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An emerging recognition of the critical zone  32 
Long before the term ‘critical zone’ (CZ) was coined by Gail Ashley (Jordan et al. 2001) to encompass 33 
Earth’s biological and geological features from the top of the vegetative canopy to the depths of 34 
circulating groundwater, many scientists have recognized that both biotic and abiotic actors are 35 
centrally important for understanding many of Earth’s most fundamental processes (Schaffer 2020). 36 
Scientists such as Alexander von Humboldt (1769-1859), Charles Darwin (1809-1882), Jacques-Joseph 37 
Ébelmen (1814-1852), Vasily Dokuchaev (1846-1903), Vladimir Vernadsky (1863-1945), Arthur Tansley 38 
(1871-1955), Hans Jenny (1899-1992), Robert Berner (1925-2015), and James Lovelock (1919-present) 39 
worked across centuries and continents to demonstrate how momentary- and molecular-scale biotic 40 
actions (e.g., photosynthesis, respiration, production of organic acids, root growth) generate powerful 41 
chemical and physical forces that when scaled up govern environmental conditions of the planet. 42 
Indeed, it was a botanist familiar with plants’ consumption of CO2 – Eunice Newton Foote – who first 43 
developed and published the concept of greenhouse gases warming the planet (Foote 1856; Sorenson 44 
2011), an idea developed as well by John Tyndall (1861). Today, we can recognize how these individuals 45 
and their colleagues integrated a diversity of ideas from biotic and abiotic processes into their work, a 46 
hallmark of today’s CZ science.  47 
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 48 
Tansley’s introduction of the ecosystem concept (1935) offered an intellectual home for those 49 
interested in the systemic interaction of biota with the abiotic (Richter and Billings 2015). Ecosystem 50 
ecology, a particular branch of the broader field of ecology, is defined as the study of life as it interacts 51 
with the abiotic world (Sher and Molles 2022). In the nearly 100 years since the coinage of ‘ecosystem’ 52 
(Tansley 1935), this discipline has developed a literature, conceptual and mathematical models, and 53 
subdisciplines that have enhanced our understanding of how the biotic and abiotic interact on Earth’s 54 
surface (e.g., Hutchinson 1940; Odum 1968; Bormann and Likens 1967; Markewitz et al. 1998; O’Neill 55 
2001; Pataki et al. 2003; Lovett et al. 2006; Morford et al. 2016). Concomitant with these developments, 56 
scientific institutions such as departmentally-organized universities and scientific societies, journals, and 57 
funding agencies also evolved, promoting more disciplinary approaches to science (Richter et al. 2018a). 58 
As a result, scientists began to face strong pressures to self-identify with particular disciplines. This 59 
development countered the ecosystem approach, which is defined by its interdisciplinarity.  60 
 61 
Perhaps because ecosystem ecology was linked by its name to other, purely biological subdisciplines of 62 
ecology (e.g., population and community ecology), it has often been assumed to be a fundamentally 63 
biological pursuit. Many contemporary ecosystem ecologists have been trained in and remain focused 64 
on biologically-focused areas such as photosynthesis, plant respiration, microbial cycling of organic 65 
matter, and plant-microbe interactions, and often lack training in the chemical, physical, and geologic 66 
dimensions of ecosystems. One manifestation of this problem is the superficial coverage of the 67 
belowground component of ecosystems (Mobley et al. 2015, Richter et al. 2018). This feature was noted 68 
by Binkley (2006), who highlighted that reviews of the ecological literature omit mention of soil, the very 69 
medium from which terrestrial ecosystems derive most of their required resources. Most ecological 70 
studies of soil focus on soil microbes and fauna interacting with each other or their organo-substrates, 71 
or on roots and their interactions with microbes – all important but largely biologically-focused 72 
endeavors (e.g., Baldrian 2019; Hart et al. 2020).  73 
 74 
This biological focus of many ecosystem-trained scientists and the institutions in which many function 75 
can limit our understanding of the interactive nature of many Earth surface processes. Multiple  76 
examples demonstrate this assertion. First, rock- and mineral-derived nutrients are critical factors 77 
driving biological activity in terrestrial systems (Schlesinger and Bernhardt 2020); with the exception of 78 
N, even nutrients derived from organic matter recycling originally are released from mineral weathering. 79 
Second, the inherited geologic structures of bedrock strongly controls ecosystem water storage and 80 
transmission to groundwater and streams (Leone et al., 2020). Third, landscape position and 81 
geomorphological characteristics constrain light availability (Bilir et al. 2021). These well-studied 82 
phenomena demonstrate the degree to which an ecosystem’s ability to capture nutrients, water, and 83 
light – and thus its productivity – is dictated by chemical and physical site characteristics. 84 
 85 
A fourth phenomenon exemplifies an especially rapidly expanding branch of CZ science that, like the 86 
first three, clearly links biotic and abiotic processes. Multiple investigations reveal the importance of 87 
dust nutrient inputs to ecosystems as key promoters of ecosystem productivity. This feature of 88 
terrestrial ecosystem nutrition has been known for years (e.g., Lovett 1994; Chadwick et al. 1999; 89 
Soderberg Compton 2007), but recent CZ studies help expand this concept to more fully reveal the 90 
importance of dust-derived inputs to many ecosystems. Where highly weathered soils would otherwise 91 
promote relatively low productivity, dust can serve as an especially critical nutrient source (Gallardo et 92 
al. 2020; Chadwick et al. 1999). In addition to inoculating recipient sites with dust-bound microbial 93 
populations (Maltz et al. 2021), dust can travel great distances (Yu et al. 2015; Eger et al. 2013) to 94 
provide nutrients like P to biota (Marcon et al. 2021; Vogel et al. 2021) at supply rates that can outpace 95 



that of bedrock itself in some systems (Aciego et al. 2017). Dust also can influence soil structure (Derry 96 
and Chadwick 2007) and generate meaningful material thickness within soil profiles (Lin and Feng 2015; 97 
Marcon et al. 2021). Dust inputs are not an important source of nutrition in all systems (e.g., Uhlig et al. 98 
2017), but the nutrient subsidies provided by dust in many may be sufficient to mitigate rock and 99 
mineral weathering that would otherwise supply nutrients. This echoes the hypothesis suggesting that 100 
OM-derived nutrients can mitigate rock and mineral weathering (Brantley et al. 2011). More broadly, 101 
evolution of dust-focused CZ literature rests within a concept central to ecosystem, and thus CZ, science 102 
– that nutrients are either obtained internally through de novo weathering or OM recycling, or from 103 
external sources, and that nutrient sources thus dictate weathering rates.  104 
 105 
The interactive nature of many of Earth’s CZ processes is further demonstrated by biological phenomena 106 
influencing multiple physical and chemical attributes of the CZ, going far beyond the role of vegetation 107 
as a key sink for atmospheric CO2 and nutrients. Roots, for example, both help prevent erosion (Stone 108 
and Kalisz 1991) on timescales of seasons to decades and help promote soil creep over longer timescales 109 
(Pawlik 2013; Brantley et al. 2017). Roots and the soil microbial communities they nurture generate 110 
organic acids and CO2 that contribute to the weathering of soil minerals and bedrock (Landeweert et al. 111 
2001; Marschner and Rengel 2007; Hasenmueller et al. 2017). Roots and microbes are also capable of 112 
recycling organic matter-bound nutrients, mitigating subsequent weathering processes as nutrient 113 
demand is met partially by organic matter decay (Hauser et al. 2020). Holistic terrestrial ecosystem 114 
studies thus must embrace some combination of physical and chemical sciences (e.g., lithology, 115 
mineralogical weathering, physical geography, geomorphology, hydrology) along with the biological 116 
phenomena that interact with these features.  117 
 118 
The emergence of the CZ paradigm (Jordan et al. 2001; Brantley et al. 2007) promoted an 119 
interdisciplinarity already evident in the works of scientists such as Humboldt and Darwin (Schaffer 120 
2020; Richter and Billings 2020). The explicit linkage of the bio- and geosciences in CZ studies provides 121 
the scaffolding needed to address environmental puzzles at a diversity of scales (Billings and Sullivan 122 
2020; Sullivan et al. 2021). Realization of the CZ approach is hardly trivial: Implementing studies that 123 
integrate the bio- and geosciences requires collaboration among practitioners who represent 124 
disciplinary siloes, speak distinct vocabularies, and view scientific puzzles through separate lenses 125 
(Richter et al. 2018a; Figure 1). These traits can impede even well-intentioned collaborations (Watson 126 
2017). However, many lessons have emerged by bridging the bio- and geo-focused disciplines to 127 
examine the ‘critical zone ecosystem’ (Richter and Billings 2015).  128 
 129 
Here, we describe findings that emphasize how life, emphasizing vegetation and microbes, responds to 130 
and shapes the physical environment in which it persists, yielding feedbacks for Earth’s climate, 131 
primarily through modifications to hydrologic functioning. We focus on the interactions of biota and the 132 
physical and chemical features of soil pedons and landscapes as they drive ecosystem-scale hydrologic 133 
fluxes. We acknowledge that the flowpaths for soil water are also the same conduits through which soil 134 
gases flow (Jury and Horton 2004) and are thus key to understanding ecosystem functions (e.g., 135 
Hasenmueller et al. 2015). In the current work, we emphasize hydrologic flows due to their importance 136 
for vegetative water uptake and thus productivity, flows of soil organic C and nutrients, and soil 137 
weathering processes. These processes all reflect diverse disciplines that coalesce in Earth’s soils (Figure 138 
1). We focus on hydrologically-relevant features because of the long history of individual disciplines 139 
telling us about the large-scale importance of these processes, and because of emerging research 140 
highlighting the importance of the intersection of these disciplines for projecting future ecosystem 141 
functioning on a rapidly changing Earth. The knowledge we spotlight reveals Earth’s CZ as a 142 
fundamentally ecological problem.  143 



 144 
Soil and landscape constraints on CZ hydrologic functioning 145 
Within a given climate regime, hydrologic function is strongly influenced by the properties of and 146 
interactions between biotic and abiotic components of the CZ (Black, 1997; Bennett and Klironomos, 147 
2018; Dawson et al., 2020; Figure 2). Here we adopt a physically-oriented, catchment-scale definition for 148 
hydrologic function as the partitioning, storage, and discharge of water (Wagener et al., 2007; 149 
Wlostowski et al., 2020). Although different locations within the CZ contain both biotic and abiotic 150 
components, it is the interaction between these components in the soil environment that exerts a 151 
strong control on hydrologic function through its effect on soil hydraulic properties. This near-surface 152 
soil environment is subject to steep and dynamic energy and soil moisture gradients that drive the 153 
relatively rapid flux of water and the temporal variations in the direction and velocity of this flow (Weil 154 
and Brady 2017). As soil biota (e.g., microorganisms, plant roots, and macrofauna) respond to these 155 
variable near-surfaces fluxes of water, they shape the organization of soil particles and pores (Sullivan et 156 
al. 2021) and thus influence the development of soil horizons especially within shallow depths where 157 
the soil biological activity is concentrated. This modification happens primarily through the production 158 
of soil organic C (SOC), the formation and stabilization of soil aggregates, and the direct and indirect 159 
creation of macropores that perforate the soil. However, the ability of biota to modify the soil 160 
environment is constrained by the physical and rheological properties of the material, which are largely 161 
controlled by soil texture.  162 
 163 
Soil texture is important to the hydrologic functioning of the CZ because it directly affects the relative 164 
surface area of the soil and the soil pore-size distribution. Pore size (i.e., effective pore diameter) and 165 
relative surface area control the affinity of water to the soil matrix and impart a potential energy to the 166 
soil water (i.e., matric potential; Hillel, 1998). Matric potential, in combination with components such as 167 
gravitational and hydrostatic pressure potential, governs the total potential energy of the soil water. 168 
Differences in the total potential energy state drive infiltration and the movement of water through the 169 
CZ. Thus, texture strongly affects water flux through soil by governing potential energy gradients. Soil 170 
texture also affects the ability of the soil to conduct water because of its control over surface area and 171 
the porosity of the soil matrix (especially, pore size and tortuosity). That is, as the soil particle-size 172 
distribution becomes finer, so do the pores between those particles, reducing the hydraulic conductivity 173 
of the soil. As the soil dries, air is introduced, bounding the soil water between the air-water interface 174 
and surfaces of the soil particles; this modifies the lengths and tortuosity of the paths that the water 175 
must follow to move through the soil, further reducing the hydraulic conductivity (Jury and Horton, 176 
2004). Therefore, soil texture—both on its own and in conjunction with degree of saturation of the 177 
soil—is critical for understanding the retention and flux of water in the CZ due to its influence on both 178 
the total potential energy gradient driving flow and the conductivity of the soil through which the water 179 
moves. 180 
 181 
Macroporosity of the soil is another important determinant of fluxes of water through the CZ. Although 182 
there are different classifications of macropores that depend on their origin and shape, here we restrict 183 
our discussion to macropores that are large (often greater than a few hundred micrometers), planar or 184 
tubular, and continuous; these macropores function as potential pathways for the preferential 185 
transmission of water (Jarvis and Larsson, 2001; Giménez and Hirmas, 2017; Figure 2). Macropores of 186 
this type result from either biotic or abiotic processes in the soil. Abiotic processes include the drying 187 
and concomitant shrinkage of the soil matrix especially in fine-textured materials, the formation of 188 
aggregated structural units (e.g., clay tactoids, clusters of clay and silt domains, and subsurface peds like 189 
angular blocks and prisms) due to the cohesion of the soil particles or precipitation of inorganic cements 190 
(e.g., CaCO3, opaline Si, or Fe-oxides), and the reinforcement of preferential pathways by the 191 



development of surface coatings (Thoma et al., 1992; Jarvis and Larsson, 2001). This latter process is 192 
largely due to the illuviation of clay (e.g., argillans, expanded on below) or the reorientation of the soil 193 
fabric at the pore surface from mechanical pressures (e.g., fabric hypocoatings; Stoops, 2003). Biotic 194 
processes responsible for the formation of macropores include the activity of fossorial fauna (Platt et al., 195 
2016), the growth and subsequent decay of roots (Giménez and Hirmas, 2017), and the formation of 196 
stable aggregates through, for instance, the egestion of soil particles by earthworms (Johnson-Maynard 197 
and Strawn, 2016), enmeshing of particles by mycorrhizal fungi and fine roots (Jastrow et al., 1998; Rillig 198 
and Mummey, 2006), or secretion by soil microorganisms of extracellular polymeric substances (EPS) 199 
that glue soil particles together (Costa et al., 2018).  200 
 201 
Macropores created through the processes outlined above typically make up only a minor fraction of 202 
the soil volume, but have an inordinate effect on water flux through the soil in saturated and even 203 
unsaturated conditions (Watson and Luxmoore 1986; Nimmo 2012). The reason for this phenomenon is 204 
that volumetric flow through a pore is proportional to the fourth power of its radius (i.e., Poiseuille’s 205 
law). Watson and Luxmoore (1986) demonstrated this principle by reporting that, under ponded 206 
conditions, macropores may be responsible for 96% of the water flow though only accounting for 0.32% 207 
of the soil’s volume. Where these macropores intersect the land surface (e.g., open biopores or 208 
aggregated surface soil horizons), they are important for the infiltration of water into the soil and the 209 
potential for runoff generation, and, thus, the loss of sediments and nutrients through erosion (Beven 210 
and Germann, 1982; Smettem et al., 1991; Léonard et al., 2004). Recent findings have shown that soil 211 
macropores are sensitive to shifts in climate, likely driven by soil biota (Hirmas et al., 2018; Caplan et al., 212 
2019). Given the large control over water flow that macropores exhibit, even small changes to these 213 
pores in response to climate is likely to affect the water cycle and the hydrologic function of the CZ via 214 
changes to infiltration, aquifer recharge, and the lateral redistribution of water by runoff (Hirmas et al., 215 
2018). 216 
 217 
As soils form in response to the addition, loss, transformation, and translocation of mass and energy, 218 
soil horizons develop that are distinguished from each other on the basis of macromorphological 219 
properties exhibited as color, consistence, texture, structure, and porosity (Schaetzl and Randall, 2005; 220 
Buol et al., 2011; Turk et al., 2012). Differences between vertically adjacent soil horizons in the 221 
expression of these latter properties create layered conditions that are important for water flow 222 
through the vadose zone. This is because the boundaries between horizons, especially if they are abrupt, 223 
can represent significant discontinuities in soil hydraulic conductivity and water content (Hillel, 1998). 224 
The discontinuities — for example, a coarse-textured A horizon above a clay-enriched Bt horizon — act 225 
to retard the rate of soil water infiltration due to the reduced saturated hydraulic conductivity of the 226 
lower compared to the upper layer (Radcliffe and Šimůnek, 2010). However, even in cases where fine-227 
textured layers or horizons with concentrated organic matter overlie more conductive, coarse-textured 228 
materials (e.g., an O horizon directly over an E horizon, or a clay-rich horizon over a sandy horizon), the 229 
boundary between these horizons forms an obstacle (often temporary) to the wetting front that reduces 230 
infiltration. This is due to the differences in potential energy of the soil water across the boundary of the 231 
two layers with the fine-textured material imparting a sufficiently lower total potential energy compared 232 
to the underlying layer (Radcliffe and Šimůnek, 2010). The water hangs at this boundary until the 233 
saturated zone behind the leading edge of the wetting front increases sufficiently for the added 234 
hydrostatic pressure to overcome the matric forces holding the water. In addition to effects on 235 
infiltration, differences in soil hydraulic properties through and across horizons strongly influence the 236 
generation of preferential flow (Dyck and Kachanoski, 2010). 237 
 238 



At a broader scale, ecosystems, soils, and landforms coevolve to shape the soil-geomorphic properties 239 
of the landscape (Wysocki et al., 2012). For example, slope curvature affects soil thickness and the 240 
concentration/dispersion of surface water (e.g., Patton et al., 2018), and elevation controls snow 241 
accumulation, rainfall, and evapotranspiration (e.g., Wigmosta et al., 1994). These features and the soil 242 
properties discussed above all constrain the hydrologic functioning of the CZ by driving the lateral 243 
redistribution of water and sediments along topographic gradients from ridges to valleys and by 244 
controlling the radiative conditions, and, thus, the soil temperature, effective moisture, and ecological 245 
properties corresponding to land-surface aspect (Fan et al., 2019). The lateral fluxes of water along 246 
topographic gradients occur both at the land surface and within the subsurface, controlling the vertical 247 
distribution of plant-available water and, therefore, plant rooting depth across the landscape (Fan et al., 248 
2017). Milne’s (1936) concept of the soil catena that was used in part to explain different drainage 249 
classes along a hillslope (Wysocki et al., 2012) is especially useful for understanding this relationship. A 250 
catena is a chain of adjacent and geomorphologically-related soils along a hillslope, from summit to 251 
base, perpendicularly transecting the topographic contours (Schaetzl and Anderson, 2005). Within this 252 
framework, soil morphological differences at different hillslope positions are explained by the lateral 253 
and vertical fluxes of surface water, groundwater, and sediments. Indeed, catenas can be 254 
conceptualized as hillsheds that undergo soil creep (Brecheisen et al. 2021). The movement of soil 255 
material and redistribution of water from steeply sloping positions to the base of hillslopes give rise to 256 
textural differences on the landscape that control CZ hydrologic functioning such as soil water retention 257 
(Figure 3). 258 
 259 
All of these soil and landscape physical constraints on CZ hydrologic functioning are both the product of, 260 
and influence, biotic functioning. Soil geomorphic properties of landforms, and the soil properties of soil 261 
profiles, strongly affect the lateral and vertical distribution of water and, thus, the distribution of 262 
vegetation across the landscape and the distribution of roots within a profile. However, the influence of 263 
vegetation on both surface and subsurface hydrology significantly affects landform evolution and soil 264 
formation as well (e.g., Williamson et al., 2006; Chamberlin et al., 2019). Indeed, rooting depths appear 265 
sensitive to the different vertical distributions of soil moisture that result from hillslope-driven fluxes 266 
(Fan et al., 2017) and the properties of a given profile. In well-drained summit positions, for instance, 267 
the pool of plant-available water is largely contained at relatively shallow depths (i.e., from the 268 
infiltration of rainwater) with the water table too deep for plant roots to access; this is in contrast to 269 
poorly-drained toeslope positions that favor wetland species due to the creation of permanent water-270 
logged conditions from a water table that is near or above the land surface at the base of the hillslope 271 
(Fan et al., 2017). Between these two ends of the hillslope, plant-rooting distributions are affected by 272 
the relative positions of infiltration-controlled soil moisture and the capillary fringe above the water 273 
table, with plant roots sensitive to the seasonal changes in water table depth in upper backslope and 274 
footslope positions (Fan et al., 2017). Thus, without a transdisciplinary knowledge base embracing 275 
geomorphology, soil science, and vegetation water uptake patterns, CZ water balance would remain 276 
poorly understood. 277 
 278 
Roots as direct, biotic drivers of CZ hydrologic functioning  279 
Ecohydrological considerations 280 
Discerning root water uptake patterns must be informed by root biology and the soil and landscape 281 
constraints on soil physical properties described above. Historically, root water uptake has been the 282 
purview of ecophysiologists and ecosystem ecologists with training in ecophysiology, and to a certain 283 
extent soil physicists. However, plant water availability and root water uptake impose cascading 284 
influences on whole-CZ structure and function. It has long been recognized that the physical and 285 
biogeochemical changes that occur with changes in species composition and root architecture co-evolve 286 



with topography, geology, soil, and climate to control the trajectory of catchment hydrology (e.g., 287 
Harman & Troch 2014). Understanding such connections and non-linear feedbacks is particularly 288 
important as we confront the need to forecast Earth system evolution in the face of accelerating climate 289 
change and human perturbations (Sullivan et al. 2018a). Thus, in addition to the role of landscape 290 
position influencing system hydrology discussed above, we must also emphasize that vegetation plays a 291 
role in governing water flows as well.  292 
 293 
With ample nutrient availability, vegetative growth tends to be optimized where water availability is 294 
balanced by evaporative demand (Roebroek et al., 2020). Though at the largest scale this is governed by 295 
the overall climate, within each climate zone, the local CZ (e.g., the landscape features discussed above) 296 
exerts strong governance over water abundance and depth to the water table. If rooting networks are 297 
able to access this groundwater, plants can flourish in what might otherwise be sub-optimal conditions 298 
(Fan, 2015). This action can result in an altered position of the water table, even in low landscape 299 
positions, as plants meet their evaporative demands (Sullivan et al., 2011). The depth of this drawdown 300 
is a function of the soil’s water holding capacity, which can be impacted by plant-induced clogging of 301 
pores, or perhaps pore generation (Sullivan et al., 2016).  Thus, the relationship between vegetation and 302 
groundwater or water table position, and factors that possibly alter water availability and position, can 303 
have significant impacts on how the CZ-ecosystem functions.  304 
 305 
An additional layer of complexity in ecohydrologic processes has been hinted at for decades and is 306 
emphasized in recent, explicitly CZ-focused work. In multiple ecosystems, rock water extraction by 307 
vegetation has been observed (Anderson et al. 1995; Sternberg et al. 1996; Bornyasz et al. 2005). More 308 
recently, neutron probe data from the mountainous western U.S. demonstrate a meaningful reliance of 309 
some vegetation on deep rock moisture – water retained in the weathered rock vadose zone (Rempe 310 
and Dietrich, 2018; McCormick et al. 2021). Given that rates of root growth into the subsurface can 311 
outpace rates of soil loss from erosion, roots thus not only influence water storage in these zones, but 312 
also govern the detachment of bedrock and the initiation of soil formation (Roering et al., 2010), factors 313 
that feedback to govern the generation of porosity and thus water storage. In the Anthropocene, rates 314 
of forest harvesting may be outpacing the rate at which root growth by trees impart their ability to 315 
fracture or detach bedrock in working forests (Roering et al., 2010).  316 
 317 
The human influence in the Anthropocene is also evident via shifting rooting depth and/or rooting 318 
function at a diversity of scales. Given the role of roots as soil architects, human activities that modify 319 
root activities are likely altering the physical structure of the subsurface. Within a given biome, changes 320 
in environmental conditions that shift the amount and timing of plant water use (e.g., via changes in 321 
plant water use efficiency, the depth to which water is extracted, or the frequency with which soils may 322 
undergo wetting and drying) may alter aggregate formation and stability, and thus soil structure (Degens 323 
and Sparling, 1995; Denef et al., 2001; Bronick and Lal, 2005; Cosentino et al., 2006; Park et al., 2007). 324 
Where permafrost thaws or alpine tundra warms, more deeply rooted, woody vegetation can develop 325 
(Wilmking et al., 2006). Woody encroachment of deeply-rooted shrubs into grasslands in warmer 326 
climates is also accelerating (Saintilan and Rogers, 2015). Globally, estimates suggest that an additional 327 
~19,200 km3 of soil have become rooted in regions experiencing root deepening in the Anthropocene 328 
(Hauser et al., 2022; Figure 4). These root-deepening phenomena have the potential to sculpt the 329 
subsurface in ways that influence water flow through the subsurface (Sullivan et al., 2022). Root 330 
shallowing also is an important Anthropocene phenomenon; roots are absent from an estimated 30,100 331 
km3 of soil today compared to soil volumes rooted by potential vegetation (Hauser et al., 2022). Roots 332 
have been removed from an estimated 13,700 km3 of this volume where perennial systems have been 333 



replaced with annual agriculture, a landscape feature expected to expand in the future (Hauser et al., 334 
2022; Figure 4).  335 
 336 
The net effect of human activities in the Anthropocene thus has been a shallowing of roots, and a 337 
decline in the soil volume directly mined by roots for water and nutrients (Hauser et al., 2022). This 338 
feature prompts the question of how soil formation processes are transformed as root shallowing limits 339 
the production of weathering agents, particularly given the long time periods over which root 340 
regeneration occurs (Billings et al., 2018). More generally, this phenomenon highlights the fundamental 341 
role of an ecological consideration – rooting depth – as an agent of soil engineering at depth and thus of 342 
CZ functioning.      343 
 344 
Ecophysiological considerations 345 
The water uptake patterns permitted by local climate and physical landscape- and pedon-scale features, 346 
described above, are the scaled-up result of processes occurring at the momentary and cellular 347 
temporal and spatial scales, respectively. The dynamics of plant water uptake and loss are rapid. Indeed, 348 
while water accounts for up to 95% of the fresh weight of herbaceous plants, the majority of water 349 
absorbed by most plant species (~ 98%) is lost to the atmosphere via transpiration within minutes of 350 
being absorbed from the soil. Thus, plants need enormous amounts of water to offset transpiration 351 
losses and facilitate C uptake (and photosynthesis). While some species can absorb a significant portion 352 
of water through leaf pores (as dew or vapor) (Berkelhammer et al., 2013; Hill et al., 2021), the vast 353 
majority of plant species rely on root uptake to meet water demands. Roots provide several key 354 
functions for plants, including anchorage to the terrestrial surface, but the functional consequences of 355 
water and nutrient absorption from the soil are key determinants of nutrient, C, and water recycling 356 
within ecosystems and serve as a link between belowground and aboveground physiological processes 357 
(Jackson et al., 2000).   358 
 359 
Plant roots absorb water from the soil based on the hydrostatic pressure gradients established from soil 360 
matric to leaf water potentials. Water flows down this potential energy gradient as long as the potential 361 
energy in the leaf that is established by water lost via transpiration is lower than that in the soil. As the 362 
soil dries, the potential energy gradient from soil to leaf declines, resulting in less plant-available water. 363 
In this situation, plants: (1) close leaf stomata to reduce the water potential gradient, (2) lower the leaf 364 
water potential (by increasing transpiration) to re-establish a larger pressure gradient from soil to leaf 365 
allowing for greater potential extraction of water from soil spaces, or (3) utilize water from potentially 366 
wetter zones of the soil. The degree of leaf stomatal control used to regulate transpiration flux has been 367 
commonly described as isohydric or anisohydric (Tardieu and Simonneau, 1998; McDowell et al., 2008). 368 
Isohydry refers to a strategy of stomatal regulation to maintain a constant water potential prior to 369 
wilting and prior to the establishment of air embolisms and cavitation in the xylem vasculature. Thus, 370 
isohydric strategies reduce transpiration to minimize the chance of wilting and hydraulic failure, but 371 
with a cost of reduced C assimilation and growth. Plant species that utilize anisohydric strategies 372 
regulate transpiration at the expense of potential hydraulic failure to maintain the hydrostatic pressure 373 
gradient as soils dry and water is less available. Thus, anisohydric species are able to maintain C 374 
assimilation but at greater risk of desiccation. Strategies of isohydry or anisohydry vary by species and 375 
genotypes according to changes in soil water availability, which in turn vary across catenas and 376 
landscapes (Figure 5). While these strategies present dichotomous endpoints of acclimation to low 377 
water availability, most plant species exhibit aspects of each, with examples of isohydric behavior during 378 
specific periods of growth or portions of a season and anisohydric behavior during others (Klein, 2014).   379 
 380 



Root traits have long been examined to try to understand plant, and thus ecosystem, functions. The root 381 
trait most frequently reported as a predictor of ecosystem function has been maximum rooting depth, 382 
which has been reported for a diversity of species and varies with biogeography (Stone and Kalisz,1991; 383 
Schenk and Jackson, 2002; Schenk and Jackson, 2005; Tumber-Dávila et al., 2022). However, if we want 384 
to improve our ability to predict how species coexist within ecosystems or how global environmental 385 
changes may impact communities in space and time, other characteristics of root systems beyond 386 
maximum rooting depth require consideration (Kong et al., 2014; Nippert and Holdo, 2015). For 387 
example, not all roots are created equal. Angiosperm species can be tap-rooted or fibrous, with 388 
branching tap-roots more common in eudicots, and dense fibrous root systems more common in 389 
monocots (Blair et al., 2013). Fibrous and tap-rooted species have inherently different morphologies, 390 
with different root densities within a given layer of the soil, varying depth distributions of roots, and 391 
varying root diameters within depth distributions of the soil (Jackson et al., 1996; McCormack et al., 392 
2015). Species with tap roots tend to have roots of larger diameter, with a deeper maximum rooting 393 
depth but reduced fine root density at any particular depth compared to fibrous root systems (Jackson 394 
et al., 1996). Species with fibrous root systems tend to be more efficient at absorbing water, can 395 
typically resist lower water potentials (Craine et al., 2013), and have higher root turnover (lower 396 
longevity). Even within species (and genotypes), these root morphological traits have high variability 397 
(Chen et al., 2013; Kumordzi et al., 2019), highlighting the need for greater investigation of what drives 398 
this variability in root morphological traits.  399 
 400 
In addition to differences in root system morphology, the functional attributes (i.e., physiology, 401 
including water absorption) of roots vary among species, locations, and temporal periods of the growing 402 
season. Using stable isotopes as natural tracers of resource uptake, plant scientists have discovered that 403 
root presence at a particular soil depth does not equate to water uptake (root function) from roots that 404 
exist within a particular depth (Dawson and Ehleringer, 1991; Nippert and Knapp, 2007; Case et al., 405 
2020). This result implies that just because a plant species has roots within a particular zone of the soil it 406 
does not mean that water is being absorbed from that soil zone.  Interestingly, this outcome has been 407 
documented for many plant species that have roots in portions of the soil profile with plant-available 408 
water. For many herbaceous species, deep roots typically contribute very little to the overall plant water 409 
budget despite roots being present at depth. It remains unclear why plants possessing roots in zones of 410 
the soil with available water may not use that reservoir. As previously described, water moves primarily 411 
by mass flow to roots and root hairs down a pressure potential gradient. Following absorption, water 412 
can move towards the vascular cylinder via apoplastic (between cells) and symplastic (from cell to cell 413 
across membranes) movement pathways. However, once water reaches the endodermis, only 414 
symplastic transport is possible across the Casparian Strip (CS) (Geldner, 2013). Plant biochemists still 415 
have a limited understanding of how water movement is regulated across the CS, but transport across 416 
this barrier can be turned on and off (Geldner, 2013, Barberon et al., 2016). Thus, vascular plants have 417 
the ability to regulate water transport through cellular mechanisms associated with transport across the 418 
endodermis. Finally, the microanatomical features of roots vary within an individual based on root 419 
order, depth in the soil, and phenological stage (Nippert et al., 2012). For herbaceous species, this 420 
typically means reduced hydraulic conductivity (and reduced rates of water transport) from deeper soil 421 
depths (Nippert et al., 2012, O’Keefe et al., 2021). To better understand how, when, and where root 422 
functionality occurs requires a greater understanding of the variability in root micro-anatomical 423 
features.    424 
 425 
Microanatomy is a historically overlooked aspect of plant roots that links physiology and whole-root 426 
system morphology – and thus to CZ-ecosystem functioning. The microanatomical characteristics 427 
provide insights into the larger functional contexts of root systems. Root traits like the ratio of cortex to 428 



stele, vessel size, vessel number, xylem wall thickness, and hydraulic conductance, all provide clues 429 
towards understanding the investment in safety vs. efficiency of water transport through root systems 430 
(Freschet et al., 2020). In the seminal work by Wahl and Ryser (2000), the authors used root 431 
microanatomical traits (e.g., cross sectional area, number of xylem, xylem wall thickness) with 432 
aboveground processes like relative growth rate. This work illustrated tradeoffs in safety vs. efficiency of 433 
water transport in root microanatomy that predicted whole plant growth traits for perennial grasses 434 
(Wahl and Ryser, 2000).  Based on these observations, subsequent studies have highlighted how the 435 
internal root structure sets a foundation for the whole root system function (Nippert et al., 2012, 436 
Wargowsky et al., 2021, O’Keefe et al., 2021). Relationships between root microanatomy and 437 
aboveground physiology / growth vary by within communities (O’Keefe et al., 2021), plant functional 438 
type (Wargowsky et al., 2021) and phylogeny (Valverde-Barrantes et al., 2021) and are an active topic of 439 
investigation.  Because microanatomical images of roots require more preparation time than whole root 440 
systems, they have been utilized much less than other traits. For this reason, there is much remaining to 441 
discover with regard to linking the internal anatomy of roots to the broader water and nutrient uptake 442 
patterns of plant species and communities (Freshet et al., 2020).  443 
 444 
As described so far, plant roots vary in both morphology (whole-plant and microanatomical) and 445 
physiology among plant types, species, and ecosystems, and the biological focus of this knowledge base 446 
is clear. Unsurprisingly, these root differences translate to variability in resource uptake, subsurface 447 
porosity, and weathering within the soil profile in space and time. For these reasons, inferring root 448 
functional processes (e.g., water uptake) is rarely as intuitive as measuring maximum rooting depth, or 449 
root biomass and yet has great importance for projecting whole CZ-ecosystem functioning. Improving 450 
linkages between root physiology and CZ-ecosystem properties requires better measurements of root 451 
longevity, associating roots to species (in mixed-species environments), quantifying growth rates and 452 
biomass by depth through time, and linking these features to the dynamic physical and chemical 453 
properties of the soil. Resolving these biologically-focused frontiers in the context of the abiotic 454 
constraints on CZ hydrology will undoubtedly assist with linking root presence and activities with 455 
ecosystem modification, and further our understanding of how root structure and function regulate 456 
pools of water and nutrients and fluxes of water, C, and nutrients in the CZ (Brantley et al., 2017; 457 
Dawson et al., 2020). Specifically, such efforts are necessary for understanding how ecological processes 458 
feedback to CZ hydrologic functioning. 459 
 460 
Roots and microbes as indirect biotic drivers of CZ hydrologic functioning 461 
In addition to the direct effect of roots on water uptake throughout soil profiles and across landscapes, 462 
roots are active sculptors of the subsurface (Figure 6). As such, they represent key agents linking the 463 
biotic to the abiotic realms within a CZ. Roots have significant impacts on the depth to which water can 464 
infiltrate and the position of the water table. Specifically, roots promote flow. Macropores, 465 
acknowledged above as a soil constraint on hydrologic functioning, are often formed via root growth 466 
(Angers and Caron, 1998; Zhang et al., 2015; Lucas et al., 2019) and reinforced via deposition and 467 
accumulation of clay films (Sigen et al., 1997). After root shrinkage, saturated films on root surfaces or 468 
along pore walls provide evidence of flow in these pores (Bogner et al., 2010). Where roots persist at 469 
depth, development of preferential flow paths is thought to trigger a positive feedback by enhancing the 470 
water drainage to depth (D’Odorico et al., 2012; Viglizzo et al., 2015; Pawlik et al., 2016). Not only do 471 
roots generate pores, but their growth can both build and destroy soil aggregates through enmeshing 472 
small particles or cleaving apart big aggregates (Lu et al., 2020), a process that alters the size and 473 
distribution of macropores. Because roots control soil-hydraulic properties and the generation of 474 
preferential flow, small changes in rooting depth distributions can alter water flow significantly (Beven 475 
and Germann, 2013; Noguchi et al., 1997). Indeed, given that roots transform far more soil volume than 476 



rhizosphere dimensions might initially suggest (Richter et al., 2007), extant aggregate size distributions 477 
and pore networks likely represent the legacy of past generations of roots. 478 
 479 
Root growth also imparts an important impact on the translocation of clay minerals and clay-sized 480 
particles, a process that influences both soil water flows and storage. Though clay-rich horizons can 481 
develop as clay forms within the horizon, in many locations clay accumulates in a horizon with illuviation 482 
from upper horizons (Weil and Brady, 2017; Calabrese et al., 2018). The downward movement of clay-483 
sized particles and clay minerals is linked to climate, occurring where effective precipitation is sufficient 484 
to promote downward movement of particles through the profile (Goddard et al., 1973; Honeycutt et 485 
al., 1990; Lawrence et al., 2021) and likely facilitated by seasonal wetting and drying. However, the 486 
downward transport of clay across horizons also is governed by the generation of flow paths through 487 
which clay illuviation can proceed (Rebertus and Buol, 1985). The resulting clay-rich horizons influence 488 
profile water dynamics via lower saturated hydraulic conductivity and thus enhanced water storage, and 489 
depth-dependent hydraulic conductivity due to the textural discontinuities with neighboring soil 490 
horizons (Richter and Markewitz, 2001; Figure 7). Clay-rich horizons also can result in a layer of soil 491 
difficult for roots to penetrate (Gao et al., 2016). In this indirect way, then, roots govern their own 492 
hydrologic environment. 493 
 494 
Microbes, too, sculpt the soil. Soil microbes exude compounds that can serve as binding agents (Tisdall 495 
and Oades, 1982). The complex mix of exudation compounds (e.g., polysaccharides, organic acids, 496 
enzymes, diverse waste products, often referred to collectively as EPS (see above)) is composed of 497 
materials critical for soil aggregate formation and preservation (Jastrow et al., 1998). Microbial 498 
necromass is emerging as an important feature for aggregate formation and preservation. The remnants 499 
of dead soil microbes appear to persist in soil far longer than some plant-derived compounds (Liang et 500 
al., 2017), potentially serving as glue adhering mineral and organic particles together into aggregates 501 
(Buckeridge et al., 2021); the observation that microaggregates tend to harbor relatively old organic C 502 
(Romkens et al., 1998) suggests that smaller aggregates may retain microbial necromass to a greater 503 
extent than in larger aggregates. Thus, necromass and the exudates of living microbes govern soil void 504 
geometries by influencing soil aggregate formation and durability. Like all soil microbial activities, these 505 
processes are especially prevalent in and around the rhizosphere, but any such microbial actions 506 
whether in bulk or rhizosphere soil can be important for structural change. 507 
 508 
Additional microbial actions further can drive soil structure. Soil microbes induce soil organic matter 509 
(SOM) decay via exo-enzymes, and transform some of the C into CO2 and released nutrients and C into 510 
biomass. As SOM is transformed from a solid into a solute, and then into either a gaseous or microbial 511 
form, soil aggregates can collapse (Bronick and Lal, 2005). The fate of the non-decayed SOM that had 512 
resided within collapsed aggregates is unclear, though it is presumed that the removal of aggregate 513 
structural protection (Six and Paustian, 2014) means that any remaining SOM experiences a greater 514 
probability of undergoing decay. Whether aggregate collapse associated with SOM decay promotes a 515 
loss or a gain in soil porosity is a matter of some debate. Over broad spatial scales, higher 516 
concentrations of SOM generally correlate with greater porosity (Franzenluebbers 2014). However, the 517 
transformation of a solid material into a gaseous or solute form results in the presence of small pores in 518 
the space where that solid material previously existed. The net effect of SOM mineralization within an 519 
aggregate on soil aggregate stability and size distribution is unclear, though some studies suggest that 520 
pore opening dominates (X. Zhang, P. Sullivan, S. Billings et al., unpublished data). Discerning the 521 
conditions under which SOM decay induces porosity gains or losses is a current research focus.  522 
 523 



Another mechanism by which both soil microbes and roots can influence soil structure is via the 524 
exudation of organic acids and CO2. Organic acids release nutrients from minerals (Aoki et al., 2012; 525 
Keiluweit et al., 2015; Lugli et al., 2019), often via ligand exchange (Ganor et al., 2009; Keiluweit et al., 526 
2015; Hasegawa et al., 2015). Carbon dioxide, once dissolved into the carbonic acid system, can also 527 
induce acid-promoted rock and mineral transformations (e.g., Keller, 2019). Acid transformations of rock 528 
are a key feature of long-term soil development (Brantley et al. 2012; Dontsova et al. 2020; Hauser et al. 529 
2020). Indeed, over long timescales, such momentary-scale processes can enhance soil porosity in the 530 
regolith and bedrock itself, and ultimately promote soil production from rock. Thus, microbial and root 531 
acid losses can be important determinants of soil structure over diverse timescales. 532 
 533 
Because roots and microbes influence soil structure, and because soil microbes tend to proliferate near 534 
roots, any change in rooting depth distributions has the potential to alter soil aggregate and void 535 
arrangement, and thus CZ functioning (Figure 2). Recent work highlighting the role of humans during the 536 
Anthropocene in regionally-dependent deepening or shallowing of roots indicates the massive scale at 537 
which these phenomena are occurring (Hauser et al., 2022). Ecosystem process models, reactive 538 
transport models, and continental-scale models of biosphere-atmosphere exchanges of energy and 539 
water offer the opportunity to test hypotheses probing the effects of modified abundances of deep root 540 
influences on soil structure (Sullivan et al., 2022). Modeling efforts like these will further strengthen the 541 
intellectual ties among ecosystem ecologists and the diversity of investigators working on CZ problems. 542 
 543 
Conclusion 544 
Understanding the CZ as an ecological problem and designing research that invokes the CZ paradigm 545 
offers us a way forward as we attempt to project future environmental processes in the Anthropocene. 546 
In this chapter, we provide examples of biotic-abiotic processes across a diversity of scales that govern 547 
CZ functioning and that are impossible to understand and predict without the use of the CZ paradigm. 548 
We specifically focus on hydrologic functioning given water’s importance in both the biotic and abiotic 549 
realms.  550 
 551 
By describing the influence of soil texture and macroporosity on hydrologic flow patterns, we highlight 552 
how fundamental CZ constraints (Field et al., 2014; here, the particle surface area present in a soil 553 
profile and the capacity of that soil to move water with relatively little tension) can govern the storage 554 
and fluxes of a critical resource – water. In turn, water fluxes through a soil profile influence the extent 555 
and pace of soil horizonization, which can result in varied capacity of soil at a given depth to store and 556 
release water (Figure 7). Roots also contribute to soil development in numerous ways (Figure 6), among 557 
them their capacity for perforating soil and thus generating pores through which fluids can flow. Of 558 
course, roots also drive water loss from soils. Combined, these actions – root growth and water uptake – 559 
promote movement of soil particles at small (~nm to cm) scales, further modifying the soil pore 560 
networks through which liquids and gases flow. Widespread changes in rooting depth in the 561 
Anthropocene (Figure 4) likely have modified pore networks in meaningful but unquantified ways. 562 
Microbes further contribute to these dynamics, in multiple ways. One salient role of soil microbes is 563 
their mineralization of soil organic C into CO2. This mineralization removes a structural agent from the 564 
soil, and likely can induce the collapse of soil structural features that may protect soil organic matter 565 
from microbial attack (Figure 2). Microbes and roots also generate acids that impose structural change 566 
to the regolith and bedrock via rock and mineral tranformations. These root and microbial actions, and 567 
associated flows of water and soil particles, only sometimes scale up in a predictable way. However, at a 568 
landscape scale, we can expect spatial variability in soil capacity to retain water (Figure 3) and plant 569 
adaptations to varied water availability (Figure 5) that reflect water’s tendency to flow towards more 570 
negative water potentials. Scaling the flows of fluids and solids, and patterns of root water uptake and 571 



soil microbial mineralization, across watersheds and landscapes remains a challenge important to 572 
address given spatially-varied responses of water availability to a changing climate. This challenge 573 
cannot be met without appreciating both the biotic and abiotic characteristics of the soil profile or 574 
landscape in question. 575 
 576 
A multitude of biotic-abiotic interactions not addressed in this work but that govern CZ functioning also 577 
require a transdisciplinary, CZ approach to develop a predictive understanding of the processes at large. 578 
Consider, for example, how within-canopy air currents govern system energy and water dynamics 579 
throughout the CZ (Monson and Baldocchi, 2014; Bonan, 2016). Linkages among soil structural 580 
attributes and hydrologic flows and resulting soil C and nutrient pools and fluxes are well-established 581 
(Richter and Markewitz, 2001; Weil and Brady, 2017; Schlesinger and Bernhardt, 2020). Other examples 582 
of biotic-abiotic interactions include the generation of channels by soil fauna through which gases and 583 
solutes flow (Platt et al., 2016), and how SOM flows across landscapes with erosion (Dialynas et al., 584 
2016; Berhe et al., 2018) result in a redistribution of this key agent of soil structure and a source of CO2 585 
and organically-bound nutrients (Billings et al., 2019). All of these processes participate in the complex 586 
interplay of the biota with the abiotic that structure the physical and chemical conditions in which life 587 
persists.  588 
 589 
 We emphasize that the biotic responses to land use, temperature, precipitation patterns, and 590 
atmospheric CO2 concentrations – often explored in ecosystem ecology – can be rapid. Because biota 591 
influence soil structure, rapid responses of biota to environmental conditions may prompt rapid changes 592 
in the structure and function of the CZ, and thus impart meaningful alterations to CZ-climate feedbacks 593 
(Sullivan et al., 2022). It is no longer possible to examine these environmental puzzles effectively from 594 
the perspective of a single or even a pair of disciplines. The knowledge bases required to understand 595 
these processes emerge from a diversity of disciplines, including geomorphology, soil science, 596 
ecohydrology, plant physiology, and ecosystem ecology. It is no coincidence that biotic-abiotic 597 
interactions all revolve around soil; soil is where the lithosphere, biosphere, atmosphere, and 598 
hydrosphere interact to form Earth’s living skin, and is perhaps the most intuitive location within the CZ 599 
where biotic and abiotic processes come to govern the functioning of the CZ ecosystem (Figure 1). 600 
Integrating knowledge from these realms has offered CZ scientists the opportunity to gain new insights 601 
about the functioning at Earth’s surface, which in turn allows the community to project Earth’s future 602 
functioning via both empirical and modeling studies. Taking our cues from the likes of Humboldt, Foote, 603 
Tansley, and Berner, we can continue to contribute to the rich history of the science of the CZ 604 
ecosystem, and move forward with greater confidence in our ability to project future CZ functioning. 605 
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