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Abstract— In this paper, we propose various path-planning
scenarios for unmanned aerial vehicles (UAV) surveillance ap-
plications, aiming to provide uniform coverage over the region
of interest while minimizing mechanical energy consumption.
We demonstrate that depending on the specific nature of the
application, the optimal path, as well as the preferred UAV type
(fixed-wing versus rotary-wing), can vary. We subsequently pro-
vide recommendations about the choice of UAV type and optimal
paths for surveillance applications such as fire outbreak detection
or intrusion detection. Generally, it is commonly perceived that,
for a given application and path, rotary-wing UAVs consume
significantly more energy than their fixed-wing counterparts.
However, to our surprise, we identify scenarios where the rotary-
wing UAV outperforms its fixed-wing counterpart in terms of
energy consumption.

Index Terms—Path Planning, FW UAV, RW UAV, Mechanical
Energy, Coverage.

I. INTRODUCTION

Unmanned aerial vehicles (UAV) have been deemed as a

promising technology for many applications such as package

delivery, wireless communications, as well as surveillance

[1]–[3]. Based on their applications, UAVs can be deployed

statically or mobile. Intuitively, utilization of moving UAVs is

more challenging compared to static ones. In particular, the

simpler problem of UAV positioning is elevated to a more

challenging problem of finding optimal paths, herein referred

to as path planning, where different utility functions such as

power consumption [4], throughput [5], the traveling distance

or the mission completion time [6], have to be optimized

subject to different constraints.

One critical issue of UAVs is the limited onboard energy of

the UAV which makes the efficient consumption of mechanical

energy an important subject. For a UAV with a given battery

capacity, the larger the mechanical power consumption, the

shorter the flight time will be, as the UAV has to return to the

base and be grounded for a while to recharge the battery.

There are two major types of UAVs, namely fixed-wing

(FW) and rotary-wing (RW), which have distinctly different

energy consumption models. In addition to type, the mechan-

ical energy consumption of a UAV depends on the traveled

path, speed, and acceleration of the UAV. The work of [7]

provided a comprehensive closed-form formulation for the

energy consumption of FW UAVs for 2-D movement as a

function of the traveled trajectory, as well as instantaneous

This work was supported by National Science Foundation under grants
CNS-1932326 and CNS-2150832.

speed and acceleration. This work paved the way for other

2-dimensional path planning frameworks for FW UAVs [8].

In [9], this result was used to obtain a non-user-oriented path

planning framework for FW UAVs with uniform coverage and

optimized energy for wireless communication applications.

On the other hand, the derivation of the consumed energy for

2-D flights of RW UAVs is much more complicated than their

FW counterparts and most works were limited to special path

profiles, e.g., one-dimensional paths with zero acceleration.

Recently, the work of [10] provided a closed-form formulation

for RW UAVs that included the effect of both velocity and

acceleration on energy consumption.

As far as energy consumption is concerned, majority of the

works in the literature focus on one type of UAVs for a given

application and to the best of our knowledge, there is no major

work that provides a comprehensive comparison between the 2

types for a given application. In fact, the common perception

is that for a given application and path, RW UAVs require

considerably more energy than their FW counterparts and thus,

a comparison seems unnecessary, i.e., whenever possible, we

had better use FW UAVs to save power, and in case we have to

deploy RW, e.g., when hovering is involved in the application

or for other technical reasons, we will end up paying a price

for the higher energy consumption.

In this paper, our aim is to design a surveillance framework

to accomplish a certain detection task such as fire outbreak,

search and rescue (SAR) or a monitoring mission for intrusion

detection over a given area [11]–[13] with minimum consumed

energy. In all surveillance applications, it is crucial to design

a path that provides a reasonably uniform coverage over the

corresponding area. As such, our aim is to minimize the

mechanical energy while providing a fairly uniform coverage,

subject to constraints dictated by the considered surveillance

scenario1. In contrast to existing works, we consider both types

of UAVs and compare their permanence in terms of energy.

To our surprise, we come up with scenarios in this paper

for which RW UAVs perform better in terms of energy even

though no hovering on a region is on the menu. To maintain

the uniform coverage, we use the spiral paths proposed in [14].

1For example, in the fire surveillance and SAR application, there is
a constraint on the detection time as any delay could have catastrophic
consequences such as exponential growth of the fire or significant health
damages to the victim subject to rescue. On the other hand for the intrusion
detection and monitoring, the UAV speed should be limited so that high-
quality pictures can be taken and processed.
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As another contribution, we derive closed-from formulations

of the instantaneous power when we deploy the spiral paths

for both FW and RW UAVs.

This paper is organized as follows: Section II introduces the

system model. Energy optimization problems are presented in

Section III and in Section IV, we present the numerical results.

Section V concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we explain the system model and review the

concept of spiral paths. Then we will have a comprehensive

overview of the propulsion energy consumption model for

both FW and RW UAVs and we will introduce the concept

of coverage probability.

A. Spiral Trajectories

The family of curves below represent a spiral family trajec-

tory:
Q(s) =

[

ρskcos(ζs), ρsksin(ζs)
]

, s ∈ [0, 1], (1)

where ρ is the radius of the cell, s is an arbitrary constant

i.e., 0 f s f 1, and k and ζ are constants that determine

the shape of the curve. Each UAV starts flying from the cell

center toward the cell edge over Q(s) in τ seconds. When

it reaches the cell edge, it returns to the origin on the same

path and continues on curve −Q(s) to reach the other side of

the edge before it returns to the origin and this action repeats

continuously.

The instantaneous locations of UAVs along the flying on

the spiral trajectory can be obtained by setting s = 2k

√

t
τ

in

(1):

Q(t) = (x(t), y(t)) =

[

ρ

√

t

τ
cos(ζ 2k

√

t

τ
), ρ

√

t

τ
sin(ζ 2k

√

t

τ
)

]

(2)

The velocity and acceleration vectors of the UAVs are

defined respectively as follows:

V (t) = Q̇(t) = (ẋ(t), ẏ(t)), (3)

A(t) = Q̈(t) = (ẍ(t), ÿ(t)). (4)

It is proven in [14] that if the above trajectory is followed, a

pretty uniform coverage is guaranteed for any arbitrary user

in any location of the cell.

B. Energy Consumption Model

1) Energy Consumption Model For a FW UAV: For a FW

UAV moving on a 2-dimensional plane, the energy consump-

tion is given by [7]:

E =

∫ τ

0

c1∥V (t)∥3 +
c2

∥V (t)∥



1 +
∥A(t)∥2 − (AT (t).V (t))2

∥V (t)∥2

g2



 dt

+

∫ τ

0

mAT (t)V (t)dt, (5)

where V (t) and A(t) denote the instantaneous velocity

and acceleration vectors respectively, and c1 and c2 are two

constants defined in [7].

In (5), the sum of the 2 integrands is the instantaneous

power, Pinst, which can be written as

Pinst(t) = c1∥V (t)∥3

+
c2

∥V (t)∥



1 +
∥A(t)∥2 − (AT (t).V (t))2

∥V (t)∥2

g2



+mAT (t)V (t).

(6)

2) Energy Consumption Model For a RW UAV: From [10],

the energy consumption of a RW UAV moving on a 2-

dimensional plane that flies for τ seconds can be obtained

as

E =

∫ τ

0

Pinst(t)dt, (7)

where Pinst(t) is the instantaneous total consumed power at

time t. It can be obtained by calculating the vertical and

horizontal power consumption, i.e.,

Pinst(t) = Pvertical(t) + Phorizontal(t). (8)

The vertical consumed power can be obtained as

Pvertical = P0

(

1 +
3∥V (t)∥2

U2
tip

)

(9)

+ Piκ

(
√

κ2 +
∥V (t)∥4

4v40
−

∥V (t)∥2

2v20

)

1
2

,

where κ is defined as the thrust-to-weight ratio, i.e., κ =
T

W
and can be expressed as

κ =

√

1 +
(ρSFP ∥V (t)∥2 + 2m∥A(t)∥)2

4W 2
. (10)

In the above equation, P0 and Pi are two constants defined

in [15] representing the blade power and induced power in

hovering status, respectively, Utip is the speed of the rotor

blade, v0 is the mean rotor induced velocity in hover, SFP =
d0sA is the fuselage equivalent flat plate area, W = mg is the

force of gravity, with m denoting the UAV mass including all

its payload, and g is the gravitational acceleration.

The horizontal consumed power can be modeled as

Phorizontal =P∥(t) + P§(t), (11)

P∥(t) =

(

1

2
ρSFPV

2
∥ (t) +mA∥(t)

)

V∥(t),

P§(t) =

(

1

2
ρSFPV

2
§(t) +mA§(t)

)

V§(t),

where V∥ and V§ are the speed components that are parallel

and perpendicular to the UAV head direction, respectively, and

they can be expressed as

V∥(t) = ∥V (t)∥cos θh, V§(t) = ∥V (t)∥sin θh. (12)

Similarly, A∥ and A§ are the acceleration components that

are parallel and perpendicular to the UAV head direction and

can be written respectively as follows:

A∥(t) = ∥A(t)∥cos θh, A§(t) = ∥A(t)∥sin θh, (13)
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where θh is the angle between the acceleration and velocity

vector that can be expressed as

θh(t) = arcsin

√

(

1−
(AT (t).V (t))2

∥V (t)∥2∥A(t)∥2

)

. (14)

In addition, θh indicates the rotation of the UAV along

the roll and pitch axis in the horizontal plane, which can be

modeled as

θh = arctan

(

tanRθ

tanPθ

)

, (15)

where Rθ is the rotation angle along the roll axis and Pθ is

the rotation angle along the pitch axis.

According to the above analysis, the instantaneous power

consumption for RW UAVs can be finally modeled as

Pinst(t) = Pvertical(t) + P∥(t) + P§(t). (16)

C. Coverage

The concept of coverage is initially defined for telecommu-

nication applications where a point is considered as covered

if the received power or signal-to-noise (SNR) ratio is greater

than a given threshold. In the simplified path loss model, this

SNR threshold directly depends on the distance between trans-

mitter and receiver assuming an omni-directional transmitter.

In other words, we assume that any point in the cell can receive

the signal, but that point can be considered covered or not,

depending on the SNR threshold level we set.

In this paper, for the surveillance applications, we resort

to the same concept: considering UAVs which are equipped

with multi-camera imaging systems or an omni-directional

camera that capture images in 360◦ view, as suggested and

implemented in many works such as [16], [17]. In this case,

any point of the cell is in the camera field of view range

but it is considered as covered only if it is located in a

distance from the UAV which is less than a certain threshold

level. Nevertheless, other scenarios can also be considered. In

particular, limited field of view for the UAV built-in camera

can be assumed where at any instantaneous UAV location,

a limited area is viewable by the UAV even though the

uncovered points are still at a resolvable distance from the

UAV.

III. PATH PLANNING WITH ENERGY CONSUMPTION

MINIMIZATION

In this section, we propose the general form of the opti-

mization problem associated to different surveillance scenarios

where our aim is to find a path with minimal energy while

providing a fairly uniform coverage over the region. We

then modify this general form depending on the considered

surveillance scenario and the UAV type. We have:

min
Q(t)

E, (17)

s.t. Cq : Q(t) =

(

ρ

√

t

τ
cos(ζ 2k

√

t

τ
), ρ

√

t

τ
sin(ζ 2k

√

t

τ
)

)

,

(18)

Cv : ∥V (t)∥< Vmax, ∀ 0 < t f τ, (19)

Ct : τ < τmax, ∀ τ > 0. (20)

In this problem, Cq limits the path to a spiral path with

parameters ζ, k, with cell radius ρ and travel time τ to provide

a fairly uniform coverage on the cell. Moreover, Cv sets a

limit on the maximum travel speed and Ct states that the total

mission or travel time should not exceed τmax. By applying Cq

into (17), we end up with the following optimization problem:

min
τ,k,ζ

E(τ, k, ζ) = min
τ,k,ζ

∫ τ

0

Pinst(τ, t, k, ζ)dt, (21)

s.t. Cv, Ct.

- Closed-form formulation for Pinst(τ, t, k, ζ):
For the case of FW UAV, by replacing V (t) = Q̇(t), A(t) =
Q̈(t) in (6), we obtain

Pinst(τ, t, k, ζ) =
1

8
c1

[

ρ2(k2 + ζ2( t
τ
)

1
k

k2tτ

]
3
2

+

2c2

[

1 +
ρ2ζ2( t

τ
)

1
k (k + k2 + ζ2( t

τ
)

1
k )2

16k4t3g2τ(k2 + ζ2( t
τ
)

1
k )

]

×

1
√

ρ2(k2 + ζ2( t
τ
)

1
k )

k2tτ

+
mρ2

(

−k3 − (−1 + k)ζ2( t
τ
)

1
k

)

8k3t2τ
.

(22)

For the case of RW UAV, using V (t) = Q̇(t) and A(t) = Q̈(t)
we first obtain ∥V (t)∥ and ∥A(t)∥ respectively as follows:

||V (t)||=

√

ρ2(k2 + ζ2( t
τ
)

1
k )

4k2τt
, (23)

||A(t)||=

√

√

√

√

[

ρ2(ζ4( t
τ
)

2
k + k4 + ζ2( t

τ
)

1
k + 2k2ζ2( t

τ
)

1
k )

16k4t3τ

]

.

(24)

By replacing (23) in (9) we obtain

Pvertical = P0

(

1 +
3ρ2(k2 + ζ2( t

τ
)

1
k )

4k2τtU2
tip

)

(25)

+ Piκ





√

κ2 +
ρ4(k2 + ζ2( t

τ
)

1
k )2

64k4τ2t2v40
−

ρ2(k2 + ζ2( t
τ
)

1
k )

8k2τtv20





1
2

Similarly, by replacing (23) and (24) in (11), the closed-

from formulation for Phorizontal will be obtained. As such, by

replacing Pvertical and Phorizontal in (16), we will have the

corresponding closed-from formulation for the instantaneous

power of the RW UAVs. Now by replacing the instantaneous

power of FW UAVs (22) and the instantaneous power of RW

UAVs (16) into (21), we obtain the corresponding closed-form

formulation for each case. The resulting obtained equations

were too complex and lengthy to be reported here. We can take

advantage of the obtained closed-form formulations to obtain

optimal values for ζ, k, and τ , and consequently, optimal

paths, through setting the partial derivatives to 0 and getting

the extremum points, or through numerical exhaustive search.

It is important to remind that once the optimal value for E
is obtained, the average power P can be calculated as E/τ .
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TABLE I: Parameters of RW UAV

UAV P0 (Watts) Pi (Watts)
Utip

(m/s)
v0 (m/s) SFP (m2) W (N)

UAV 580.65 790.67 200 7.2 0.0118 100

TABLE II: Optimized values for MEFW and MERW .

m
(Kg)

UAV Type P (Watts)
Ppeak

(Watts)

Vmax

(m/s)
ζ k τ (s)

10 Fixed-Wing 98.11 108.41 34.21 15.52 0.79 1151

10 Rotary-Wing 708.94 801.16 16.20 18.25 0.90 2505

We will report this instead of E in the simulation results which

makes more sense from practical point of view.

In this part, we consider 6 different scenarios and their

associated optimization problems. First, we assume that no

constraint on mission time or maximum speed is enforced, i.e.,

in (21), we neglect Cv and Ct. We treat this as the baseline

scenario. We name the associated problems to FW and RW

cases as MEFW and MERW, respectively where ME stands

for minimum energy and the last 2 letters indicate the UAV

type.

The paths that are optimized in MEFW and MERW prob-

lems provide the minimum energy consumption, however, any

path of Q(t) dictates a certain speed profile V (t) = Q̇(t) to the

system and we have no control over it. In certain applications

such as monitoring, the camera may need some more time

over a region to detect the object of interest. As such, we

have to impose the constraint Cv on the speed magnitude.

We name the associated problems to FW and RW cases as

MEFWvc and MERWvc, respectively where vc stands for

velocity-constrained.

Now we consider another situation where we have no

constraint on speed but there is a limitation on the mission

completion time τ . This happens in applications such as fire

detection where it is crucial to cover the whole cell uniformly

such that the total travel time does not exceed a certain

value. Accordingly, we impose the constraint Ct and name the

associated problems to FW and RW cases as MEFWtc and

MERWtc, respectively where tc stands for time-constrained.

IV. SIMULATION RESULTS

For simulations, we consider a FW UAV with weight

m = 10 kg and parameters c1 = 9.26 × 10−4, c2 = 2250.

In addition, we consider a RW UAV with weight m = 10 kg

and parameters P0, Pi, Utip, v0 and SFP whose values are

listed in Table I [15]. We consider a cell of radius ρ = 4000m.

We first consider the case of unconstrained trajectory op-

timization for both FW UAV and RW UAV. In Table II, we

have reported the optimized values for ζ, k, and τ for both

FW UAV and RW UAV. For both UAVs, we obtain the path

with minimum energy consumption and report the consumed

energy (in the form of average power) as well as the peak

power over the optimized path. As can be seen, the average

power consumption of the RW UAV is 7 times larger than that

of its FW counterpart. This means 7 times larger flying time

for FW UAVs before a recharge is necessary. This is indeed

a very expected result.

In Table III, we have reported the optimized values for

ζ, k, and τ for MEFWvc and MERWvc problems where

TABLE III: Optimized values for MEFWvc and MERWvc

m
(Kg)

UAV Type P (Watts)
Ppeak

(Watts)

Vmax

(m/s)
ζ k τ (s)

10 Fixed-W. 1466.01 2211.21 5 78.54 68.09 3000

10 Rotary-W. 924.55 974.27 5 64.83 54.19 3000

TABLE IV: Optimized values for MEFWtc and MERWtc

m
(Kg)

UAV Type P (Watts)
Ppeak

(Watts)

Vmax

(m/s)
ζ k τ (s)

10 Fixed-Wing 101.21 112.17 38.81 7.54 0.65 600

10 Rotary-Wing 718.53 1894.71 33.75 3.46 0.70 600

we impose maximum speed of Vmax = 5m/s (compare this

with the maximum speeds of 34 and 16 m/s in Table II). We

also report the consumed energy as well as the peak power

corresponding to the optimized path. Note that we put a cap

of 3000 seconds on travel time to get realistic results. As can

be seen in P column, in contrast to the unconstrained case

where the FW UAV needs considerably less energy than RW

UAV, the minimum energy consumption of the FW UAV is

now 1.5 times more than that of its RW counterpart. Also,

the peak power of the FW UAV is more than twice the peak

power of the RW UAV. That is, RW UAVs perform better than

FW UAVs in terms of energy and peak power at lower speed

profiles.

In Table IV, we have reported the optimized values for

the time-constrained case for FW UAV and RW UAV, i.e.,

MEFWtc and MERWtc problems. We set τmax = 600 s.

Compare this value with the values that are obtained for previ-

ous scenarios which are at least twice the value of 600 seconds

we set here. As can be seen, by setting τmax = 600, the

optimal value for travel time will be the same as its designated

upper bound. The results are not much different from the

unconstrained case and FW UAV preserves its superiority in

terms of energy in this case. However, the maximum speed

and peak power for the RW UAV grows drastically.

Now we investigate the coverage of the proposed schemes

where we obtain the fraction of the cell coverage throughout

the travel time. We set different threshold values based on the

camera specs, i.e., the threshold of α means that the camera

can only resolve the images which are at the distance of α
meters or less. If for a given point of the cell, the distance

remains more than α throughout the whole trip, that point is

declared uncovered. To obtain the results, we fix the flying
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Fig. 1: Fraction of cell coverage area: FW UAV.
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Fig. 2: Fraction of cell coverage area: RW UAV.
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Fig. 3: Fraction of cell coverage area: unconstrained path with

1 UAV vs. velocity-constrained path with 3 UAVs.

height to 100 meters.

The results are reported in Fig. 1 and Fig. 2 for FW UAV

and RW UAV, respectively. Since the flying height is set to

100 meters, for thresholds lower than this value, there will be

no coverage. For the unconstrained case and for both UAV

types, for thresholds greater than 100 m, full or almost full

cell coverage is obtained. This will be treated as a baseline

framework against which we can compare the constrained

scenarios. For the time-constrained case, the threshold should

be more than 200 m for the FW UAV and more than 500 m

for RW UAV to get a full cell coverage.

For the velocity-constrained case, the coverage results are

not acceptable if we only rely on 1 UAV, as we need cameras

that should be able to resolve image of objects as far as

1 kilometer. However, we can get acceptable results if we

increase the number of UAVs. As an example, for the case

of velocity-constrained RW UAV, we increase the number of

UAVs to 3. We have reported the results in Fig. 3. As can be

seen, we have become much closer to the baseline coverage

profile. We can get better results if we increase the number of

UAVs even more.

In Figures 4a and 4b, we have demonstrated examples of

the paths optimized in this paper. Fig. 4a corresponds to the

optimized paths for the time-constrained scenario for both

UAV types. In Fig. 4b, we have plotted the paths for the very

last scenario where 3 RW UAVs are deployed in the velocity-

constrained scenario, instead of 1, to improve the coverage.

(a)

(b)

Fig. 4: (a) The optimal time-constrained path. (b) The optimal

velocity-constrained path with 3 UAVs.

V. CONCLUSION

In this paper, we proposed different path planning scenarios

for UAV surveillance applications, that can provide fairly

uniform coverage over the region of interest, with the aim

of minimizing the consumed mechanical energy. We obtained

closed-form formulations for the instantaneous power over the

spiral paths. Through simulations, we compared the energy

consumption of both FW UAVs and RW UAVs to come up

with the suitable UAV type for surveillance applications, i.e.,

fire breakout detection and intrusion detection. We showed

that while in general, FW UAVs are preferred as far as energy

consumption is concerned, there are scenarios where we have

to deploy RW UAVs. This comes from the fact that RW UAVs

have the ability to hover over one region in contrast to FW

UAVs. This was indeed a known fact, but in this paper we

showed that even if there is no hovering is on the menu, there

are velocity-constrained scenarios for which RW UAVs can

take over.
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