PHYSICAL REVIEW D 110, 124009 (2024)

Probing dark-matter effects with gravitational waves using the
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A massive black hole can develop a dark-matter overdensity, and the dark matter changes the evolution
of a stellar-mass compact object inspiraling around the massive black hole through the dense dark-matter
environment. Specifically, dynamical friction speeds up the inspiral of the compact object and causes
feedback on the dark-matter distribution. These intermediate mass-ratio inspirals with dark matter are a
source of gravitational waves (GWs), and the waves can dephase significantly from an equivalent system in
vacuum. Prior work has shown that this dephasing needs to be modeled to detect the GWs from these
systems with LISA (the Laser Interferometer Space Antenna); it also showed that the density and
distribution of dark matter can be inferred from a GW measurement. In this paper, we study whether the
parametrized post-Einsteinian (ppE) framework can be used to infer the presence of dark matter in these
systems. We confirm that if vacuum waveform templates are used to model the GWs from an inspiral in a
dark-matter halo, then the resulting parameter estimation is biased. We then apply the ppE framework to
determine whether it can reduce the parameter-estimation biases, and we find that adding one ppE phase
term to a waveform template eliminates the parameter-estimation biases (statistical errors become larger
than the systematic ones), but the effective post-Newtonian order in the ppE framework must be specified
without uncertainties. When the post-Newtonian order has uncertainty, we find that the systematic errors on
the ppE and the binary’s parameters exceed the statistical errors. Thus, the simplest ppE framework would
not give unbiased results for these systems, and a further extension of it, or dedicated parameter estimation

with gravitational waveforms that include dark-matter effects would be needed.
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I. INTRODUCTION

There is compelling evidence for the presence of dark
matter (DM) over a wide range of length scales, and
observations indicate that it is abundant, cold, and weakly
interacting [1]. The Planck satellite, for example, deter-
mined that dark matter accounts for 26.8% of the mass-
energy content in the Universe [2]. There have been
extensive experimental and observational programs to
detect the particles that compose dark matter, but given
the feeble interactions between it and baryonic matter or its
small self-interactions, these efforts have not yet deter-
mined the fundamental constituents of dark matter (see,
e.g., the reviews [3-6]). This has motivated not only
improving the existing searches for dark matter, but also
exploring new methods to determine its nature [7]. One
recent effort is using gravitational waves (GWs) to search
for the presence of high densities of dark matter that can
form around black holes [8].
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LIGO’s successful detection of GWs in 2015 [9] not
only confirmed a long-standing prediction of Einstein’s
theory of relativity, but also created a new opportunity to
study fundamental gravitational physics [10,11]. Nearly
100 confident detections of mergers of compact objects
have now been made [12-14], which have tested the
predictions of general relativity precisely using an large
battery of tests [15—19]. The spectrum of GW observations
has opened further with the likely detection of a stochastic
GW background by pulsar timing arrays [20-23]. It will
continue to expand in the next decade with next-generation
GW detectors, such as the planned LISA [24] (in space) and
Einstein Telescope [25,26] or Cosmic Explorer [27]. These
new detectors will not only expand the GW frequency
spectrum, but also provide new opportunities to study
fundamental physics.

Our focus in this paper will be on the LISA detector and
the possibility of using the GWs from the inspiral of a
neutron star (NS) into an intermediate-mass black hole
(IMBH) with a surrounding dense distribution of dark
matter, as a means to learn about the surrounding dark-
matter environment. The inspiral of a compact object into
an IMBH—known as an intermediate mass-ratio inspiral
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(IMRI)—or a similar inspiral with a supermassive BH
primary (an extreme mass-ratio inspiral) are a key GW
source class for the LISA detector. These systems have
been well studied in the absence of a surrounding DM
distribution, and have been established to provide precise
information about the spacetime geometry of the primary
massive BH (see, e.g., [28]). A nonvacuum environment
could alter the IMRTI’s rate of inspiral and affect the GWs
emitted from these systems. In fact, prior work has confirmed
this: if dark matter is present around an IMBH in sufficiently
large amounts, the density of a spherically symmetric DM
overdensity (referred to as a DM “spike” [29]) could be
inferred from a GW measurement with LISA [30,31].

Dark-matter particles scatter gravitationally with the NS
as it inspirals, and there is a net transfer of energy from the
NS to the DM spike; this effect, known as “dynamical
friction” [32—-34], causes the NS to inspiral into the IMBH
more rapidly than an equivalent IMRI in vacuum would.
Previous work by Eda et al. [31] showed that dynamical
friction led to a large change in the rate of inspiral that
allowed the distribution of dark matter to be inferred
precisely. For much of the parameter space of IMRIs with
dark matter in [31], it was subsequently shown in [35] that
neglecting feedback from dynamical friction onto the DM
distribution significantly overestimated the increase in the
rate of inspiral. Reference [35] introduced a formalism to
evolve the DM spike that takes into account the energy
imparted to the DM distribution through dynamical fric-
tion. The IMRI’s orbit and the dark matter distribution
were evolved simultaneously as a coupled set of ordinary
and partial differential equations over the longer timescales
associated with gravitational radiation reaction and dynami-
cal friction. The DM density in the vicinity of the NS
secondary in this dynamic case was transiently depleted
during the inspiral, which decreased the effect of dynamical
friction and the amount of dephasing from a vacuum IMRI
with the same masses. The GW dephasing was also a more
nontrivial function of frequency in the dynamic case than in
the static (nonevolving) case considered in [31].

To determine how well the IMRIs with a dynamic
DM distribution could be studied by LISA, Ref. [36]
performed a simulation study of the prospects for meas-
urement, detection, and distinction from vacuum IMRIs. It
was shown in [36] that the detection horizon for IMRIs
with DM had very little difference from vacuum binaries;
however, vacuum IMRI waveforms were also not capable
of fitting an IMRI with a dynamic DM distribution when
optimized over the vacuum IMRI parameters. Thus,
Ref. [36] created a phenomenological analytical model
of the GW phase in the frequency domain to perform
Bayesian parameter-estimation studies. In the two test cases
considered in [36], the power law that determines the radial
falloff of the initial DM density could be inferred to a few
and a few tens of a percent, respectively. This established
that properties of the DM could still be inferred in the

dynamic case via a GW measurement with LISA, and that
the previous studies that assumed the DM was static during
the inspiral significantly overestimated the precision to
which the DM distribution could be measured.

Since presence of dark matter in an IMRI can produce a
measurable GW dephasing from analogous vacuum sys-
tems, it is useful to know how precisely this dephasing
needs to be modeled to be detectable and have minimal
bias in the inferred GW parameters. While using the true
signal is the optimal choice for matched-filtering-
based data analysis, there are more model-agnostic frame-
works, such as the parametrized post-Einsteinian (ppE)
approach [37-39], which aim to capture deviations from
vacuum waveforms in general relativity (GR). The ppE
framework has been shown to detect deviations from
GR in simulation studies [40-42] and also has been
applied to the existing GW events to constrain such
deviations [10,11,17—-19]. Parametrized waveforms similar
to those used in the ppE framework have also been applied
to study effects of the astrophysical environment in IMRIs,
in particular those induced by dark matter (see in [43-45]).
However, neither of the signal models used in [43,45]
were as complex as the phase in the dynamic case in [36],
so it has not been established how well the ppE framework
can capture effects induced by frequency-domain signals
with a more complicated morphology.

In this paper, we address this question by investigating
how well the ppE framework can account for these dynamic
DM-induced GW dephasing from vacuum binaries. As a
first calculation, we study the amount of systematic bias in
parameter estimation if the GW signal is an IMRI with a
surrounding distribution of dark matter, but a GR template
waveform is used to analyze the GW signals. Next, we use
a simple ppE waveform to analyze the GWs from an IMRI
with dark matter. Our ppE model modifies the vacuum
gravitational waveform phase in the frequency domain by
the addition of a single term involving a power of GW
frequency. This term has a constant overall scaling f and
the exponent is denoted by b; the b coefficient determines
the post-Newtonian (PN) order of the ppE term. We use a
Fisher-matrix formalism to compute the statistical errors on
waveform parameters and address whether the ppE tem-
plate is able to capture the DM effects on the gravitational
waveform.

Throughout this paper we focus on IMRIs in which the
secondary is a neutron star, and the dark matter has
negligible interactions with the nuclear matter in the
neutron star. This assumption is necessary, because recent
work [46] showed that a black-hole secondary can accrete
enough mass during the inspiral to induce a dephasing of
hundreds of GW cycles with respect to systems in which
the effects of only dynamical friction were modeled. It also
leads to nontrivial changes in the distribution of dark matter
after the merger. Other work [47] also generalized the
prescription to IMRIs on eccentric orbits.
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We now summarize our main findings. We first deter-
mined that if we use the vacuum GR template waveform to
analyze the GW signal from an IMRI in a DM spike, then
vacuum parameters, such as the chirp mass, are significantly
biased. This is consistent with the results in [36]. We next
studied these IMRIs using ppE templates. In this context, we
first found the value of ppE exponent b by minimizing the
systematic error on the IMRI’s “vacuum” (those unrelated to
the DM) parameters. We assumed perfect knowledge of b
(i.e., b was fixed) and computed the uncertainties on the ppE
parameter f. This procedure decreased the systematic bias
on vacuum parameters below their systematic errors, and the
systematic error on f was much smaller than the statistical
error, too. The systematic error on the vacuum parameters,
however, is very sensitive to the choice of b, which is not
expected to be known a priori and requires fine tuning to
minimize the systematic errors. Consequently, we also
performed another analysis in which we compute uncer-
tainties on both f and b; in this context, we found that
systematic errors are now larger than statistical errors. This
suggests that the ppE template has the potential to remove
the bias and measure the GW effects induced by the DM
spike, but future work is necessary to determine if more
general ppE waveforms with the larger parameter sets could
improve the level of systematic and statistical errors.

The rest of the paper is organized as follows. Section II
explains the waveform models that we use for IMRIs in a
dark-matter environment and for the ppE framework. In
Sec. III, we review the Fisher framework that we use to
compute statistical and systematic errors. Section IV
presents the main questions that we address in this paper
and the methods we use to answer them. Our main results
are given in Sec. V, and they are followed by our
conclusions in Sec. VI. We give a few supplemental results
in two Appendixes. We use the geometric units c =Gy =1
throughout this paper.

II. GRAVITATIONAL WAVES FROM A
COMPACT-BINARY INSPIRAL
IN A DARK-MATTER HALO

A schematic of the IMRIs that we will study in this paper
is given in Fig. 1. We will assume that the IMBH has a mass
m; between 103 and 10°M ,, and will be the primary (more
massive object) in the binary. The secondary (less massive
object) will be a neutron star with mass m, = 1.4M,.
Following Refs. [35,36], we assume that the initial DM
density around the IMBH is a spherically symmetric and
isotropic spike given by

psp(rsp/r)ybp rinsrsrsp

2.1
0 r<rip 21

pom(r) :{

In Eq. (2.1), r denotes the distance from the IMBH, 7, is
the radial power law, py, is the normalization of the density,

Neutron

FIG. 1. Schematic of an IMRI with a DM spike. The IMBH has
mass m, between 10% and 10° M, and is orbited by a neutron star
of mass m, = 1.4M. The orbital radius is denoted by r,, and r is
the distance from the center of the IMBH.

rin = 4my is the inner radius of the spike, and ry, is the
outer radius of the spike.l Following [31,35], we do not
treat rg, as an independent parameter, but as being
determined by ry, ~ 0.2r;, where ry, is defined by

/rh/’DM(”)d3r: 2m.

in

(2.2)

Throughout this paper, we will restrict to yy, = 7/3 and
psp = 226M 5/ pc’, which were the values used in the
model of the spike in [30,31].

As discussed in Sec. I, the evolution of this IMRI must be
performed simultaneously with the evolution of the dark
matter. The HALOFEEDBACK code [49] produces the orbital
or GW phase from such systems, but a single numerical
evolution takes sufficiently long that it is inefficient to use it
in parameter-estimation studies. Thus, Ref. [36] con-
structed a phenomenological waveform model for the
time-domain phase (as a function of GW frequency), which
was calibrated over different mass-ratio IMRIs for a range
of different y,, and pg, values for the initial density in
Eq. (2.1). The phase is valid for IMRIs on circular orbits at
Newtonian order; thus, it was used for just the dominant
[ = 2, m = 2 spherical-harmonic mode of the gravitational
waveform.

We next review this phenomenological waveform, which
we will use throughout the paper as the “true” GW signal.

'At radii r > r'sp» the spike will match onto the larger-scale DM
halo, such as a Navarro-Frenk-White [48] profile; however, we will
not treat the DM distribution at these larger radii in this paper.
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A. Gravitational-wave phase in the time domain

The ansatz for the time-domain phenomenological phase
in [36], when written as a function of the GW frequency, f,
is given by

O(f) = @V (f){1 —ny™

x [1=,F (1,8, 1+8,—y>/CN]}. (2.3)
Here, ,F(a, b, ¢, z) is our notation for a Gaussian hyper-
geometric function, and the multiplicative factor ®V(f) is
the vacuum phase:

L ampyn,

O(f) = ¢

(2.4)

We used M = (m, + m,)v*/° to denote the chirp mass,
and v = m;m,/(m, + m,)? for the symmetric mass ratio.
The variable y is a dimensionless frequency, y = f/f,,
where f, is a constant frequency scale.

To describe the parameter choices that reproduce the GW
phase from IMRIs in static and dynamic DM distributions,
it is useful to define the following quantities. We first
introduce a frequency scale f., defined by

feq _ c;/(ll_z}%p)' (25)
The coefficient ¢y is given by
D lrg—4)/3 (1=1)/3 5
¢ = g5 (my my) 1) rpEp log A, (2.6)
1

The new parameters introduced in this expression are log A,
the Coulomb logarithm, where the value of A is given by
A = \/m;/m, as in [35]. The factor £ is the fraction of DM
particles moving slower than the orbital speed of the
secondary. It was shown in [46] to be given by

13
521—11/2<7’sp—55>,

where Iy is the regularized incomplete beta function. For
Ysp = 7/3, this has the numerical value &= 0.58 used
in [35].

The ansatz for the phase in Eq. (2.3) is sufficiently
general that it can be used to describe the GW phase for
both static DM distributions in [31] and the dynamic ones
in [35,36], for different choices of the parameters 7, 4, 9,
and f,. By choosing

(2.7)

5

—1. 1=0, 9=—">
n 11-2r,

ft:feq’ (28)

one obtains the result for the GW phase ®(f) for the IMRI
in a static DM spike [Eq. (2.1)] at Newtonian order. The

Newtonian-order GW phase for the IMRI in a dynamic DM
spike was obtained by choosing the parameters to be

5 feq> (11-2y4)/3

n= , 2.9a

8 — Vsp <fb ( )
62

PRt (2.9b)
3

9=1, (2.9¢)

fi="Tp- (2.9d)

An ansatz for the break frequency f;, was proposed in [36]
to be

B mi —nmy \* Ysp
=elion,) () (1 reeels). e
and the five free parameters in this expression were fixed
by fitting the GW phase to 80 simulations run by the
HALOFEEDBACK code. The values of these best-fit param-
eters are a;=14412, a,=0.4511, 0=0.8163Hz,
{=-0.4971, and y, = 1.4396. For further discussion of
the form of this ansatz for the fitting function, see [36].

To illustrate how the dark matter changes the GW phase,
we show in Fig. 2 the dephasing (®" — ®) from a vacuum
IMRI with the same parameters of the binary, though
without the DM. The left panel reproduces a similar result
in [36], and serves as a consistency check. The right panel
shows how the phase differs as a function of different
primary masses for a fixed secondary mass. The dephasing
goes to zero at the inner-most stable circular orbit (ISCO)
GW frequency, because the vacuum and DM GW phases
were chosen to be equal at that value. Frequencies
above that of the ISCOs are not shown, as the phase is
valid just for the inspiral (and the plunge and merger would
need to be modeled to compute the phase at these higher
frequencies).

B. Gravitational-wave phase
in the frequency domain

We next discuss the form of the GW strain in frequency
domain. Because we will be working with the LISA noise
curves that are averaged over the sky-position and polari-
zation angles, we will also average the amplitude of the
GW strain over these angles as well as the inclination angle
and reference phase angle. This angle averaging removes
the dependence of the strain 7 on the antenna-response
functions F, and F,. When we compute the noise-
weighted inner products of two signals, the factors arising
from angle averaging the signals will also cancel with
equivalent factors in angle averaging the noise curve S,,(f),
as described in more detail in [50]. Thus, we will drop these
factors from the sky-position and polarization average from
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FIG. 2. Gravitational-wave dephasing for IMRIs with DM from those without. Left: a comparison of the GW dephasing for static and
dynamic DM spikes versus frequency. The binary masses are given by (m;, m,) = (10°,1.4)M, and the DM parameters are those
described in the introduction to Sec. II. The top horizontal axis shows the binary separation r, which is related to GW frequency f
through the Kepler’s law zf = \/(m; + m,)/ r%, for a circular orbit. In both static and dynamic cases, the dephasing resembles a broken
power law, with breaks at different frequencies in each case. The inspiral proceeds from left to right and the dephasing goes to zero at the
ISCO frequency, because the phases in the vacuum and nonvacuum cases are equated at this value. Right: similar to the left panel but
only the dephasing for the dynamic DM case is shown for the three different values of m; given in the legend.

our waveform and denote this normalized, angle-averaged
strain by just A(f). It is common then to evaluate the
Fourier transform in the stationary-phase approximation

(SPA) and to write & as

h(f) = Af~7/0e0), (2.11)

Because the phase ®(f) was computed using Newtonian
physics, we use just the leading, quadrupole PN vacuum
term for the amplitude. The expression for this normalized,
angle-averaged amplitude is

M5/6
A=—k——,
V613D,

where D; is the luminosity distance to the source.

(2.12)

*The numerical factor of 1/1/6 in A comes from the product of
two square roots: \/5/24 and /4/5. The factor of \/5/24 is the
square root that appears in the amplitude of the plus and cross
polarizations of the strain [see, e.g., Eq. (20) of [50] ]. The factor
of /4/5 comes from the average over the inclination angle and
reference phase [see, e.g., Eq. (16) of [50]]. We also do not
include the DM-induced corrections to the amplitude (so that it
has the same form as that in GR), because the amplitude
corrections are not as significant as those in the phase (see,

e.g., [39)).

Next, we turn to the frequency-domain SPA phase. The
phase @(f) in Eq. (2.3) is the time-domain phase written in
terms of frequency—i.e., ®[¢(f)]. This differs from the SPA
phase W(f) in frequency domain [51], but the two are
related by

Y(f) = 2zf1(f) - ¢(f) - (2.13)

ENIRN

Here we have defined

$(f) = 2m / ffj—}df ——ol(f)].  (2.14)

which has a relative minus sign from the phase ®(f) in
Sec. I A.* To obtain ¥, we need to compute #(f). It can
be obtained from differentiating and then integrating
Eq. (2.14):

The phases ¢ and @ differ by a minus sign because the latter is
defined by [35,36]

d
o(f) :Zﬂ/ffd—}df. (2.15)
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1 [r1dg
f(f)—ﬁ fd_fdf'

From the time-domain phase in Eq. (2.3), we find
the frequency-domain phase for the dynamic DM case is
given by

(2.16)

o
16(322 + 1 -2)

3A+1) 34+8
X [2F1(1,7( +1)34+8 ‘—y‘5/3)

¥ =wY(f) (mM )"y

5 7 5 7

3 - 3. 2
—5(/1 + 1)y log (y™/3 + 1) +354 —5]. (2.17)

The vacuum phase, to leading PN order, is given by

3
WY (f) = 2aft, — o — =+ — (MF), (2.18)
4 128
and we have defined
_ 5 11-2y,
A=2+>=—"TF 2.19
+3 3 (2.19)

The parameters 7, and ¢, are the time and phase of
coalescence, respectively.

C. Parametrized post-Einsteinian framework

We next review the parametrized post-Einsteinian frame-
work, which was originally developed for testing GR with
GW observations with a theory-agnostic approach [37,52]
(in the sense that the ppE framework was designed to make
nonrestrictive assumptions about the gravitational-wave-
form model used to analyze a given GW event, and to
permit the GW observation to determine if the ppE
hypothesis or the GR hypothesis is favored). We will apply
this framework in this paper to determine how well the ppE
framework can reduce potential biases in parameter esti-
mation and detect (or constrain) the DM effects in GWs
from an IMRI immersed in an evolving DM spike.

The ppE template waveform for the £ =2, m =2
harmonic that we will use is given by

h(f) = Af~7/61 ¥ 45", (2.20)
where u = (zMf)'/3, B is the ppE parameter that controls
the overall magnitude of the DM effects (in the context of
this paper), and b is the exponent that is related to the
“effective” PN order N of the correction term relative to ¥
by b = 2N — 5. As we will discuss in more detail below, the
phase in Eq. (2.17) is not the vacuum GR phase plus a
single power law in frequency as in Eq. (2.20), but there is a
choice of the parameter b which will minimize errors,
which will determine the effective PN order.

o : : : -
18F e 1
[ .
[ [ ]
17t ¢ 1
L [ ]
Ozf o
wn [}
[ ]
F [ ] o4
16 - . A
. o 4
[ ]
[ ]
[ ] ° *
° [ ]
1000 5000 110 5x100 1x10°

m; [MQ]

FIG. 3. SNR as a function of the primary mass. The mass of the
secondary has been fixed to m, = 1.4M. Our choices of the
luminosity distances that produce these SNRs are described in
more detail in the text of Sec. IIT A.

III. DATA ANALYSIS METHODS
AND MEASUREMENT ERRORS

In this section, we review the data-analysis methods that
we use to compute the signal-to-noise ratio (SNR), the
systematic errors and the statistical errors. We use matched
filtering and Fisher-matrix methods [51,53] to compute the
SNR and statistical errors, respectively. In the context of
GW data analysis, the inverse Fisher matrix is most
naturally interpreted as a Bayesian uncertainty of the
posterior probability distribution for a single GW event
under several assumptions [54]: for a high SNR signal with
Gaussian noise, when the prior probabilities are constant
over the relevant parameter space, the inverse Fisher matrix
is the covariance matrix for the true source parameters.

As we show in more detail in Fig. 3, and describe in
Sec. IIT A, the SNR of our signals will approximately 17,
which is the SNR threshold for semicoherent searches
derived in [55] (see also [56]). This reasonably high
threshold, in addition to the well-constrained binary
parameters in IMRIs and the reduced parameter set in
our angle-averaged waveforms allows the assumptions
underlying the Fisher-matrix formalism to be satisfied to
a reasonable approximation. Because we are using a ppE
waveform model rather than the exact dynamic DM phase,
there will be biases (systematic errors) that arise from using
this simpler waveform family. We estimate these systematic
errors using the method described in [57], which we
describe in more detail in Sec. III B.

A. Signal-to-noise ratio

To compute the SNR, we first define the noise-weighted
inner product

foign @*b + ab*
(a|b):2/ a0+ ab . (3.1)

Siow Sn (f )
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Here a and b represent time series, and @ and b are their
Fourier transforms. The noise spectral density, S, (f) will
be taken to be the sky and polarization angle-averaged one,
as given in [50].

We next discuss how we determine the lower and upper
frequency limits of integration for the noise-weighted inner
product in Eq. (3.1). To do so, we begin by noting that the
binaries are at sufficiently large distances that we need to
take into account the gravitational redshift z of the
frequency between the source frame and the LISA detector
frame; similarly, the source-frame chirp mass M must be
scaled by 1 + z to convert to the detector-frame chirp mass
M, [ie., M, = (1 + z)M]. Because we will specify a
luminosity distance D; to the source, we need to choose a
cosmology to obtain the redshift z (specifically, we will use
the flat Planck 2015 cosmological parameters [58]).

We choose the lower frequency to be the frequency from
which the IMRI will merge in a four-year period, assuming
it inspirals adiabatically on a sequence of quasicircular
orbits; We use the leading Newtonian-order expression for
df/dt in vacuum to compute this value, and we specifically
use the convenient expression given in [59], which uses an
infinite frequency to define the merger:

M, T (Tops\ 7+
~0.012 H : %) T (32
s ) () o
We choose the upper frequency limit to be
Shigh = min(fisco. 1 Hz), (3.3)

where fisco is the frequency at innermost stable circular
orbit, which is also given in [59]:

1

—. 3.4
6327M, (3.4)

fISCO =

Here M, =~ m,, is the redshifted total mass of the binary
(which is also approximately the shifted primary mass m).
The factor of 1 Hz is our choice for the upper frequency
cutoff for LISA.
The SNR is given in terms of the noise-weighted inner
product by
SNR = +/(h|h). (3.5)
The values of the SNR for the IMRIs considered in this
paper are shown in Fig. 3. In that figure, the primary mass
m; 1is varied while the secondary mass is fixed to
my = 1.4M . To choose the distance, we first computed
each SNR with the corresponding source-frame masses
and adjusted the luminosity distance to make the SNR
equal to 15. With this luminosity distance, D; for each
binary, we then determined the corresponding redshift via
the relationship

b _l—i—z/z d7
YT Hy o VO 1+ +Qy

(3.6)

Here H, = 67.8 km/s/Mpc is the local Hubble constant,
Q, =0.7 is the energy density of the cosmological
constant (rounded to one significant figure) [58], and
Q) = 1 —Q, is the matter density. We then computed the
SNR in Fig. 3 using the redshifted masses. The distances
required to have these SNRs increase monotonically as a
function of mass and are approximately 60 Mpc for the
103M, case and 820 Mpc for the 10° M, case (rounded to
the nearest tens digit).

B. Systematic and statistical errors

The systematic error on a given parameter ¢/ is given
by [57]
A

0/ = (1) (ihAW|0.h), (3.7)

sys
where AW is the difference between the phase of the
injected (true) and template waveforms.

Computing statistical errors makes use of the Fisher
information matrix. It is computed from the noise-weighted
inner product [Eq. (3.1)] of the derivatives of the waveform
h with respect to each parameter [51,53]:

oh | oh
Fk = —— .

/ 00/ | 06F
The inverse of the Fisher matrix is the covariance matrix
(under the assumption noted above that the priors
are constant over relevant parameter range). However,
Gaussian priors centered around the maximum a posteriori
values can be incorporated into the formalism. The standard

deviations of these Gaussian priors will be denoted by afqlo_) ,

as in [59-61]. Assuming that there are no correlations
among the prior parameters, one can then define an
effective Fisher (inverse covariance matrix I';;) by

(3.8)

- 1
o,
where §;; is the Kronecker delta. Thus ('), is a

covariance matrix that takes into account the Gaussian
priors. Our measure of the statistical error for a given
parameter &' will be the square root of the diagonal
elements of the effective Fisher matrix,

Astatei = \/ (f_l)ii’

The repeated index i is not summed over on the right-hand
side. We only impose a prior on the phase of coalescence
¢., which is periodic with period z. We approximate this in

(3.10)
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this context by setting 6((]50) = z. The remaining parameters

will have no prior imposed, which one can formally describe

as setting 0(99) = oo for these remaining parameters.

IV. OVERVIEW OF THE PPE TESTS

We give a brief overview of the different studies we
perform to assess the performance of the ppE framework
for capturing the dephasing effects induced by dark matter
and the accuracy with which the vacuum and ppE param-
eters can be measured.

The first test that we perform examines whether a
vacuum merger template is capable of accurately estimating
the vacuum parameters for a GW waveform from an IMRI
with a dynamic DM spike. The work in [36] examined this
question, and determined that the inferred value of the chirp
mass could be significantly biased, and the bias increased
as the characteristic density of the spike became larger. The
method used in [36] involved solving an optimization
problem that became difficult to solve for large biases.
Thus, it was unable to compute an estimate of the bias for
the initial conditions of the DM spike that we treat in this
paper. The method of computing the bias in [57], however,
uses the true parameters of the IMRI waveform (which we
assume are known), which allows us to obtain an estimate
of the systematic error. For simplicity, we refer to this test
as Question 1 (Q1).

The second test uses the ppE waveform templates under
the assumption that the parameter $ has zero as its true value,
but can be nonzero to accommodate waveforms that deviate
from vacuum GR ones. We will compute the statistical and
systematic errors for the vacuum waveform parameters and
. A nonzero systematic error on £ that is larger than the
statistical error would be an indication that a nonzero ppE
phase term would be needed to perform unbiased data
analysis. In this test, we compute the systematic errors for a
large number of fixed ppE exponent parameters b, and we
choose the best one by minimizing the systematic error on
the vacuum parameters (particularly, the chirp mass M.).
An illustration of this procedure and further details about it
are provided in Appendixes A and B; specifically, we also
demonstrate the validity of this procedure by recovering the
value of b in the case of a static spike, which is known
analytically. Because we assume b is fixed in each individual
computation of the systematic error on the vacuum param-
eters, we do not include b as a waveform-model parameter
which has systematic or statistical uncertainties. This test
will be called Q2.

Our third test involves computing the systematic and
statistical errors after shifting the parameters by amounts
that are equal to the systematic errors computed in Q2. We
then evaluate the systematic and statistical errors with these
updated “best” parameter values. We check to see if the
statistical errors are larger or smaller than the systematic
errors. If statistical errors dominate, then the ppE waveform

would not have significant bias; if the systematic ones do,

then the ppE waveform would require further modification

to robustly capture the GW effects of a dynamic DM spike.

As in Q2, we determine b through the procedure described

in Appendix B, and we assume that the optimized b is a

fixed parameter with no uncertainties. This test is Q3.

Our fourth and final test is similar to Q3, but it allows the

PpE exponent b to have uncertainty once it is fixed to the

value used in Q3. In this case, we compute the systematic

and statistical errors on all parameters in Q3 and also for .

The interpretation of this test, Q4, is the same as in the prior

one (Q3).

For convenience, we summarize the main questions that
the four tests are aimed to assess in the list below:

(Q1) How large is the bias on the vacuum parameters
when using a vacuum template to analyze a GW
signal with dynamic DM effects?

(Q2) Does adding a ppE phase term to the vacuum
template reduce bias when the “fiducial” value of
the ppE phase parameter f is assumed to vanish—
and if so, by how much?

(Q3) How accurate is the ppE template when the fiducial
parameter values are adjusted to account for the
parameter biases, assuming the ppE exponent b has
no uncertainty?

(Q4) How accurate is the ppE template at capturing DM
effects in the gravitational waveform when the
parameter b has uncertainty?

V. RESULTS OF THE PPE TESTS

We now present the results of the four tests that address
the questions listed in Sec. IV. We assume a four-year
observation period with LISA for all the results below.

A. Q1. Parameter bias from
using vacuum waveforms

We begin by addressing Q1, which pertains to the
amount of bias that arises from using vacuum GW
templates to model IMRIs in a dynamical DM spike. In
this case, the difference in the frequency-domain phase
between the simulated signal and template is

AY =¥ -9V, (5.1)
where W and ¥V are given in Egs. (2.17) and (2.18),
respectively. We choose the vacuum parameters for our
study to be

0 = (InM,. 1., ¢..InA), (5.2)

with A defined in Eq. (2.12). The true (injected) signal has

the time and phase of coalescence set to be tg.f id) _
¢£ﬂd) = 0. For the chirp mass, we use mgﬁd) = 1.4Mg in

the source frame, and we vary the value of m; for the
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FIG. 4. (Q1) The relative systematic and statistical errors on the

chirp mass against the primary BH mass. The errors were
computed using a vacuum IMRI template assuming the true signal
was an IMRI with a dynamic DM spike. The systematic error is
significantly greater than the statistical error, which demonstrates
the large bias that would arise if one were to attempt to use a
vacuum template to analyze GWs from IMRIs in a DM spike.

primary black hole. The luminosity distances (and thus
redshifts) are the same as those used to produce Fig. 3.

Figure 4 presents the fractional systematic and statistical
error on the detector-frame chirp mass as a function of m;.
Note that the systematic error is consistently higher than the
statistical error by at least four orders of magnitude, which
is a significant parameter-estimation bias. The bias on the
detector-frame chirp mass is the most pronounced bias, but
the other parameters also have nontrivial biases, which we
do not show.

The results above show that if a GW signal from an IMRI
within a DM spike is detected through a matched-filtering
search against vacuum templates, there will be large biases
on the chirp mass. Given the results in Fig. 6 of [36],
however, it will likely be challenging to detect such systems
with vacuum templates. Thus, if a vacuum template is not
capable of detecting the signal, then we would assume that
the signal was detected by some other means (such as a
coherent excess-power search) and was analyzed with
vacuum templates.

Also note that we do not attempt to determine the source-
frame chirp mass, as this would require measuring the
luminosity distance (and thus the redshift). Because the
statistical error of such measurements is not nearly as high
as that for the chirp mass, propagation of errors would lead
to a much larger statistical error on the source-frame chirp
mass than that shown in Fig. 4.

B. Q2. Using ppE templates to reduce bias

Next, we address Q2, which relates to whether analyzing
the event with a ppE template leads to less biased results
than using vacuum templates (as in QI). The phase
difference AW will now include a ppE term,

AY =¥ - ¥, — pul. (5.3)
When we compute the Fisher matrix and parameter bias, we
now include one additional parameter, the ppE parameter /:

0" = (In M, 1., ¢.,InA,p). (5.4)
The fiducial values for the vacuum parameters are the same
as those in QI (Sec. VA) and the value of 4 is gfid) = 0.
For the exponent b [or the effective PN order N =
(b 4 5)/2], we determine the best fit value by minimizing
the systematic errors on some of the vacuum parameters, as
described in Appendix B. These minimum-error values of b
depend upon the value of the mass m;. For example, for
m; = 10°M, we find that N = —0.7121 gives the mini-
mum systematic error on the chirp mass.

The top panel of Fig. 5 shows the systematic and
statistical error on the chirp mass with the ppE phase
included in the templates. For all tested primary BH
masses, the systematic errors are reduced by 8-9 orders
of magnitude from the errors for the corresponding cases
for Q1 (shown in Fig. 4). The statistical errors, however
have increased only by roughly an order of magnitude,
which occurs because of the correlation between the chirp
mass and ppE parameter . Overall, the systematic error is
consistently smaller than the statistical one by many orders
of magnitude, which is an indication that the ppE template
could, in principle, remove the bias in the vacuum param-
eter estimation for GWs from binary black holes in a DM
halo. We only show the result for the chirp mass here, but
we have checked that there are also similar decreases in the
errors for the other vacuum parameters in the phase.

The bottom panel of Fig. 5 shows the systematic and
statistical error for . In this case, the systematic error is
much larger than the statistical one; this occurs because the
effects of DM on the GW phase are captured mainly by the
ppE term in the ppE template, thereby producing a large
deviation in the estimate for f from its fiducial value of zero
(see Appendix A for further details). We also note that the
statistical error on g for m; = 10°-10*M, is roughly
consistent with Af ~ 10712 for intermediate-mass-ratio
inspirals found in [62].

C. Q3. Updating the fiducial values
in the ppE templates

The results in Q2 showed a large systematic error in f3,
because we used a fiducial value of f = 0. We can rerun our
calculations by updating the fiducial values to

Hi(ﬁd,new) _ gi(fid,old) +A 91'
sysV s

(5.5)

fidold) and A @' are the fiducial values assumed in

where 6/( oys
Q2 and the systematic errors are those determined in Q2.

Gravitational waveforms with the above updated fiducial
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FIG. 5. (Q2) Errors with a ppE template. Top: errors on the

detector-frame chirp mass, similar to those shown in Fig. 4, but
now a ppE template is used and f is included in the parameter set.
The systematic error has significantly decreased, which indicates
that the ppE template can reduce the bias in the parameter
estimation from an IMRI with a DM distribution. Bottom: the
absolute systematic and statistical errors for the parameter f.
The systematic error is several orders of magnitude larger; thus,
the parameter estimation for f is significantly biased.

values mimic more closely the “true” gravitational wave-
form from an IMRI with a DM halo. We keep the value of b
to be the same as that used in Q2.

Figure 6 shows the errors on the chirp mass and ppE f
with the updated fiducial values. For the chirp mass, the
statistical error remains almost unaffected from the results
in Q2, while the systematic error has been reduced by a few
orders of magnitude. For ppE parameter, the fractional
systematic error is O(107'°) in most cases; however, the
fractional statistical error is O(107*). The fractional stat-
istical error is roughly consistent with the ratio of the
absolute statistical and systematic errors in Q2. It is not
precisely the same, however, because the partial derivative
0h/OM., in the inverse Fisher matrix now contains con-
tributions from terms proportional to f, which is assumed
to be nonzero. This will introduce additional correlations
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FIG. 6. (Q3) Errors with updated fiducial parameter values.

Top: similar to the top panel in Fig. 5, but the fiducial values were
updated as in Eq. (5.5). Bottom: similar to the top panel, but for
the ppE parameter f. Note that unlike the bottom panel of Fig. 5,
we plot the fractional error on f instead of the absolute error. In
both the top and bottom panels, the systematic errors for both the
chirp mass and ppE f# are much smaller than their respective
statistical errors.

between M and f, which would vanish when the fiducial
value of f is set to be zero, as in Q2. Nevertheless, the
systematic errors are now much smaller than the statistical
errors for both parameters. This shows that, in principle, the
ppE template is able to reduce the bias in vacuum
parameters and to capture the effects of a dynamical
DM distribution with a nonzero fiducial value of f.

D. Q4. Uncertainties in the ppE exponent b

In the previous two tests, we determined the optimal
value of ppE exponent b that minimized the systematic
error on the chirp mass, and we assumed that it was known
without any uncertainty. This followed one viewpoint on
the ppE framework, in which b is not considered a free-
parameter of the framework; rather the ppE tests are
run with fixed b for the values appropriate for a few
common, discrete post-Newtonian orders at which different
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deviations from GR could conceivably occur (based on
specific examples of deviations that arise in theories of
gravity that contain additional interactions not present in
GR). However, the dark-matter effects can produce a
dephasing that (at least locally in the frequency domain)
would be best fit by a b parameter that is not constrained to
be any particular PN order. The power law y, in the initial
DM density in Eq. (2.1) can take on a continuum of values
in an interval on the real axis, and the best-fit b parameter in
these cases would also be a continuum on another real
interval, rather than at a few discrete values at a few distinct
PN orders.

Thus, in the context of capturing dynamical DM effects,
it is more natural to consider b to be a free parameter in the
ppE framework, which would be determined simultane-
ously with the other parameters and would have systematic

and statistical uncertainties. This then leads to the final test,
Q4, which addresses how the results in Q3 change if b is
included in the parameter set:

0= (In M, t.,¢..InA,pB,b). (5.6)
We thus will fix the fiducial values for the vacuum
parameters and the ppE parameter  to be the same as
those in Q3. The fiducial values for b for different m; are
the same as those used in Q2 and Q3.

Figure 7 summarizes the fractional statistical and sys-
tematic errors on the chirp mass, f#, and b in Q4, in the right
column. The results of Q1 in Fig. 4 are included in the left
column and those of Q3 in Fig. 6 are shown in the middle
column (so as to make a comparison of the three tests
easier). By considering b as a waveform-model parameter,

(Q1) No ppE (Q3) Including (Q4) Including B,b
001F | i ieaoosoacsoaneas,, 0.01 0.01+
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FIG. 7. Comparison of the statistical and systematic errors in the different tests. The left column (Q1) and central column (Q3)
reproduce the results in Figs. 4 and 6, respectively. They are given to make the comparison with the new results for Q4 in the right
column easier. The first row allows for a comparison of the statistical and systematic errors on the chirp mass in tests Q1, Q3, and Q4.
The second row gives a similar comparison for the ppE parameter f between Q3 and Q4. The third row shows the errors on the parameter
b, which is computed only in Q4. Adding b as a free parameter with errors significantly increases the systematic error compared with
other tests, and increases the statistical error by around an order of magnitude.
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the statistical errors on the chirp mass and S are about an
order of magnitude higher than those in Q3, presumably
because of increased correlations with the chirp mass and
ppE parameter f. The systematic errors are significantly
larger than the equivalent ones in Q3; thus A M,/ M,
and Ay 3/ now exceed the statistical errors in Q4.

The reason for the increased systematic error can be
understood from considering the linear equations in
Eq. (3.7). For the five-parameter set #' in Q3, the value
of b was optimized to make the systematic error (the
product of the inverse Fisher matrix with the five-compo-
nent vector of noise-weighted inner products) small. In Q4,
however, the parameter set contains a sixth component, so
the inverse Fisher matrix becomes a six-by-six matrix. It
multiplies a vector with the same first five components as in
Q3, but with a sixth component (ihAY|0h/ob) added.
There is not a simple relationship between the five-by-five
block of the inverse Fisher matrix from Q4 (with the same
parameters as those from Q3) and the inverse Fisher matrix
in Q3. Thus, using the optimal values from Q3 in Q4 will
not necessarily preserve the small systematic errors (and the
results in Fig. 7 demonstrate that it does not). In principle,
one should perform a new optimization (potentially over
multiple parameters) to see if there exist other combinations
of parameters that can reduce the systematic errors in Q4.
However, we were unable to determine such parameters.
Thus, we were not able to use this simplest ppE model to
capture DM effects and obtain an unbiased estimate on the
chirp mass and # parameter.

VI. CONCLUSIONS

In this paper, we investigated IMRI systems within an
evolving DM spike, and we examined how well the ppE
framework could model the GW effects of the DM in these
systems. We first showed that using a vacuum template to
model a merger within a dynamic DM spike causes the
parameter estimation to be biased. Using vacuum templates
to analyze systems with DM is most reasonable if the
system is detectable with vacuum templates; however,
Ref. [36] showed that the Bayes factor for the DM versus
vacuum hypothesis strongly favored DM systems, thus
indicating that vacuum templates would likely not be able
to detect these systems for the systems that we considered.
This study then supposed that the GW signal with DM
could be detected by some other means.

We next performed additional tests within the context of
the ppE framework. The ppE approach often makes the
assumption that the true signal is that of vacuum GR, and it
places constraints on a parameter  in the GW phase that
permits a deviation from GR by computing its statistical
error. Dark-matter effects in the GW phase, however, do not
have a zero coefficient, so this approach would only be
unbiased if the statistical error when using the ppE
framework exceeded the systematic error from assuming
vacuum GR is the true signal. After optimizing the

exponent in the ppE phase, the statistical errors were
several orders of magnitude smaller than the systematic
ones; thus, a nonzero value of § is necessary to have
unbiased results.

We then performed a similar study in which the fiducial
value of the f ppE parameter was assumed to be nonzero.
With an optimized ppE exponent b, the statistical errors
were no larger than the systematic ones. This suggested that
if the exponent was considered to be fixed (and not a
parameter with its own errors) then the ppE framework
could be used for parameter estimation without introduc-
ing bias.

The systematic errors on the vacuum parameters depend
sensitively on the choice of the effective PN order;
specifically, if the value is slightly off from the optimized
one, the error goes up by several orders of magnitude. To
run the ppE framework with a fixed exponent b, it would be
necessary to perform the analysis for a large number of
finely sampled b values. This may not be feasible, so it is
more natural to treat the ppE parameter b as an undeter-
mined model parameter that has its own systematic and
statistical errors. Using the same optimized value from the
previous test caused the systematic errors to exceed the
statistical errors, and attempts at further optimization of
the fiducial parameters did not significantly improve the
results. We conclude that although the ppE template can, in
principle, remove the bias in the parameter estimation for
GWs from binary black holes with a DM halo, it may be
difficult in practice to do so using the simplest ppE
framework.

There are several different avenues for future work. One
reason that the single-term ppE framework may not work
well is that the GWs from IMRIs with evolving DM have
deviations from vacuum waveforms that are not a single
power law. Adding multiple ppE terms could produce a
better fit to the phase, if they could be optimized to best
match the phase from the IMRIs with DM. The case that we
studied in this paper used just the leading-order Newtonain,
quadurpolar waveform for an IMRI on a circular orbit, with
a nonspinning primary BH surrounded by a DM distribu-
tion that evolves from the injection of energy from
dynamical friction. Many of assumptions could be gener-
alized. For example, if the secondary is a BH, then
accretion onto the secondary introduces additional dephas-
ing from systems that treat only dynamical friction. The
GW effects enter at a different effective PN order from the
dynamical-friction ones [46], and it would be interesting to
investigate how well the ppE framework could account for
both accretion and dynamical-friction feedback. IMRIs are
strongly relativistic systems, so it would be useful to
include higher PN terms and additional spherical-harmonic
modes of the waveforms. Understanding how well the ppE
framework would perform in this context would also be
useful to investigate.
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Finally, the intent of the original ppE framework is to test
for theory-agnostic deviations from GR that arise at fixed PN
orders, most frequently at half-integer values. Our results
have shown that a nonzero ppE parameter f significantly
reduces the systematic error in our Fisher-based parameter-
estimation studies, which suggests that waveforms with
nonzero f should be used to analyze the GW signals from
such systems. In the context of the ppE framework, a
nonzero f is associated with a deviation from GR, which
might suggest that an environmental effect from a dynamic
DM spike instead could be interpreted as a deviation from
GR. However, the systematic error depended sensitively on
the ppE exponent parameter b, which took on a continuum of
values rather than those associated with a particular half-
integer PN order. The fact the best value of b is not one of
these discrete values is a likely indication that the origin of
the nonzero f is an environmental effect rather than a
beyond-GR effect. However, it may be the case that in
practical ppE studies, the tests will be performed only a
handful of half-integer PN orders. As a future study, it would
also be interesting to investigate how well parameter
estimation with ppE waveforms with these discrete ppE
exponents b perform when the waveform of an IMRI with a
dynamic DM spike is used as the injected signal. Such
studies would determine whether or not the environmental
effects arising from a dynamic DM spike could mimic those
effects more commonly associated with gravitational theo-
ries beyond GR.
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APPENDIX A: ANALYTIC CALCULATION
OF THE SYSTEMATIC ERROR

When the phase difference from vacuum, AW, can be
written in a ppE form, AY = au® (for some constants @ and
a), then the systematic error computed using the ppE
templates has a simple form. Specifically, if we use the ppE
template 4 in Eq. (2.20) to recover the true waveform, then
the systematic error on each parameter § becomes

Asysﬁj = a(T"")*(iuvh|och). (A1)
Next, we will choose the ppE exponent in the template to be
b = a. This implies that 6,;l~1 = iu“h, so the above system-
atic error becomes

AG" = a(I'"") (0gho;h). (A2)
Using the fact that (dgh|0;h) = T'y; are the  components of
the Fisher matrix, we then have

(i=p)

(i#p)’ (A3)

. .. . a
AG = a(T1)iTy; = al ¥ = { .

where I is the identity matrix.

The above analytic estimate shows that if the PN order
(or the exponent) in the ppE term is chosen appropriately,
then under the assumption made on AW, the systematic
error appears in that of the ppE parameter f without
affecting estimation of other parameters. This, in turn,
can be used to determine the effective PN order of the DM
effect. Namely, one can look at the systematic errors in the
other parameters (e.g., Ay, In M) and identify the PN order
that minimizes this systematic error. We illustrate this
approach in the next appendix.

APPENDIX B: OPTIMAL PN ORDERS
FOR DARK-MATTER-INDUCED DEPHASING

Here we illustrate how we use the results of Appendix A
to identify the optimal PN-order N for the GW dephasing
induced by DM, which minimizes the systematic error on
the chirp mass. The order N is related to the ppE exponent
by b = 2N — 5. We illustrate the procedure for both static
and dynamic DM spikes.

1. Static DM case

We first illustrate the method described in Appendix A
for a static DM distribution. For f > f.,, with f, given in
Eq. (2.5), the hypergeometric function in Eq. (2.3) can be
expanded for small 1/y, and the phase difference AW has
the following scaling with frequency:

AW  f~268-19)/3, (B1)

For example, when g, =7 /3, the above dephasing scales
with f as AY « f~3*°. Comparing this with the ppE term
in the phase, we find that the ppE exponent b corresponds
to b = —34/3, which means that the effective PN order
should be N = —19/6.

The left panel of Fig. 8 shows the fractional error on
the chirp mass as a function of the effective PN order N in
the ppE term. The template used is the ppE waveform
with the fiducial parameter of = 0, and the masses are
chosen to be (m;,m,) = (10°,1.4)My. Notice that the
systematic error drops significantly around the PN order
of N=-19/6 as estimated analytically above, which
agrees with our analytic calculation in Appendix A.
Notice also that the error is very sensitive to the choice
of the PN order, in that it rises quickly if the PN order is
slightly off from the optimal value. We found that we

124009-13



WILCOX, NICHOLS, and YAGI

PHYS. REV. D 110, 124009 (2024)

[AM, /M,

T S B L. ot
1070F 1
2 108 1
=
<
- 10-10F 1
L]
10712, 4
10714 P B P T PR P PR R
-3.1675 -3.1670 -3.1665 -3.1660
Effective PN
FIG. 8.

10-4k A
10-6re o o . .
1078 1

10-10% A

10—]2, 4
L]
207120
Effective PN

10714 S S R P S |
-0.7130 -0.7125 -0.7115 -0.7110

Optimizing over different PN orders. Left: the fractional systematic error on the chirp mass against the “effective” PN order
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need a precision of at least five decimal places in N to
find an accurate optimal value.

2. Dynamic DM case

We next examine at the dynamic DM case which has a
more complicated frequency dependence in the phase than

the static DM case. The right panel of Fig. 8 shows the
fractional systematic error on the chirp mass for the dynamic
DM case. Notice that the effective PN order has changed
significantly from the static DM case and is now around
N = —0.7121. Once again, the systematic error depends
very sharply on the choice of the optimal PN order.
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