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ABSTRACT Coverage holes pose critical challenges to reliability of wireless networks and their quality

of service (QoS) and therefore should be avoided in the coverage design. In this paper, we address this

issue through the deployment of unmanned aerial vehicles (UAVs) as mobile base stations, and we propose

specific UAV path planning. A point is said to be in a coverage hole if the coverage probability for that

point is below a certain threshold, e.g., 90%. This definition is more suitable for applications such as

surveillance or sensor networks. In this paper, we target applications such as wireless communications

for which QoS requirement allow only for short time disconnections, i.e., minimal outage time. As such,

in addition to avoiding coverage holes, we should also make the outage time as small as possible. By

deploying a deep reinforcement learning algorithm, we find optimal UAV paths based on the two families

of trajectories: spiral and oval curves, to tackle different design considerations and constraints, in terms of

QoS, energy consumption and coverage hole avoidance. We show that for a typical point on the cell, there

is a trade-off between minimizing the maximum outage time length and consumed mechanical energy.

Our observations indicate that such a trade-off is more pronounced for spiral trajectories compared to oval

trajectories, but both of them are useful depending on the QoS and energy constraints imposed by the

system.

INDEX TERMS Coverage hole, QoS, path planning, UAV, mechanical energy, deep reinforcement learning

(DRL).

I. INTRODUCTION

A. Background and Literature Review

THE next-generation of wireless networks impose great

demands on network quality of service (QoS) and

reliability [1], [2]. One of the critical challenges which

affects the reliability is the existence of coverage holes

within a cell. Coverage holes are defined from a statistical

point of view, that is, a location on the cell for which

the coverage probability is less than a certain threshold

is said to be a coverage hole. Coverage holes are caused

by shadowing, fading effects and radio link failure (RLF).

Despite robust network-coverage planning, coverage holes

may still occur due to the heterogeneity in the network and

the randomness of the wireless channel, among others [3]–

[5]. Consequently, to ensure reliability, it is important to

effectively deal with the coverage holes. Most of the works

in the literature assume a terrestrial network system model

in which solutions are sought to eliminate or reduce the
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coverage holes’ adverse impact on the reliability of the

networks. The conventional method for identifying coverage

gaps in cellular networks involves conducting costly drive

tests paired with mathematical propagation models to create

a radio map [6]. However, this technique is unreliable. In

order to address these challenges, 3GPP has introduced the

minimization of drive tests (MDT) technique [7]. The MDT

mechanism enables the serving base stations (BS) to utilize

user equipment (UE) measurement reports as well as RLF

report to create coverage maps, aiding in the identification

of coverage holes [8]. Needless to say, MDT may still suffer

from positioning error on coverage estimation.

Due to the unpredictable nature of the operational environ-

ment, recent studies have explored an alternative approach,

i.e., utilizing machine learning (ML) algorithms, to detect

the coverage holes. The work of [9] proposes an ML-

based approach for detecting coverage holes without relying

on location information or measurement reports. In fact,

having access to the channel estimation database at the BS

can facilitate data-driven ML methods to uncover hidden

spatial patterns and detect anomalies like coverage gaps.

However, [9] does not propose any solutions to deal with the

coverage holes. The study by [10] pioneers the integration

of artificial intelligence (AI) and mobile edge computing

(MEC) within 6G-enabled IoT frameworks, presenting an

advanced solution to the challenge of coverage holes. In

such a framework, inspired by disc model and the confident

information coverage (CIC) model for sensor coverage [11],

[12], a reinforcement learning (RL) algorithm is developed

based on the movement of mobile edge nodes, enabling more

precise and energy-efficient recovery of coverage holes.

Recent advancements in unmanned aerial vehicles (UAVs)

technology have leveraged their intrinsic mobility and opera-

tional flexibility, facilitating their deployment across surveil-

lance and communication domains [13]–[15]. For the latter

application, they are also referred to as aerial base stations

(ABSs). An important issue in deploying the UAVs is their

mechanical energy consumption as it directly dictates the

total time the UAV can be on air before returning to its base

for a recharge. It has been shown in literature [16]–[18] that

the energy consumption is profoundly influenced by both

the trajectory of the traveled path and the UAV’s speed and

acceleration profile along that path. In telecommunication

applications, the energy consumption of the UAV encom-

passes both propulsion-related mechanical power for aerial

maneuvers and RF transmission power for communication

functionalities. In practice, the mechanical power has a

considerably higher share of the total energy. As such,

an energy-efficient path planning of moving UAVs should

focus more on optimizing the mechanical energy rather than

the energy used for RF communications. The analytical

framework presented in [19] establishes a rigorous closed-

form expressions for fixed-wing UAV energy consumption

for 2-D movement.

UAV platforms offer strategic solutions for addressing

coverage deficiencies through boosting the coverage of

existing terrestrial cellular networks, while simultaneously

providing emergency capacity enhancement for base stations

to accommodate the demand for ever-increasing data trans-

mission rates [20]–[23]. As such, for the UAV-assisted com-

munication networks, designing an optimal path or optimal

placement while addressing the coverage holes is of utmost

significance. The study by [24] explores the use of UAV-

based base stations for detecting coverage gaps and deliver-

ing temporary on-demand coverage. They employ Q-learning

as a trajectory planner to autonomously identify coverage

holes within a specified area. Inspired by stochastic geometry

analysis, the work of [25] proposes an RL framework for

concurrent optimization of UAV placement and antenna

beam pattern configuration, with the explicit objective of

minimizing maximum outage probability metrics.

B. Contributions

In this paper, in contrast to the existing literature, we use a

totally different approach to deal with coverage holes. Our

aim is to design a network of moving UAVs such that for

any typical point on the cell, coverage holes are avoided at

any time. In other words, we are not going to first detect

the holes and then try to position the UAV on a particular

location to avoid that hole, as our UAVs will be continuously

moving. This is beneficial as we need not to be concerned

with the dynamic nature of coverage holes any more. To

attain this goal, we utilize the framework from [26], which

suggests two types of trajectories and speed profiles: spiral

paths and oval paths. When UAVs follow these paths, they

ensure relatively uniform coverage for users at any location

within the cell.

We first design UAV trajectories which avoid coverage

holes with minimal energy consumption. Assume that we

consider a point to be a coverage hole if it has an outage

probability [27] higher than, e.g., 10%. Based on the defini-

tion, if we can maintain coverage probability of, e.g., 90%,

over all points of the cell, we have fully addressed the issue

of coverage holes. We, in fact, show in this paper that this

is possible through proper UAV path planning, where oval

paths require slightly higher energy compared to spiral paths.

Despite the above achievement, for certain QoS require-

ments, such as in wireless communications, the above sce-

nario may not be appealing. In the aforementioned scenario,

we guarantee that any typical point of the cell will not be

uncovered more than 10% of the time, i.e., outage probability

is less than 10%. Consider a time span of τ seconds, e.g.,

1000 s. This means that we may encounter a worst case

scenario with τ/10 s, e.g., 100 s, of continuous outage for

a typical point which may not be satisfying the required

QoS. As an example, the acceptable packet delay budget

for most existing services is anywhere between a fraction of

a millisecond to a few hundreds of milliseconds [28], Table

6.1.7-A, [29], Table 5.7.4-1, and [30], P. 16. As such, another
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important metric to consider is the maximum outage time for

any point on the cell, denoted by Tmax.

Accordingly, we aim to find curves that provide the

minimum value of Tmax for all points on the cell. We show

that we can achieve Tmax = 0, i.e., no outage for any point

of the cell, but at the expense of mechanical energy getting

unacceptably large when we use spiral paths. Using oval

paths, we can make a compromise, i.e., we can lower energy

consumption if we can tolerate larger than zero values for

Tmax.

Alternatively, we may want to keep Tmax for any point

of the cell below a given value and try to find a path to

guarantee such requirement, with minimum energy. This will

provide a controlled compromise between Tmax and the

consumed energy. Accordingly, for different values of Tmax

and starting from 0, we show there is a well-established

trade-off between the energy and maximum outage time

length.

To find optimal paths in all above-mentioned scenarios,

we use deep reinforcement learning (DRL) through the im-

plementation of an actor-critic DRL framework, called deep

deterministic policy gradient algorithm (DDPG) [31]. To get

closer to the optimal result, we use an improved version

of this algorithm called twin delayed deep deterministic

policy gradient (TD3) [32], which deploys two critic net-

works instead of one at the expense of more computational

complexity.

This paper is structured as follows: section II outlines the

system model and introduces essential preliminary formula-

tions. In section III, the optimization problems are proposed

to be solved by the TD3 algorithm, detailed in Section IV.

Section V presents the numerical results and conclusions are

drawn in Section V.

II. PRELIMINARIES AND SYSTEM MODEL

In this section, we explain the system model and review

the concept of the deployed trajectories, i.e., spiral, and

oval curves. Then we review the formulations for propulsion

energy consumption of fixed-wing UAVs. Finally, we clearly

define coverage holes and outage time. In this paper, we use

capital bold letters to denote vectors and small regular letters

to denote scalars.

A. Spiral Trajectories

The family of general curves below represent the trajectory

of a spiral family over the cell:

Qs(s) =
[

ρsk cos(ζs), ρsk sin(ζs)
]

, s ∈ [0, 1], (1)

where ρ is the radius of the cell, s is an arbitrary constant

i.e., 0 ≤ s ≤ 1, and k and ζ are constants that determine

the shape of the curve. Specifically, by setting ζ = 0 and

k = 1, a series of curves are generated, each corresponding

a radius of the cell. This configuration forms the radial

trajectory, representing the most straightforward trajectory

in this family.

Each UAV begins its flight from the cell centroid, moving

towards the cell edge along the path Qs(s) within τ seconds.

Upon reaching the cell edge, the UAV returns to the origin

along the same path, subsequently following the trajectory

−Qs(s) to reach the opposite side of cell edge and this

process repeats continuously.

For the i’th UAV flying on the spiral trajectory, its

instantaneous location can be determined by setting s =

2k

√

t− kτ − Ti

τ
in (1). In this setup, N UAVs start their

flights at times T1, T2, ..., TN where Ti = iτ/(N + 1), i ∈
{1, 2, ..., N}, and use rotational phase θi = 2π(i−1)/N, i ∈
{1, 2, ..., N}. In other words, for the ith UAV we have

Qsi
(t) =[xi(t), yi(t)] (2)

=

[

ρ

√

t− kτ − Ti

τ
cos

(

ζ
2k

√

t− kτ − Ti

τ
+ θi

)

, . . .

ρ

√

t− kτ − Ti

τ
sin

(

ζ
2k

√

t− kτ − Ti

τ
+ θi

)]

.

It is shown in [26] that if the above trajectories are

followed, uniform coverage is guaranteed over the cell and

the coverage probability tends to 1 as N increases.

B. Oval Trajectories

The family of general curves below represent the oval family

trajectory over the cell:

Qo(s) =
[

q cos
(π

2
s
)

, q sin
(π

2
s
)]

, s ∈ [0, 1], (3)

where q = a + (b − a)s, for any given a, b ∈ R
+, 0 ≤

a ≤ b ≤ ρ. The two constants a and b determine the shape

of oval curves and its overall characteristics. There are two

special cases of oval trajectories, namely ring and ellipse

trajectories. By setting a = b = ρ, we achieve a set of curves,

each being a circle with radius ρ. This path is called the

ring trajectory, recognized as the simplest and most intuitive

option within this family of trajectories. Another specific

case can be obtained by assigning b = ρ and 0 ≤ a ≤ ρ
which is called ellipse trajectory.

The instantaneous location of the i’th UAV on the oval

trajectory can be obtained by setting s = (t − Ti)/(
τ
4 )

in (3). In this setup, N UAVs start their flights at times

T1, T2, ..., TN where Ti = iτ/N, i ∈ {1, 2, ..., N}, with

rotational phase θi where θi = 2πi/N, i ∈ {1, 2, ..., N}.1

In other words, for the i’th UAV we have

Qoi
(t) = [xi(t), yi(t)] = (4)

[

q cos

(

π

2

(

t− Ti
τ
4

)

+ θi

)

, q sin

(

π

2

(

t− Ti
τ
4

)

+ θi

)]

,

where q = a + (b − a)(t − Ti)/
(

τ
4

)

, 0 ≤ t − Ti ≤
τ
4 , and

0 ≤ a ≤ b ≤ ρ.

1The UAV’s can start from anywhere on the curve as long as they
maintain the rotational phase difference with respect to each other.
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The extended oval trajectory Z(t) over 0 ≤ t ≤ τ can be

obtained by the reflection of Qo(t) over x-axis and y-axis

which is represented as follows:

Z(t) =



















[x(t), y(t)] 1st quadrant

[−x(t), y(t)] 2nd quadrant

[−x(t),−y(t)] 3rd quadrant

[x(t),−y(t)] 4th quadrant

(5)

C. Energy Consumption Model

For the rest of the paper, if a formulation applies to both

spiral and oval paths, instead of Qs(t) or Qo(t), we use Q(t)
to represent the path. The propulsion energy consumption of

fixed-wing UAV moving on a 2-dimensional plane is given

by [19]:

E =

∫ τ

0

c1‖V(t)‖3 +
c2
‖V(t)‖






1 +
‖A(t)‖2 − (A(t).VT

(t))2

‖V(t)‖2

g2






dt

+

∫ τ

0

mA(t).VT (t)dt, (6)

where V(t) = Q̇(t) = [ẋ(t), ẏ(t)] and A(t) = Q̈(t) =
[ẍ(t), ÿ(t)] indicate the instantaneous speed and acceleration

vectors respectively, and c1 and c2 are two constants defined

as

c1 ,
1

2
ρaCD0

S , c2 ,
2W 2

(πe0AR)ρaS
. (7)

In the above equations, W = mg represents the gravitational

force, with m denoting the UAVs mass including its payload,

and g is the gravitational acceleration. Furthermore, ρa refers

to the air density measured in kg/m3, CD0
denotes the zero-

lift drag coefficient, S indicates a reference area (e.g., the

wing area), e0 is the Oswald efficiency which accounts for

the aerodynamic efficiency of the wing, and AR denotes the

aspect ratio of the wing which influences the lift and drag

characteristics.

This provides a measure of the average power required

for the UAV’s movement over a given period. Moreover, the

sum of the 2 integrands is the instantaneous power, Pinst,

which can be written as

Pinst(t) = c1‖V(t)‖3

+
c2
‖V(t)‖






1 +
‖A(t)‖2 − (A(t).VT

(t))2

‖V(t)‖2

g2






+mA(t).VT (t).

(8)

D. Coverage Hole

For any arbitrary user location within the cellular domain,

the coverage probability Pc is defined as the probability that

the received signal-to-noise ratio (SNR) exceeds a specific

threshold γ. Mathematically, this can be expressed as:

Pc = P (SNRRx ≥ γ) . (9)

Consequently, the outage probability is obtained as 1 − Pc.

The threshold γ is determined by the system specifications,

particularly the receiver’s capability to successfully recover

data at lower SNR levels.

For a UAV flying horizontally on the trajectory Q(t) =
[x(t), y(t)]T ∈ R

2×1 at a constant altitude H , and assuming

line of sight (LoS) link 2, the received SNR can be expressed

as:

SNRRx =
γ0

H2 + ||Q(t)||2
, (10)

where we either consider Q(t) = Qs(t) for spiral paths or

Q(t) = Qo(t) for oval paths. Moreover, γ0 = β0PT /σ
2 is

the reference received signal-to-noise ratio (SNR) in which

PT denotes the transmission power, β0PT is the received

power at the reference distance d0 = 1, and σ2 is the

white Gaussian noise power. In this work, we consider a

scenario in which the UAV frequencies are orthogonal to

avoid interference. At each moment, the user is served by

the closest UAV with a given frequency. Once the user

is out of the coverage area of that UAV, it is handed-off

to another UAV with different frequency. Exploring more

complex scenarios that involve interference, e.g.., assuming

all UAVs reuse the same frequency, could be a valuable

extension of this study.

Given the above definition for coverage, a point is referred

to as a coverage hole in the literature if Pc is less than a

certain value, e.g., less than 0.9, or alternatively, the outage

probability is greater than 0.1. Even if a point is not a

coverage hole, e.g., if Pc > 0.9, for a time span of τ , the

outage time can be as high as τ(1− Pc) which may not be

acceptable in practice [28], [29], [30]. For any point of the

cell, we denote the maximum outage time as Tmax and we

either try to directly minimize it or make sure it is less than

a given threshold.

III. COVERAGE HOLE AVOIDANCE THROUGH UAV PATH

PLANNING

A. Preliminaries

As mentioned before, in the literature, a point is deemed

to be in coverage hole if the coverage probability for that

point is less than a certain threshold. In the next subsection

B, we find energy-optimized spiral and oval paths that can

provide coverage hole-free cells as will be shown in the

corresponding simulation results. However, we observe that,

the maximum outage time, Tmax, for some points might

be too high. As such, in Subsection C, using both oval

and spiral trajectories, we obtain paths with min. value

for Tmax. We will see in the simulation results that for

spiral trajectories, we can achieve Tmax = 0, for any point

at the expense of considerably higher mechanical energy

compared to Subsection B where we minimized the energy.

We also show that using oval trajectories, we can have

2It is important to note that although as we mentioned, coverage holes
are caused due to shadowing and fading effects in terrestrial networks, when
UAV’s are deployed to deal with them, we can assume LoS channels due
to their higher altitude with respect to ground users.
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smaller value of consumed energy at the expense of an

increase in minimum value of Tmax. This shows that there

might be a trade-off between the min. value of Tmax and the

consumed mechanical energy. As such in Subsection D, we

propose a framework in which we try to minimize energy

while guaranteeing a fixed value of Tmax for any point on

the cell. In simulation results, we see that there is in fact a

well-established trade-off between these 2 parameters.

B. Path Planning to Minimize Mechanical Energy

Consumption while Addressing the Coverage Probability

For the UAVs moving on the spiral trajectories with a

certain period τ , the optimal path planning problem can be

formulated as:

min
Q

s
(t)

E, (11a)

s.t. Cq : Qs(t) =

[

ρ

√

t

τ
cos(ζ

2k

√

t

τ
), ρ

√

t

τ
sin(ζ

2k

√

t

τ
)

]

.

(11b)

In this problem, Cq limits the path to a spiral path with

parameters k, ζ, with cell radius ρ and travel time τ to

provide the uniform coverage on the cell. By applying

Cq into (11a), we end up with the following optimization

problem:

P1 : min
τ,k,ζ

E(k, ζ) =

∫ τ

0

Pinst(t, τ, k, ζ)dt, (12)

where Pinst(t, τ, k, ζ) is the instantaneous power of the

UAVs moving on the spiral trajectories. We derived the

closed-form formulation for Pinst(t, τ, k, ζ) by replacing

V(t) = Q̇s(t) and A(t) = Q̈s(t) in (8) as follows:

Pinst(t, τ, k, ζ) =
1

8
c1

[

ρ2(k2 + ζ2( t
τ )

1
k

k2tτ

]
3
2

+

2c2

[

1 +
ρ2ζ2( t

τ )
1
k (k + k2 + ζ2( t

τ )
1
k )2

16k4t3g2τ(k2 + ζ2( t
τ )

1
k )

]

×

1
√

ρ2(k2 + ζ2( t
τ )

1
k )

k2tτ

+
mρ2

(

−k3 − (−1 + k)ζ2( t
τ )

1
k

)

8k3t2τ
.

(13)

Through the solution of this optimization problem, we aim

to derive the optimal parameters k, ζ, and τ that will yield

a trajectory minimizing the UAV’s energy consumption. For

the optimized path, we measure Tmax for each point within

a cell.

In the case of UAVs moving on oval trajectories, we must

solve the following path planning problem:

min
Q

o
(t)

E, (14a)

s.t. Cq : Qo(t) =

[

q cos

(

π

2

(

t
τ
4

))

, q sin

(

π

2

(

t
τ
4

))]

.

(14b)

In this problem, Cq limits the path to an oval path with

parameters a, b, with cell radius ρ and travel time τ . By

applying Cq in (14a), we end up with the following opti-

mization problem where Pinst(t, τ, a, b) is the instantaneous

power of the UAVs moving on the oval trajectories, and we

derived it by substituting V(t) = Q̇o(t) and A(t) = Q̈o(t)
into (8) as follows:

P2 : min
τ,a,b

E(a, b) =

∫ τ

0

Pinst(t, τ, a, b)dt, (15)

Pinst(t, τ, a, b) =
τ

2πq

(

c2 +
16π4q2(c2 + c1g

2q2)

g2τ4

)

,

(16)

In the above equation, q = a+ (b− a)
(

t
τ/4

)

, and 0 ≤ a ≤

b ≤ ρ.

Through the solution of this optimization problem, we

obtain the optimal values for a, b, and τ to achieve an optimal

path with minimal energy consumption. Then we measure

Tmax for each point within a cell.

C. Path Planning to Minimize Maximum Outage Time

In this subsection, we try to obtain paths with minimum

Tmax according to the following problems:

P3.a : min
Q

s
(t)

Tmax, (17a)

s.t. CQ
s
: (2), (17b)

P3.b : min
Q

o
(t)

Tmax, (18a)

s.t. CQ
o
: (4). (18b)

In P3.a, CQ
s

limits the path to a spiral path with param-

eters k, ζ, with cell radius ρ and travel time τ . Similarly, in

P3.b, CQ
o

limits the path to an oval path with parameters a,

b, with cell radius ρ and travel time τ .

D. Path Planning for Minimum Energy Consumption with

Guaranteed Maximum Outage Time

In this part, we propose a new scenario to establish a

controlled compromise between Tmax and the consumed

energy. To this end, focusing on spiral paths, we propose

the optimization problem P4 in which we minimize the

mechanical energy while guaranteeing Tmax to be lower than

a given threshold Tth for all point on the cell.

P4 : min
Q

s
(t)

E, (19a)

s.t. CQ : (2), (19b)

Ct : Tmax ≤ Tth. (19c)

Through this optimization problem, we obtain an optimal

trajectory with optimized parameters k and ζ leading to a

robust coverage planning with the minimum energy con-

sumption.
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It is worth noting that according to simulation results for

problem P3.b in which we minimize Tmax for oval path, the

minimum value is bounded away form zero in contrast to the

case with spiral path. As such, we can not demonstrate the

trade-off between Tmax and consumed energy as efficient as

spiral paths and thus, we only consider spiral paths for this

problem.

IV. DEEP REINFORCEMENT LEARNING BASED

SOLUTION

The trajectory optimization in all the proposed optimization

problems could be complicated to solve directly due to

their non-convex and non-linear objective functions and

constraints. As such, we propose a model-free DRL approach

to derive optimal paths by reformulating the problem within

the framework of a Markov decision process (MDP). MDP

can be defined as a tuple (S,A, n,Pss′ ,R), where S and

A represent the state and action spaces, respectively. Specif-

ically, sn ∈ S is the state and an ∈ A is the action at

time step n ∈ N = {1, 2, ...}. In addition, Pss′ denotes

the transition probability where Pss′ : S × A × S → [0, 1]
represents the probability of transitioning to the next state

s
′ = sn+1 upon taking action an in state sn. The reward

function R : S × A → R assigns an evaluation metric to

each state-action pair (sn,an), quantifying the optimality of

the agent’s decisions.

A. MDP reformulation

We formulate the trajectory of UAV-assisted network as

follows:

• Agent: The UAV operates as an intelligent agent, con-

tinuously interacting with its environment to derive an

optimal policy πθ, with parameter θ, that maps state

space to action space while maximizing the reward.

• State space: The state space S consists of the trajectory

parameters that define the UAV’s path. Specifically, for

a fixed τ , the UAV state flying along the spiral trajectory

with two parameters k and ζ at time step n will be

sn = [kn, ζn] and the UAV state flying along the oval

trajectory with two parameters a and b at time step n
will be sn = [an, bn].

• Action space: The action space A consists of 2-

dimensional vector an = [∆kn,∆ζn] for the spiral

trajectory and an = [∆an,∆bn]
3 for the oval trajectory,

where each component is bounded within [−1, 1]. These

values represent normalized parameter adjustments de-

termined by the agent at each decision epoch. The UAV

at state sn chooses the action an of action space which

leads to next state sn+1.

• Reward: When the UAV takes an action an in state sn,

it achieves its reward. Specifically, the reward function

associated with each optimization problem P1 and P2

3The action vector “an” (boldface) shall not be confused with “an”
that denotes the oval curve parameter.

can be characterized by energy reward, which is formu-

lated as the negative of the UAV’s energy consumption,

providing an incentive to minimize energy expenditure.

The corresponding formulations are shown in (20a) and

(20b) for P1 and P2, respectively:

Rs,E(n) =− E(n, k, ζ), (20a)

Ro,E(n) =− E(n, a, b). (20b)

The reward functions for the optimization problems

P3.a and P3.b can be characterized by the Tmax reward

as shown in (21a) and (21b), respectively:

Rs,T (n) =− Tmax(n, k, ζ), (21a)

Ro,T (n) =− Tmax(n, a, b). (21b)

This setting compels UAVs to fly along optimal trajec-

tories leading to the minimum Tmax. Finally, the reward

function regarding the optimization problem P4 can be

expressed as follows:

Rs,ET (n) = −E(n, k, ζ)−Rc(n), (22)

where the penalty term Rc(n) is used to impose the

required cap on Tmax, i.e.,

Rc(n) = λc

∑

i,j

I (Tmax(n, k, ζ) > Tth), (23)

where I(·) denotes an indicator function, which returns

1 if the condition within its argument is satisfied, and

0 otherwise. The summation is taken over Tmax corre-

sponding to all grid locations (i, j) when deploying a

spiral trajectory with parameter k and ζ at time step n.

λc is a coefficient to adjust the penalty impact.

B. The DRL Algorithm

The continuity of the UAV’s trajectory can be effectively

handled through the implementation of an actor-critic DRL

framework, specifically the DDPG, which leverages two

distinct deep neural networks (DNNs) for the approximation

of the policy and value functions independently. Let θ
represent the parameter of the DNN that defines the UAV’s

policy function, i.e., the actor network. Operating within

a deterministic policy paradigm, this parameterized actor

network maps each observed state sn to a unique, determin-

istic action an = π(sn|θ), with the objective of optimizing

the expected cumulative discounted reward trajectory. The

objective function can be written as:

J(θ) = Es∼dπ [Qπ(s, π(s|θ))] ≈ Esn∼B[Q
π(sn, π(sn|θ))],

(24)

where dπ(s) represents the stationary state distribution cor-

responding to the deterministic policy π(sn|θ), Qπ(s,a)
denotes the value (Q-value) function, defined as Qπ(s,a) =
Eπ

[
∑∞

k=0 γ
krn+k|sn = s,an = a

]

where γ is the dis-

count factor and rn denotes the immediate reward at time

step n, and B represents the replay buffer. The Q-value

Qπ(sn, π(sn|θ)) serves as an evaluation metric for the
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effectiveness of the policy π(sn|θ), i.e, the higher the Q-

value, the more preferred is the action an, leading to finding

a policy that maximizes the cumulative discounted reward.

To estimate the Q-value function, DDPG utilizes a critic

network with parameter ω, denoted as Qπ(sn,an|ω), i.e.,

Qπ(sn,an|ω) ≈ Qπ(sn, π(sn|θ)). As such J(θ) depends

on both θ and ω of the DNN parameters applied to actor

and critic networks, respectively. Additionally, to improve

training stability, DDPG utilizes target networks for both the

actor and critic, with parameters θ′ and ω′, respectively.

To find the optimal policy, we leverage the deterministic

policy gradient (DPG) theorem [31] to optimize the objective

function J(θ) with respect to the policy parameter θ. As

such, the policy gradient can be estimated as follows:

∇θJ(θ) = Esn∼B[∇aQ
π(sn,a|ω)|a=π(sn)∇θπ(sn|θ)].

(25)

The critic network’s parameters can be optimized through

temporal-difference (TD) error between the current critic

network’s Q-value estimation Qπ(sn,an|ω) and its target,

using Bellman equation: yn = rn + γQπ(sn,an|ω
′), where

an = π(sn|θ
′), rn represents the instantaneous reward and

ω′ denotes the parameter of the target critic network. Then,

the optimization of critic network parameters is achieved

through minimization of the TD error, expressed as:

L(ω) = E(sn,an,rn,sn+1)∼B[|yn −Qπ(sn,an|ω)|
2]. (26)

Through temporal difference learning, both actor and critic

networks are updated. Also, the target networks are updated

using soft updates as follows:

θ′ ← ξθ + (1− ξ)θ′, (27)

ω′ ← ξω + (1− ξ)ω′, (28)

where ξ is the soft update parameter and ξ � 1.

In the aforementioned off-policy and model-free RL ap-

proach, i.e., the DDPG algorithm, substituting a function

approximator Qπ(sn,an|ω) for the true Q-value function

Qπ(sn,an|θ) may introduce bias. This overestimation bias

in Q-value estimation can lead to sub-optimal policies, which

could eventually lead to a local optimum. This was in fact

the case when we applied it to our P4 problem, when we

obtained the optimal result through exhaustive search.

To address this issue, twin delayed deep deterministic

policy gradient (TD3) is proposed. TD3 deploys two critic

networks with parameters ω1 and ω2 and their corresponding

target networks with parameters ω′
1 and ω′

2. Then their min-

imum is applied to approximate the target Q-value function,

i.e., yn = rn+γmini=1,2 Q
π(sn+1, ãn+1|ω

′
i), where ãn+1 =

clip[π(sn+1|θ
′)+ε,−c, c], with ε ∼ N(0, σ) being the target

policy smoothing noise and c is the noise clipping limit. The

clip function limits its first input argument between second

and third inputs. Through temporal difference learning, two

critic networks will be trained by minimizing:
{

L(ω1) = E(sn,an,rn,sn+1)∼B[|yn −Qπ(sn,an|ω1)|
2],

L(ω2) = E(sn,an,rn,sn+1)∼B[|yn −Qπ(sn,an|ω2)|
2].

(29)

Similar to DDPG, TD3 uses soft updates for the target

networks: ω′
i ← ξωi + (1 − ξ)ω′

i, θ′ ← ξθ + (1 − ξ)θ′

where ξ � 1 is the soft update parameter. Although DDPG

works pretty well for other problems, i.e., P1, P2, and P3,

we used TD3 for them as well. The downside is indeed more

implementation complexity.

Algorithm 1 TD3 algorithm for trajectory optimization in

UAV-aided networks

1: Initialization:

2: Initialize the network: (ρ, τ , H , γ0, γ, Tth)
3: Initialize the UAV parameters (c1, c2,m, g)
4: procedure CALCULATE ENERGY AND Tmax

5: Create trajectories, i.e., (2) and (4); (xs, ys) ←
Qs(k, ζ, t), (xo, yo)← Qo(a, b, t)

6: Create the energy consumption model for each

trajectory, i.e., E(k, ζ) =
∫ τ

0
Eq. (13) dt, E(a, b) =

∫ τ

0
Eq. (16) dt.

7: Compute coverage probability and Tmax for each

trajectory.

8: return E(k, ζ), E(a, b), Tmax(k, ζ), Tmax(a, b).
9: end procedure

10: Initialize environment

11: Initialize critic networks with parameters ω1, ω2, i.e.,

Q(sn,an, ω1), Q(sn,an, ω2)
12: Initialize actor network π(sn, θ) with parameter θ
13: Initialize target networks: ω′

1 ← ω1, ω
′
2 ← ω2, θ

′ ← θ
14: Initialize replay buffer B, exploration noise N(0, σ)
15: Select reward function from

(Rs,E(n), Ro,E(n), Rs,T (n), Ro,T (n), Rs,ET (n)).
16: for episode = 1 to Nepisodes do

17: Receive initial states s0
18: for n = 1 to Nsteps do

19: Observe state sn

20: Obtain the trajectory Q(t)
21: Convert Q(t) into the UAV’s action

22: Select action with noise ε: an = πθ(sn|θ)+ ε,
ε ∼ N(0, σ)

23: Execute action and estimate the reward rn
24: Update state observation: sn ← sn+1

25: Record tuple (sn,an, rn, sn+1) into B
26: Randomly extract training batch of K transi-

tion (sk,ak, rk, sk+1) from B
27: ã← π(sk+1|θ

′)+ ε, ε = clip(N(0, σ), [−c, c])
28: yk ← rk+γ ·min{Q(sk+1, ã|ω′

1), Q(sk+1, ã|ω′
2)}

29: Update the actor and critic network of the UAV

30: Update target networks:

31: ω′
i ← ξωi + (1− ξ)ω′

i,

32: θ′ ← ξθ + (1− ξ)θ′

33: end for

34: end for

35: return Optimal trajectory parameters (k∗, ζ∗), or

(a∗, b∗)
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TABLE 1. SIMULATION PARAMETERS

Name of variables Value

Parameters of Network

τ : Total Flight Time 1000 s

ρ : Cell Radius 4 km

H: UAV altitude 100 m

PT : UAV Transmission

Power

10 dBm

B: Bandwidth 1 MHz

β0: Reference channel

power

-50 dB

σ2: Power Spectrum Den-

sity of the Noise

-170 dBm

γ0: Reference Received

SNR

70 dB

γ: Received SNR Thresh-

old

0.1 dB

Parameters of UAV

m: The UAV total mass 10 kg

c1: Constant Coefficient 0.00092

c2: Constant Coefficient 2250

Parameters of TD3 Algorithm

Nepisodes: Number of

episodes

3000

B: Replay buffer 10
6

K: Batch size 256

α: Actor’s learning rate 0.0003

β: Critic’s learning rate 0.0003

σ: Standard deviation of

noise

0.1

T : Target network update

period

0.005

γ: Discount factor 0.99

V. SIMULATION RESULTS

In this part, we propose the simulation results. In Table 1,

we have listed the simulation parameters that apply to all

considered scenarios. We consider N = 5 UAVs with similar

specs and they are scheduled to move on the proposed paths.

An important advantage of the proposed paths is that despite

using multiple UAV’s, it can be mathematically proven that

the chance of collision is zero, i.e., the UAV’s do not cross-

path a point at the same time. Please note that throughout this

section, instead of mechanical energy, we focus on average

power which is equal to the total energy divided by the flying

period.

It is important to note that while the proposed system

model is quite general, the reported results here are specific

to the considered system parameters in Table 1. As an

example, by changing the received SNR threshold to a higher

value, we may need to increase the number of UAVs, N , to

achieve the same coverage results. This also holds true for

the Tmax threshold. To satisfy lower values of this threshold,

the required power may become extremely large.
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FIGURE 1. (a) Tmax heat map, and (b) coverage probability heat map for

the spiral path with minimum energy consumption (Problem P1).

FIGURE 2. The optimal spiral path with minimum energy consumption

(Problem P1).

A. Performance Comparison: Energy Minimization vs.

Maximum Outage Time Minimization

In this part, we propose the results corresponding to prob-

lems P1, P2, P3.a and P3.b. Table 2 shows the optimized

values corresponding to P1 whereas Fig. 1 shows the heat

map for Tmax and coverage. Fig. 2 shows the corresponding

path for 5 UAVs. As can be seen, we have been able to

provide coverage probability above 0.9 for all points on the

cell, i.e., we have practically avoided any coverage holes.

8 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3564837

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



-4 -2 0 2 4

x(t) km

(a)

-4

-2

0

2

4

y
(t

) 
k

m

0

200

400

600

800

1000

-4 -2 0 2 4

x(t) km

(b)

-4

-2

0

2

4

y
(t

) 
k

m

0

0.2

0.4

0.6

0.8

1

FIGURE 3. (a) Tmax heat map, and (b) coverage probability heat map for

the oval path with minimum energy consumption, (Problem P2) - Curve 1.

FIGURE 4. The oval path with minimum energy consumption (Problem

P2) - Curve1.

However as can be seen in the table, the maximum value

for Tmax is 50 seconds which is not acceptable.

For the oval curves, we have shown the results for 2 cases

in Table 3. The 2nd row of the table shows the optimized

values that results in minimum energy where the value is

very close to that of the spiral case. However, this trajectory

performs very poorly in terms of coverage as seen in Fig. 3

in the cell center. The reason is obvious when we look the

curves in Fig. 4. By accepting a slightly larger energy, we can

address this issue as can be seen in the 3rd row of Table 3 as
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FIGURE 5. (a) Tmax heat map, and (b) coverage probability heat map for

the oval path with minimum energy consumption, (Problem P2) - Curve 2

FIGURE 6. The oval path with minimum energy consumption (Problem

P2) - Curve 2.

well as in Figs 5 and 6. where the average power is increased

from 104 to 108 but the coverage is comparable to the spiral

case. Although the coverage is significantly improved, the

maximum value of Tmax is 93s which is not acceptable.

To address the issue of higher values of Tmax, we focus on

P3.a and P3.b for both oval and spiral curves, respectively. In

Table 4.a, we have shown the results corresponding to P3.a

when spiral curves are considered. As can be seen, we have

been able to reach Tmax = 0 for all points on the cell. This
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TABLE 2. Average consumed power and Tmax (in seconds) for optimal

spiral path in problem P1.

Curve P (Watts) Tmax k ζ τ

Spiral 98.3 50 0.77 4.2705π 1000

TABLE 3. Average consumed power and Tmax (in seconds) for optimal

oval path in problem P2.

Curve P (Watts) Tmax a b τ

Oval 1 104 1000 3351 4000 1000

Oval 2 108 91 2510 4000 1000

is a great achievement but as can be seen, the corresponding

mechanical energy has increased more than 60 folds. To get

a better insight, we have plotted maximum outage time and

coverage probability heat maps for all points of the cell in

Fig. 7. In Fig. 8 we have plotted the corresponding spiral

curve. Note that we use 5 UAVs here and we should plot 5

spiral curves, but we did so for only 1 for better clarity. The

other 4 curves are exactly the same with rotational phases of

72 degrees with respect to each other. In Table 4.b, we have

shown the results corresponding to P3.b when oval curves

are considered. As can be seen, the value for energy has

been greatly improved. However, this is at the expense of

increasing Tmax to 4.3 seconds. We have also plotted the

outage time length and coverage probability heat map in

Fig. 9 and the corresponding oval curves in Fig. 10.

The results suggest that there is a kind of trade-off

between energy minimization and maximum outage time

minimization and the oval curves can suggest a balanced

compromise in this case. However, we may need a lower

value for Tmax than the one provided by the oval curves. In

the next part, we will address this issue.

B. The Trade-off between Energy and Tmax Minimization

In the previous part, we observed that the oval curves can not

provide Tmax that are arbitrarily close to 0 seconds. As such

in this subsection, we focus on P4 and using spiral curves,

we try to minimize energy while guaranteeing that Tmax

remains below a given value which is practically appealing.

In this work we set 1 second as the acceptable outage time.

The results have been reported in Table 5. As can be seen,

the power has significantly improved compared to P3.a but

still more than the case of oval curves.

TABLE 4. Optimized values of Tmax (in seconds) in problems P3.a and

P3.b.

(a) P3.a

Curve P (Watts) Tmax k ζ τ

Spiral 6.49× 10
3

0 0.49962 20.912π 1000

(b) P3.b

Curve P (Watts) Tmax a b τ

oval 153.1 4.3 689.45 3000.15 1000
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FIGURE 7. (a) Tmax heat map for the optimal spiral path, and (b)

coverage probability heat map for the optimal spiral path, (Problem P3.a).

FIGURE 8. The optimal spiral path with minimum Tmax (Problem P3.a).

The heat map for this case is quite similar to Fig. 7 and

is not reported here.4 The spiral path for this case has been

reported in Fig. 11. When we compare Figs 2, 8, and 11,

we can see that to minimize energy, a spiral curve with less

rotations is optimal. To provide the best coverage, the spiral

curve should have so many rotations which causes large

4Since at the best case, the oval path cannot provide Tmax smaller
than 1 second, we did not consider a similar scenario to P4 for oval case.
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FIGURE 9. (a) Tmax heat map for the optimal oval path, and (b) coverage

probability heat map for the optimal oval path, (Problem P3.b).

FIGURE 10. The optimal oval path with minimum Tmax, (Problem P3.b).

energy consumption. The number of turns in Fig. 11 is less

than Fig. 8 but more than that of Fig. 2.

To better picture the trade-off between energy and Tmax,

we solve P4 for different values of Tmax and obtain the

minimum energy. The results have been shown in Fig. 12.

As can be seen, for larger values of Tmax, we can get

average power as low as the one for P1. On the other hand,

as Tmax tends to zero, the average power gets drastically

large, and we tend to the value already obtained in P2.

TABLE 5. Optimized value of consumed power for the optimal spiral path

in problem P4 when we set Tmax < 1s.

Curve P (Watts) Tmax k ζ τ

Spiral 781.76 1 0.54 10.90π 1000

This shows a clear trade-off between Tmax and average

consumed power. Using this plot, we can have a control on

the amount of Tmax over the cell and choose the scenario of

interest while adhering to the QoS and energy consumption

requirements imposed by the system. Moreover, for Tmax

around 4 seconds, spiral path need considerably more power

compared to oval paths which suggests that oval paths might

be always preferred. However, we cannot always rely on oval

paths if we need extremely low values for Tmax.

FIGURE 11. The optimal spiral path with minimum energy and

Tmax < 1s, (Problem P4).
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FIGURE 12. Trade-off between Tmax and average consumed power.

VI. CONCLUSIONS

In this paper we addressed the issue of coverage holes and

outage time in cellular communications and proposed opti-

mal UAV paths to minimize them, taking into consideration

the amount of energy consumption. We first focused on the
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coverage holes and showed that we can deploy both spiral

and oval trajectories to minimize such holes by guaranteeing

that all points on the cell have outage probability less than

10% with average mechanical power consumption as low

as 100 watts. We then focused on outage time and aimed

to guarantee, for any point on the cell, a maximum time

length being in outage. We established a trade-off between

energy consumption and outage time minimization. Outage

time length of ‘0’ second using spiral paths is at hand at

the expense of very high average power consumption. As

for the oval curves, we showed that the required power

is much less if we can live with non-zero outage time.

Finally, for spiral paths, we provided a very informative plot

in which we consider different scenarios of average power

and Tmax requirements. It can be seen that for the same

value of allowed Tmax that is feasible for both types of

trajectories, oval paths outperform spiral paths in terms of

consumed energy. On the other hand, spiral paths should still

be deployed if extremely low values for Tmax are needed,

at the expense of more energy consumption. Spectrum allo-

cation strategies can be considered as the extension of this

work. For instance, in configurations where multiple UAVs

provide overlapping coverage of a target area, an adaptive

frequency allocation scheme could be developed based on

proximity metrics. When two or more UAVs service the same

region with different distances to ground users, the system

could dynamically reuse frequency resources to the UAV

with superior channel conditions (typically the closer one),

thereby maximizing achievable data rates.
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