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Abstract

This paper proposes a reinforcement learning-based framework for mandatory lane changing of automated vehicles in a non-
cooperative environment. The objective is to create a reinforcement learning (RL) agent that is able to perform lane-changing

maneuvers successfully and efficiently and with minimal impact on traffic flow in the target lane. For this purpose, this study

utilizes the double deep Q-learning algorithm structure, which takes relevant traffic states as input and outputs the optimal
actions (policy) for the automated vehicle. We put forward a realistic approach for dealing with this problem where, for

instance, actions selected by the automated vehicle include steering angles and acceleration/deceleration values. We show

that the RL agent is able to learn optimal policies for the different scenarios it encounters and performs the lane-changing
task safely and efficiently. This work illustrates the potential of RL as a flexible framework for developing superior and more

comprehensive lane-changing models that take into consideration multiple aspects of the road environment and seek to

improve traffic flow as a whole.
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Mandatory lane-changing (MLC) maneuvers, on any

type of road segment, are considered a challenging task

and have been identified as one of the primary sources of

shockwave formation and congestion (1). Executing safe

and efficient MLC maneuvers are even more challenging

for connected automated vehicles (CAVs), because of the

complex underlying decision-making logic, simultaneous

execution of multiple actions, and safety requirements

that CAVs have to follow. Such a complicated process

can be attributed to the dynamic nature and complexity

of road environments and traffic operations (2). For

instance, vehicles move at different speeds, perform vari-

ous maneuvers constantly, and the geometry of the road

changes continuously. In addition, drivers may behave in

a non-cooperative manner and seek to maximize self-

benefit rather than behaving in a cooperative, collectively

efficient manner.

Several lane-changing models have been proposed in

the literature. While the majority of these models are

developed for human drivers, many of them have been

modified to model the lane-changing behavior of CAVs

in various simulation platforms. Gap acceptance-based

models are among the most common approaches. In

classical gap acceptance models, vehicles make the deci-

sion on lane-changing maneuvers based on a critical gap

threshold, above which the vehicle would make the lane

change and would choose not to otherwise. Ben-Akiva

and his colleagues presented several gap acceptance mod-

els (e.g., Ahmed et al. [3], Mahmassani and Sheffi [4],

and Ramanujam [5]) by introducing an integrated frame-

work that offers a trade-off between mandatory and dis-

cretionary lane-changing considerations (6). Another

study by Abhishek et al. (7) aimed to replicate heteroge-

neous traffic conditions by incorporating constant and

variable gap models as well as consistent and inconsis-

tent driver behavior into a single model. Despite wide-

spread adoption, gap acceptance models suffer from a
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major drawback, that is, most of these models fail to

capture the impact of other drivers’ behavior (mainly

drivers in the target lane) on the lane-changing maneuver

(and associated decision-making processes to initiate a

lane-changing maneuver).

To address the aforementioned shortcoming, several

models have been proposed in the literature that include

some measures of driver behavior (before and after the

lane-changing maneuvers) and the risk associated with

such maneuvers in the modeling process. A well-known

example of such models is MOBIL (8). MOBIL builds

on previous models by incorporating both the utility of a

given lane as well as the risk associated with completing

a lane-changing maneuver, which is determined by longi-

tudinal accelerations calculated with microscopic traffic

models. Another example of such models is the lane-

changing model of Talebpour et al. (9). They introduced

a game-theory-based lane-changing model that considers

the impacts of the lane-changing maneuver on the lane-

changing vehicles as well as the vehicles directly affected

by the maneuver in the target lane (i.e., new follower).

They showed that such a framework can significantly

improve the accuracy of modeling lane-changing deci-

sions compared with gap acceptance models. Talebpour

et al.’s model was later expanded by several other stud-

ies, including a study by Kang and Rakha (10). They uti-

lized a repeated game framework to model the evolution

of drivers’ decision-making before and during the lane-

changing maneuver. In another recent development, sev-

eral studies introduced various probabilistic approaches

to modeling lane-changing behavior. For instance, Pang

et al. (11) presented a probabilistic lane-changing model

that takes into account past trajectory data in making

the probabilistic lane-changing decision. In a similar

approach, Park et al. (12) built a logistic regression

model for lane-changing behavior, where the probability

distribution is based on the joint distribution of two

main variables, that is, the speed difference and the den-

sity difference.

In addition to the aforementioned models, several

studies utilized the additional information available

through CAVs and the connected driving environment

to develop more robust lane-changing models for CAVs.

Jin et al. (13) proposed a real-time optimal lane selection

algorithm by using the information available from

connected vehicles. Zheng et al. (14) also proposed a

cooperative lane-changing strategy in a connected and

automated vehicles environment. The strategy was

implemented by the coordination of behaviors between

merging vehicles and the cooperative vehicle on the tar-

get lane. An and Talebpour (15) introduced a coordinate

merge algorithm based on model predictive control that

utilized vehicle-to-vehicle communications to identify the

optimal lane-changing trajectory and minimize the

impacts of the maneuver on the target lane. Kuefler et al.

(16) employed generative adversarial networks (GANs)

to predict and simulate human driving behavior, includ-

ing lane-changing maneuvers. A data-driven model

based on deep learning was proposed by Xie et al. (17)

that employs deep belief networks (DBNs) and long

short-term memory (LSTM) networks to model the lane-

changing process. Ren et al. (18) utilized k-means cluster-

ing to classify driving style before feeding the classified

data to a neural network model. Dong et al. (19) applied

randomized forest and back-propagation neural network

(BPNN) algorithms to obtain lane-changing characteris-

tics and apply them to vehicles equipped with coopera-

tive adaptive cruise control (CACC) to improve the

efficiency and safety of the lane-changing maneuver.

Moreover, several studies (e.g., Mukadam et al. [20],

Zhang et al. [21], and Wang et al. [22, 23]) explored the

use of reinforcement learning (RL) to model lane-

changing maneuvers. While these RL models share cer-

tain similarities, the way environments, states, and

actions are defined may vary from one study to another.

For instance, the actions chosen by an agent (i.e., a RL

vehicle in our domain) may be discrete (move up, down,

right, left) or they may be continuous (e.g., choosing a

steering angle and an acceleration/deceleration value).

For instance, Ye et al. (24) designed the action space in

both lateral and longitudinal directions. Similarly,

reward can be defined in a multitude of ways to achieve

the single or multiple tasks available for a given environ-

ment. An example of such approaches is the study by

Wang et al. (2). They created a three-part reward system,

which takes into consideration the merge success, merge

safety, and merge efficiency.

The majority of existing lane-changing models for

CAVs face certain limitations. (1) Most of these models

treat lane changing as a binary decision without model-

ing the lane-changing trajectory and its impacts on the

traffic. (2) The limited number of models that generate a

lane-changing trajectory do not consider the impact of

the lane-changing trajectory on the entire traffic stream

in their trajectory generation algorithm. Such a consider-

ation is essential for robust coordinate merge maneuvers.

(3) Lane-changing behavior may vary from one instance

to another to accommodate environment-specific require-

ments. The majority of the models do not offer the neces-

sary flexibility to endogenously account for such changes

in the lane-changing behavior. Therefore, there is a criti-

cal need to develop a generalized flexible lane-changing

model that can generate safe trajectories, while account-

ing for environment-specific challenges and the impact of

the trajectory on the entire traffic stream. RL offers a

flexible framework to account for various environment-

specific needs and to consider the entire traffic stream as

part of the reward system. Unfortunately, existing
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RL-based lane-changing models fail to provide a realistic

representation of this maneuver. Most of these models

either define the state space in a discrete manner (e.g.,

grid space for the coordinates [23]) or define the action

space in an oversimplified way (e.g., ‘‘change lane’’ or

‘‘stay in current lane’’ [22]).

Accordingly, this paper presents a flexible RL-based

lane-changing framework, addressing the shortcomings

of previous studies. The proposed framework utilizes a

continuous state space environment, where vehicle loca-

tions are defined by their actual x–y coordinates. The

speed and heading of the automated vehicle attempting

the merge as well as the location of the immediate leader

and follower in the target lane are also included in the

state space as continuous values. In addition, the action

space is defined as pairs of acceleration/deceleration val-

ues and steering angles. While the action space is still dis-

crete, it offers a more realistic representation of vehicle

movements compared with existing studies. Note that

this additional realism comes at a huge computational

cost, since describing the movements of the CAV with a

simple ‘‘change lane’’ or ‘‘stay in the current lane’’ signifi-

cantly reduces the size of action space at each location.

Finally, It is important to mention that this study only

aims to present a framework and illustrate its capabil-

ities, rather than presenting a ready-to-apply lane-

changing model. The remainder of this paper is orga-

nized as follows: the next section presents the model

formulation and details of the proposed RL-based

model. This section is followed by an introduction to the

simulation setup, including the RL model parameters.

The simulation results and a detailed discussion on

the findings of this paper is presented next. Finally, the

paper is concluded with summary remarks and future

research needs.

Model Formulation

Double Deep Q Network

The double deep Q network (DDQN) (25) is an advance-

ment on the original deep Q network (DQN) algorithm

(26). The DQN combines Q-learning with a deep neural

network to perform predictions and make decisions. A

DQN agent can learn successful policies directly from

high-dimensional sensory inputs using end-to-end RL

(26). In the DQN algorithm, two neural networks exist:

a main network and a target network. The two networks

are initialized with random weights, where the input to

the networks are the states of the environment and the

outputs are the set of actions that can be chosen by the

agent. The main network weights are updated according

to the Bellman equation (27) and the Q values associated

with the actions. Figure 1 shows a simple illustration of

a DQN. The target network is identical in architecture to

the main network but is updated less frequently than the

main network (i.e., every N steps, the weights of the main

network are copied to the target network). This is done

to improve the stability of the learning process and helps

the algorithm converge faster by learning more effi-

ciently. The DQN also utilizes a tool called ‘‘experience

replay’’ to improve performance. In experience replay,

the agent’s experiences at each time step are stored in a

replay memory, which we then sample from randomly

for the Q-learning process instead of just using the cur-

rent state/action pairs that occur during simulation. On

the other hand, the DDQN was proposed by Van

Hasselt et al. (25) to address some over-estimations that

occur in the original DQN algorithm, while also improv-

ing its performance. More details on the structure of the

DDQN can be found in Van Hasselt et al. (25).

Model Parameters

The network architecture utilized in this work is a simple

fully connected deep neural network. The details of the

network architecture are shown in Figure 2. The pro-

posed network was sufficient to achieve favorable results

for the task at hand and was chosen over more complex

architectures such as convolutional neural networks

because of its computational efficiency. Note that a con-

siderable time has been spent on identifying a suitable

network structure for the lane-changing problem. Table

1 lists the hyperparameter settings for the formulated

DDQN model. We utilize a discount factor, g, of 0.999,

ensuring that the RL agent would strongly consider

future rewards when making a decision (g= 1:0 means

that the agent considers no difference between the current

reward and future reward, i.e., the agent becomes more

farsighted [27]). We do this to give a strong account to

the final reward of finishing the task successfully, which

we will discuss in detail in later sections. A replay

Figure 1. Simple illustration of the deep Q network (27).
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memory size of 100,000 is chosen to stay within computa-

tional capacity and is shown to yield good results. Note

that larger replay memory size can significantly increase

the calibration time and delay the model convergence. As

discussed previously, smaller replay memory can result in

an undesirable memory loss about effective past actions.

Moreover, the agent is set to train for 10million steps to

ensure convergence. The policy selected for learning is

the linear-annealed epsilon-greedy policy, where the e

value decreases linearly with the number of steps from

1.0 to 0.05. This ensures the agent explores for an ade-

quate amount of time before starting to follow the greedy

action choices, and thus guarantees optimal/near-optimal

performance. Note that the minimum e is set to 0.05 to

ensure some level of exploration throughout the calibra-

tion process. This is critical to ensure that the system

does not stay within a local minimum.

Simulation Setup

Simulation Environment

Our problem is defined within a two-lane environment: a

merge lane and a main/target lane. Each lane is 4m wide,

and the merge lane is 200m long with a 100-m taper sec-

tion. Figure 3 illustrates the road environment designed

for the simulation experiments. No vehicles other than

the automated vehicle are present on the merge lane,

while other vehicles in the main lane are designed accord-

ing to the intelligent driver model (IDM) (28) to govern

their longitudinal motion along the road segment. Main

lane vehicles are also modeled to respond to the attempts

of the automated vehicle to merge into the target lane.

This is done by following a sigmoid cumulative distribu-

tion function that controls the probability of a trailing

vehicle to switch its leading vehicle from the IDM vehicle

ahead (old leader) to the automated vehicle (new leader),

depending on how close the automated vehicle is to the

main lane.

Reinforcement Learning Environment

The automated vehicle’s task is to merge into the target

lane safely and efficiently, and continue driving along

the target lane until a goal point is reached. The goal

point is designed to be 100m beyond the end of the

merge lane. Safety is defined as the ability of the auto-

mated vehicle to merge and navigate without crossing

the outer borders of the two lanes or colliding with a

neighboring vehicle, while efficiency is defined based on

traffic state and shockwave formation. A successful epi-

sode is achieved if the automated vehicle merges success-

fully with minimal disturbance, and proceeds to drive

safely until reaching the set goal point.

To perform the aforementioned tasks successfully,

several components need to be defined appropriately. To

begin with, a proper definition of state and action spaces

is required in order for the RL agent to be able to learn

important features and corresponding best actions. In

our study, the state space consists of the x–y coordinates

of the RL vehicle, speed and heading of the RL vehicle,

and the locations of the leading and trailing vehicles

(with respect to the automated vehicle). On the other

hand, we define the action space in a more complex man-

ner (compared with existing studies); the action space in

our environment is pairs of acceleration/deceleration val-

ues and steering angles. The acceleration/deceleration

values range among 21, 0 and 1m=s2, while the steering
angles are either 230, 0, or 30 degrees. The RL agent is

responsible for choosing the acceleration/deceleration

value as well as the steering angle for the vehicle at each

time step (t), which is 0.1 s in this study. This makes the

task of lane changing a continuous one, as opposed to

simpler definitions that perform the lane changing as a

one-step ‘‘turn right’’ or ‘‘turn left’’ command. In addi-

tion, we need to create a meaningful reward system that

guides the RL agent into eventually performing the task

successfully. Thus, a multi-part reward system is

Figure 2. This study’s deep Q network architecture.

Table 1. Deep Q Network Hyperparameter Settings

Hyperparameter Value

Number of layers 2
Number of hidden units 512, 512
Learning rate 0.001
Policy Epsilon-greedy
e 1.0! 0.05
Discount factor g 0.999
Replay memory size 50,000
Number of episodes 10,000–50,000
Batch size 64
Activation functions ReLU, linear
Optimizer Adam
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proposed to tackle this problem. The three main elements

of this reward system are a lane-cross negative reward

that the RL vehicle incurs whenever it deviates beyond

the boundaries of the two lanes, a similar negative

reward that is given for any collision that occurs during

the merging procedure, and a sizeable positive reward

that is awarded at task completion. In addition to the

main reward elements, small continuous rewards (which

occur every time step) are defined to account for addi-

tional requirements concerning efficiency. Those incre-

mental rewards include a small negative reward for every

time step the RL vehicle does not finish the task, positive

rewards that are added every time step whenever the RL

vehicle is within the borders of the target lane and is cen-

tered in the target lane, and finally a negative reward that

the RL vehicle accrues if it deviates above or below desir-

able speeds. The first three main rewards ensure a safe

lane-changing maneuver, and a well-defined task for the

RL agent, while the remaining reward elements ensure

an efficient and timely completion of the task. Table 2

presents a detailed overview of the RL and road environ-

ment parameters.

We note that the different reward values were updated

in an iterative manner as we experimented with a range

of values. For example, in earlier stages of training, we

only started with the three main reward elements, but as

we observed the behavior of the RL agent, we added sev-

eral other elements. For instance, the negative undesir-

able speed reward was added after we observed that the

RL agent was performing the merging task successfully

but then proceeded to slow down heavily to avoid colli-

sion. Similarly, multiple other reward elements were

incorporated. On the other hand, the specific values of

each reward element were chosen using trial and error. It

cannot be claimed that this is the optimal reward struc-

ture; however, this specific combination of reward values

worked for our specific problem. Other reward values

may result in comparable and potentially better results.

In addition, different scenarios may require some tweak-

ing of the reward structure to meet the objectives of those

respective scenarios.

Results and Discussion

We start by running our model in a trivial environment

that contains no vehicles on the entire roadway segment

except for the automated vehicle. This was done as a

baseline run to verify the ability of the RL agent to learn

and perform the lane-changing task successfully. Figure

4 shows the path of the RL vehicle on the two-lane road

section. It can be seen that the RL agent learns to make

the lane change as soon as possible to avoid a negative

reward and then proceeds to drive approximately in the

middle of the target lane until reaching the goal point.

Note that the deviation from the center of the lane is

about 6 0:5 m. Random lateral oscillations in the vehi-

cle’s movement can also be seen, which is a product of

the inherent randomness of RL (minimum e is set to

Figure 3. Road environment.

Note: AV = Automated Vehicle, i.e., our ego vehicle.

Table 2. Reinforcement Learning and Road Environment Settings

Parameter Value

Number of states 6
Number of actions 9
Lane-cross reward 23000
Collision reward 23000
Merge reward +50/step
Lane centering reward +50/step
Undesirable speed reward 2200/step
Noncompletion reward 220/step
Task completion reward +10,000
Acceleration/deceleration values (m/ s2) 21, 0, 1
Steering angle values (degrees) 230, 0, 30
Time headway (s) 5, 2.5, 1
Desired velocity (m/s) 30
Time step length (s) 0.1
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0.05, thus at least 5% of vehicle actions are random

throughout the training process).

After verifying the ability of the RL agent to learn

through the trivial case, we explore three main cases with

IDM vehicles in the main lane: (1) 5-s time headway; (2)

2.5-s time headway; and (3) 1-s time headway. To make

our problem more challenging, and to test the scalability

of the model proposed, we change the initialization loca-

tion of the RL vehicle in each scenario. To that end, the

RL vehicle is initialized at 450m in the 5-s headway sce-

nario, and at 225 and 90m for the 2.5- and 1-s scenarios,

respectively. The general setup and length of segments

remain unchanged. Starting with the 5 s time headway

simulation, we only needed to train the model for

approximately 10,000 episodes in order for the model to

converge and learn optimal policy for this problem.

Figure 5a presents the reward values during the training

process. It can be noted that the curve reaches a near-

plateau state toward the end of the training process,

while at earlier steps, mostly negative rewards are

observed because of high randomness at that phase

(exploration phase). Figure 5, b–e, shows the ability of

the RL vehicle to make the lane-changing maneuver

without too much effort and without causing distur-

bances in the target lane. Similar to the empty environ-

ment scenario, we can see that the RL vehicle does not

strictly remain in the middle of the target lane, which is

expected since a slight randomness is inherent in the sys-

tem and in the way the problem is set up. However, the

deviation from the center of the lane is about 6 0:5m. It

should also be noted that scale variance in Figure 5e

makes the lateral movements of the automated vehicle

after making the lane change seem unrealistic. It is noted

that slight smoothing was applied to the speed profiles of

the RL vehicle in the three scenarios to account for the

variability in acceleration/deceleration choices taken by

the RL agent, which cause the speed profiles to be some-

what non-smooth and would possibly result in an

uncomfortable experience for the passenger. We argue

that such smoothing may be advantageous to apply to

the model to improve the ride experience. However, of

course, we note that further investigation of the effects

of such smoothing on the actual operations needs to be

considered.

Subsequently, we train our model for the 2.5-s time

headway scenario. It can be seen in Figure 6a that the

training is converging to near-optimal reward values.

However, while the 5-s scenario required around 10,000

episodes to train, it is shown here that more than 35,000

episodes were required. On the other hand, as observed

in the rest of the figures, the RL vehicle can be seen to be

performing the task of lane changing in this scenario

quite well. Specifically, the speed and acceleration pro-

files in Figure 6, b and c, illustrates that the RL vehicle

had minimal impact on main lane traffic and that even

the vehicle directly behind it (i.e., IDM-2) was almost

unaffected by the merging maneuver. Note that the

abrupt changes in the acceleration of this vehicle are in

response to the abrupt changes in RL vehicles’ accelera-

tion (because of discrete action–acceleration value–

space). We also show here, as a representative example,

the steering profile for the RL vehicle in Figure 6f. We

can see that in the early steps of the task, the RL vehicle

mostly chooses a steering angle of +30degrees, which

corresponds to turning left and quickly completing the

merge maneuver. This is followed by 230 degrees which

corresponds to correcting its trajectory to follow the

vehicles in the main lane after completing the merge

maneuver. Finally, the steering angle profile can be seen

to nearly converge to 0 degrees. The steering angle profile

was smoothed because the discrete nature of the action

space forces the RL agent to jump between 230, 0, +30,

while a smoothed profile shows the trend of actions

taken by the agent. Note that the steering angle profile is

consistent with the RL vehicle path shown in Figure 6e

and is similar in other scenarios.

Finally, we explore the case of 1-s time headway

between the vehicles and test the ability of the RL agent

to learn the proper actions needed to perform the mer-

ging task in this challenging scenario. Figure 7a shows

the trend of the reward gained during the training pro-

cess. In this case, more steps are required until the reward

per episode starts stabilizing and converging to the opti-

mal value after yielding a negative reward for a signifi-

cant number of episodes. In order for the RL agent to

learn to perform the task successfully within this more

challenging scenario, we trained the model for approxi-

mately 50,000 episodes, which explains the steadier trend

when compared with the previous scenario. Figure 7 also

Figure 4. Reinforcement learning vehicle path—empty

environment.
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shows the vehicle trajectories, speed profiles, acceleration

profiles, and the RL vehicle path in the 1-s time headway

scenario. It can be observed that because of the small

time headway between all the vehicles, the IDM directs

all the vehicles (except the leader—IDM-5) to slow down

for a portion of time at the beginning of the simulation

Figure 5. The 5-s headway scenario: (a) training reward; (b) vehicle trajectories; (c) speed profiles*; (d) acceleration profiles; (e)

reinforcement learning (RL) vehicle path.
Note: IDM = intelligent driver model.

*The speed profile of the RL vehicle appears to fall short because smoothing was applied to it.
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until an equilibrium headway starts forming between

vehicles. This happens because the desirable time head-

way used for the IDM was set to 1.5 s. In addition, it can

be seen that the RL vehicle learns to conduct the lane-

changing maneuver with minimal impact on the traffic

stream, which can be observed from the speed profiles

Figure 6. The 2.5-s headway scenario: (a) training reward; (b) vehicle trajectories; (c) speed profiles*; (d) acceleration profiles; (e)

reinforcement learning (RL) vehicle path; (f) steering angle profile*.
Note: IDM = intelligent driver model.

*The speed and steering angle profiles of the RL vehicle appear to fall short because smoothing was applied to them.
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(Figure 7b). It can also be seen that the RL vehicle decele-

rates more gradually relative to neighboring vehicles, and

maintains a higher speed that results in controlling the

shockwave propagation. However, despite a controlled

deceleration of the RL vehicle, because of the very small

time headway in the target lane, the vehicles directly

Figure 7. The 1-s headway scenario: (a) training reward; (b) vehicle trajectories; (c) speed profiles*; (d) acceleration profiles; (e)

reinforcement learning (RL) vehicle path.
Note: IDM = intelligent driver model.

*The speed profile of the RL vehicle appears to fall short because smoothing was applied to it.
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affected by the lane changing show significant decelera-

tion values for a very short period of time. Note that

such a large deceleration can be avoided by replacing

IDM vehicles with a more robust platooning algorithm

(e.g., the MPC-based model of An and Talebpour [15]).

Further simulation runs and exploration of this sce-

nario reveals an interesting behavior that the RL agent

occasionally learns to perform on its own. Figure 8a

shows that because of the small time window the RL

vehicle has to complete the lane-changing movement

within, it learns to navigate longer through the merge

lane before taking the decision to overtake its leading

vehicle and making the lane-changing maneuver in a slot

ahead of its starting position (with respect to the pla-

toon). The overlap in the trajectories between the RL

vehicle and the vehicle ahead (IDM-3) is not a sign of col-

lision. In fact, each vehicle is moving in its own respective

lane (only the longitudinal position is plotted here) and it

is an overtaking maneuver, which can be verified by

Figure 8b. This figure shows that the RL vehicle actually

remains within the merge lane well beyond the overlap

point of approximately 200m.

While the presented results seem promising and can

certainly be improved by fine-tuning the reward function

and hyper parameters, the outcome of calibration is not

always satisfactory (mainly because of the randomness

involved in the action selection mechanism). Accordingly,

we also show hereafter that some disadvantages exist with

applying a RL approach to model the lane-changing

behavior. Figure 9 shows one of the simulation runs for

the RL vehicle. It can be seen that after completing a suc-

cessful lane change, the agent randomly decides to start

turning right and almost leaves the target lane before

finally swaying back up again and finishing the task.

While the RL agent did perform the task successfully and

managed to gain a favorable reward for its actions, it is

apparent that such behavior is not desirable and has no

reason to occur in a realistic setting. Alternatively, while

most runs on the 5-s scenario showed no impact of the

lane-changing maneuver on the main lane, in some cases,

the RL vehicle makes the decision to slow down, which

ultimately slows down the whole stream of traffic, even

though by looking at the vehicle path alone, one would

expect the RL vehicle to be performing better. Figure 10,

a and b, illustrates the aforementioned case.

In addition to the aforementioned challenges, several

other issues were faced during the training and testing

phases of the RL model. For instance, some runs resulted

in falling into local minima that at first glance gave the

impression that the model was converging. However, on

further examination and visualization of the vehicle path

and trajectory, it was found that the RL vehicle was

learning a sub-optimal policy and, in reality, was not

achieving the task originally described. In addition, sub-

stantial computational capacity is required to run the

simulation and train the model for a sufficient amount of

time. While we sometimes selected the number of training

steps to be in excess of 50,000 episodes, earlier stages of

training were run with much fewer steps. That resulted in

a wider range of randomness and variance in the results,

which required increasing the number of steps until a

more stable model was produced. In other words, most

of the above challenges were solved by providing the

right balance between exploring the environment and

exploiting the findings from previous experiments.

On the other hand, another critical aspect to deep RL

models is training initialization and the randomness in

some parameter choices. While most parameters can

Figure 8. Alternative 1-s headway scenario: (a) reinforcement learning (RL) vehicle path; (b) vehicle trajectories.
Note: IDM = intelligent driver model.
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have a solid mathematical reasoning behind their selec-

tion, there can still exist some trial and error. For

instance, our final choice of 0.999 for the discount factor,

g, was made after several trials of values ranging between

0.70 and 1.0. Our choice of 0.999 ultimately provided the

most favorable results among the different scenarios

explored. This may be the case since we explicitly define

a ‘‘task success’’ reward, which needs to be accounted for

somewhat significantly to guide the agent toward finish-

ing the task successfully. Note that in other scenarios

and problem definitions, such an end-of-task reward

might not exist, and thus, a lower discount factor might

become a better choice. Alternatively, the decay method

for e can also result in different outcomes. We have

selected a linearly decaying epsilon; however, other meth-

ods such as step decay may have different outcomes,

such as faster or slower convergence of the model. This is

essential, as we have discussed earlier, where the model

could converge to undesirable local minima. It is also

worth mentioning that for some scenarios, it may be

infeasible (a non-convex setting) or the deep RL model

may be unable to find the global optimal solution for the

problem. While it may reach near-optimal results, in

some real-world situations, some near-optimal solutions

may not perform reasonably. This was apparent in many

instances of our training and testing procedure, where

the RL agent, for example, would perform the task of

lane changing successfully but would continue to collide

into nearby vehicles. Accordingly, it is critical to capture

such instances that may lead to catastrophic outcomes in

a real-world setting. Note that the reward setup also

plays an important role since, for instance, the RL agent

may be achieving a higher reward for completing the lane

change while it may not care about the penalty of

colliding.

Conclusion and Future Work

We proposed a deep RL-based algorithm utilizing the

DDQN for automated vehicle merging in a decentralized

non-cooperative manner. The proposed approach utilizes

a continuous state space and more realistic action space

compared with previous studies. For the RL agent, we

defined a six-element state space consisting of the x–y

coordinates of the RL vehicle, the speed and heading of

the RL vehicle, and the locations of the leading and trail-

ing vehicles on the target lane. We also defined the action

space in a more realistic manner than before where the

model has to choose between nine different action pairs

at each time step. Each action pair consists of a combina-

tion of an acceleration/deceleration value (21, 0, or

Figure 9. Case 1: unsatisfactory vehicle path.

Figure 10. Case 2: unsatisfactory vehicle trajectories: (a) reinforcement learning (RL) vehicle path; (b) vehicle trajectories.
Note: IDM = intelligent driver model.
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1m=s2) and a steering angle value (230, 0, or 30 degrees).

Therefore, we take the task of lane changing one step

closer to realism by letting the RL agent choose its action

every time step (i.e., 0.1 s) and move along the lanes con-

tinuously, while monitoring its location and the locations

of neighboring vehicles. We demonstrate the model’s

ability to learn the proper actions it requires to perform

the lane-changing maneuver under different circum-

stances and scenarios. Finally, we propose a reward sys-

tem that allows the RL agent to perform the task in a

timely and efficient manner.

Incorporating additional components to the reward

structure to fine-tune the RL vehicle behavior and includ-

ing the impacts of the RL vehicle on the entire traffic

stream as part of the decision-making have been left for

future research.
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