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ABSTRACT Coverage holes pose critical challenges to reliability of wireless networks and their quality
of service (QoS) and therefore should be avoided in the coverage design. In this paper, we address this
issue through the deployment of unmanned aerial vehicles (UAVs) as mobile base stations, and we propose
specific UAV path planning. A point is said to be in a coverage hole if the coverage probability for that
point is below a certain threshold, e.g., 90%. This definition is more suitable for applications such as
surveillance or sensor networks. In this paper, we target applications such as wireless communications
for which QoS requirement allow only for short time disconnections, i.e., minimal outage time. As such,
in addition to avoiding coverage holes, we should also make the outage time as small as possible. By
deploying a deep reinforcement learning algorithm, we find optimal UAV paths based on the two families
of trajectories: spiral and oval curves, to tackle different design considerations and constraints, in terms of
QoS, energy consumption and coverage hole avoidance. We show that for a typical point on the cell, there
is a trade-off between minimizing the maximum outage time length and consumed mechanical energy.
Our observations indicate that such a trade-off is more pronounced for spiral trajectories compared to oval
trajectories, but both of them are useful depending on the QoS and energy constraints imposed by the

system.

INDEX TERMS Coverage hole, QoS, path planning, UAV, mechanical energy, deep reinforcement learning

(DRL).

I. INTRODUCTION
A. Background and Literature Review
HE next-generation of wireless networks impose great
demands on network quality of service (QoS) and
reliability [1], [2]. One of the critical challenges which
affects the reliability is the existence of coverage holes
within a cell. Coverage holes are defined from a statistical
point of view, that is, a location on the cell for which
the coverage probability is less than a certain threshold

is said to be a coverage hole. Coverage holes are caused
by shadowing, fading effects and radio link failure (RLF).
Despite robust network-coverage planning, coverage holes
may still occur due to the heterogeneity in the network and
the randomness of the wireless channel, among others [3]—
[5]. Consequently, to ensure reliability, it is important to
effectively deal with the coverage holes. Most of the works
in the literature assume a terrestrial network system model
in which solutions are sought to eliminate or reduce the
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coverage holes’ adverse impact on the reliability of the
networks. The conventional method for identifying coverage
gaps in cellular networks involves conducting costly drive
tests paired with mathematical propagation models to create
a radio map [6]. However, this technique is unreliable. In
order to address these challenges, 3GPP has introduced the
minimization of drive tests (MDT) technique [7]. The MDT
mechanism enables the serving base stations (BS) to utilize
user equipment (UE) measurement reports as well as RLF
report to create coverage maps, aiding in the identification
of coverage holes [8]. Needless to say, MDT may still suffer
from positioning error on coverage estimation.

Due to the unpredictable nature of the operational environ-
ment, recent studies have explored an alternative approach,
i.e., utilizing machine learning (ML) algorithms, to detect
the coverage holes. The work of [9] proposes an ML-
based approach for detecting coverage holes without relying
on location information or measurement reports. In fact,
having access to the channel estimation database at the BS
can facilitate data-driven ML methods to uncover hidden
spatial patterns and detect anomalies like coverage gaps.
However, [9] does not propose any solutions to deal with the
coverage holes. The study by [10] pioneers the integration
of artificial intelligence (AI) and mobile edge computing
(MEC) within 6G-enabled IoT frameworks, presenting an
advanced solution to the challenge of coverage holes. In
such a framework, inspired by disc model and the confident
information coverage (CIC) model for sensor coverage [11],
[12], a reinforcement learning (RL) algorithm is developed
based on the movement of mobile edge nodes, enabling more
precise and energy-efficient recovery of coverage holes.

Recent advancements in unmanned aerial vehicles (UAVs)
technology have leveraged their intrinsic mobility and opera-
tional flexibility, facilitating their deployment across surveil-
lance and communication domains [13]-[15]. For the latter
application, they are also referred to as aerial base stations
(ABSs). An important issue in deploying the UAVs is their
mechanical energy consumption as it directly dictates the
total time the UAV can be on air before returning to its base
for a recharge. It has been shown in literature [16]-[18] that
the energy consumption is profoundly influenced by both
the trajectory of the traveled path and the UAV’s speed and
acceleration profile along that path. In telecommunication
applications, the energy consumption of the UAV encom-
passes both propulsion-related mechanical power for aerial
maneuvers and RF transmission power for communication
functionalities. In practice, the mechanical power has a
considerably higher share of the total energy. As such,
an energy-efficient path planning of moving UAVs should
focus more on optimizing the mechanical energy rather than
the energy used for RF communications. The analytical
framework presented in [19] establishes a rigorous closed-
form expressions for fixed-wing UAV energy consumption
for 2-D movement.

UAV platforms offer strategic solutions for addressing
coverage deficiencies through boosting the coverage of
existing terrestrial cellular networks, while simultaneously
providing emergency capacity enhancement for base stations
to accommodate the demand for ever-increasing data trans-
mission rates [20]—[23]. As such, for the UAV-assisted com-
munication networks, designing an optimal path or optimal
placement while addressing the coverage holes is of utmost
significance. The study by [24] explores the use of UAV-
based base stations for detecting coverage gaps and deliver-
ing temporary on-demand coverage. They employ Q-learning
as a trajectory planner to autonomously identify coverage
holes within a specified area. Inspired by stochastic geometry
analysis, the work of [25] proposes an RL framework for
concurrent optimization of UAV placement and antenna
beam pattern configuration, with the explicit objective of
minimizing maximum outage probability metrics.

B. Contributions

In this paper, in contrast to the existing literature, we use a
totally different approach to deal with coverage holes. Our
aim is to design a network of moving UAVs such that for
any typical point on the cell, coverage holes are avoided at
any time. In other words, we are not going to first detect
the holes and then try to position the UAV on a particular
location to avoid that hole, as our UAVs will be continuously
moving. This is beneficial as we need not to be concerned
with the dynamic nature of coverage holes any more. To
attain this goal, we utilize the framework from [26], which
suggests two types of trajectories and speed profiles: spiral
paths and oval paths. When UAVs follow these paths, they
ensure relatively uniform coverage for users at any location
within the cell.

We first design UAV trajectories which avoid coverage
holes with minimal energy consumption. Assume that we
consider a point to be a coverage hole if it has an outage
probability [27] higher than, e.g., 10%. Based on the defini-
tion, if we can maintain coverage probability of, e.g., 90%,
over all points of the cell, we have fully addressed the issue
of coverage holes. We, in fact, show in this paper that this
is possible through proper UAV path planning, where oval
paths require slightly higher energy compared to spiral paths.

Despite the above achievement, for certain QoS require-
ments, such as in wireless communications, the above sce-
nario may not be appealing. In the aforementioned scenario,
we guarantee that any typical point of the cell will not be
uncovered more than 10% of the time, i.e., outage probability
is less than 10%. Consider a time span of 7 seconds, e.g.,
1000 s. This means that we may encounter a worst case
scenario with 7/10 s, e.g., 100 s, of continuous outage for
a typical point which may not be satisfying the required
QoS. As an example, the acceptable packet delay budget
for most existing services is anywhere between a fraction of
a millisecond to a few hundreds of milliseconds [28], Table
6.1.7-A, [29], Table 5.7.4-1, and [30], P. 16. As such, another
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important metric to consider is the maximum outage time for
any point on the cell, denoted by T},4;-

Accordingly, we aim to find curves that provide the
minimum value of T},,,, for all points on the cell. We show
that we can achieve 1,4, = 0, i.e., no outage for any point
of the cell, but at the expense of mechanical energy getting
unacceptably large when we use spiral paths. Using oval
paths, we can make a compromise, i.e., we can lower energy
consumption if we can tolerate larger than zero values for
Tmaa:'

Alternatively, we may want to keep 1,4, for any point
of the cell below a given value and try to find a path to
guarantee such requirement, with minimum energy. This will
provide a controlled compromise between T,,,, and the
consumed energy. Accordingly, for different values of 15,4,
and starting from O, we show there is a well-established
trade-off between the energy and maximum outage time
length.

To find optimal paths in all above-mentioned scenarios,
we use deep reinforcement learning (DRL) through the im-
plementation of an actor-critic DRL framework, called deep
deterministic policy gradient algorithm (DDPG) [31]. To get
closer to the optimal result, we use an improved version
of this algorithm called twin delayed deep deterministic
policy gradient (TD3) [32], which deploys two critic net-
works instead of one at the expense of more computational
complexity.

This paper is structured as follows: section II outlines the
system model and introduces essential preliminary formula-
tions. In section III, the optimization problems are proposed
to be solved by the TD3 algorithm, detailed in Section IV.
Section V presents the numerical results and conclusions are
drawn in Section V.

Il. PRELIMINARIES AND SYSTEM MODEL

In this section, we explain the system model and review
the concept of the deployed trajectories, i.e., spiral, and
oval curves. Then we review the formulations for propulsion
energy consumption of fixed-wing UAVs. Finally, we clearly
define coverage holes and outage time. In this paper, we use
capital bold letters to denote vectors and small regular letters
to denote scalars.

A. Spiral Trajectories
The family of general curves below represent the trajectory
of a spiral family over the cell:

0.(s) = [ps" cos(Cs), ps* sin(Cs)] |

where p is the radius of the cell, s is an arbitrary constant
ie, 0 < s <1, and k and ( are constants that determine
the shape of the curve. Specifically, by setting ( = 0 and
k =1, a series of curves are generated, each corresponding
a radius of the cell. This configuration forms the radial
trajectory, representing the most straightforward trajectory
in this family.

se0,1], (1
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Each UAV begins its flight from the cell centroid, moving
towards the cell edge along the path @, (s) within 7 seconds.
Upon reaching the cell edge, the UAV returns to the origin
along the same path, subsequently following the trajectory
—Q,(s) to reach the opposite side of cell edge and this
process repeats continuously.

For the i’th UAV flying on the spiral trajectory, its
instantaneous location can be determined by setting s =
/LR =10 (1), In this setup, N UAVs start their
flights atqimes Ty, Ty,...,Tx where T; =it /(N + 1), i €
{1,2,..., N}, and use rotational phase ¢; = 27 (i—1)/N,i €
{1,2,..., N}. In other words, for the ith UAV we have

Q.. (t) =[zi(t),yi(1)] 2

[t—kr—T, [t — kT — T,
:[p 77" kr lcos(th il +9i>,~--
T T
, t—kT—TZ—Sin(C%/t—kT—Ti+0i>
T T

It is shown in [26] that if the above trajectories are
followed, uniform coverage is guaranteed over the cell and
the coverage probability tends to 1 as N increases.

B. Oval Trajectories
The family of general curves below represent the oval family
trajectory over the cell:

0,(s) = [q cos (gs) ,gsin (gs)} ,

where ¢ = a + (b — a)s, for any given a,b € Rt, 0 <
a < b < p. The two constants a and b determine the shape
of oval curves and its overall characteristics. There are two
special cases of oval trajectories, namely ring and ellipse
trajectories. By setting a = b = p, we achieve a set of curves,
each being a circle with radius p. This path is called the
ring trajectory, recognized as the simplest and most intuitive
option within this family of trajectories. Another specific
case can be obtained by assigning b = pand 0 < a < p
which is called ellipse trajectory.

The instantaneous location of the i’th UAV on the oval
trajectory can be obtained by setting s = (¢ — T3)/(F)
in (3). In this setup, N UAVs start their flights at times
T1,Ts,...,Tn where T; = it/N,i € {1,2,..., N}, with
rotational phase #; where 0; = 2wi/N,i € {1,2,...,N}.!
In other words, for the i’th UAV we have

Q,,(t) = [zi(t), yi(t)] = “

o (£ (55) o) (5(152) )

1
where g =a+ (b—a)(t—T;)/(%), 0<t—T; < %, and
0<a<b<p.

s€0,1], 3

. 1T.he UAV’s can start from anywhere on the curve as long as they
maintain the rotational phase difference with respect to each other.
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The extended oval trajectory Z(¢) over 0 <t < 7 can be
obtained by the reflection of Q,(¢) over x-axis and y-axis
which is represented as follows:

[z(1), y(t)] st quadrant
=), y()] 4 quadrant

2t) = [—z(t), —y(t)] 37 quadrant )
[x(t), —y(t)] " quadrant

C. Energy Consumption Model

For the rest of the paper, if a formulation applies to both
spiral and oval paths, instead of Q,(t) or @, (t), we use Q(¢)
to represent the path. The propulsion energy consumption of

fixed-wing UAV moving on a 2-dimensional plane is given
by [19]:

2 AWV )

(G P2 at

+ [ mA(t).VE(t)dt, (6)
0

where V(1) = Q(t) = [&(t),§(t)] and A(t) = Q(t) =
[Z(t), §(t)] indicate the instantaneous speed and acceleration
vectors respectively, and ¢; and c; are two constants defined
* 1 2W2

A A

S 2/),10[)05’7 cy = (meoAr)pas’ @)
In the above equations, W = mg represents the gravitational
force, with m denoting the UAV's mass including its payload,
and g is the gravitational acceleration. Furthermore, p, refers
to the air density measured in kg/m*, C'p, denotes the zero-
lift drag coefficient, S indicates a reference area (e.g., the
wing area), eg is the Oswald efficiency which accounts for
the aerodynamic efficiency of the wing, and Az denotes the
aspect ratio of the wing which influences the lift and drag
characteristics.

This provides a measure of the average power required
for the UAV’s movement over a given period. Moreover, the
sum of the 2 integrands is the instantaneous power, Pj, s,
which can be written as

Pinst(t) = cl||V(t)||3
A@). VT (1)
PR PO O e 20
vl 7

®)

D. Coverage Hole

For any arbitrary user location within the cellular domain,
the coverage probability P, is defined as the probability that
the received signal-to-noise ratio (SNR) exceeds a specific
threshold . Mathematically, this can be expressed as:

Pc:P(SNRRxZV)' ()

+mA(t).VT(t).

Consequently, the outage probability is obtained as 1 — P..
The threshold ~ is determined by the system specifications,
particularly the receiver’s capability to successfully recover
data at lower SNR levels.

For a UAV flying horizontally on the trajectory Q(t) =
[(t),y(t)]T € R?*! at a constant altitude H, and assuming
line of sight (LoS) link 2, the received SNR can be expressed
as: -

SVl = e
where we either consider Q(t) = Q,(t) for spiral paths or
Q(t) = Q,(t) for oval paths. Moreover, 7o = BoPr/o? i
the reference received signal-to-noise ratio (SNR) in which
Pr denotes the transmission power, SoPr is the received
power at the reference distance dy = 1, and o2 is the
white Gaussian noise power. In this work, we consider a
scenario in which the UAV frequencies are orthogonal to
avoid interference. At each moment, the user is served by
the closest UAV with a given frequency. Once the user
is out of the coverage area of that UAV, it is handed-off
to another UAV with different frequency. Exploring more
complex scenarios that involve interference, e.g.., assuming
all UAVs reuse the same frequency, could be a valuable
extension of this study.

Given the above definition for coverage, a point is referred
to as a coverage hole in the literature if P, is less than a
certain value, e.g., less than 0.9, or alternatively, the outage
probability is greater than 0.1. Even if a point is not a
coverage hole, e.g., if P. > 0.9, for a time span of 7, the
outage time can be as high as 7(1 — P.) which may not be
acceptable in practice [28], [29], [30]. For any point of the
cell, we denote the maximum outage time as 7,4, and we
either try to directly minimize it or make sure it is less than
a given threshold.

(10)

lll. COVERAGE HOLE AVOIDANCE THROUGH UAV PATH

PLANNING

A. Preliminaries

As mentioned before, in the literature, a point is deemed
to be in coverage hole if the coverage probability for that
point is less than a certain threshold. In the next subsection
B, we find energy-optimized spiral and oval paths that can
provide coverage hole-free cells as will be shown in the
corresponding simulation results. However, we observe that,
the maximum outage time, 7;,,,, for some points might
be too high. As such, in Subsection C, using both oval
and spiral trajectories, we obtain paths with min. value
for Th,0:. We will see in the simulation results that for
spiral trajectories, we can achieve T;,,, = 0, for any point
at the expense of considerably higher mechanical energy
compared to Subsection B where we minimized the energy.
We also show that using oval trajectories, we can have

2It is important to note that although as we mentioned, coverage holes
are caused due to shadowing and fading effects in terrestrial networks, when
UAV’s are deployed to de% with them, we can assume LoS channels due
to their higher altitude with respect to ground users.
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smaller value of consumed energy at the expense of an
increase in minimum value of 7;,,,. This shows that there
might be a trade-off between the min. value of 7},,,, and the
consumed mechanical energy. As such in Subsection D, we
propose a framework in which we try to minimize energy
while guaranteeing a fixed value of 7,,,, for any point on
the cell. In simulation results, we see that there is in fact a
well-established trade-off between these 2 parameters.

B. Path Planning to Minimize Mechanical Energy
Consumption while Addressing the Coverage Probability
For the UAVs moving on the spiral trajectories with a
certain period 7, the optimal path planning problem can be
formulated as:

min £, (11a)
Q,(1)
t axf b t .ot
sit. Cq: Q(t) = P\/:COS(C \/:)m\/:sm(g \/:)] :
(1ib)

In this problem, C; limits the path to a spiral path with
parameters k, ¢, with cell radius p and travel time 7 to
provide the uniform coverage on the cell. By applying
Cy into (11a), we end up with the following optimization
problem:

P1: Inkilé E(/ﬂ,C) = / Hnst(thvkaC)dtv (12)
Tk, 0

where P;,5:(t,7,k,¢) is the instantaneous power of the
UAVs moving on the spiral trajectories. We derived the
closed-form formulation for P;,«(t,7,k,() by replacing
V(t) = Q,(t) and A(t) = Q,(t) in (8) as follows:

3
2

1 [PP(R2+2(L)E
Pinst(taTak7C) = gcl T +
202(EV4 (| 4 k2 2/t\1\2
26y 1+PC(T)k( + +C(72k) "
16k43 927 (k2 + (2(L)*)
] mp? (=K = (~1+ R)C(4)F)
+ — .
p2(k2+C2(f)%) 8k3t21
k2tT
(13)

Through the solution of this optimization problem, we aim
to derive the optimal parameters k, ¢, and 7 that will yield
a trajectory minimizing the UAV’s energy consumption. For
the optimized path, we measure 7,,,, for each point within
a cell.

In the case of UAVs moving on oval trajectories, we must
solve the following path planning problem:

min F, (14a)
Q,(t)
T (1 (T[T
st. Cy:0,(t) = [qcos ( <T>> ,qsin ( (T))]
2\1 2\1
(14b)
VOLUME ,

In this problem, C, limits the path to an oval path with
parameters a, b, with cell radius p and travel time 7. By
applying C, in (14a), we end up with the following opti-
mization problem where P;,s:(t, 7, a,b) is the instantaneous
power of the UAVs moving on the oval trajectories, and we
derived it by substituting V(t) = Q,(t) and A(t) = Q,(t)
into (8) as follows:

P2: rnirll) E(a,b) = / Pinst(t,7,a,b)dt, (15)
T,a, 0

T 167%¢%(c c19%¢?

Pinst(t77-7aab) - % <C2 + e (gz:; 194 )>a

(16)

In the above equation, ¢ = a + (b — a) (%/4), and 0 < a <
b<p.

Through the solution of this optimization problem, we

obtain the optimal values for a, b, and 7 to achieve an optimal

path with minimal energy consumption. Then we measure

Tnaz for each point within a cell.

C. Path Planning to Minimize Maximum Outage Time
In this subsection, we try to obtain paths with minimum
Tinaxz according to the following problems:

P3.a: min T),4z, (17a)
Q.(t)

s.it. Cg_ : (2), (17b)

P3.b: min T},4., (18a)
Q,(t)

s.it. Cg, @ (4). (18b)

In P3.a, Cg_ limits the path to a spiral path with param-
eters k, ¢, with cell radius p and travel time 7. Similarly, in
P3.b, Cg, limits the path to an oval path with parameters a,
b, with cell radius p and travel time 7.

D. Path Planning for Minimum Energy Consumption with
Guaranteed Maximum Outage Time

In this part, we propose a new scenario to establish a
controlled compromise between T),,, and the consumed
energy. To this end, focusing on spiral paths, we propose
the optimization problem P4 in which we minimize the
mechanical energy while guaranteeing 7,,,, to be lower than
a given threshold 73, for all point on the cell.

P4 : min F, (19a)
2.(?)

sit. Cp: (2), (19b)

Ct : Crm,am § CTth~ (19C)

Through this optimization problem, we obtain an optimal
trajectory with optimized parameters k and ( leading to a
robust coverage planning with the minimum energy con-
sumption.
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It is worth noting that according to simulation results for
problem P3.b in which we minimize 7,,,, for oval path, the
minimum value is bounded away form zero in contrast to the
case with spiral path. As such, we can not demonstrate the
trade-off between 7,4, and consumed energy as efficient as
spiral paths and thus, we only consider spiral paths for this
problem.

IV. DEEP REINFORCEMENT LEARNING BASED
SOLUTION

The trajectory optimization in all the proposed optimization
problems could be complicated to solve directly due to
their non-convex and non-linear objective functions and
constraints. As such, we propose a model-free DRL approach
to derive optimal paths by reformulating the problem within
the framework of a Markov decision process (MDP). MDP
can be defined as a tuple (S, .A,n,Pss, R), where S and
A represent the state and action spaces, respectively. Specif-
ically, s,, € S is the state and a,, € A is the action at
time step n € N = {1,2,...}. In addition, P,y denotes
the transition probability where Py : S X A X S — [0,1]
represents the probability of transitioning to the next state
s’ = s,.1 upon taking action a,, in state s,. The reward
function R : § x A — R assigns an evaluation metric to
each state-action pair (s,, a,,), quantifying the optimality of
the agent’s decisions.

A. MDP reformulation
We formulate the trajectory of UAV-assisted network as
follows:

e Agent: The UAV operates as an intelligent agent, con-
tinuously interacting with its environment to derive an
optimal policy my, with parameter 6, that maps state
space to action space while maximizing the reward.

e State space: The state space S consists of the trajectory
parameters that define the UAV’s path. Specifically, for
a fixed 7, the UAV state flying along the spiral trajectory
with two parameters k£ and ( at time step n will be
Sn, = [kn,(,] and the UAV state flying along the oval
trajectory with two parameters a and b at time step n
will be s,, = [an, by].

e Action space: The action space A consists of 2-
dimensional vector a,, = [Ak,,A(,] for the spiral
trajectory and a,, = [Aa,,, Ab,]? for the oval trajectory,
where each component is bounded within [—1, 1]. These
values represent normalized parameter adjustments de-
termined by the agent at each decision epoch. The UAV
at state s,, chooses the action a,, of action space which
leads to next state s, 1.

e Reward: When the UAV takes an action a,, in state s,,,
it achieves its reward. Specifically, the reward function
associated with each optimization problem P1 and P2

3The action vector “a,” (boldface) shall not be confused with “a,”
that denotes the oval curve parameter.

can be characterized by energy reward, which is formu-
lated as the negative of the UAV’s energy consumption,
providing an incentive to minimize energy expenditure.
The corresponding formulations are shown in (20a) and
(20b) for P1 and P2, respectively:

RS,E(n) = - E(na k, C)v
R, 5(n) =—E(n,a,b).

(20a)
(20b)
The reward functions for the optimization problems

P3.a and P3.b can be characterized by the 7},,,, reward
as shown in (21a) and (21b), respectively:

RS,T(n) = - Tmam(na ka C)?
Ror(n) = —Thaz(n,a,b).

(21a)
(21b)
This setting compels UAVs to fly along optimal trajec-
tories leading to the minimum 7,,,,. Finally, the reward

function regarding the optimization problem P4 can be
expressed as follows:

Ry gr(n) = —E(n, k, () — Re(n),

where the penalty term R.(n) is used to impose the
required cap on T}, i.€.,

Rc(n) = A Z I (Tm(m(nv k, C) > Tth)7

.3

(22)

(23)

where I(-) denotes an indicator function, which returns
1 if the condition within its argument is satisfied, and
0 otherwise. The summation is taken over 71,,,, corre-
sponding to all grid locations (7, j) when deploying a
spiral trajectory with parameter k and ( at time step n.
A¢ is a coefficient to adjust the penalty impact.

B. The DRL Algorithm

The continuity of the UAV’s trajectory can be effectively
handled through the implementation of an actor-critic DRL
framework, specifically the DDPG, which leverages two
distinct deep neural networks (DNNs) for the approximation
of the policy and value functions independently. Let 6
represent the parameter of the DNN that defines the UAV’s
policy function, i.e., the actor network. Operating within
a deterministic policy paradigm, this parameterized actor
network maps each observed state s,, to a unique, determin-
istic action a,, = m(s,|f), with the objective of optimizing
the expected cumulative discounted reward trajectory. The
objective function can be written as:

J(6) = Eqnar [Q7 (5, 7(510))] = Eq, ~5[Q" (50 7(5416).

(24)
where d™(s) represents the stationary state distribution cor-
responding to the deterministic policy 7(s,|6), Q7 (s,a)
denotes the value (Q-value) function, defined as Q™ (s,a) =
Ex [>re oY ntklsn =s,a, =a] where v is the dis-
count factor and 7, denotes the immediate reward at time
step n, and B represents the replay buffer. The Q-value
Q7 (sp,m(sp|0)) serves as an evaluation metric for the
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effectiveness of the policy 7 (s,|0), i.e, the higher the Q-
value, the more preferred is the action a,,, leading to finding
a policy that maximizes the cumulative discounted reward.
To estimate the Q-value function, DDPG utilizes a critic
network with parameter w, denoted as Q7 (s,,a,|w), i.e.,
Q7 (Sn,aplw) = Q7 (sp,m(spld)). As such J(0) depends
on both # and w of the DNN parameters applied to actor
and critic networks, respectively. Additionally, to improve
training stability, DDPG utilizes target networks for both the
actor and critic, with parameters ¢’ and w’, respectively.

To find the optimal policy, we leverage the deterministic
policy gradient (DPG) theorem [31] to optimize the objective
function J(6) with respect to the policy parameter 6. As
such, the policy gradient can be estimated as follows:

VQJ(Q) = ESV,LNB[anW(Snv a‘w)‘a:ﬂ(sn)VGﬂ'(Snle)].
(25)
The critic network’s parameters can be optimized through
temporal-difference (TD) error between the current critic
network’s Q-value estimation Q™ (s,,a,|w) and its target,
using Bellman equation: y,, = r,, + YQ™ (S, an|w’), where
a, = 7(sp|0’'), r, represents the instantaneous reward and
w’ denotes the parameter of the target critic network. Then,
the optimization of critic network parameters is achieved
through minimization of the TD error, expressed as:

L(w) = E(Sn7an,rn~,sn+l)'\’8[|yn - Qﬂ(snaan|w)|2]' (26)
Through temporal difference learning, both actor and critic
networks are updated. Also, the target networks are updated
using soft updates as follows:

0+ 0+ (1—¢€)0,
W Ew+ (1 =&,
where ¢ is the soft update parameter and ¢ < 1.

In the aforementioned off-policy and model-free RL ap-
proach, i.e., the DDPG algorithm, substituting a function
approximator Q7 (s, a,|w) for the true Q-value function
Q™ (sp,a,|0) may introduce bias. This overestimation bias
in Q-value estimation can lead to sub-optimal policies, which
could eventually lead to a local optimum. This was in fact
the case when we applied it to our P4 problem, when we
obtained the optimal result through exhaustive search.

To address this issue, twin delayed deep deterministic
policy gradient (TD3) is proposed. TD3 deploys two critic
networks with parameters w; and w2 and their corresponding
target networks with parameters wj and wj. Then their min-
imum is applied to approximate the target Q-value function,
ie, Yn = rptymin—12 Q" (Sn+1,an+1|w;), where a, 11 =
clip[r(sp+1]6’)+¢€, —c, ¢, with e ~ N(0, o) being the target
policy smoothing noise and c is the noise clipping limit. The
clip function limits its first input argument between second
and third inputs. Through temporal difference learning, two
critic networks will be trained by minimizing:

L(wl) = ]E(s,,“a”,r,L7s,L+1)~BHy7L - Qﬂ-(sna an|w1)
L(WZ) = ]E(s,,“a”,r,L7s,L+1)~BHy7L -Qr (Sna an|w2)

27
(28)

Rt
%]-
(29)

VOLUME

Similar to DDPG, TD3 uses soft updates for the target
networks: w; < &w; + (1 — Hwj, ¢ « 0 + (1 — )¢’
where ¢ < 1 is the soft update parameter. Although DDPG
works pretty well for other problems, i.e., P1, P2, and P3,
we used TD3 for them as well. The downside is indeed more
implementation complexity.

Algorithm 1 TD3 algorithm for trajectory optimization in
UAV-aided networks

1: Initialization:

2:  Initialize the network: (p, 7, H, Yo, v, Tip)
3:  Initialize the UAV parameters (c1, ca,m, g)
4
5

: procedure CALCULATE ENERGY AND T},q2
: Create trajectories, i.e., (2) and (4); (zs,ys) <
Qs(k’ <7 t)’ (Im yO) — Qo(a7 b7 t)

6: Create the energy consumption model for each
trajectory, i.e., E(k,{) = [ Eq. (13)dt, E(a,b) =
o Eq. (16) dt.

7: Compute coverage probability and 7),,, for each
trajectory.

8: return F(k, (), E(a,b), Tmax(k, (), Tinaxz(a,b).

9: end procedure

10: Initialize environment

11:  Initialize critic networks with parameters wy, ws, i.e.,
Q(Sns an, w1), Q(Sn, an, w2)

12:  Initialize actor network 7(s,,, §) with parameter 0

13:  Initialize target networks: w} < wy,wh + wo, 8 < 0

14:  Initialize replay buffer B, exploration noise N(0,0)

15:  Select reward function from
(Rs,5(n), Ro,5(n), Rs,7(n), Ro,r(n), Rs g1(n)).

16: for episode = 1 t0 Nepisodes dO

17: Receive initial states sg

18: for n =1 t0 Neps do

19: Observe state s,,

20: Obtain the trajectory Q(t)

21: Convert Q(t) into the UAV’s action

22: Select action with noise €: a,, = mp(s,|0) + €,
e~ N(0,0)

23: Execute action and estimate the reward r,,

24: Update state observation: s,, <— S, 41

25: Record tuple (s, a,, 7y, Sp4+1) into B

26: Randomly extract training batch of K transi-
tion (Sk,ak, Tk, Sk+1) from B

27: a <+ m(spy1|0) +e e =clip(N(0,0),[—c,])

28: Yr < re+y-min{Q(sk+1,a|w]), Q(sk+1,aws)}

29: Update the actor and critic network of the UAV

30: Update target networks:

31 wh < Ew; + (1 = &wl,

32: 0 — 0+ (1-&)¢

33: end for

34: end for

35: return Optimal trajectory parameters (k*,(*), or
(a*,b%)
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TABLE 1. SIMULATION PARAMETERS

Name of variables Value
Parameters of Network

7 : Total Flight Time 1000 s
p : Cell Radius 4 km
H: UAV altitude 100 m
Pr: UAV Transmission | 10 dBm
Power
B: Bandwidth 1 MHz
Bo: Reference channel | -50 dB
power
o2: Power Spectrum Den- | -170 dBm
sity of the Noise
Yo: Reference Received | 70 dB
SNR
~: Received SNR Thresh- | 0.1 dB
old

Parameters of UAV
m: The UAV total mass 10 kg
c1: Constant Coefficient 0.00092
co: Constant Coefficient 2250

Parameters of TD3 Algorithm

Nepisodes:  Number — of | 3000
episodes
B: Replay buffer 108
K: Batch size 256
a: Actor’s learning rate 0.0003
[: Critic’s learning rate 0.0003

o: Standard deviation of | 0.1

noise

T Target network update | 0.005
period
~: Discount factor 0.99

V. SIMULATION RESULTS

In this part, we propose the simulation results. In Table 1,
we have listed the simulation parameters that apply to all
considered scenarios. We consider N = 5 UAVs with similar
specs and they are scheduled to move on the proposed paths.
An important advantage of the proposed paths is that despite
using multiple UAV’s, it can be mathematically proven that
the chance of collision is zero, i.e., the UAV’s do not cross-
path a point at the same time. Please note that throughout this
section, instead of mechanical energy, we focus on average
power which is equal to the total energy divided by the flying
period.

It is important to note that while the proposed system
model is quite general, the reported results here are specific
to the considered system parameters in Table 1. As an
example, by changing the received SNR threshold to a higher
value, we may need to increase the number of UAVs, N, to
achieve the same coverage results. This also holds true for
the T},,4, threshold. To satisfy lower values of this threshold,
the required power may become extremely large.

y(t) km

y(t) km

x(t) km
(b)

FIGURE 1. (@) T’ heat map, and (b) coverage probability heat map for
the spiral path with minimum energy consumption (Problem P1).

4 |
2f i
=
2+ i
4+ 1
-6 -4 -2 0 2 4 6
x(t) km

FIGURE 2. The optimal spiral path with minimum energy consumption
(Problem P1).

A. Performance Comparison: Energy Minimization vs.
Maximum Outage Time Minimization

In this part, we propose the results corresponding to prob-
lems P1, P2, P3.a and P3.b. Table 2 shows the optimized
values corresponding to P1 whereas Fig. 1 shows the heat
map for T},,, and coverage. Fig. 2 shows the corresponding
path for 5 UAVs. As can be seen, we have been able to
provide coverage probability above 0.9 for all points on the
cell, i.e., we have practically avoided any coverage holes.
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FIGURE 3. (a) 7., heat map, and (b) coverage probability heat map for
the oval path with minimum energy consumption, (Problem P2) - Curve 1.
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FIGURE 4. The oval path with minimum energy consumption (Problem
P2) - Curvel.

However as can be seen in the table, the maximum value
for T4 18 50 seconds which is not acceptable.

For the oval curves, we have shown the results for 2 cases
in Table 3. The 2nd row of the table shows the optimized
values that results in minimum energy where the value is
very close to that of the spiral case. However, this trajectory
performs very poorly in terms of coverage as seen in Fig. 3
in the cell center. The reason is obvious when we look the
curves in Fig. 4. By accepting a slightly larger energy, we can
address this issue as can be seen in the 3rd row of Table 3 as

VOLUME

FIGURE 5. (@) T’... heat map, and (b) coverage probability heat map for
the oval path with minimum energy consumption, (Problem P2) - Curve 2

4t

-6 -4 -2 0 2 4 6
x(t) km

FIGURE 6. The oval path with minimum energy consumption (Problem
P2) - Curve 2.

well as in Figs 5 and 6. where the average power is increased
from 104 to 108 but the coverage is comparable to the spiral
case. Although the coverage is significantly improved, the
maximum value of 7},,,, is 93s which is not acceptable.
To address the issue of higher values of T,,,, we focus on
P3.a and P3.b for both oval and spiral curves, respectively. In
Table 4.a, we have shown the results corresponding to P3.a
when spiral curves are considered. As can be seen, we have
been able to reach 7,4, = 0 for all points on the cell. This
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TABLE 2. Average consumed power and 7', (in seconds) for optimal
spiral path in problem P1.

Curve | P (Watts) | Trnaz k ¢ T

98.3 50 0.77 | 4.27057 | 1000

Spiral

TABLE 3. Average consumed power and T),.. (in seconds) for optimal
oval path in problem P2.

Curve | P (Watts) | Thnax a b T
Oval 1 104 1000 | 3351 | 4000 | 1000
Oval 2 108 91 2510 | 4000 | 1000

is a great achievement but as can be seen, the corresponding
mechanical energy has increased more than 60 folds. To get
a better insight, we have plotted maximum outage time and
coverage probability heat maps for all points of the cell in
Fig. 7. In Fig. 8 we have plotted the corresponding spiral
curve. Note that we use 5 UAVs here and we should plot 5
spiral curves, but we did so for only 1 for better clarity. The
other 4 curves are exactly the same with rotational phases of
72 degrees with respect to each other. In Table 4.b, we have
shown the results corresponding to P3.b when oval curves
are considered. As can be seen, the value for energy has
been greatly improved. However, this is at the expense of
increasing 1),4, to 4.3 seconds. We have also plotted the
outage time length and coverage probability heat map in
Fig. 9 and the corresponding oval curves in Fig. 10.

The results suggest that there is a kind of trade-off
between energy minimization and maximum outage time
minimization and the oval curves can suggest a balanced
compromise in this case. However, we may need a lower
value for 7},,,, than the one provided by the oval curves. In
the next part, we will address this issue.

B. The Trade-off between Energy and T,,... Minimization
In the previous part, we observed that the oval curves can not
provide T;,,. that are arbitrarily close to 0 seconds. As such
in this subsection, we focus on P4 and using spiral curves,
we try to minimize energy while guaranteeing that 7).,
remains below a given value which is practically appealing.
In this work we set 1 second as the acceptable outage time.
The results have been reported in Table 5. As can be seen,
the power has significantly improved compared to P3.a but
still more than the case of oval curves.

TABLE 4. Optimized values of T,,,. (in seconds) in problems P3.a and
P3.b.

(a) P3.a
Curve P (Watts) Trmaz k ¢ T
Spiral | 6.49 x 103 0 0.49962 | 20.9127 | 1000
(b) P3.b
Curve P (Watts) Trmaz a b T
oval 153.1 4.3 689.45 3000.15 | 1000

x(t) km
(b)

FIGURE 7. (a) T, heat map for the optimal spiral path, and (b)
coverage probability heat map for the optimal spiral path, (Problem P3.a).
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FIGURE 8. The optimal spiral path with minimum T, ., (Problem P3.a).

The heat map for this case is quite similar to Fig. 7 and
is not reported here.* The spiral path for this case has been
reported in Fig. 11. When we compare Figs 2, §, and 11,
we can see that to minimize energy, a spiral curve with less
rotations is optimal. To provide the best coverage, the spiral
curve should have so many rotations which causes large

4Since at the best case, the oval path cannot provide Tynaqe smaller
than 1 second, we did not consider a similar scenario to P4 for oval case.
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FIGURE 9. (a) 7)., heat map for the optimal oval path, and (b) coverage
probability heat map for the optimal oval path, (Problem P3.b).
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FIGURE 10. The optimal oval path with minimum 7, .., (Problem P3.b).

energy consumption. The number of turns in Fig. 11 is less
than Fig. 8 but more than that of Fig. 2.

To better picture the trade-off between energy and 7,4,
we solve P4 for different values of 7,,,, and obtain the
minimum energy. The results have been shown in Fig. 12.
As can be seen, for larger values of T),,,, we can get
average power as low as the one for P1. On the other hand,
as Tq, tends to zero, the average power gets drastically
large, and we tend to the value already obtained in P2.

VOLUME ,

TABLE 5. Optimized value of consumed power for the optimal spiral path
in problem P4 when we set 7, < 1s.

Curve | P (Watts)

781.76 1

Trmax k ¢ T
0.54 | 10.907 | 1000

Spiral

This shows a clear trade-off between 7,,,, and average
consumed power. Using this plot, we can have a control on
the amount of 7},,,, over the cell and choose the scenario of
interest while adhering to the QoS and energy consumption
requirements imposed by the system. Moreover, for 1,4z
around 4 seconds, spiral path need considerably more power
compared to oval paths which suggests that oval paths might
be always preferred. However, we cannot always rely on oval
paths if we need extremely low values for T}, .

at 1
2f ]
=
2+ 4
4t ]
-6 -4 -2 0 2 4 6
x(t) km

FIGURE 11. The optimal spiral path with minimum energy and
Trmax < 1s, (Problem P4).
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FIGURE 12. Trade-off between T, and average consumed power.

VI. CONCLUSIONS

In this paper we addressed the issue of coverage holes and
outage time in cellular communications and proposed opti-
mal UAV paths to minimize them, taking into consideration
the amount of energy consumption. We first focused on the
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coverage holes and showed that we can deploy both spiral
and oval trajectories to minimize such holes by guaranteeing
that all points on the cell have outage probability less than
10% with average mechanical power consumption as low
as 100 watts. We then focused on outage time and aimed
to guarantee, for any point on the cell, a maximum time
length being in outage. We established a trade-off between
energy consumption and outage time minimization. Outage
time length of ‘0’ second using spiral paths is at hand at
the expense of very high average power consumption. As
for the oval curves, we showed that the required power
is much less if we can live with non-zero outage time.
Finally, for spiral paths, we provided a very informative plot
in which we consider different scenarios of average power
and T,,,, requirements. It can be seen that for the same
value of allowed T,,,, that is feasible for both types of
trajectories, oval paths outperform spiral paths in terms of
consumed energy. On the other hand, spiral paths should still
be deployed if extremely low values for 7),,, are needed,
at the expense of more energy consumption. Spectrum allo-
cation strategies can be considered as the extension of this
work. For instance, in configurations where multiple UAV's
provide overlapping coverage of a target area, an adaptive
frequency allocation scheme could be developed based on
proximity metrics. When two or more UAVs service the same
region with different distances to ground users, the system
could dynamically reuse frequency resources to the UAV
with superior channel conditions (typically the closer one),
thereby maximizing achievable data rates.
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