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Abstract

This paper proposes a reinforcement learning-based framework for mandatory lane changing of automated vehicles in a non-
cooperative environment. The objective is to create a reinforcement learning (RL) agent that is able to perform lane-changing
maneuvers successfully and efficiently and with minimal impact on traffic flow in the target lane. For this purpose, this study
utilizes the double deep Q-learning algorithm structure, which takes relevant traffic states as input and outputs the optimal
actions (policy) for the automated vehicle. We put forward a realistic approach for dealing with this problem where, for
instance, actions selected by the automated vehicle include steering angles and acceleration/deceleration values. We show
that the RL agent is able to learn optimal policies for the different scenarios it encounters and performs the lane-changing
task safely and efficiently. This work illustrates the potential of RL as a flexible framework for developing superior and more
comprehensive lane-changing models that take into consideration multiple aspects of the road environment and seek to

improve traffic flow as a whole.
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Mandatory lane-changing (MLC) maneuvers, on any
type of road segment, are considered a challenging task
and have been identified as one of the primary sources of
shockwave formation and congestion (/). Executing safe
and efficient MLC maneuvers are even more challenging
for connected automated vehicles (CAVs), because of the
complex underlying decision-making logic, simultaneous
execution of multiple actions, and safety requirements
that CAVs have to follow. Such a complicated process
can be attributed to the dynamic nature and complexity
of road environments and traffic operations (2). For
instance, vehicles move at different speeds, perform vari-
ous maneuvers constantly, and the geometry of the road
changes continuously. In addition, drivers may behave in
a non-cooperative manner and seek to maximize self-
benefit rather than behaving in a cooperative, collectively
efficient manner.

Several lane-changing models have been proposed in
the literature. While the majority of these models are
developed for human drivers, many of them have been
modified to model the lane-changing behavior of CAVs

in various simulation platforms. Gap acceptance-based
models are among the most common approaches. In
classical gap acceptance models, vehicles make the deci-
sion on lane-changing maneuvers based on a critical gap
threshold, above which the vehicle would make the lane
change and would choose not to otherwise. Ben-Akiva
and his colleagues presented several gap acceptance mod-
els (e.g., Ahmed et al. [3], Mahmassani and Sheffi [4],
and Ramanujam [5]) by introducing an integrated frame-
work that offers a trade-off between mandatory and dis-
cretionary lane-changing considerations (6). Another
study by Abhishek et al. (7) aimed to replicate heteroge-
neous traffic conditions by incorporating constant and
variable gap models as well as consistent and inconsis-
tent driver behavior into a single model. Despite wide-
spread adoption, gap acceptance models suffer from a
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major drawback, that is, most of these models fail to
capture the impact of other drivers’ behavior (mainly
drivers in the target lane) on the lane-changing maneuver
(and associated decision-making processes to initiate a
lane-changing maneuver).

To address the aforementioned shortcoming, several
models have been proposed in the literature that include
some measures of driver behavior (before and after the
lane-changing maneuvers) and the risk associated with
such maneuvers in the modeling process. A well-known
example of such models is MOBIL (8). MOBIL builds
on previous models by incorporating both the utility of a
given lane as well as the risk associated with completing
a lane-changing maneuver, which is determined by longi-
tudinal accelerations calculated with microscopic traffic
models. Another example of such models is the lane-
changing model of Talebpour et al. (9). They introduced
a game-theory-based lane-changing model that considers
the impacts of the lane-changing maneuver on the lane-
changing vehicles as well as the vehicles directly affected
by the mancuver in the target lane (i.e., new follower).
They showed that such a framework can significantly
improve the accuracy of modeling lane-changing deci-
sions compared with gap acceptance models. Talebpour
et al.’s model was later expanded by several other stud-
ies, including a study by Kang and Rakha (/0). They uti-
lized a repeated game framework to model the evolution
of drivers’ decision-making before and during the lane-
changing maneuver. In another recent development, sev-
eral studies introduced various probabilistic approaches
to modeling lane-changing behavior. For instance, Pang
et al. (/7) presented a probabilistic lane-changing model
that takes into account past trajectory data in making
the probabilistic lane-changing decision. In a similar
approach, Park et al. (/2) built a logistic regression
model for lane-changing behavior, where the probability
distribution is based on the joint distribution of two
main variables, that is, the speed difference and the den-
sity difference.

In addition to the aforementioned models, several
studies utilized the additional information available
through CAVs and the connected driving environment
to develop more robust lane-changing models for CAVs.
Jin et al. (/3) proposed a real-time optimal lane selection
algorithm by using the information available from
connected vehicles. Zheng et al. (/4) also proposed a
cooperative lane-changing strategy in a connected and
automated vehicles environment. The strategy was
implemented by the coordination of behaviors between
merging vehicles and the cooperative vehicle on the tar-
get lane. An and Talebpour (/5) introduced a coordinate
merge algorithm based on model predictive control that
utilized vehicle-to-vehicle communications to identify the
optimal lane-changing trajectory and minimize the

impacts of the maneuver on the target lane. Kuefler et al.
(16) employed generative adversarial networks (GANs)
to predict and simulate human driving behavior, includ-
ing lane-changing maneuvers. A data-driven model
based on deep learning was proposed by Xie et al. (17)
that employs deep belief networks (DBNs) and long
short-term memory (LSTM) networks to model the lane-
changing process. Ren et al. (/8) utilized k-means cluster-
ing to classify driving style before feeding the classified
data to a neural network model. Dong et al. (/9) applied
randomized forest and back-propagation neural network
(BPNN) algorithms to obtain lane-changing characteris-
tics and apply them to vehicles equipped with coopera-
tive adaptive cruise control (CACC) to improve the
efficiency and safety of the lane-changing maneuver.

Moreover, several studies (e.g., Mukadam et al. [20],
Zhang et al. [2]], and Wang et al. [22, 23]) explored the
use of reinforcement learning (RL) to model lane-
changing maneuvers. While these RL models share cer-
tain similarities, the way environments, states, and
actions are defined may vary from one study to another.
For instance, the actions chosen by an agent (i.e., a RL
vehicle in our domain) may be discrete (move up, down,
right, left) or they may be continuous (e.g., choosing a
steering angle and an acceleration/deceleration value).
For instance, Ye et al. (24) designed the action space in
both lateral and Ilongitudinal directions. Similarly,
reward can be defined in a multitude of ways to achieve
the single or multiple tasks available for a given environ-
ment. An example of such approaches is the study by
Wang et al. (2). They created a three-part reward system,
which takes into consideration the merge success, merge
safety, and merge efficiency.

The majority of existing lane-changing models for
CAVs face certain limitations. (1) Most of these models
treat lane changing as a binary decision without model-
ing the lane-changing trajectory and its impacts on the
traffic. (2) The limited number of models that generate a
lane-changing trajectory do not consider the impact of
the lane-changing trajectory on the entire traffic stream
in their trajectory generation algorithm. Such a consider-
ation is essential for robust coordinate merge maneuvers.
(3) Lane-changing behavior may vary from one instance
to another to accommodate environment-specific require-
ments. The majority of the models do not offer the neces-
sary flexibility to endogenously account for such changes
in the lane-changing behavior. Therefore, there is a criti-
cal need to develop a generalized flexible lane-changing
model that can generate safe trajectories, while account-
ing for environment-specific challenges and the impact of
the trajectory on the entire traffic stream. RL offers a
flexible framework to account for various environment-
specific needs and to consider the entire traffic stream as
part of the reward system. Unfortunately, existing
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RL-based lane-changing models fail to provide a realistic
representation of this maneuver. Most of these models
either define the state space in a discrete manner (e.g.,
grid space for the coordinates [23]) or define the action
space in an oversimplified way (e.g., “change lane” or
“stay in current lane” [22]).

Accordingly, this paper presents a flexible RL-based
lane-changing framework, addressing the shortcomings
of previous studies. The proposed framework utilizes a
continuous state space environment, where vehicle loca-
tions are defined by their actual x—y coordinates. The
speed and heading of the automated vehicle attempting
the merge as well as the location of the immediate leader
and follower in the target lane are also included in the
state space as continuous values. In addition, the action
space is defined as pairs of acceleration/deceleration val-
ues and steering angles. While the action space is still dis-
crete, it offers a more realistic representation of vehicle
movements compared with existing studies. Note that
this additional realism comes at a huge computational
cost, since describing the movements of the CAV with a
simple “change lane” or “stay in the current lane” signifi-
cantly reduces the size of action space at each location.
Finally, It is important to mention that this study only
aims to present a framework and illustrate its capabil-
ities, rather than presenting a ready-to-apply lane-
changing model. The remainder of this paper is orga-
nized as follows: the next section presents the model
formulation and details of the proposed RL-based
model. This section is followed by an introduction to the
simulation setup, including the RL model parameters.
The simulation results and a detailed discussion on
the findings of this paper is presented next. Finally, the
paper is concluded with summary remarks and future
research needs.

Model Formulation

Double Deep Q Network

The double deep Q network (DDQN) (25) is an advance-
ment on the original deep Q network (DQN) algorithm
(26). The DQN combines Q-learning with a deep neural
network to perform predictions and make decisions. A
DQN agent can learn successful policies directly from
high-dimensional sensory inputs using end-to-end RL
(26). In the DQN algorithm, two neural networks exist:
a main network and a target network. The two networks
are initialized with random weights, where the input to
the networks are the states of the environment and the
outputs are the set of actions that can be chosen by the
agent. The main network weights are updated according
to the Bellman equation (27) and the Q values associated
with the actions. Figure 1 shows a simple illustration of
a DQN. The target network is identical in architecture to

State
S(t) Reward
R(t)

1 R(t+1)
T

1 Environment
1 S(t+1)

Figure 1. Simple illustration of the deep Q network (27).

the main network but is updated less frequently than the
main network (i.e., every N steps, the weights of the main
network are copied to the target network). This is done
to improve the stability of the learning process and helps
the algorithm converge faster by learning more effi-
ciently. The DQN also utilizes a tool called “experience
replay” to improve performance. In experience replay,
the agent’s experiences at each time step are stored in a
replay memory, which we then sample from randomly
for the Q-learning process instead of just using the cur-
rent state/action pairs that occur during simulation. On
the other hand, the DDQN was proposed by Van
Hasselt et al. (25) to address some over-estimations that
occur in the original DQN algorithm, while also improv-
ing its performance. More details on the structure of the
DDQN can be found in Van Hasselt et al. (25).

Model Parameters

The network architecture utilized in this work is a simple
fully connected deep neural network. The details of the
network architecture are shown in Figure 2. The pro-
posed network was sufficient to achieve favorable results
for the task at hand and was chosen over more complex
architectures such as convolutional neural networks
because of its computational efficiency. Note that a con-
siderable time has been spent on identifying a suitable
network structure for the lane-changing problem. Table
1 lists the hyperparameter settings for the formulated
DDQN model. We utilize a discount factor, -y, of 0.999,
ensuring that the RL agent would strongly consider
future rewards when making a decision (y = 1.0 means
that the agent considers no difference between the current
reward and future reward, i.e., the agent becomes more
farsighted [27]). We do this to give a strong account to
the final reward of finishing the task successfully, which
we will discuss in detail in later sections. A replay
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Figure 2. This study’s deep Q network architecture.

Table |I. Deep Q Network Hyperparameter Settings

Hyperparameter Value
Number of layers 2

Number of hidden units 512,512
Learning rate 0.001

Policy Epsilon-greedy
€ 1.0 — 0.05
Discount factor vy 0.999

Replay memory size 50,000
Number of episodes 10,000-50,000
Batch size 64

Activation functions RelU, linear
Optimizer Adam

memory size of 100,000 is chosen to stay within computa-
tional capacity and is shown to yield good results. Note
that larger replay memory size can significantly increase
the calibration time and delay the model convergence. As
discussed previously, smaller replay memory can result in
an undesirable memory loss about effective past actions.
Moreover, the agent is set to train for 10 million steps to
ensure convergence. The policy selected for learning is
the linear-annealed epsilon-greedy policy, where the €
value decreases linearly with the number of steps from
1.0 to 0.05. This ensures the agent explores for an ade-
quate amount of time before starting to follow the greedy
action choices, and thus guarantees optimal/near-optimal
performance. Note that the minimum ¢ is set to 0.05 to
ensure some level of exploration throughout the calibra-
tion process. This is critical to ensure that the system
does not stay within a local minimum.

Simulation Setup
Simulation Environment

Our problem is defined within a two-lane environment: a
merge lane and a main/target lane. Each lane is 4 m wide,

and the merge lane is 200 m long with a 100-m taper sec-
tion. Figure 3 illustrates the road environment designed
for the simulation experiments. No vehicles other than
the automated vehicle are present on the merge lane,
while other vehicles in the main lane are designed accord-
ing to the intelligent driver model (IDM) (28) to govern
their longitudinal motion along the road segment. Main
lane vehicles are also modeled to respond to the attempts
of the automated vehicle to merge into the target lane.
This is done by following a sigmoid cumulative distribu-
tion function that controls the probability of a trailing
vehicle to switch its leading vehicle from the IDM vehicle
ahead (old leader) to the automated vehicle (new leader),
depending on how close the automated vehicle is to the
main lane.

Reinforcement Learning Environment

The automated vehicle’s task is to merge into the target
lane safely and efficiently, and continue driving along
the target lane until a goal point is reached. The goal
point is designed to be 100m beyond the end of the
merge lane. Safety is defined as the ability of the auto-
mated vehicle to merge and navigate without crossing
the outer borders of the two lanes or colliding with a
neighboring vehicle, while efficiency is defined based on
traffic state and shockwave formation. A successful epi-
sode is achieved if the automated vehicle merges success-
fully with minimal disturbance, and proceeds to drive
safely until reaching the set goal point.

To perform the aforementioned tasks successfully,
several components need to be defined appropriately. To
begin with, a proper definition of state and action spaces
is required in order for the RL agent to be able to learn
important features and corresponding best actions. In
our study, the state space consists of the x—y coordinates
of the RL vehicle, speed and heading of the RL vehicle,
and the locations of the leading and trailing vehicles
(with respect to the automated vehicle). On the other
hand, we define the action space in a more complex man-
ner (compared with existing studies); the action space in
our environment is pairs of acceleration/deceleration val-
ues and steering angles. The acceleration/deceleration
values range among —1, 0 and 1 m/s?, while the steering
angles are either —30, 0, or 30degrees. The RL agent is
responsible for choosing the acceleration/deceleration
value as well as the steering angle for the vehicle at each
time step (), which is 0.1s in this study. This makes the
task of lane changing a continuous one, as opposed to
simpler definitions that perform the lane changing as a
one-step “turn right” or “turn left” command. In addi-
tion, we need to create a meaningful reward system that
guides the RL agent into eventually performing the task
successfully. Thus, a multi-part reward system is
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Figure 3. Road environment.
Note: AV = Automated Vehicle, i.e., our ego vehicle.

proposed to tackle this problem. The three main elements
of this reward system are a lane-cross negative reward
that the RL vehicle incurs whenever it deviates beyond
the boundaries of the two lanes, a similar negative
reward that is given for any collision that occurs during
the merging procedure, and a sizeable positive reward
that is awarded at task completion. In addition to the
main reward elements, small continuous rewards (which
occur every time step) are defined to account for addi-
tional requirements concerning efficiency. Those incre-
mental rewards include a small negative reward for every
time step the RL vehicle does not finish the task, positive
rewards that are added every time step whenever the RL
vehicle is within the borders of the target lane and is cen-
tered in the target lane, and finally a negative reward that
the RL vehicle accrues if it deviates above or below desir-
able speeds. The first three main rewards ensure a safe
lane-changing maneuver, and a well-defined task for the
RL agent, while the remaining reward elements ensure
an efficient and timely completion of the task. Table 2

Table 2. Reinforcement Learning and Road Environment Settings

Parameter Value

Number of states 6
Number of actions 9
Lane-cross reward —3000
Collision reward —3000
Merge reward +50/step
Lane centering reward +50/step
Undesirable speed reward —200/step
Noncompletion reward —20/step
Task completion reward +10,000
Acceleration/deceleration values (m/ s2) -1,0,1
Steering angle values (degrees) —30,0, 30
Time headway (s) 5,25, 1
Desired velocity (m/s) 30
Time step length (s) 0.1

presents a detailed overview of the RL and road environ-
ment parameters.

We note that the different reward values were updated
in an iterative manner as we experimented with a range
of values. For example, in earlier stages of training, we
only started with the three main reward elements, but as
we observed the behavior of the RL agent, we added sev-
eral other elements. For instance, the negative undesir-
able speed reward was added after we observed that the
RL agent was performing the merging task successfully
but then proceeded to slow down heavily to avoid colli-
sion. Similarly, multiple other reward elements were
incorporated. On the other hand, the specific values of
each reward element were chosen using trial and error. It
cannot be claimed that this is the optimal reward struc-
ture; however, this specific combination of reward values
worked for our specific problem. Other reward values
may result in comparable and potentially better results.
In addition, different scenarios may require some tweak-
ing of the reward structure to meet the objectives of those
respective scenarios.

Results and Discussion

We start by running our model in a trivial environment
that contains no vehicles on the entire roadway segment
except for the automated vehicle. This was done as a
baseline run to verify the ability of the RL agent to learn
and perform the lane-changing task successfully. Figure
4 shows the path of the RL vehicle on the two-lane road
section. It can be seen that the RL agent learns to make
the lane change as soon as possible to avoid a negative
reward and then proceeds to drive approximately in the
middle of the target lane until reaching the goal point.
Note that the deviation from the center of the lane is
about * 0.5 m. Random lateral oscillations in the vehi-
cle’s movement can also be seen, which is a product of
the inherent randomness of RL (minimum ¢ is set to
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Figure 4. Reinforcement learning vehicle path—empty
environment.

0.05, thus at least 5% of vehicle actions are random
throughout the training process).

After verifying the ability of the RL agent to learn
through the trivial case, we explore three main cases with
IDM vehicles in the main lane: (1) 5-s time headway; (2)
2.5-s time headway; and (3) 1-s time headway. To make
our problem more challenging, and to test the scalability
of the model proposed, we change the initialization loca-
tion of the RL vehicle in each scenario. To that end, the
RL vehicle is initialized at 450 m in the 5-s headway sce-
nario, and at 225 and 90 m for the 2.5- and 1-s scenarios,
respectively. The general setup and length of segments
remain unchanged. Starting with the 5 s time headway
simulation, we only needed to train the model for
approximately 10,000 episodes in order for the model to
converge and learn optimal policy for this problem.
Figure 5a presents the reward values during the training
process. It can be noted that the curve reaches a near-
plateau state toward the end of the training process,
while at earlier steps, mostly negative rewards are
observed because of high randomness at that phase
(exploration phase). Figure 5, b—e, shows the ability of
the RL vehicle to make the lane-changing maneuver
without too much effort and without causing distur-
bances in the target lane. Similar to the empty environ-
ment scenario, we can see that the RL vehicle does not
strictly remain in the middle of the target lane, which is
expected since a slight randomness is inherent in the sys-
tem and in the way the problem is set up. However, the
deviation from the center of the lane is about = 0.5m. It
should also be noted that scale variance in Figure Se
makes the lateral movements of the automated vehicle
after making the lane change seem unrealistic. It is noted
that slight smoothing was applied to the speed profiles of
the RL vehicle in the three scenarios to account for the

variability in acceleration/deceleration choices taken by
the RL agent, which cause the speed profiles to be some-
what non-smooth and would possibly result in an
uncomfortable experience for the passenger. We argue
that such smoothing may be advantageous to apply to
the model to improve the ride experience. However, of
course, we note that further investigation of the effects
of such smoothing on the actual operations needs to be
considered.

Subsequently, we train our model for the 2.5-s time
headway scenario. It can be seen in Figure 6a that the
training is converging to near-optimal reward values.
However, while the 5-s scenario required around 10,000
episodes to train, it is shown here that more than 35,000
episodes were required. On the other hand, as observed
in the rest of the figures, the RL vehicle can be seen to be
performing the task of lane changing in this scenario
quite well. Specifically, the speed and acceleration pro-
files in Figure 6, b and c, illustrates that the RL vehicle
had minimal impact on main lane traffic and that even
the vehicle directly behind it (i.e., IDM-2) was almost
unaffected by the merging maneuver. Note that the
abrupt changes in the acceleration of this vehicle are in
response to the abrupt changes in RL vehicles’ accelera-
tion (because of discrete action—acceleration value—
space). We also show here, as a representative example,
the steering profile for the RL vehicle in Figure 6f. We
can see that in the early steps of the task, the RL vehicle
mostly chooses a steering angle of +30degrees, which
corresponds to turning left and quickly completing the
merge maneuver. This is followed by —30 degrees which
corresponds to correcting its trajectory to follow the
vehicles in the main lane after completing the merge
maneuver. Finally, the steering angle profile can be seen
to nearly converge to 0 degrees. The steering angle profile
was smoothed because the discrete nature of the action
space forces the RL agent to jump between —30, 0, + 30,
while a smoothed profile shows the trend of actions
taken by the agent. Note that the steering angle profile is
consistent with the RL vehicle path shown in Figure 6e
and is similar in other scenarios.

Finally, we explore the case of 1-s time headway
between the vehicles and test the ability of the RL agent
to learn the proper actions needed to perform the mer-
ging task in this challenging scenario. Figure 7a shows
the trend of the reward gained during the training pro-
cess. In this case, more steps are required until the reward
per episode starts stabilizing and converging to the opti-
mal value after yielding a negative reward for a signifi-
cant number of episodes. In order for the RL agent to
learn to perform the task successfully within this more
challenging scenario, we trained the model for approxi-
mately 50,000 episodes, which explains the steadier trend
when compared with the previous scenario. Figure 7 also
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Figure 5. The 5-s headway scenario: (a) training reward; (b) vehicle trajectories; (c) speed profiles*; (d) acceleration profiles; (e)
reinforcement learning (RL) vehicle path.

Note: IDM = intelligent driver model.

*The speed profile of the RL vehicle appears to fall short because smoothing was applied to it.

shows the vehicle trajectories, speed profiles, acceleration time headway between all the vehicles, the IDM directs
profiles, and the RL vehicle path in the 1-s time headway all the vehicles (except the leader—IDM-5) to slow down
scenario. It can be observed that because of the small  for a portion of time at the beginning of the simulation
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Figure 6. The 2.5-s headway scenario: (a) training reward; (b) vehicle trajectories; (c) speed profiles*; (d) acceleration profiles; (e)
reinforcement learning (RL) vehicle path; (f) steering angle profile*.

Note: IDM = intelligent driver model.

*The speed and steering angle profiles of the RL vehicle appear to fall short because smoothing was applied to them.

until an equilibrium headway starts forming between  be seen that the RL vehicle learns to conduct the lane-
vehicles. This happens because the desirable time head- changing maneuver with minimal impact on the traffic
way used for the IDM was set to 1.5s. In addition, it can stream, which can be observed from the speed profiles
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Figure 7. The |-s headway scenario: (a) training reward; (b) vehicle trajectories; (c) speed profiles*; (d) acceleration profiles; (e)

reinforcement learning (RL) vehicle path.
Note: IDM = intelligent driver model.

*The speed profile of the RL vehicle appears to fall short because smoothing was applied to it.

(Figure 7b). It can also be seen that the RL vehicle decele-
rates more gradually relative to neighboring vehicles, and
maintains a higher speed that results in controlling the

shockwave propagation. However, despite a controlled
deceleration of the RL vehicle, because of the very small
time headway in the target lane, the vehicles directly
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Figure 8. Alternative |-s headway scenario: (a) reinforcement learning (RL) vehicle path; (b) vehicle trajectories.

Note: IDM = intelligent driver model.

affected by the lane changing show significant decelera-
tion values for a very short period of time. Note that
such a large deceleration can be avoided by replacing
IDM vehicles with a more robust platooning algorithm
(e.g., the MPC-based model of An and Talebpour [/5]).

Further simulation runs and exploration of this sce-
nario reveals an interesting behavior that the RL agent
occasionally learns to perform on its own. Figure 8a
shows that because of the small time window the RL
vehicle has to complete the lane-changing movement
within, it learns to navigate longer through the merge
lane before taking the decision to overtake its leading
vehicle and making the lane-changing maneuver in a slot
ahead of its starting position (with respect to the pla-
toon). The overlap in the trajectories between the RL
vehicle and the vehicle ahead (IDM-3) is not a sign of col-
lision. In fact, each vehicle is moving in its own respective
lane (only the longitudinal position is plotted here) and it
is an overtaking maneuver, which can be verified by
Figure 8b. This figure shows that the RL vehicle actually
remains within the merge lane well beyond the overlap
point of approximately 200 m.

While the presented results seem promising and can
certainly be improved by fine-tuning the reward function
and hyper parameters, the outcome of calibration is not
always satisfactory (mainly because of the randomness
involved in the action selection mechanism). Accordingly,
we also show hereafter that some disadvantages exist with
applying a RL approach to model the lane-changing
behavior. Figure 9 shows one of the simulation runs for
the RL vehicle. It can be seen that after completing a suc-
cessful lane change, the agent randomly decides to start
turning right and almost leaves the target lane before
finally swaying back up again and finishing the task.

While the RL agent did perform the task successfully and
managed to gain a favorable reward for its actions, it is
apparent that such behavior is not desirable and has no
reason to occur in a realistic setting. Alternatively, while
most runs on the 5-s scenario showed no impact of the
lane-changing maneuver on the main lane, in some cases,
the RL vehicle makes the decision to slow down, which
ultimately slows down the whole stream of traffic, even
though by looking at the vehicle path alone, one would
expect the RL vehicle to be performing better. Figure 10,
a and b, illustrates the aforementioned case.

In addition to the aforementioned challenges, several
other issues were faced during the training and testing
phases of the RL model. For instance, some runs resulted
in falling into local minima that at first glance gave the
impression that the model was converging. However, on
further examination and visualization of the vehicle path
and trajectory, it was found that the RL vehicle was
learning a sub-optimal policy and, in reality, was not
achieving the task originally described. In addition, sub-
stantial computational capacity is required to run the
simulation and train the model for a sufficient amount of
time. While we sometimes selected the number of training
steps to be in excess of 50,000 episodes, earlier stages of
training were run with much fewer steps. That resulted in
a wider range of randomness and variance in the results,
which required increasing the number of steps until a
more stable model was produced. In other words, most
of the above challenges were solved by providing the
right balance between exploring the environment and
exploiting the findings from previous experiments.

On the other hand, another critical aspect to deep RL
models is training initialization and the randomness in
some parameter choices. While most parameters can
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Figure 9. Case |: unsatisfactory vehicle path.

have a solid mathematical reasoning behind their selec-
tion, there can still exist some trial and error. For
instance, our final choice of 0.999 for the discount factor,
v, was made after several trials of values ranging between
0.70 and 1.0. Our choice of 0.999 ultimately provided the
most favorable results among the different scenarios
explored. This may be the case since we explicitly define
a “task success” reward, which needs to be accounted for
somewhat significantly to guide the agent toward finish-
ing the task successfully. Note that in other scenarios
and problem definitions, such an end-of-task reward
might not exist, and thus, a lower discount factor might
become a better choice. Alternatively, the decay method
for € can also result in different outcomes. We have
selected a linearly decaying epsilon; however, other meth-
ods such as step decay may have different outcomes,

such as faster or slower convergence of the model. This is
essential, as we have discussed earlier, where the model
could converge to undesirable local minima. It is also
worth mentioning that for some scenarios, it may be
infeasible (a non-convex setting) or the deep RL model
may be unable to find the global optimal solution for the
problem. While it may reach near-optimal results, in
some real-world situations, some near-optimal solutions
may not perform reasonably. This was apparent in many
instances of our training and testing procedure, where
the RL agent, for example, would perform the task of
lane changing successfully but would continue to collide
into nearby vehicles. Accordingly, it is critical to capture
such instances that may lead to catastrophic outcomes in
a real-world setting. Note that the reward setup also
plays an important role since, for instance, the RL agent
may be achieving a higher reward for completing the lane
change while it may not care about the penalty of
colliding.

Conclusion and Future Work

We proposed a deep RL-based algorithm utilizing the
DDQN for automated vehicle merging in a decentralized
non-cooperative manner. The proposed approach utilizes
a continuous state space and more realistic action space
compared with previous studies. For the RL agent, we
defined a six-element state space consisting of the x—y
coordinates of the RL vehicle, the speed and heading of
the RL vehicle, and the locations of the leading and trail-
ing vehicles on the target lane. We also defined the action
space in a more realistic manner than before where the
model has to choose between nine different action pairs
at each time step. Each action pair consists of a combina-
tion of an acceleration/deceleration value (—1, 0, or
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Figure 10. Case 2: unsatisfactory vehicle trajectories: (a) reinforcement learning (RL) vehicle path; (b) vehicle trajectories.

Note: IDM = intelligent driver model.
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1 m/s?) and a steering angle value (—30, 0, or 30 degrees).
Therefore, we take the task of lane changing one step
closer to realism by letting the RL agent choose its action
every time step (i.e., 0.1s) and move along the lanes con-
tinuously, while monitoring its location and the locations
of neighboring vehicles. We demonstrate the model’s
ability to learn the proper actions it requires to perform
the lane-changing maneuver under different circum-
stances and scenarios. Finally, we propose a reward sys-
tem that allows the RL agent to perform the task in a
timely and efficient manner.

Incorporating additional components to the reward
structure to fine-tune the RL vehicle behavior and includ-
ing the impacts of the RL vehicle on the entire traffic
stream as part of the decision-making have been left for
future research.
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