil, and likely can induce the collapse of soil structural features that may protect soil organic matter
from microbial attack (Figure 2). Microbes and roots also generate acids that impose structural change
to the regolith and bedrock via rock and mineral tranformations. These root and microbial actions, and
associated flows of water and soil particles, only sometimes scale up in a predictable way. However, at a
landscape scale, we can expect spatial variability in soil capacity to retain water (Figure 3) and plant
adaptations to varied water availability (Figure 5) that reflect water’s tendency to flow towards more
negative water potentials. Scaling the flows of fluids and solids, and patterns of root water uptake and
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soil microbial mineralization, across watersheds and landscapes remains a challenge important to

address given spatially-varied responses of water availability to a changing climate. This challenge

cannot be met without appreciating both the biotic and abiotic characteristics of the soil profile or
landscape in question.

A multitude of biotic-abiotic interactions not addressed in this work but that govern CZ functioning also
require a transdisciplinary, CZ approach to develop a predictive understanding of the processes at large.
Consider, for example, how within-canopy air currents govern system energy and water dynamics
throughout the CZ (Monson and Baldocchi, 2014; Bonan, 2016). Linkages among soil structural
attributes and hydrologic flows and resulting soil C and nutrient pools and fluxes are well-established
(Richter and Markewitz, 2001; Weil and Brady, 2017; Schlesinger and Bernhardt, 2020). Other examples
of biotic-abiotic interactions include the generation of channels by soil fauna through which gases and
solutes flow (Platt et al., 2016), and how SOM flows across landscapes with erosion (Dialynas et al.,
2016; Berhe et al., 2018) result in a redistribution of this key agent of soil structure and a source of CO,
and organically-bound nutrients (Billings et al., 2019). All of these processes participate in the complex
interplay of the biota with the abiotic that structure the physical and chemical conditions in which life
persists.

We emphasize that the biotic responses to land use, temperature, precipitation patterns, and
atmospheric CO; concentrations — often explored in ecosystem ecology — can be rapid. Because biota
influence soil structure, rapid responses of biota to environmental conditions may prompt rapid changes
in the structure and function of the CZ, and thus impart meaningful alterations to CZ-climate feedbacks
(Sullivan et al., 2022). It is no longer possible to examine these environmental puzzles effectively from
the perspective of a single or even a pair of disciplines. The knowledge bases required to understand
these processes emerge from a diversity of disciplines, including geomorphology, soil science,
ecohydrology, plant physiology, and ecosystem ecology. It is no coincidence that biotic-abiotic
interactions all revolve around soil; soil is where the lithosphere, biosphere, atmosphere, and
hydrosphere interact to form Earth’s living skin, and is perhaps the most intuitive location within the CZ
where biotic and abiotic processes come to govern the functioning of the CZ ecosystem (Figure 1).
Integrating knowledge from these realms has offered CZ scientists the opportunity to gain new insights
about the functioning at Earth’s surface, which in turn allows the community to project Earth’s future
functioning via both empirical and modeling studies. Taking our cues from the likes of Humboldt, Foote,
Tansley, and Berner, we can continue to contribute to the rich history of the science of the CZ
ecosystem, and move forward with greater confidence in our ability to project future CZ functioning.
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