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Abstract

We study the minimum number of maximum matchings in a bipartite multigraph
G with parts X and Y under various conditions, refining the well-known lower bound
due to M. Hall. When |X| = n, every vertex in X has degree at least k, and every
vertex in X has at least r distinct neighbors, the minimum is r!(k — r + 1) when
n > and is [r 4+ n(k — )| [/ (r — i) when n < r. When every vertex has at least
two neighbors and |Y| — |X| = ¢ > 0, the minimum is [(n — 1)t + 2 4 b](t + 1), where
b= |E(G)|—2(n+t). We also determine the minimum number of maximum matchings
in several other situations. We provide a variety of sharpness constructions.

1 Introduction

We study lower bounds for the number of maximum matchings in bipartite multigraphs.
A matching is a set of pairwise disjoint edges. An X, Y -bigraph is a bipartite (multi)graph
with parts X and Y. For a set S of vertices in a graph, let N(S) denote the union of
the neighborhoods of the vertices in S. Hall’s Condition for X in an X, Y -bigraph is the
condition that |[N(S)| > |S| for every subset S of X. The celebrated theorem of Philip
Hall [4] for an X, Y-bigraph G states that if Hall’s Condition holds for X, then G contains
a matching covering the vertices of X. We call such a matching an X -matching. Let ®(G)
denote the number of maximum matchings (matchings with the most edges) in G. When
Hall’s Condition holds, the maximum matchings are X-matchings.

We use the term simple X, Y -bigraph when multiedges are forbidden. For a set S of
vertices in a graph G, let 05(G) = min,eg dg(v), where dg(v) denotes the degree of vertex v
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in G. Marshall Hall [3] proved ®(G) > Hmm{k ™ (k—i+1) when G is a simple X, Y-bigraph
with |X| = n and dx(G) > k that satisfies Hall’s Condition for X. In particular, when k <n
this lower bound is k!, and its sharpness for simple graphs is a special case of our general
sharpness construction.

There are also lower bounds for bipartite multigraphs. A multigraph is k-regular if
every vertex has degree k. The famous theorem of Egorychev [1] and Falikman [2], proving
what was known as van der Waerden’s Conjecture, implies that every k-regular bipartite
multigraph with n vertices in each part has at least n!(k/n)" perfect matchings (that is,
matchings covering all the vertices). Since n! ~ (n/e)"v/2mn by Stirling’s Approximation,
the leading order of growth in this lower bound for k-regular multigraphs is (k/e)™, while
Hall’s lower bound for simple graphs, which is fixed for large n, is only about (k/e)*.

In order to combine these situations, we enlarge the graph context by allowing multi-
edges and the multigraph context by weakening regularity to a minimum degree requirement
applied only to X. To further obtain a spectrum of problems that in some sense bridges
the gap between bipartite graphs and bipartite multigraphs, we introduce a neighborhood
condition and prove the following result.

Theorem 1.1. Fiz k,r,n € N with k > r. Let G be an X,Y -bigraph with |X| = n. If
Ox(G) >k and |Ng(x)| > r for all z € X, then

ri(k—r+1) ifn>r,

ns {[7’+n(k ~AIIE =) ifn<r

Furthermore, the bounds are sharp in all cases.

When r = k, the bound simplifies to [["a ™"~ (k — i), the bound of M. Hall. This is
achieved in our Construction 2.1. The proof will show also that ®(G) attains this minimum
only when G satisfies Hall’s Condition and the maximum matchings are X-matchings. In
Theorem 2.5 we further explore the characterization of constructions achieving equality in
the lower bound, in which Construction 2.1 plays a crucial role.

Setting r = 1 in Theorem 1.1 is equivalent to eliminating the restriction on r. Theo-
rem 1.1 then only guarantees ®(G) > k in an X, Y-bigraph G with dx(G) > k satisfying
Hall’s Condition, which is sharp by the construction in Construction 2.1, independent of n.
However, in this construction |Y| = |X| and dy(G) = 1. Forbidding this situation yields a
better lower bound, further indicating the sharpness of the previous result.

Theorem 1.2. Let G be an X, Y -bigraph with 0x(G) > k and 6y (G) > 1 that satisfies Hall’s
Condition. If |Y| > | X| or dy (G) > 2, then sharp lower bounds on ®(G) are as follows:

2k —2, if | X|=2o0rk=2;
O(G)><2k—1, if |X|>2andk=3;
2k, if | X| >3 and k > 4.
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We will see that the extremal configurations in Theorem 1.2 can also be excluded by a
further restriction, partially combining the restrictions of Theorems 1.1 and 1.2.

Theorem 1.3. For k,n > 2, let G be an X, Y -bigraph with 6x(G) > k and 6y (G) > 2 that
satisfies Hall’s Condition. If |Ng(x)| > 2 for each x € X, then

O(G) > min{n(k — 2) + 2,4k — 4}.

In these two results, the guaranteed lower bound on ®(G) does not grow as |Y| grows,
but the sharpness examples generally require |Y| = |X|. In general, as |Y| — | X]| grows,
the guaranteed number of X-matchings also grows. Some of the results in the next theorem
reduce to parts of Theorem 1.2 when ¢ = 0 and need Theorem 1.2 as a basis.

Theorem 1.4. Let G be an X, Y -bigraph with | X| > 2, 0x(G) > k, and t = |Y| —|X| > 0.
If Hall’s Condition holds for X, then

k(t+1), if oy (G) = 1;

o(G) > 2k —t—2)(t+ 1), z:féy(G)ZQand\X|:2,
2k(t+1) —1, if 0y (G) > 2 and k = 3;
2h(t + 1), i 6y (G)>2 and k > 4

Finally, when every vertex in G must have at least two neighbors and subsets of X must
have neighborhoods larger than their size, the lower bound on ®(G) in terms of the various
parameters is surprisingly large, and it grows with | X|, with |Y| — | X|, and with |E(G)]|.

Theorem 1.5. Let G be an X, Y -bigraph in which every vertex has at least two neighbors.
Letn =|X|>2,andt = Y| — |X| >0, and b = |E(G)| = 2|Y|. If IN(S)| > |S| for every
nonempty proper subset S of X, then

O(G)>[(n—Dt+2+0b|(t+1),
and the lower bound is sharp in all cases.

In Section 2, we prove Theorem 1.1 and discuss the requirements for equality. Section 3
develops tools applicable to special cases of Theorem 1.3 and Theorem 1.5. Section 4 contains
the proof of Theorem 1.5, our most difficult result, which also has applications in the later
sections. In Section 5, we consider lower bounds when the neighborhood requirement for
vertices in X is replaced by a condition on Y, as in Theorem 1.2. Section 6 considers the
presence of excess vertices in Y, as in Theorem 1.4 and Theorem 1.5. Sharpness constructions
are given for each lower bound.

Many of our proofs follow the technique of P. Hall [4], Halmos and Vaughan [5], and
Mann and Ryser [10], which separates the problem into two cases depending on whether
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some proper subset S of X satisfies |[V(S)| = |S|. This distinction is related to a classical
notion studied by Lovész and Plummer [9]. In a graph with a perfect matching, an edge is
allowed if it belongs to a perfect matching, otherwise forbidden. Hetyei [6] defined a graph
to be elementary if its allowed edges form a connected subgraph. It is easy to see that an
X, Y-bigraph with a perfect matching is elementary if and only if |[N(S)| > |S| for every
nonempty proper subset S of X. In such graphs, all edges are “allowed”.

In some sense, the case |[N(S)| = |S| reduces the problem to a smaller graph, and more
interesting behavior arises when this is forbidden. In order to study lower bounds on ®(G)
in a simple X,Y-bigraph G, Liu and Liu [7] introduced the concept of positive surplus
for an X, Y-bigraph, meaning |N(S)| > |S] for all nonempty S in X, including S = X.
In particular, |Y| > |X| for such a graph. We say that an X, Y-bigraph is X-surplus if
|IN(S)| > |S] for every nonempty proper subset S of X; this condition is a common extension
of “positive surplus” and “elementary bipartite”. In particular, Theorem 1.5 applies to all
X-surplus X, Y-bigraphs in which every vertex of Y has at least two neighbors.

Liu and Liu proved several lower bounds for the number of maximum matchings in a
simple X, Y-bigraph with positive surplus, which we combine into one statement. Note that
maximum matchings in such graphs are X-matchings.

Theorem 1.6 (Liu and Liu [7]). If G is a simple X,Y -bigraph with positive surplus, and
Y| —|X|=t>1, then

| X|+1, if G is connected;
O(G) > |E(G)|+ (|IX|—1)(t—2), if G is connected;
2|E(GQ)|—-21|Y], ift =1 and §(G) > 2;

The lower bound 2 |E(G)| —2|Y| when ¢ = 1 and 6(G) > 2 is the special case t = 1 of our
general Theorem 1.5 (restricted to simple graphs), since [(n—1)14+2+b]2 = 2|E(G)|—-2Y|.
Our proof of the general result includes a proof of their result for t = 1. The case t = 0 we
prove by different methods in Section 3, and it serves as a base case for Theorem 1.5. It can
be stated as follows, allowing multiedges.

Theorem 1.7. If G is an elementary X,Y -bigraph, then ®(G) > |E(G)| — |V(G)| + 2, and
this is sharp.

We prove Theorem 1.7 as a consequence of the existence of an ear decomposition of an
elementary X, Y-bigraph in which every added ear beyond the initial even cycle has odd
length (obtained in [6, 8, 9]). A further consequence of this material in Section 3 will be
Theorem 1.3 for the case | X| = |Y.



2 Degree and Neighborhood Restrictions on X

In this section we consider X, Y-bigraphs where every vertex of X has at least r neighbors
and has degree at least k. Thus r < k. When r is smaller than k, the lack of a degree
condition on Y allows many edges of the multigraph to be incident to one vertex of Y,
leaving little flexibility for the matching. Our sharpness construction exploits this. Let G,, 1.,
be the family of X, Y-bigraphs G satisfying Hall’s Condition such that | X| =n, 0x(G) > k,
and |Ng(z)| > r for all x € X.

Construction 2.1. A graph G € G, ., with ®(G) =rl(k —r + 1) whenn > r, or &(G) =
[r+n(k — ) 15 (r — i) whenn <r. Let X = {xy,...,2,} and Y = {y1,...,ym}, where
m = max{r,n}. Begin with a copy of K, , having parts X and {yi,...,y.}. Add k—r copies
of the edge x;y; for 1 < i < n. Finally, in the case n > r, add the edge z;y; for r < i < n.
Let G be the resulting X, Y-bigraph; every vertex in X has degree at least k and has at least
r neighbors. See Figure 1. Maximum matchings are X-matchings and have size n.

T1 Y1 T Y1
Yy

Ty
Ym Tn Ym
(k7 T? n) = (5747 3) (k7r7 /n') - (3? 274)

Figure 1: Construction 2.1.

If n <r, then exactly [[;_,(r — i) X-matchings avoid y;. Those using y; can choose the
edge covering y; in n(k —r + 1) ways, and then in the remaining copy of K,_1,_; the rest
of X can be covered in [[/—, (r — i) ways. Hence

n n—1 n—1

oG =[]r—d)+ntk—r+ 1) [Jr—i) = [r+nlk—r)][[(r—.
i=1 i=1 i=1
If n > r, then m = n, the edges x;y; for 1 < i < n form an X-matching, and every
X-matching also covers Y. Since y,.1, ..., ¥y, have degree 1, the edges x;y; for r < i < n
appear in each X-matching. There are then r(k — r + 1) ways to choose the edge covering
y; and (r — 1)! ways to match the remaining r — 1 vertices in z1,...,x, into ¥, ..., Y, SO
O(G)=rl(k—r+1).

Intuitively, removing edges or shrinking neighborhoods should not increase the number
of matchings covering X. Our first lemma makes this precise, allowing us when r > 1 to
assume that the degree and neighborhood conditions hold with equality for each vertex in
X and that any vertex in X has only one neighbor via a multiedge.
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Just as we use “X-matching” in an X, Y-bigraph, we use “X’-matching” for a matching
of size | X'| in an X', Y-bigraph. For S C V(G), let G[S] be the subgraph of G induced by S.

Our proof of both the lemma and the lower bound theorem uses the same two basic cases
as in the proofs of P. Hall’s Theorem by M. Hall [3], Halmos and Vaughan [5], and Mann
and Ryser [10], depending on whether the X, Y-bigraph is X-surplus.

Lemma 2.2. If G € G, ;. with r > 1, then there exists G' € G, ., with ®(G") < ®(G) and
V(G") = V(G) such that in G' every vertex of X has exactly r distinct neighbors, one with
multiplicity k — r + 1 and the others with multiplicity 1. When r = 1, in G’ we can only
guarantee one such vertex.

Proof. When r = 1 and the smallest neighborhood size among vertices in X is 1, we have x
with only one neighbor, and we may delete excess copies of the incident edge to bring dg(x)
down to k to obtain the desired G’. Hence we may assume r > 1.

We use induction on n. When n = 1, we have ®(G) = dg(x), where X = {z}. If
dg(x) > k, then we can delete a copy of an edge having highest multiplicity to reduce the
number of X-matchings without losing the hypotheses. Hence we may assume dg(z) = k,
and we can redistribute the edges so that one pair has multiplicity £ — r + 1 and the other
r — 1 edges have multiplicity 1. Note that ®(G) = k for all G in G, ;. having k edges, so the
resulting graph G’ minimizing ® is not unique. Now suppose n > 1.

Case 1: |[N(S)| = |S| for some nonempty proper subset S of X. Let s = |S|. Let
Gy =G[SUN(S)] and Gy = G — (SUN(S). Since G € G, ., there is a perfect matching
in G; it must consist of a perfect matching in G; and an (X — S)-matching in Gs.

In fact, ®(G) = (G1)P(Gs). We first reduce the number of X-matchings by applying
the induction hypothesis to G;. Since G; retains all edges of GG incident to S, we have
G1 € Gskr, and the induction hypothesis provides G} € G, ., with ®(G)) < ®(Gy) such
that the desired properties holding in G for all vertices of S. Let G° be the graph obtained
from G by replacing G; with G’ while maintaining all edges incident to X — S.

Let M be an X-matching in G°, and consider x € X — S. Let y be the mate of x in M,;
note that y € N(S) — X. We will keep all X-matchings in G° that use a specific edge xy
and destroy all X-matchings that do not use (that copy of) that edge. In particular, when
we do not change the edges incident to S, an X-matching cannot use any edge joining = to
N(S). We replace the edges incident to x by one copy of xy and edges to r — 1 vertices of
N(S), one with multiplicity k& — r 4+ 1 and the others with multiplicity 1. We can do this
because r —1 > 1 and |N(S)| > r. Applying this transformation successively for each vertex
of X — S produces the desired graph G'.

Case 2: G is X-surplus. Consider x € X and y,y’ € Ng(x), which exist since r > 1. Let
X'=X —{z},and let 0 = ®(G — {z,y}) and ¢’ = (G — {z,y'}). We may assume o < o’
Let G° be the multigraph obtained from G by (1) shifting all copies of zy’ to be copies of



xy if |Ng(x)| > r, or (2) shifting all but one copy if |[Ng(z)| = r. Since G is X-surplus,
G° € G, k- Moving ¢ copies of the edge destroys go’ X-matchings from G and adds go new
X-matchings in G°. Thus ®(G°) — ®(G) = g(o — ') < 0.

If the edges incident to x in G are not in the desired form before this operation, then
we can choose y and ¥y’ so that xy and xzy’ both have multiplicity at least 2 or both have
multiplicity 1. In either case, the sum of the squares of the multiplicities increases in moving
from G to G°.

As long as the graph remains X-surplus and some vertex of X has more than one incident
edge with multiplicity at least 2 or has more than r neighbors, we can repeat this operation.
Since the sum of the squares of the multiplicities increases with each step, the process does
not cycle. We eventually reach the desired bigraph G’ in which the incident edges at each
vertex of X have the desired form, or we reach a graph that is not X-surplus. To that graph
we apply Case 1 to obtain G’ € G,, 1, with ®(G’) < ®(G) and edges in the desired form. O

The argument for Case 1 in Lemma 2.2 fails when r = 1 because it asks to have a positive
number of copies of 7 — 1 edges. Indeed, X,Y-bigraphs in G, ;i with fewest X-matchings
do not have the desired structure when k > 1.

In order to prove Theorem 1.1, we first consider the case where GG has an X-matching.

Theorem 2.3. Fiz k,r,n € N withk >r. If G € G, 1., then

ri(k—r+1) ifn>r,

e {[r+n<k ~OIIS =) i<

Furthermore, the bounds are sharp in all cases.

Proof. When r = 1, we have n > r, and the claimed lower bound is k. We are guaranteed
a vertex z € X having one neighbor with multiplicity k. Every X-matching uses a copy of
that edge, for which there are k choices. Hence we may assume r > 2.

We use induction on n + k. When k = r, the formulas reduce to Hﬁg{k’"}_l(ls — 1), our
restricted graph G is simple, and the lower bound holds from the result of M. Hall. When
n =1 < r, the empty product H?:_ll (r —i) is 1, and the number of X-matchings guaranteed
is k. Hence we may assume n > 1 and k > r.

Case 1: |[N(9)| = |S| for some nonempty proper subset S of X. Every X-matching in G
matches S into N(S). Each matching of S into N(S) can be completed to an X-matching
by some matching of X — S into Y — N(S), because we are given ®(G) > 1. Hence it
suffices to show that the subgraph G’ induced by S U N(S) has at least the desired number
of S-matchings. With s = |S|, this graph lies in G j ..



Since every vertex of X has at least r neighbors, n > s > r. Now the induction hypothesis
for s yields ®(G’) > rl(k —r + 1) and hence ®(G) > rl(k —r + 1), as desired. Note that
Case 1 cannot occurif n <r.

Case 2: G is X-surplus. As noted earlier, we may assume k > r. In order to prove the
lower bound on ®(G), we may assume that G has the form guaranteed by Lemma 2.2. Let
G’ be the X, Y-bigraph obtained from G by deleting from G one copy of each edge having
multiplicity at least 2. Each vertex of X loses one incident edge, but neighborhoods are
unchanged, so G € G,, ;_1,. By the induction hypothesis, ®(G’) > rl(k —r) if n > r and
O(G) > [r+nk—1 =)= (r—i)ifn<r.

This lower bound does not count the X-matchings in G that use at least one of the
deleted edges, which are copies of edges that remain. We need to find r! such matchings if
n > r, and we need to find n H?:_ll(r — i) such matchings if n < r.

Since G is X-surplus, deleting the endpoints of any edge from G’ leaves |N(S)| > |9]
for any subset S of X that remains, and every remaining vertex of X keeps at least r — 1
neighbors. The result of M. Hall thus implies that every edge of G’ appears in at least ¢
X-matchings, where ¢ = []™ """ (- — ). Since each edge deleted from G is a copy of
an edge in G, we obtain ¢ X-matchings in G that use only that one missing edge plus edges
in G'. Thus we have at least nq distinct X-matchings in G that do not lie in G’. In fact, ng
is exactly the desired value when n < r, and it exceeds the desired value when n > r. O

To complete the proof of Theorem 1.1, we consider the case where G does not have an
X-matching. In this case we obtain a larger lower bound. Let o/(G) be the maximum size
(number of edges) of a matching in a (multi)graph G. For a subset S of X in G, the defect is
max{0, |S| — |N(S5)|}. The Defect Formula of Ore [11], proved by the same technique as the
corollary below, states for an X, Y-bigraph G that o/(G) = | X|— p, where p is the maximum
defect among subsets of X.

Corollary 2.4. Fiz k,r,n € N with k > r. Let G be an X,Y -bigraph with |X| = n,
O0x(G) >k, and |Ng(x)| > 71 forallz € X. Let p=n— o' (G). If p> 0, then r <n and

(G) > (k—r+1)(r+p)!/p.
Furthermore, the bound is sharp in all cases.

Proof. Form G’ from G by adding p “universal” vertices to Y, adjacent via edges of multi-
plicity 1 to all vertices of X. Since this adds p vertices to the neighborhood of each subset
of X, we have o/(G') =n.

For each X-matching in G’, deleting the edges covering the p added vertices yields a
maximum matching in G. Furthermore, each maximum matching in G corresponds to p!



X-matchings in G’ in this way, since the uncovered vertices of X in a maximum matching
in G can be matched to the p added vertices in any order. Thus ®(G) = ®(G")/p!.

Since the added vertices increase the neighborhood of each subset of X and the degree
of each vertex of X by p, we have G’ € G,, j+pr+p. Now Theorem 2.3 completes the proof.[]

A closer look at the proof of Theorem 2.3 leads to a description of the graphs achieving
equality in the bound.

Theorem 2.5. When r,n > 1 and G is an X,Y -bigraph in G, 1, with no isolated vertices,
equality in the bound in Theorem 2.3 occurs only in the following situations.

If r > n, then G is X-surplus, all multiedges are incident to a single vertex of Y, and
the underlying simple graph is K, .

Ifr <, then |Y| = |X| and G is not X -surplus, and for a smallest nonempty set S C X
such that [N(S)| = |S|, the size of s isr, all multiedges in G[SUN(S)] are incident to a single
vertez of Y, the underlying graph of G[S U N(S)] is K,,, and the subgraph G — (S U N(S))
has ezactly one (X — S)-matching.

Proof. We use induction on k. When n = 1, the minimum value k is achieved by all
arrangements of k£ edges at the single vertex of X, so we restrict to n > 2. Consider
G € G,k achieving equality in the bound from Theorem 2.3.

Case “2”: G is X -surplus. Since G is X-surplus, every edge is in an X-matching. Hence
equality in the bound requires every vertex to have degree k.

When k = r, we have a simple graph and the lower bound [Ta%™ = (k — i) of M. Hall,
After choosing mates for i vertices of X, there are at least k — 7 neighbors available for the
mate of the next vertex of X. This proves the lower bound, but also equality will hold only
if there are no more than k — ¢ neighbors available. This requires that, no matter how the
vertices are ordered, the neighbors chosen for the earlier vertices must be neighbors of the
later vertices. Hence all vertices of X have the same neighborhood, so G = K, ,. Since G
has an X-matching, this outcome requires » > n. The desired conclusion holds.

Now suppose k > r. By Lemma 2.2, our extremal graph G has the same number of X-
matchings as a graph G’ in which every vertex of X has r neighbors and degree k, including
one neighbor along an edge with multiplicity £ —7r+1. Also, G’ arises from G by the steps of
shifting in the proof of Lemma 2.2, always remaining X-surplus, since a shifting step where
the property of being X-surplus is lost strictly decreases the number of X-matchings.

Let G* be the graph obtained from G’ by deleting one copy of each edge having mul-
tiplicity at least 2. We may have (1) X-matchings that lie in G* as guaranteed by the
induction hypothesis, (2) X-matchings containing exactly one of the missing edges, and (3)
X-matchings containing more than one of the missing edges. As observed in the proof of
Theorem 2.3, when n > r types (1) and (2) already provide more X-matchings than the



lower bound, so we may assume r > n. In this case, types (1) and (2) provide as much as
the lower bound, so equality forbids X-matchings of type (3).

Suppose that the multiedges at x; and x5 do not have the same endpoint in Y, so that
x1y; and xoysy are disjoint edges in G' with multiplicity at least 2. Let X' = X — {zy, x9}. If
IN(S)| > |S|+2 for all nonempty S C X', then G’ — {1, 2, y1, y2} satisfies Hall’s Condition
and has an X'-matching, yielding an X-matching of type (3) in G'. Hence |N(S)| < |S|+1
for some nonempty S C X’. Since G is X-surplus, equality holds. Now

n—1>|S|+1=|N(S) >r

We conclude r» < n, which contradicts the earlier conclusion » > n for this case. Hence the
assumption about x; and x5 cannot hold, and in fact all the multiedges in G’ have the same
endpoint y in Y.

Thus when G is extremal, the shifting process of Lemma 2.2 turns G into a graph G’
satisfying the properties in Lemma 2.2 plus the property that the multiedges have the same
endpoint in Y, all without changing the number of X-matchings. Consider the last shifting
step, which brings vertex x into compliance. Already the multiedges at the vertices of X —{x}
have common endpoint . Since the last shifting step results in £ —r + 1 edges from z to vy,
we must already have zy as an edge, and the extra copies are coming from xy’. Since G is
extremal, (G — {z,y}) = (G — {z,y'}).

To complete the proof, we take a closer look at G’. Deleting y yields a simple graph in
which every vertex of X has degree r —1. Hence G’ has at least H?:_Ol (r—1—1) X-matchings
that avoid y (this lower bound equals 0 when n = r). For X-matchings covering y, we pick
the edge covering y in n(k — r 4+ 1) ways and complete the matching in a simple X’ Y-
bigraph where | X’| = n — 1 and every vertex of X’ has degree r — 1. Hence there are at least
n(k —r+ 1) J[= (r — 1 — i) X-matchings covering y. Together, we have the desired lower
bound [+ n(k — r)] T[] (r — ) from Theorem 2.3.

If equality holds, then equality must hold for each contribution, using y or not using .
Each of those contributions came by counting matchings in a simple bigraph in which the
vertices in the first part all have the same degree. By the argument for the case k£ = r at
the beginning of this Case 2, equality in the bound requires the underlying simple graph of
G’ to be K,,,. In G', each edge incident to y lies in H;:ll (r — i) X-matchings, and any edge
at 2 not incident to y lies in [(n — 1)(k — 7 + 1) + (r — n)] [[/=2(r — 1 — ) X-matchings.
Since (n —1)(k—7r)+ (r—1) > (r — 1), in fact ®(G — {z,y}) < ®(G — {z,y'}) and the last
shifting step to reach G’ reduces ®. Thus G must in fact have the form of G'.

Case “17: (G is not X-surplus. Let S with size s be a smallest nonempty subset of X
such that |[N(S)| = |S|. We have already observed that this case requires n > r and has
rl(k —r + 1) S-matchings. Let G' = G[S U N(S)]. By the choice of S, G’ is S-surplus, so
the conclusions of Case 2 apply to it. All multiedges in G’ are incident to a single vertex of
Y, and r > s. Also, r < |N(5)]|, so r = s and the underlying graph of G’ is K.

10



In the subgraph G” obtained by deleting S U N(.S), equality in ®(G) requires that there
is only one (X — S)-matching. Since G has no isolated vertex, this means that an (X — 5)-
matching cannot leave a vertex of Y — N(S) uncovered; shifting an edge would produce
another (X — S)-matching. Hence |Y| = |X| =n. Now M. Hall’s formula implies that each
of X —S and Y — N(S) must contain a vertex of degree 1 in G”. Other edges may be added
in various ways, and there may be many edges joining X — S to N(S). O

3 Elementary Graphs

In this section we consider imposing both a neighborhood restriction on vertices of X and a
degree restriction on vertices of Y, proving the special case of Theorem 1.3 where |Y| = | X].
Our proof uses properties of the “elementary” graphs mentioned in the introduction.

There are many equivalent characterizations of the connected bipartite graphs in which
all edges are allowed, meaning that they appear in a perfect matching. These equivalences
can be found in Lovdsz and Plummer [9], though most of the results appeared already in
Hetyei [6] and/or Lovész [8].

The 2-connected graphs are characterized by the existence of ear decompositions. An ear
in a graph is a path whose internal vertices have degree 2. An ear decomposition iteratively
deletes an ear (except that the endpoints of the ear stay) until what remains is only a cycle.
An ear may be a single edge, so it suffices to begin with a cycle and add ears to obtain
a spanning subgraph (and multiedges are irrelevant). An odd ear is an ear of odd length,
and an odd ear decomposition uses only odd ears. In a bipartite graph, the endpoints of
an odd ear lie in opposite parts. Also, since all cycles are even, we may view an odd ear
decomposition of a bipartite graph as starting from an edge and adding paths of odd length.
This allows K ; to have an odd ear decomposition.

Theorem 3.1. For an X, Y -bigraph G with a perfect matching, the following are equivalent.
(a) The subgraph consisting of allowed edges is connected (i.e., G is “elementary”).

(b) IN(S)| > |S| whenever @ # S C X (i.e., G is near-surplus).

(¢) G —x —y has a perfect matching, whenever x € X andy €Y (i.e., G is “bicritical”.
(d) G is connected and every edge is allowed.

(e) G has an odd ear decomposition.

The implications (a)=-(b)=-(c)=(d)=-(a) follow immediately. Lovasz and Plummer [9]
presented an accessible argument for building an odd ear decomposition of G from any given
edge, using property (d). It is easy to prove that (e) implies the other properties.

Theorem 3.2. Every elementary X,Y -bigraph G has at least |E(G)| — |V(G)| + 2 perfect
matchings, and the bound is sharp.

11



Proof. Let m = |E(G)| and n = |V(G)|; we use induction on m —n. When m —n =0, G is
an even cycle, and there are two perfect matchings. When m — n > 0, we consider the odd
ear decomposition provided by Theorem 3.1(e). Let G’ be the graph obtained by removing
one ear P in the decomposition, having endpoints = and y. This removes one more edge
than vertex. By the induction hypothesis, G’ has at least m —n+ 1 perfect matchings. Each
extends by a matching of the internal vertices of P to a perfect matching of G.

To produce one more perfect matching in G, start with a perfect matching M in the ear,
covering x and y and any vertices between them. Since G is elementary, G’ — {z,y} has
a perfect matching M’. Now M U M’ is a perfect matching of G not counted among the
m — n + 1 matchings above.

For sharpness, let G be a union of paths with odd length, all having endpoints z and y.
In any perfect matching M, the path containing the edge of M covering x provides also the
edge covering y, since the path has odd length. In all other paths, M covers the internal
vertices without covering = or y. Hence the number of perfect matchings is the number of
paths with endpoints x and y. After forming a cycle using two of the paths, contributes the
same number of vertices and edges, each additional path adds one more edge than vertex.

Hence the number of paths (and matchings) is 2 + m — n, as desired. See Figure 2. O
x
x
Y
Y

Figure 2: Constructions for Theorem 3.2.

Another sharpness example for Theorem 3.2 is obtained from a copy of K33 by deleting
one edge xy and then allowing arbitrary multiplicity for each of the four edges not incident
to x or y. Each edge e not incident to x or y determines a perfect matching, matching = and
y to the two remaining vertices that are not incident to x or y, and every perfect matching
has exactly one such edge. Hence the number of perfect matchings is the number of edges
not incident to x or y. Since there are four edges incident to x or y, the number of perfect
matchings is m — 4, which equals m — n + 2. See Figure 2.

We apply Theorem 3.2 to prove a lower bound on the number of X-matchings where we
have requirements on degrees in both X and Y and on neighborhoods of vertices in X. First
we present sharpness constructions.

Construction 3.3. For n > 4, let J,; be the X, Y-bigraph with |X| = |Y'| = n consisting
of the disjoint union of Fj and a cycle C' with 2n — 4 vertices, plus k — 2 edges from y; in Fj
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to each vertex of X on C. Note that dx(.J,, ;) = k, and each vertex of .J, ; has at least two
neighbors. An X-matching must consist of an perfect matching in Fj, and a perfect matching
in C. There are 2k — 2 of the former and two of the latter, so ®(.J,, » = 4k —4. See Figure 3.
Form H, from H, (defined in Construction 5.1) by shifting one copy of z1y; to x1y;,
for each 7 with 2 < ¢ < n. This requires k& > n. The shifted edges ensure that each vertex
has at least two neighbors. For ¢ > 2, the only neighbors of x; are y; and y;, with multiplicity
1 and k — 1, respectively, and the only neighbors of y; are x; and z;. An X-matching must
be a perfect matching. Once the edge incident to y; is chosen, the rest of the matching is
determined. Hence ®(H),) = (n —1)(k — 1)+ (k —n+1) = n(k — 2) + 2. See Figure 3.

Tn Y1

€1 Yn
J Hl/
4,4 4,4

Figure 3: Construction 3.3

In applying Theorem 3.2, we restrict to |Y| = | X|, but the results of the next section will
apply to the case |Y| > |X]|.

Theorem 1.3. Let k,n > 2. Let G be an X,Y -bigraph with |X| = |Y| = n having an
X-matching. If §x(G) >k, 0y (G) > 2 and |Ng(x)| > 2 for each x € X, then

O(G) > min{n(k — 2) + 2,4k — 4}.

Proof. Case 1: |N(S)| = |S| for some nonempty proper subset S of X. Let G; be the
subgraph of G induced by S U N(S), and let Gy = G — V(G1). By Theorem 1.1, ®(G,) >
2k—2. Since dy (G) > 2 and vertices of S have no neighbors in Y —N (), we have dy (G2) > 2.
Also ®(G2) > 1, because ®(G) > 1 and S can only match into N(S). Hence we can apply
Theorem 1.1 to Gy as a (Y — N(S5), X — S)-bigraph to find at least two perfect matchings
in GGy. Combining these with perfect matchings from G yields ®(G) > 4k — 4.

Case 2: |N(S)| > |S| for every nonempty proper subset S of X. In this case, G is
elementary, and Theorem 3.2 provides |E(G)|—|V(G)|+2 X-matchings. Since |E(G)| > nk
and |V (G)| = 2n, we obtain the desired lower bound n(k — 2) + 2. O
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4 Neighborhood Restrictions

Recall that an X, Y-bigraph is X -surplus if |[N(S)| > | S| for every nonempty proper subset
S of X. A multigraph is leafless if every vertex has at least two neighbors.

Lemma 4.1 ([7], Proposition 6). If G is an X,Y -bigraph without isolated vertices satisfying
Hall’s Condition for X, and |Y|— |X|=t, then ®(G) >t + 1, and this is sharp.

Proof. Note that |Y| > |X|. Let M be an X-matching in G, and let 7" be the subset of YV’
covered by M. For each vertex y € Y —T', there is an incident edge xy. Another X-matching
is obtained by using xy to replace the edge covering x in M. This generates t additional
X-matchings.

Sharpness is achieved by the X, Y-bigraph with X = {z1,...,z,} and Y = {y1, ..., Ynis}
whose edges are {z;y;: 1 < i <n} plus {z1y;: n <i<n-+t}. O

Corollary 4.2. In a leafless X -surplus X,Y -bigraph G, every edge appears in at least t + 1
X-matchings, where t = |Y| — | X].

Proof. Since |N(S)| > |S] for every proper subset S of X, deleting the endpoints of any
edge zy in G yields an X', Y’-bigraph G’ satisfying Hall’s Condition. Hence ®(G’) > 1, and
Y| —|X'| = |Y| —|X]. Also y/(G’) > 1. Hence Lemma 4.1 yields ¢ + 1 X'-matchings in
G', and adding zy turns each into an X-matching in G. U

Theorem 4.3. Let G be an X,Y -bigraph satisfying Hall’s Condition, such that 6x(G) > k
and every vertex of G has at least r neighbors. Let t = |Y| — | X|. If some nonempty proper
subset S of X satisfies |S| = |N(S)|, then ®(G) > rl(k —r+1)(r+t)!/t!, and this is sharp.

Proof. Fix S to be a largest subset of X whose neighborhood has the same size as the
set. Let " =X —S and T =Y — N(S), so N(T) C S’. Since every vertex of 7" has at
least r neighbors, |S’| > r, and hence r < |X|. Let G' = G[S U N(S)]. By Theorem 1.1,
O(G") > rl(k —r+ 1), and this is sharp. Let G” = G[S" UT]. Since G satisfies Hall’s
Condition, G” has an S-matching M. It suffices to show ®(G") > (r + t)!/t!.

Form G by adding t vertices to S’, each adjacent to all of T" via single edges. Note
that G" is a Y, X-bigraph with |Y| = |X| > r + ¢ in which every vertex of Y has at r + ¢
neighbors. By the result of M. Hall, G has at least (r+1t)! perfect matchings. Each restricts
to an S’-matching in G”, and every S’-matching in G” arises from t! perfect matchings in
G" by such a matching. Hence ®(G”) > (r +t)!/t!.

To construct a sharpness example, let G’ be a sharpness example for Theorem 1.1, and
let G" = K, ,+4, with all of S” adjacent to all of N(.5). O
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The situation addressed in Theorem 4.3 is what we called “Case 17 in earlier sections.
The other possibility, which was Case 2, is that G is X-surplus, as in Corollary 4.2 and in the
remainder of this section. An important distinction is that the lower bound in Theorem 4.3
does not grow with n, but generally the values for X-surplus graphs will do so. The key
feature of the first construction is that for any fixed r and t the dependence on n is only
linear, and similarly for the dependence on the number of edges. We will show that the
construction is optimal for r = 2.

Construction 4.4. An X -surplus X,Y -bigraph M, ,.,, with few X -matchings. We fix | X| =
n > 2rand |Y|—|X| =t > 0. The graph will have b+r(n+t) edges, where b > (r—1)(n—2r).
Every vertex will have at least r neighbors, and

!W[b%—r(t%—l)jt(r—1)(n—2r+1)(r+t—2)]

We begin with a simple graph. Let X = RUSUT U{u} and Y = R US " UT' U {u'},
with |[R| = |S| =5 =r—1,|R|=t+r—1,and |T| =|T'|=n—2r+1. Let RUR
be an independent set. Let N(u) = R'U{u'} and N(v') = RU{u}. Let SU R'UT" induce

K, 1 nit—r. Let SURUT induce K,_1 . Let TUT" induce a matching with n—2r disjoint
edges. See Figure 4. To generalize, add any edges joining S and S’; here multiedges can be

(M yrp) = (r—1)

included, so there is no upper bound on the number of edges.

R t+r—1

/

r—1 R

.»,4

u AL u 1
r—1 S S’ r—1

W’ N\
n—2r+1 T A T n—2r+1

Figure 4: My, ;.1

Every vertex in Y has degree exactly r except the r; vertices of S’. If we add no edges
joining S and S’; then every edge has an endpoint with degree r, and each of the r—1 vertices
of S’ has degree that exceeds r by n — 2r. Hence b equals (r — 1)(n — 2r) plus the number
of edges added joining S and S’. The construction does not exist when b < (r — 1)(n — 2r).
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To form an X-matching containing an added edge joining S and S’, we must match R
into the remainder of S" U {u'} (in (r — 1)! ways), match 7" into 7" (in one way), and match
the remaining r — 1 vertices of S U {u} into R’ (in (r + ¢ — 1)!/t! ways). Thus each edge
joining S and S’ (multi-edges allowed), adds exactly (r — 1)!(r +t — 1)!/t! X-matchings.
Also, the number of edges joining S to 5" is b — (r — 1)(n — 2r).

Next suppose that we use no edge joining S and S’ (whether such edges are present or
not). Each such X-matching must match R into S’ U {u'}. We can match R into S in
(r — 1)! ways. This again forces 7" matched into 7”. However, now all r vertices of S U {u}
remain to be matched into R’ U{w’}, which can be done in (r+t — 1) /t! ways using the edge
wu' and (r 4+t — 1)!/(t — 1)! ways not using uu’. Note that (r — D!(r +¢— 1)!/(t — 1)! =
(r—Dlr+t—1)'t/t.

Finally, suppose that some vertex of R is matched to u/, chosen in r — 1 ways. The rest
of R matches into S’ in (r — 1)! ways, leaving a vertex y of S” uncovered. Without using y,
we finish in (r+¢—1)!/(t — 1)! ways, matching T into 7" and all r vertices of SUU into R'.
If we use y, then it matches to one vertex of T', chosen in n — 2r 4+ 1 ways. The mate of this
vertex in 7" remains available. To complete the X-matching, we have r + ¢ — 1 choices for
the mate of v and then still (r 4+ ¢ — 1)!/¢! choices for covering the r — 1 vertices of S.

Summing the counts in the various cases yields

O( My rip) = (r—l)!@[b —(r=1)(n=2r)+1+t+ (r—=1){t+ (n—2r+1)(r+t—1)}]
= (r—l)!@[b—l— rt+1) 4+ (r—1)(n—2r+1)(r+t—2)]

When 7 = 2, the computation simplifies to (M, 2,4) = (t+ 1)[b+ 2+ (n — 1)t].

In Theorem 1.5, we will prove that M, ,;;, minimizes ® for the parameters n,?,b when
r = 2. Furthermore, the formula (¢t + 1)[b+ 2+ (n — 1)¢] is the minimum value of ® over the
full range of nonnegative b, not only b > n — 4.

First we introduce another construction that covers the full range of b when r = 2. One
may note that M, 5, o consists of an 8-cycle plus an extra vertex having the same neighbors
as one vertex of Y'; this is precisely the graph Cy; in the construction below.

Construction 4.5. An X, Y -bigraph C,, 1, with ®(Cy, 1) = [(n—1)t+2+b](t+1). Construct
Ch.ep from the 2n-vertex cycle Cy, with |X| = n by adding ¢ copies of one vertex of ¥ on
the cycle (with the same two neighbors in X') and adding b copies of the edge on the cycle
incident to one of the vertices of X in the copy H of Ky ;4q.

Ignoring the extra copies of the multiedge, C), 1, has (n—1)(t+1)t X-matchings using two
edges from H (choose which one of the other n — 1 vertices of Y to leave uncovered). When
only one edge of H is used, the rest of the X-matching is determined, so this adds 2(t4+1) X-
matchings. Among these, exactly ¢+ 1 matchings use the representative of the multiedge, so
each of the b added copies adds t+1 X-matchings. Hence ®(C,1p) = [(n—1)t+240](t+1).

16



We mention several other special constructions with the right number of edges and X-
matchings. (1) Merge a high-degree vertex of Ky,;11 with one vertex of a (2n — 2)-cycle
and add b extra copies of an edge on the cycle incident to the high-degree vertex. (2) when
(n,t,b) = (4,2,0), let G consist of three 4-cycles with one common vertex (in X); here
P(G)=24=[n—Dt+24+0b)(t+1). (3) When (n,t,b) = (3,2,0), let X = {x1, 29,23}
with z; having two neigbhors, x5 having three neighbors (none in common with =), and
x3 adjacent to all five vertices of Y (so all vertices of Y have degree 2 and b = 0). Here
O(G)=18=[(n—1)t+2+0b](t+1).

For large n, the graph M, o, is very different from C,,;;: the latter has a long cycle,
which the former does not, while the former has many 4-cycles, which the latter does not.
Nevertheless, we show that both minimize ® for given n,t,b. Recall that “leafless” means
that every vertex has at least two neighbors: that is, » = 2. Multiedges are allowed.

Theorem 1.5. If G is an X-surplus leafless X, Y -bigraph with b+ 2(n +t) edges, |X| = n,
and |Y|—|X|=1t>0, then

O(G) > [(n— 1)t +2+b](t+ 1),
which s sharp in all cases.

Proof. Sharpness is shown by Construction 4.5. For the lower bound, we use induction on
m~+n-+t. Various base cases have been covered. By Corollary 4.2, we may assume that G is
a simple graph. The condition that G is leafless requires n > 2. When n = 2, the only simple
leafless X, Y-bigraph is K549, which has (¢ + 2)(t + 1) X-matchings and 2(n + t) edges, so
b=0and (n—1)t+2+b=1+2, as desired. When ¢ = 0, we have an elementary graph
and have observed that Theorem 3.2 provides the desired lower bound, since the expression
[(n— 1)t +2+0b](t + 1) reduces to |E(G)| — |[V(G)| + 2.

Hence we may assume ¢ > 1 and n > 3 and that G is simple and X-surplus. In several
steps, we reduce consideration of G to a more restricted class. A pendant 4-cycle in a graph
G is a 4-cycle containing one cut-vertex and three vertices of degree 2 in G.

Step 1: For any vertex of X with degree 2, both neighbors have degree 2, and all three
vertices lie on a pendant 4-cycle. Consider x € X having only two neighbors. Let X' =
X —{z} and Ng(z) ={y,9}. Let G* =G — {z,y,y} and Y* =Y — N(x).

We first prove Hall’s Condiion for G*. If [ Ng«(S)| < |S]| for some S C X', then since G
is X-surplus and |Ng(S)| > |S|, we must have y,y € Ng(S), in which case |[Ng(S U {z})| =
|S U{z})|, contradicting that G is X-surplus. Hence Hall’s Condition holds for G*.

Note that n — 1 = |X'| > 2 and |[Y*| = n+t — 2. Add t — 1 vertices to X’ that are
adjacent via single edges to each vertex of Y*, producing a graph H. Note that H has
n 4t — 2 vertices in each part, and each vertex of Y* has at least ¢t 4+ 1 neighbors in H. By
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the result of M. Hall and the fact that G* has an X’-matching, H has at least (t+1)! perfect
matchings. Each perfect matching in H restricts to an X’-matching in G* when the added
vertices are deleted, and each X’-matching in G* arises (¢ — 1)! times as such a restriction.
Hence ®(G*) > (t + 1)t.

Let G’ be the X', Y'-bigraph obtained from G by deleting = and merging y and ¢ into a
new vertex y', so |Y'| — |X'| = |Y| — | X| =t. If G’ is leafless and X’-surplus, then we can
apply the induction hypothesis to it. Note that G’ has two fewer edges than G and omits
a vertex of X, so (m —2)—2(n—1+1t) =m —2(n+1t) =b. Thus G’ being leafless and
X'-surplus yields ®(G") > [(n — 2)t + 2 + b|(t + 1). Every X'-matching in G’ extends to an
X-matching in G by choosing a neighbor for z. Matchings that cover 3" extend in only one
way, but matchings that do not cover 1’ extend in two ways, using either edge incident to .
The X’-matchings in G’ that do not use y’ are precisely the X’-matchings in G*. We showed
O(G*) > t(t + 1), so we gain at least ¢(t 4+ 1) in moving from ®(G’) to ®(G), which yields
O(G) > [(n—1)t+2+40b|(t + 1), as desired.

If G" is not X'-surplus, then |Ng/ (S)| < |S] for some S C X’. Since G is X-surplus,
y' € Nei(S). Now

(Na(SU{a})| = [Ne(S)|+1 < [S]+1=[SU{z},

contradicting that GG is X-surplus. Hence G’ is X’-surplus.

Thus if G’ is leafless then we have the desired number of X-matchings in G, even with
x having degree 2. Suppose that G’ is not leafless. If dg/(2') = 1 for some 2’ € X', then
Ng(z') = {y,y}, but this yields Ng({z,2'}) = {y,y}, contradicting that G is X-surplus.
The other possibility is dg/(y') = 1, requiring Ng(y) = Ng(y) = {z,2'} for some 2/ € X'.
Since G is X-surplus, Ng({x,2'}) > 2, so 2’ has another neighbor; call it y”. Now the
subgraph induced by z, 2/, y, 7 is a pendant 4-cycle.

Step 2: Ift > 3, then every vertex of X has at least three neighbors. By Step 1, if N(x) =
{y,y} for some x € X, then y and y have another common neighbor 2/, and the subgraph
induced by z, 2.y, 7 is a pendant 4-cycle. Let G* = G — {x,y, 9}, as in Step 1. In G* with
Na(y) = Ne(y) = {x,2'}, the only vertex of X’ having lost neighbors from G is 2’. Hence
the graph G* +12'z obtained by adding the edge 2’z to G* is leafless, where z € Y —{y, 7,vy"}.
This graph has m—3 edges. We deleted two vertices from Y and one from X, so the difference
between the part-sizes is ¢ — 1. In particular, (m —3) —=2(n—1+t—1)=b+1. If G* + 2’2
is X'-surplus, then the induction hypothesis yields ®(G* + 2'z) > [(n — 2)(t — 1) + 3 + b]t.
We can obtain two X-matchings in G for each X’-matching in G* + 2’z. If such a matching
omits 2z, then it occurs in G and we add xy or xy. If the matching uses 'z, then we replace
that edge by 'y or 2’y and make z adjacent to the uncovered vertex in {y, y}. The resulting
matchings are distinct, yielding ®(G) > [(n —2)(t — 1) + 3 + b]2t.

We can generate two more X-matchings in GG. Every X-matching in G that we generated
from an X'-matching in G* + 12’z covered at most two members of {y, 7, z}; we find two more
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that use all three of these vertices. Let G" = G —{z, 2’} — N(z) and X" = X —{z,2'}. The
graph G” includes all neighbors in G of vertices in any subset of X", so G” is X”-surplus.
Although G” need not be leafless, the surplus condition implies that every edge of G” lies
in an X”-matching. In particular, z is covered in some X”-matching in G”. We can extend
this to an X-matching in G in two ways by matching {x, 2’} with N(z).

It now suffices to have [(n—2)(t —1)+3+b]2t+2 > [(n—1)t+2+40b|(t+1). By collecting
like terms, this inequality can be rewritten as

(n— 3)t(t — 3) + b(t — 1) > 0

Since n > 3 and b > 0, this is true in all cases with ¢ > 3.

Thus it suffices to prove that G* + 2z is X’-surplus for some z € Y — {y,9,y"}. We
showed already that G* satisfies Hall’s Condition. If G* is X'-surplus, then also G* 4+ 2’z is
X'-surplus. Hence we may consider the family A of subsets S C X’ such that |[Ng«(S5)| = |S|;
it is nonempty. Since G is X-surplus, each member of A contains 2’. Since G* satisfies Hall’s
Condition, A is closed under union. That is, submodularity of the neighborhood function
and Hall’s Condition yield

NI+ IN(T) = [N(SUD)+ IN(SNT)| = [SUT|+[SNT| = |S[+[T].

Thus S, T € A implies SUT,SNT € A.

We conclude that A has a unique maximal member A. If A = X', then ¢t = 1, but we
have eliminated that case. Otherwise, we can choose y outside Ng«(A). Since z’ belongs to
all members of A, adding the edge z'z enlarges the neighborhood of each member of A, and
then G* + 2’z is X'-surplus.

Step 3: No subset of X is slim, where a subset S of X is slim if [IN(S)| = |S| + 1 and
some member of N(S) with at least three neighbors has exactly one neighbor in S. Let S be
a smallest slim subset of X, if one exists. Let ¢’ be a vertex of N(S) with at least three
neighbors such that 3" has only one neighbor 2" in S. The existence of y' requires n > |[S|+2.

If |S| = 1, then 2’ has two neighbors. By Step 1, the neighbors of 2’ have degree 2. Hence
y' cannot exist, and S is not slim.

If |[S| > 2 and N(S) has a vertex other than y" with one neighbor in S, then deleting
its neighbor z” in S yields a subset of S contradicting the minimality of S (if 2 # ') or
contradicting that G is X-surplus (if 2" = 2/).

If |S| =2, then n > 4 and |N(S)| = 3 and the vertex z of S other than z’ has neighbors
only in N(S) — {y'}; let N(x) = {y,y}. Thus x has only two neighbors, so by Step 2 the
case |S| = 2 occurs only when ¢t < 2. By Step 1, z and N(z) lie on a pendant 4-cycle. Since
y and y must have at least two neighbors in S, the fourth vertex of the pendant 4-cycle is
2. Now let G' = G — {x,2,y,y}. Since ¢’ has at least two neighbors outside S, the graph
G’ is leafless. Also y and ¢ have neighbors only in S, so G’ is X'-surplus, where X' = X —S.
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Note that G' has m — 5 edges, and |X'| = n — 2, and |Y — N(z)| = |Y]| — 2. We
compute (m —5) —2(n—2+t) =m—1—2(n+t) =b— 1. By the induction hypothesis,
O(G") > [(n—3)t+1+b|(t+1). Every X'-matching in G’ extends to an X-matching in G in
two ways. None of the resulting matchings use the edge x’'y/. To generate such matchings,
note that G’ —y’ satisfies Hall’s Condition, since G’ is X’-surplus. Also G’ —y’ has no isolated
vertices, since the only neighbors in G that its vertices may have lost are 2’ and y’. Hence
by Lemma 4.1 ®(G" — y') > t. We obtain 2¢ additional X-matchings in G by adding z'y’
and matching x to y or .

This gives us ®(G) > [(n — 3)t + 1 + b]2(t + 1) + 2¢, and we need

[(n=3)t+1+0b2(t+1)+2t>[(n—1)t+2+0](t+1).

We have observed that this case occurs only when ¢ < 2 and n > 4. When t = 2 the
needed inequality simplifies to [2n — 5 + 0|6 + 4 > [2n + b|3 and then 6n + 3b > 26, which
is valid unless (n,b) = (4,0). Fortunately, the case b = 0 requires every vertex in Y to
have degree 2, which immediately forbids slim sets. When ¢t = 1, the inequality simplifies to
[n—240b/4+4+2>[n+ 1+ b2 and then 2n + 2b > 8, which again holds since n > 4.

Therefore, we may assume |S| > 3. Switching notation, let z” be the unique neighbor
of ¥ in S. Since d(y') > 3, by Step 1 also d(z”) > 3. If S has a vertex z of degree 2,
then by Step 1 it lies on a pendant 4-cycle. Let 2’ be the other vertex of X in the 4-
cycle; since vertices in N(z) must have two neighbors in S, also 2’ € S. If 2/ # 2", then
N(S —{x,2'}) = N(S) —{y, 9}, and S — {z, 2’} is a smaller slim set, with y’ still serving as
the special vertex. If ' = 2", then N(S — {z,2'}) = N(S5) — {v, 9,9}, contradicting that G
is X-surplus. Hence the minimality of S forbids vertices of degree 2 from S.

Now, with degree at least 3 at each vertex of S, at least 3|S| — 1 edges join S to
N(S) —{y'}. Since 3|S| —1 > 2|S| when |S| > 2, some y; € N(S) — {y'} has at least 3
neighbors in S; call them xq, x9, x3. We may assume x; # x.

Let G = G — r1y;. Since x1; and y; both have degree at least 3 in G, the graph G is
leafless. Also G has m — 1 edges. If Gis X -surplus, then the induction hypothesis provides
O(G) > [(n — 1)t + 1+ b](t + 1), and by Corollary 4.2 t + 1 more X-matchings use zy;.

Since G is missing only one edge from G, Hall’s Condition holds for X in G. If G is not
X-surplus, then there is a set S' C X such that [Ng(S")| = |5']. Since G lacks only 21y, and
G is X-surplus, we have x; € S" and |[Ng(S')| = |S’| + 1, with z; being the only neighbor of
y; in S’. Thus S is slim in G. Also, since 3, x5 € N(y;), we conclude xq, 23 ¢ S'.

We apply submodularity of the neighborhood function in GG on subsets of X, plus GG being
X-surplus and S, S” being slim:

ISUS |+ [SNS|+2<|Ng(SUS)| 4+ |Na(SN S| <I|Na(S)| + |Na(S)
=S|+ 14+ |9+1=|SUS|+|SNS'|+2.
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We conclude that equality holds throughout. Hence |[N(SNS")| = |SN S| + 1. However,
1€ SNS" and a9, 23 € S — 5, with x; the only neighbor of ¢, in SN .S’. Thus SN S is a
smaller slim set than S, contradicting the choice of S. Thus there is no slim set.

Step 4: Every vertex of Y has exactly two neighbors. Suppose x1, 2, 23 € Ng(y) for some
y € Y. By Step 1, the neighbors of a vertex of X having degree 2 must also have degree 2, so
all neighbors of y have degree at least 3. Let G' = G —x1y. Since dg(z1) > 3, the graph G’ is
leafless. If G' is X-surplus, then the induction hypothesis yields ®(G’) > [(n—1)t+1+b|(t+1),
and Corollary 4.2 yields at least ¢t + 1 more X-matchings using the edge zy.

Hence it suffices to show that G’ is X-surplus; suppose not. Consider a nonempty S C X
with |Ng/(S)| = |S|. Since G is X-surplus, we must have x; € S, and x; is the only neighbor
of y in S, so |[Ng(S)| = |S| + 1. Now S is a slim set in G, which by Step 2 does not exist.
Hence we may restrict to the case where every vertex of Y has exactly two neighbors.

Step 5: ®(G) > [(n — 1)t + 2|(t + 1) when t > 3. Since every vertex of Y has degree 2,
we have m = 2(n +t), so b = 0.

Suppose first that X contains a subset S with |[N(S)| = |S|+ 1; let S be a smallest such
set. If some y € N(5) has only one neighbor = in S, then S —{z} contradicts the minimality
of S. Hence every vertex of N(S) has both of its neighbors in S. By Step 2, dx(G) > 3,
so the number of edges joining X and N(S) is at least 3|S|, but it also equals 2(|S| + 1).
Hence |S| < 2, and §x(G) > 3 forces equality.

Now G has K, 3 as a component, with six S-matchings. Deleting this component yields
a leafless graph with surplus. Also b = 0, since each vertex of Y has degree 2. Hence it
suffices to have 6[(n — 3)(t — 1) + 2]t > [(n — 1)t 4+ 2](t + 1). When K3 is a component, G
being leafless forces n > 4, and then the desired inequality holds.

Hence we may assume |N(S)| > |S| + 2 for all nonempty S C X. When we delete any
y € Y, the graph G — y is leafless (since vertices of X have at least three neighbors) and is
X-surplus (since no vertex other than y is lost from any neighborhood). Thus ®(G — y) >
[(n—1)(t — 1) + 2]t. Summing this inequality over all y € Y counts each X-matching in G
exactly t times, once for each vertex of Y it does not cover. Hence
tn+1)
®G) 2 [ =Dt -D+2)———=[n-DE-1)+ 2t +1) +[(r - 1)t - 1) +2)(n — 1)

=n—-Dt-D)+2Jt+1)+n-Dt+1)+[(n—-1)(t—-1)—(t+1)+2](n—1)
(n—1t+2]t+1)+n—-1)t—-1)(n—=2)>[(n—Dt+2](t+1).

Step 6: ®(G) > [(n — 1)t + 2](t + 1) when t < 2. Since every vertex of Y has degree 2,
we have m = 2(n+t), so b= 0.

Suppose first that some y € Y is the only common neighbor of its neighbors x; and x».
In this case obtain G’ from G — y by merging x; and x5 into a vertex x’. Let X’ be the
set obtained from X by merging x; and x5. Since x; and x5 both have a neighbor other
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than y, and those neighbors are distinct, G’ is leafless. In moving from G to G’, any subset
of X — {x1, 2} has as many neighbors as before, and subsets of X’ containing the merged
vertex may have more neigbors than the corresponding subsets using just x; or xs. Hence
G’ is X'-surplus. Vertices of Y — {y} all have degree 2 in G’. By the induction hypothesis,
O(G") > [(n —2)t+ 2](t + 1). Since the edges incident to 2’ in G’ do not cover y in G, each
X’'-matching in G’ extends to an X-matching in G by adding 21y or xqy.

We need t(t + 1) more X-matchings in G. Those that we have found cover y, we find
additional X-matchings that do not cover y. Since G is X-surplus, the graph G — y satisfies
Hall’s Condition and contains an X-matching M. In the subgraph of G induced by the
vertices of M, every vertex belonging to Y has at least two neighbors, and M is a perfect
matching. Reversing the roles of X and Y in applying Theorem 1.1, we find at least two
perfect matchings in this subgraph, say M and M’; these are X-matchings in G.

When ¢ = 1, we only need two X-matchings in G' that do not cover y, so M and M’
suffice. When ¢t = 2, we need six X-matchings in G that do not cover y. The matchings M
and M’ both omit y and another vertex ¢y’ € Y. To find four more X-matchings, we find
two X-matchings in G — y using each of the two edges incident to y'. Let x’y’ be one such
edge. Switching the edges covering 2’ in M and M’ to x'y’ instead yields two matchings.
The switches cannot produce the same matching, because M and M’ are perfect matchings
in G — {y,y'}, and if they agree on the edges covering other vertices of X then they also
agree on the edge covering x’. These matchings using 'y’ are also different from the two
resulting X-matchings in G — y using the other edge at 3/ that are obtained in the same way.

In the remaining case, any two vertices in X having a common neighbor have at least
two common neighbors. If GG is disconnected, then there can only be two components, each
having one more vertex in Y than in X. With k vertices of X in one component and n — k
in the other, where 2 < k < n — 2 since G is leafless, we have

OG> [(k—1)+22[(n—k—1)+2]2>12n— 12> 6n = [(n— 1)2 + 2J3.

We may therefore assume that G is connected. Since every vertex of Y has degree 2,
at least n — 1 pairs of vertices in X must each have at least two common neighbors. Thus
2(n+t) = |E(G)| > 4(n—1), which simplifies to n < ¢+ 2. We also have restricted to n > 3,
so the remaining cases are (n,t) being (3, 1), (3,2), and (4, 2).

When n = 3, if there is a vertex x € X having degree 2, then by Step 1 z lies on a
pendant 4-cycle with its neighbors y and ¢ and the cut-vertex x’. Since x has no further
neighbors, all remaining vertices of Y are adjacent to ' and the third vertex x* of X. When
t = 1, the graph consists of two 4-cycles sharing 2’; it has eight X-matchings, which equals
the desired lower bound, providing a sharpness example. When ¢ = 2, the vertices x and x*
have degrees 2 and 3, respectively, with no common neighbors, and 2’ is adjacent to all five
vertices of Y. There are 18 X-matchings, again a sharpness example.
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Hence when n = 3 we may assume that all three vertices of X have at least three
neighbors. This cannot happen when ¢t = 1, since then the graph has only eight edges.
When ¢ = 2, each of the five vertices in Y is a common neighbor for two vertices of X. Let
a, b, and ¢ be the numbers of common neighbors for the three pairs of vertices in X. We
have a + b + ¢ = 5 and any two of these sum to at least 3, since the sum is the degree of
a vertex in X. By symmetry, we may assume (a,b,c) = (1,2,2). This determines G, and
explicit counting yields ®(G) = 20, while the desired lower bound is only 18.

Only the case (n,t) = (4,2) remains, achieving equality in 2(n +¢) > 4(n — 1). Hence
exactly three pairs of vertices in X have common neighbors in Y, each occurring exactly
twice. To keep G connected, those three pairs may form a star or a path on X, and we need
at least 24 X-matchings. In the case of a star, GG consists of three 4-cycles with one common
vertex, and the number of X-matchings is exactly 24, providing another isolated sharpness
example. In the case of a path, GG is a chain of three edge-disjoint 4-cycles merged at vertices
of X, and there are 28 X-matchings. U

Due to the wide variety of extremal examples in Constructions 4.4 and 4.5, we do not
expect a nice characterization of the X, Y-bigraphs achieving equality in Theorem 1.5. Nev-
ertheless, we can combine Theorem 1.5 with Corollary 2.4 to describe a general lower bound
on ®(G) that includes instances when G is not X-surplus.

Corollary 4.6. Fiz integers n,t,r greater than 1. Let G be an X,Y -bigraph with | X| =n
and |Y| =n+t > n, such that 6x > k and |[Ng(z)| > r for allx € X. Let p = n — o/(G).
Ifn' =n —|S|, where S be a largest subset of X such that |[N(S)| = |S| — p, then

(r+p)!
p!

O(G) > (k—r+1) (W =1D)(t+p)+2+V](t+p+1),

where ' +2(n'+t+p) is the number of edges in the subgraph G’ obtained by deleting SUN(.S).

Proof. By Theorem 1.1 and Corollary 2.4, the number of maximum matchings of the sub-
graph induced by S U N(S) is at least (k — 7 + 1)(r + p)!/p!. Each such matching can be
paired with an (X — S)-matching of G’ to obtain a maximum matching in G.

The graph G’ is leafless and X-surplus, by the choice of S. It has n’ vertices in X and
n’ +t + p vertices in Y. By Theorem 1.5, G’ has at least [(n' — 1)(t +p) + 2+ V]|t +p+1)
(X — §)-matchings. O

The most interesting question that remains from our study is the following

Question 4.7. What is the minimum of ®(G) when G is an X-surplus X, Y-bigraph in
which |X| =n and |Y| = n +t and every vertex has at least r neighbors?
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5 Restrictions on Y

Setting r = 1 in Theorem 1.1 is equivalent to eliminating the restriction on r. Theorem 1.1
then only guarantees ®(G) > k when G is an X, Y-bigraph with ®(G) > 1 and 0x(G) > k,
which is sharp by Construction 2.1. However, equality in this construction requires |Y| = | X|
and 0y = 1. Forbidding this situation permits a better lower bound. We begin with several
constructions.

Construction 5.1. For £ = 2, the number of X-matchings in K; 5 or in any even cycle is
exactly 2, which equals 2k — 2. The further constructions below are illustrated in Figure 5.

For | X| = 2, define F}, from a copy of Ko with X = {x1,22} and Y = {y;, y2} by adding
k — 2 copies of x1y; and k — 2 copies of xoy;. Now | X| = |Y| =2, x(F)) = k, dy (Fx) = 2,
and each edge incident to y; determines one perfect matching, so there are 2k — 2 perfect
matchings. This is the special case of Construction 2.1 for n =r = 2.

For k = 3 and |X| = |Y| = 3, we construct an X, Y-bigraph Gg. Beginning with a 6-
cycle, fix a vertex y € Y and add one edge joining y to each vertex of X (two resulting edges
have multiplicity 2). Note dx(Gs) = 3 and dy (Gg) = 2. Each edge incident to y appears in
exactly one perfect matching, making five X-matchings in total, equal to 2k — 1.

T2 Y2
Ty Un

F4 GG Héi,3

X1 Y1

Figure 5: Construction 5.1.

Let H, j be the X,Y-bigraph with X = {z1,...,2,} and Y = {y1,...,y,} whose edge
set consists of one copy of x;y; for 1 < ¢ < n plus k — 1 additional copies of x;y; for 1 < i <mn
(so z1y; has multiplicity k). Note dx(H, ) = k and dy(H,x) = 1. An X-matching must
pair each x; with y;. Since z1y; has multiplicity k, there are k X-matchings.

Form H, ; from H, ; by adding one edge from =, to each of 3, ..., y,. Now 5X(H;L,k) =k
and dy (H,, ;) = 2. Since N(y,) = {z,}, still y, can only match to z,, and then z;y; for
2 < ¢ < n are also forced. Since x,y, has multiplicity 2, we have ®(H,, ;) = 2k.

Another construction with 2k X-matchings satisfies the stronger condition that each
vertex of Y has at least two distinct neighbors, without additional X-matchings. Starting
with H,, x, choose ¢ with 2 <7 < n and add another matching of z;, ..., 2, into y;, ..., y, to
create a cycle C' of length 2(n — i+ 1). Also add edges from z,, to each of yo,...,7;_1. An
X-matching must use one of the two matchings on C' and one of the k copies of z1y;.
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We prove a stronger form of Theorem 1.2, characterizing extremality in some cases. The
characterization of ®(G) = 2k — 2 here is used when k = 2 in Case 2 of Theorem 6.5.

Theorem 5.2. Let G be an X,Y -bigraph with dx(G) > k and 6y (G) > 1 satisfying Hall’s
Condition and | X| > 2. If Y| > | X| or éy(G) > 2, then

2k — 2, if | X| =2 or k=2 (sharp only for Fy and even cycles);
O(G) > <2k —1, if |X|>2 and k =3 (sharp only for | X| = Y| =3 with G = Gs);
2k, if | X| >3 and k > 4 (sharp in all cases).

Proof. The sharpness examples are in Construction 5.1. For the lower bounds, we use
induction on |X |+ |Y|. Suppose first that | X| = |Y| =2 and dy(G) > 2. If some z € X has
only one neighbor, then it has multiplicity at least k to its neighbor y € Y, and the other
vertex ¥’ in Y must have multiplicity at least 2 to the other vertex ' in X. In this case,
®(G) > 2k. Otherwise, each vertex of X is adjacent to each vertex of Y, and Theorem 1.1
with r = 2 yields ®(G) > 2k — 2. The description of equality for r = n = 2 in Theorem 2.5
allows equality here only for Fj. In other cases with |Y| > | X|=2or k=2 and | X| > 3 we
will show ®(G) > 2k — 2 (except equality for even cycles).

For the induction step, | X |+ |Y| > 5. Since Hall’s Condition holds, |Y| > | X].

Case 1: |N(9)| = |S| for some nonempty proper subset S of X. Let G be the subgraph
of G induced by SUN(S), and let Gy = G — V(G;). By Theorem 1.1 with r = 1, G; has at
least k£ S-matchings.

If |Y| = |X], then dy(G) > 2, by hypothesis. In this case, we apply Theorem 1.1 with
k=2and r =1 to Gy as a Y’', X"-bigraph, where Y/ =Y — N(S) and X' = X — S, to
obtain at least two perfect matchings in G, each of which combines with each S-matching
of Gy to form an X-matching of G. This yields at least ®(G) > 2k.

If Y] > |X|, then let S’ = X — 5. Any X-matching of G restricts to an S’-matching
M in G, that omits some vertex y € Y — N(S). Since G has no isolated vertex, y has a
neighbor x in S’. Replacing the edge covering x in M with xy yields another S’-matching
in G5. Each S’-matching in G5 extends any S-matching in Gy, yielding ®(G) > 2k.

Case 2: |[N(S)| > |S| for every nonempty proper subset S of X. Here setting |S| = 1
implies that each vertex in X has at least two neighbors. Deleting the endpoints of any edge
preserves Hall’s Condition, so every edge appears in an X-matching.

If £ = 2 and some vertex of X has degree at least 3, then since every edge appears in
an X-matching we already have strict inequality in the bound. Hence we may assume that
every vertex of X has degree 2. Now if G has more than one component or is a path with
length more than 2, then we again have extra X-matchings beyond 2k — 2. This leaves only
even cycles, which have exactly two X-matchings.

Now consider k£ > 3, and suppose that G does not contain the desired number of X-
matchings. We claim first that every € X has a neighbor y such that x’y has multiplicity
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d(z') — 1 for some 2/ € N(y). If x has no such neighbor, then for every y € N(z) the
graph G — {z,y} has an X-matching, and each vertex =’ of X — {z} has degree at least 2
in G — {x,y} (since 2’y has multiplicity at most d(2’) — 2). By Theorem 1.1 with r = 1,
the graph G — {z,y} has at least two (X — {z})-matchings. Each edge incident to x now
appears in at least two X-matchings in G, yielding ®(G) > 2k. This proves the claim.

Now for some = € X, take y and 2’ as provided by the claim. Since 2’y has multiplicity
d(x’) — 1, one more edge z'y’ is incident to z’. Form G’ from G — 2/ by merging y and 3/
into a new vertex ¢ inheriting the edges of G — 2’ incident to both y and y’. Now G’ is an
X', Y'-bigraph, where X’ = X —{z'}. In moving from G to G’ any subset of X that remains
loses at most one neighbor, so Hall’s Condition holds for G’. Hence G’ has an X’-matching.
Also §x/(G") > k, since only edges incident to ' were discarded. Hence we will be able to
apply the induction hypothesis to G’ if | X| > 2.

If | X| = 2, then let ¢ be the number of edges incident to x but not y. We have at least
k —q X-matchings using z'y’ and a copy of xy. We have at least (k — 1)g X-matchings using
a copy of 2’y and an edge at x not incident to y. Hence ®(G) > k—q+(k—1)q = k+q(k—2).
Since ¢ > 1, we have ®(G) > 2k — 2, and equality requires ¢ = 1. If |Y| > |X|, then we
obtain an additional X-matching not covering y. Hence equality requires |Y| = |X| and
G = F). Hence we may assume |X| > 2.

If |Y] > |X], then |Y'| > |X|, since |Y| — |Y’| = |X| — |X'| = 1. On the other hand, if
dy (G) > 2, then dy/(G’) > 2, because (1) ¢ has = and a vertex of X — {z, 2’} (inherited from
y') as neighbors, and (2) since Ng(2') = {y,y'}, all vertices of Y — {y, 4’} have the same
incident edges in G’ as in GG. Hence the induction hypothesis applies to G’.

We next show ®(G) > ®(G’') + k — 2. If an X’-matching in G’ uses an edge xy in G,
then it extends to an X-matching in G' by using xy and z'y’. If 23 is an edge, then this
matching also extends to k — 1 additional X-matchings in G by using xy’ and copies of x'y.
Any X’-matching in G’ not using xy extends to k — 1 X-matchings in G by adding copies
of #’y. If every X’-matching in G’ uses zy and zy’ is not an edge, then we still obtain k£ — 1
X-matchings beyond those using xy and 2’1/, since Case 2 for GG implies that every copy of
2’y lies in some X-matching in G. Hence in all cases ®(G) — ®(G') > k — 2.

If |X| > 3, then G’ has at least 2k — 2 X’-matchings and ®(G) > 3k — 4, yielding
®(G) > 2k — 1 when k = 3 and ®(G) > 2k when k > 4.

If we obtain only 2k — 1 X-matchings when k& = 3, then we must have only 2k — 2 X'-
matchings in G’, which when k& = 3 requires |X'| = 2, so |X| = 3 and in fact G' = F3. To
return from G’ to G, the merged vertex § must be split into y and y’. Only one way to do
this results in every vertex of X having degree at least 3, and it produces G. O

The proof of Theorem 5.2 suggests that there are various ways to have only 2k X-
matchings under the conditions |X| > 3 and k > 4.
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6 Excess Vertices in Y

In this section we consider the effect of excess vertices in Y, meaning we have an X, Y-
bigraph satisfying Hall’s Condition and |Y| — |X| = ¢ > 1. We will prove Theorem 1.4 in
various pieces. In particular, we need to treat separately the cases | X| =2 and | X| > 2.

Construction 6.1. For £k —1 > t > 0, define an X,Y-bigraph L;; with |X| = 2 and
Y| =t + 2 by adding to Ks41 a single vertex y* forming k —t — 1 edges with each vertex
of X. See Figure 6. Note that Lj o = F}, (Construction 5.1).

We have 0x(Lgt) =k, 0y (Lg:) = 2, and |Y| — |X| = t. Each edge incident to y* can be
extended to an X-matching in ¢t + 1 ways, and there are (¢ + 1)t X-matchings that do not
use y*. Hence ®(Ly) =2k —t—-1)(t+ 1)+ (t+1)t=(t+1)2k—t—2).

Yy
Ty Y1
1)

Yt+1

Le s

Figure 6: Construction 6.1

Lemma 6.2. Let G be an X,Y -bigraph with |X| = 2 having a matching of size 2. If
0x(G) >k >2,0y(G)>2, and t =|Y| — |X]| >0, then ®(G) > (t + 1)(2k — t — 2), which
is sharp by Ly, in Construction 6.1.

Proof. The lower bound for t = 0 is given in Theorem 1.2. Consider ¢ > 0.

Let X = {z1,22}. We split Y into three sets: Yo = N(x1) N N(x3), Y1 = N(z1) — N(z2),
and Yo = N(x9) — N(x1). When we say “with multiplicity”, we mean “with multiplicity
greater than 17.

Case 1: |Yy| > 2. We claim first that in some instance minimizing ®(G) at most one
vertex of Yy has incident edges with multiplicity. Suppose that z1y, oy, 217" and z9y’ have
multiplicities a,b,a’, ', respectively, where y,y" € Yy with y # 3. Let ¢ = dg(z1) and
' = dg(z2). By symmetry, we have two cases: a,a’ > 2 or a,b’ > 2.

If a,a’ > 2, then each copy of x1y lies in ¢ — b X-matchings, and each copy of 21y’ lies
in ¢ —b'. By symmetry, we may assume b > b', and then moving all but one copy of x13’ to
become copies of x1y yields a graph G’ having the desired properties and ®(G') < &(G).
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If we do not have a,a’ > 2 or b, b’ > 2, then with a,b’ > 2 we may also assume a’ = b = 1.
Now each copy of 1y lies in ¢ — 1 X-matchings, and the copy of x1y’ lies in ¢ — V' X-
matchings. For each copy of z7y we change into a copy of x1y’, we reduce the number of
X-matchings by b — 1. Moving all but one copy of x;y’ to become copies of x5y yields a
graph G’ having the desired properties and ®(G’) < (G).

Hence we may assume that y* is the only vertex of Yy having edges with multiplicity to
x1 Or Tg; every other vertex of Y has singleton edges to both x; and xs. If Y| > 1, then we
can choose a vertex y € Yy and let G’ = G — y. The induction hypothesis applies to G’ with
reduced values of k and ¢, yielding ®(G’) > t(2(k — 1) — (t — 1) — 2). This count omits at
least 2(k —1) X-matchings in G that use vertex y. Hence ®(G) > (t+1)2(k—1)—t(t+1) =
(t+ 1)(2k — t — 2), as desired.

Case 2: |Yy| = 1. Let y* be the unique vertex of Yy. If any vertex y € Y; UY; has degree
more than 2 (by symmetry suppose y € Y;), then we shift a copy of 21y to become a copy
of z1y* instead. This loses dg(z2) X-matchings and gains dg(z) — ¢ X-matchings, where ¢
is the multiplicity of the edge xoy*. Since this reduces the number of X-matchings, we may
assume that every vertex of Y} U Y; has degree exactly 2 in G.

Let my be the number of X-matchings not covering y*, and let ms be the number covering
y*. Note that |Y1| + |Y2| = ¢ + 1, and each vertex in Y7 UY5 is used in at least 2k matchings,
since 0y (G) > 2 and 6x(G) > k. Summing this over all vertices of Y; U Y5 counts each
matching that avoids y* twice, so 2my + mo > 2k(t + 1).

Also, since vertices of Y;UY5 have degree exactly 2, we have and my = 4|Y;|[Ya| < (¢41)%
Now ®(G) =my +mg >2k(t+1)— (t+1)2=(t+1)2k—t—1)> (t+1)(2k —t — 2).

Case 3: |Yy| = 0. All X-matchings correspond to picking one edge at each of x; and xs.
Letting d; = dg(z;), we have ®(G) = dydy and d(z1) 4+ d(x2) > max{2k, 2t +4} with dy, dy >
k. To minimize ®(G), we let min{dy, d>} = k. This yields ®(G) > max{k* k(2t +4 — k)}.

If k > t+2, then we get ®(G) > k*. Weneed k* > (t+1)(2k—t—2). Let f(k) = k*—(t+
1)(2k —t—2). Differentiating yields f’'(k) = 2k —2(t+1), which is positive when k£ > t+1, so
it suffices to show f(t4+1) > 0. We compute f(t+1) = (t+1)(t+1—-2t—2+t+2) =t+1 > 0.

If £ <t+ 2, then we minimize ®(G) by setting d; = k and dy = 2t +4 — k. Let g(k) =
k(2t+4—Fk)—(t+1)(2k—t—2). Note that ¢'(k) = —2k+2, which is negative, so it suffices to
show g(t+1) > 0. We compute g(t+1) = (t+1)(2t+4—t—1—-2t—2+t+2) = 3(¢t+1) > 0.0

Having considered the case | X| = 2, we now restrict to |X| > 3. In this case we obtain
the stronger bound 2k(t + 1) in terms of k and ¢ than the (2k —¢ —2)(¢ + 1) of Lemma 6.2.
We also consider relaxing dy (G) > 2 to the setting dy (G) > 1, where we can only guarantee
®(G) > k(t +1). We begin with sharpness constructions for both situations.

28



Construction 6.3. As in Construction 5.1, let H,, j, be the X, Y-bigraph with X = {z1,...,z,}
and Y = {y1,...,y,} whose edge set consists of one copy of z;y; for 1 < i < n plus k — 1
additional copies of z;y; for 1 <1i < n (so x1y; has multiplicity k).

Fixing k,t > 1 and n > 3, we produce graphs G, and G} , , from H, ;. Modify
H, _, j by adding one vertex 2* to X and t+1 vertices to Y. Make x* adjacent to all vertices
in Y with multiplicity 1 to produce G, 4+, with multiplicity 2 to produce G|, , ;. If n+t+1
is small, add enough copies of z*y; to increase the degree of z* to k; these edges belong to
no X-matching. See Figure 6. These graphs G, ., and G, ; , will be sharpness examples for
Theorems 6.4 and 6.5, respectively.

Note that 0x (Gpr:) = 0x(G), ;) = K, and in each case |Y|—[X| =t and |X| = n. Since
x7 is adjacent only to y;, every X-matching pairs them and then also pairs x; with y; for 2 <
i < n. Finally, z* is paired with one of the t+1 remaining vertices in Y. With dy (G 1) = 1,
we have ®(G, 1) = k(t +1). With dy (G}, ;. ;) = 2, we have ®(G) ;. ;) = 2k(t + 1).

For k =3 and | X| = |Y| — 1 = 3, obtain G from a 6-cycle by adding to Y one vertex y*
adjacent to each vertex of X, the result is a simple X, Y-bigraph with dy = 3 and dy = 2.
In G there are two X-matchings not using y*. Each edge e incident to y* appears in three
X-matchings, since deleting the endpoints of e leaves a 5-vertex path in which we only
need to cover the second and fourth vertices to complete an X-matching. Hence G7 has 11
X-matchings; this will be the unique exception to the lower bound 2k(¢ + 1).

X1 Y1 Ty Y1
Tn—1 n—1 Tp—1 n—1
x* x*
/
G373,2 G3,3,2

Figure 7: Construction 6.3

We will use Theorem 6.4 to prove Theorem 6.5.

Theorem 6.4. Let G be an X, Y -bigraph with an X -matching, such that | X| > 3, dx(G) >
k>1, and 6y(G) > 1. If Y| — |X| =t > 1, then ®(G) > k(t + 1), which is sharp by G, k.
in Construction 6.5.

Proof. We have the usual two cases depending on whether G is X-surplus.

Case 1: |[N(S)| = |S| for some nonempty proper subset S of X. By Theorem 1.1, there
are at least k£ S-matchings in G. Since ®(G) > 1, for some T'C Y — N(S) there is a perfect
matching in the subgraph G’ induced by (X — S)UT. Note that N(T)) = X — S. For
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each such matching M and each vertex y € Y — N(S) — T, we can use an edge xy with
x € N(T) instead of the edge covering = in M to obtain a matching M’ that combines with
any S-matching. Doing this with each vertex of Y — N(S) — T yields a total of k(t + 1)
X-matchings when dy (G) > 1.

Case 2: |N(S)| > |S]| for every proper subset S of X. We will use induction on n + t,
where n = |X|. We first prove the claim when ¢ = 1. Since |X| > 3, we have |Y| > 4;
consider y1,¥s, Y3, ¥4 € Y. Obtain G; from G by merging y; and y, into a new vertex y;
that is, deleting y; and y and let y] inherit the incident edges from both. Obtain G5 from
G by similarly merging ys; and y4 into a new vertex y5. Since neighborhoods of subsets in X
decrease by at most 1 when moving from G to GGy or G5, both satisfy Hall’s Condition, and
Theorem 1.1 yields at least k& X-matchings in each. Such matchings also cover the modified
Y. Hence the X-matchings in G; come from X-matchings in G that cover one of {y1,y2} and
both of {ys3,y4}, while those in G5 come from X-matchings in G that cover one of {ys,y4}
and both of {y1,y2}. These sets of matchings are disjoint, so ®(G) > 2k, as desired.

Thus we may assume ¢t > 1. Let Y’ be the set of vertices in Y with exactly one neighbor.

Case 2a: There exist y1,y2 € Y having distinct neighbors. Let x1 and x5 be the neighbors
of y; and ys, respectively. Obtain G’ from G by merging y; and y» into a new vertex y’. Since
G is near-surplus, ®(G’) > 1. The induction hypothesis applies to yield k¢t X-matchings in
G’, each of which comes from an X-matching in G covering at most one of {y;,y>}. We need
k additional X-matchings using both y; and ys. Let G” = G — {x1, y1, 22, y2} — V", where
Y" consists of any other vertices in Y’ whose only neighbor lies in {z;,2z5}. Since vertices
of X — {x1, 29} have no neighbors in Y that were deleted, G” satisfies Hall’s Condition.
Although we no longer can guarantee excess vertices in G”, still Theorem 1.1 guarantees k
matchings in G” the cover X —{x1, 25}, and adding x1y; and x5y, to these yields the desired
extra k X-matchings in G.

Case 2b: Y' # @, and all vertices of Y' have the same neighbor ' in X. Let G' =
G—2' =Y and let s = |Y’'| and X' = X — {2'}. Since Ng/(x) = Ng(x) for x € X', we
can apply the induction hypothesis if | X| > 4 to find k(¢ — (s — 1) + 1) matchings in G’ that
cover X’. We can extend each to an X-matching in G in s ways, and all these matchings are
distinct. Since s(t + 2 — s) is minimized on the allowed interval for s when s = 1, we again
obtain ®(G) > k(t+ 1).

If | X| = 3, then note that each vertex of Y — Y’ is adjacent to each vertex of X', since
by the definition of Y’ the vertices of Y — Y’ have at least two neighbors. Hence when we
choose an edge incident to some x € X', we can complete an X-matching containing it in at
least s(t + 2 — s) ways. This gives at least k(¢ 4+ 1) X-matchings starting with either vertex
of X’ and we may count each matching twice. Again ®(G) > k(t + 1).

Case 2¢c: Y/ =@, 50 |N(y)| > 2 forally € Y. Fix avertex x € X. Among ally € N(x),
let ¥’ be the neighbor y that minimizes ®(G — z — y) (this is nonzero for all ). Obtain G’
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from G by replacing each edge incident to x with a copy of xy’. Note that ®(G") < ®(G).
Furthermore, each vertex of Y has lost at most one neighbor (z), so dy (G’) > 1, but vertices
of X — {x} have lost no neighbors. Let G = G — x —3'. We can apply the induction
hypothesis to G” to obtain k(¢ + 1) matchings covering X — {x} in G”, and each extends by
copies of zy’ to k X-matchings in G'. Hence ®(G) > k*(t + 1). O

Theorem 6.5. Let G be an X, Y -bigraph with an X -matching, such that | X| > 3, dx(G) >
k, and 6y(G) > 2. If [Y] — |X]| =t > 1, then ®(G) > 2k(t + 1) (sharp by G}, in
Construction 6.3), except that ®(G) > 2k(t + 1) — 1 when (n,k,t) = (3,3,1) (sharp by G
in Construction 6.3).

Proof. We have the usual two cases depending on whether G is X-surplus.

Case 1: |[N(S)| = |S| for some nonempty proper subset S of X. By Theorem 1.1, there
are at least & S-matchings in G. Let X’ = X — S. Since G has an X-matching, there is a
perfect matching in the subgraph G’ induced by X’ U T, for some " C Y — N(5). Note that
N(T) = X'. Since dy(G) > 2, applying Theorem 1.1 to G’ as a T, X'-bigraph yields at least
two perfect matchings in G’. For each such matching M and each vertex y € Y — (N(S)UT),
we can introduce an edge zy to replace the edge incident to z in M. Thus ®(G) > k(2+2t).
(We cannot guarantee more here because y may have only one neighbor in X'.)

Case 2: |[N(S)| > |S| for every nonempty proper subset S of X. This case cannot occur
unless & > 2 holds, and it requires |N(x)| > 2 for all x € X. Note that after merging
two vertices in Y, the resulting graph still satisfies Hall’s Condition for an X-matching; this
allows us to use induction on ¢. For the base case, we show that ®(G) > 4k when t = 1.
We will use Theorem 1.2, which provides different lower bounds based on k, so we consider
three cases, for k =2, k =3, and k > 4.

If G is leafless, then |E(G)| > 2|Y| = 2(n + t), and hence b > 0 in the statement of
Theorem 1.5, which yields ®(G) > [(n —1) -1+ 2](1 4 1) > 8, since n > 3. Hence we may
assume there exists y € Y with unique neighbor /', with z'y having multiplicity at least 2.
Let G* =G—yand G' =G —y—a'. Let X' = X — {2/} and Y’ =Y —y. Each X-matching
in G* is also an X-matching in G. Each X’-matching in G’ extends to an X-matching in G
that is not in G* in at least two ways by adding a copy of z'y. Hence

O(G) > B(G*) + 20(G).

Since G* contains all edges incident to each vertex of Y’, we have dy+(G*) > 2. Hence The-
orem 1.1 applies to G* as a Y/, X-bigraph to yield &(G*) > 2. Also, by the characterization
of sharpness for k = 2 in Theorem 5.2, &(G’) > 3. Thus, ®(G) >2+2-3 =38.

For k > 3, since | X| > 3 and ¢ > 1, we have distinct y;,ys,y3,y4 € Y. Merging two
vertices in Y yields a graph G’ satisfying Hall’s Condition, so Theorem 5.2 yields ®(G’) > 2k
when k& > 4 and ®(G’) > 2k — 1 when k = 3. These are perfect matchings in G’, since t = 1.
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These matchings when y; and y, are merged yield X-matchings in G that omit y; or ys
and cover the rest of Y. When y3 and y, are merged, the resulting X-matchings in G' omit
ys or y4 and cover the rest of Y. Hence in total we have 4k distinct X-matchings if k > 4.

When k& = 3, Theorem 5.2 gives us at least six X-matchings after each merge unless
| X| =3 =1Y]|—1 and the graph resulting from the merge is Gs. Note that the merge does
not lose any edges. In Gg, one vertex of the reduced part Y’ has degree 5, while the other
two vertices have degree 2. Hence G cannot reduce to Gg in both merges on a pairing of four
vertices, so ®(G) > 11. In order to have ®(G) > 11, each pairing must produce one copy of
G. Hence G has one vertex in Y with degree 3 and three vertices with degree 2. Using also
that G is X-surplus, we obtain ®(G) > 12 unless G is G as in Construction 6.3.

Having completed the proof for ¢t = 1, we proceed by induction. Suppose t > 2. Note
that a merge of two vertices in Y when ¢ = 2 cannot produce G, because GG; has maximum
degree 3, and merging any two vertices with degree at least 2 will produce a vertex with
degree at least 4. Hence when we perform a merge in Y, the resulting graph will satisfy
Hall’s Condition and have at least 2kt X-matchings. We consider three subcases.

Case 2a: There exist yi,y> € Y having distinct unique neighbors. Merging y; and y»
yields 2kt X-matchings in G that all use exactly one of y; and ys. Since |X| > 3, when
we delete y; and y» and their neighbors, we obtain an X", Y”-bigraph G” satisfying Hall’s
Condition with §x~(G"”) > k. Hence Theorem 1.1 applies to yield at least k& X”-matchings
in G”, each of which extends in at least four ways to cover y; and y, and their neighbors.
Since these X-matchings were not counted previously, ®(G) > 2k(t + 2) > 2k(t + 1).

Case 2b: Some vertex of Y has only one neighbor, and all y € Y having only one
neighbor have the same neighbor v1 € X. Let Y1 ={y € Y: |N(y)| = 1}; note Y1 C N(zy).

If X = {x1,29,23}, then pick y; € Y] and y, € Y —Y]. Form G’ from G by merging
y1 and ys. By the induction hypothesis, G has at least 2kt X-matchings that cover at most
one of y; and ys. If we can choose y, having exactly one neighbor in {xs, 23}, which we may
assume by symmetry is x,, then we can match xy with y; in two ways and match zo with
in one way, without using any neighbor of x3. Hence we can complete the X-matching by
matching x3 in at least k£ ways, yielding at least 2k X-matchings that cover both y; and ys.

If no such vertex y, exists, then x5 and x3 are adjacent to all of Y —Y7. Since |Y — Yi| =
|IN({z2,23})| > 2 in Case 2, we can choose y3 € Y — Y] — {y2}. Merging 3, and y3 yields at
least 2kt X-matchings in G that cover at most one of y, and y3. Since both x5 and x3 are
adjacent to both of y5 and y3, we can match {xs, 23} into {ys,y3} in at least two ways and
match z; into Y] in at least k ways, again establishing the lower bound.

If |X| >4, then | X — {x;}| > 3. Let s = |Y7|. Since |[N(X — {z;})| > n — 1, we have
1 < s < t. There are at least 2s ways to match z; into Y;. The graph G — x; satisfies
the hypotheses of Theorem 6.4, since vertices of Y — Y have a neighbor in {5, z3}, by the
definition of Y;. Hence ®(G — x1) > k(t — s+ 2) and ®(G) > 2k(t +2 — s)s > 2k(t + 1).
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Case 2c: FEwvery vertex of Y has at least two neighbors. Since we are in the X-surplus
case, every vertex of X has at least two neighbors, so G is leafless. Also b > 0. Hence
Theorem 1.5 applies, and ®(G) > [(n—1)t+2+b|(t+1). Since dx(G) > k, there are at least
nk edges in G, so b > nk — 2(n+t). It suffices to show (n— 1)t +2+nk —2(n+t) > 2k, or
(n—3)t+2+n(k—2) > 2k. Since n > 3 by hypothesis, we need only show (n—2)k > 2(n—1),
ork/2>1+1/(n—2). Already k > 4 suffices, and we earlier completed the proof for k = 2.
When k£ = 3, we have the desired inequality unless n = 3.

In the case k = n = 3, consider the needed inequality (n — 1)t + 2+ b > 2k. With m
being the number of edges, this reduces to 2k < (n — 3)t + 2+ m — 2n = m — 4. This holds
if m > 10, so we may assume that all three vertices of X have degree exactly 3. With every
vertex of Y having at least two neighbors and only nine edges in total, this requires |Y| < 4.
Hence t < 1, but we have already completed the case t = 1. 0
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