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Abstract

Dirac proved that each n-vertex 2-connected graph with minimum degree at least k
contains a cycle of length at least min{2k, n}. We consider a hypergraph version of
this result. A Berge cycle in a hypergraph is an alternating sequence of distinct vertices
and edges vy, ez, v2, . .., €., v1 such that {v;, vi+1} C e; for all i (with indices taken
modulo ¢). We prove that forn > k > r + 2 > 5, every 2-connected r-uniform
n-vertex hypergraph with minimum degree at least (Ir‘:}) + 1 has a Berge cycle of
length at least min{2k, n}. The bound is exact for all k > r +2 > 5.
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1 Introduction and Results
1.1 Terminology and Known Results for Graphs

A hypergraph H is a family of subsets of a ground set. We refer to these subsets as
the edges of H and the elements of the ground set as the vertices of H. We use E(H)
and V (H) to denote the set of edges and the set of vertices of H respectively. We
say H is r-uniform (r-graph, for short) if every edge of H contains exactly r vertices.
A graph is a 2-graph. For a hypergraph H and A € V(H), by H[A] we denote the
subhypergraph of H induced by A.

The degree dy (v) of a vertex v in a hypergraph H is the number of edges containing
v. When there is no ambiguity, we may drop the subscript H and simply use d(v).
The minimum degree, 5(H ), is the minimum over degrees of all vertices of H.

A hamiltonian cycle in a graph is a cycle which visits every vertex. Sufficient
conditions for existence of hamiltonian cycles in graphs have been well-studied. In
particular, a famous result of Dirac from 1952 is:

Theorem 1 (Dirac [4]). Let n > 3. If G is an n-vertex graph with minimum degree
0(G) = n/2, then G has a hamiltonian cycle.

Dirac also proved that every graph G with minimum degree k > 2 contains a cycle
of length at least k + 1, and that this bound can be significantly strengthened when G
is 2-connected.

Theorem 2 (Dirac [4]). Let n > k > 2. If G is an n-vertex, 2-connected graph with
minimum degree §(G) > k, then G has a cycle of length at least min{2k, n}.

This theorem is sharp by the following examples. First, for k > 3, let V(G) =
X1UXoU...UX; where |X;| = kand G{[X;] = Ki forall 1 <i <, and there are
vertices u, v such that X; N X; = {u v} foralli # j. Since k > 3,8(G) =k — 1,
and each cycle in G intersects at most 2 sets X; \ {u, v}, thus having length at most
k 4k —2 = 2k —2. Another example is the graph G, obtained by joining every vertex
of the clique Kj_1 to every vertex of an independent set with n — (k — 1) vertices.
Again, 6(G») = k — 1, and each cycle in G has length at most 2(k — 1) = 2k — 2.
Moreover, G is (k — 1)-connected. So for k large, one cannot improve the bound in
Theorem 2 by requiring higher connectivity.

A refinement of Theorem 2 for bipartite graphs was obtained by Voss and Zulu-
aga [20], which was further refined by Jackson [14] as follows.

Theorem 3 (Jackson [14]). Let G be a 2-connected bipartite graph with bipartition
(A, B), where |A| > |B|. If each vertex of A has degree at least a and each vertex
of B has degree at least b, then G has a cycle of length at least 2min{|B|,a + b —
1,2a — 2}. Moreover, if a = b and |A| = |B|, then G has a cycle of length at least
2min{|B|, 2a — 1}.

A sharpness example for Theorem 3 is a graph G3 = G3(a, b,a’,b’) fora’ > b’ >
a + b — 1 obtained from disjoint complete bipartite graphs K, _; , and Kj 1y, by
joining each vertex in the a part of K,/_, , to each vertex in the b part of Ky, ;.
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1.2 Terminology and Known Results for Uniform Hypergraphs

We consider the notion of Berge cycles.

Definition 1.1 A Berge cycle of length ¢ in a hypergraph is an alternating list of ¢
distinct vertices and ¢ distinct edges C = vy, eq, V2, ..., €c—1, Uc, €, V] such that
{vi,viz1} € e; forall 1 < i < ¢ (we always take indices of cycles of length ¢
modulo ¢). We call vertices vy, .. ., v, the defining vertices of C and write V(C) =
{vi,..., v}, E(C) ={eq, ..., e}

Notation for Berge paths is similar. In addition, a partial Berge path is an alter-
nating sequence of distinct edges and vertices beginning with an edge and ending
with a vertex eg, vy, e1, V2, ..., €, UVk+] such that v; € ep and forall 1 < i <k,
{vi,vit1} Coe.

A series of approximations and analogs of Theorem 1 for Berge cycles in a number
of classes of r-uniform hypergraphs (r-graphs, for short) were obtained by Bermond,
Germa, Heydemann and Sotteau [1], Clemens, Ehrenmiiller and Person [2], Coulson
and Perarnau [3] and Ma, Hou, and Gao [18].

Exact bounds for all values of 3 < r < n were obtained in [15].

Theorem 4 (Theorem 1.7 in [15]). Let t = t(n) = L%J, and suppose 3 < r < n.
Let H be anr-graph. If (a)r < tand§(H) > (ril) +1lor(b)r >n/2and5(H) > r,
then H contains a hamiltonian Berge cycle.

Salia [19] proved an exact result of Pésa type extending Theorem 4 for n > 2r
to hypergraphs with “few” vertices of small degree. In [15], some bounds on the
circumference of r-graphs with given minimum degree were obtained:

Theorem 5 ([15]). Let n, k, and r be positive integers such that n > k and |[(n —
1)/2] > r > 3. Let H be an n-vertex, r-uniform hypergraph. If

(@) k<r+1landé(H) >k —1, or
) r+2<k<|(m—1/2]+2and8(H) > (*1) + 1, 0r
© k= L[(n—1)/2] +2and s(H) = (") 41,

then H contains a Berge cycle of length k or longer.

For an analog of Theorem 2, we define connectivity of a hypergraph with the help
of its incidence bipartite graph:

Definition 1.2 Let H be a hypergraph. The incidence graph I/ of H is the bipartite
graph with V(Ig) = X UY suchthat X = V(H),Y = E(H) andforx e X,y €Y,
xy € E(Iy) if and only if the vertex x belongs to the edge y in H.

Itis easy to see that if H is an r-graph with minimum degree §(H ), theneachx € X
and each y € Y satisty dy, (x) > 6(H), dy, (y) = r. Moreover, there is a bijection
between the set of Berge cycles of length ¢ in H and the set of cycles of length 2¢ in
Iy: a Berge cycle vy, ey, ..., v, e, v1 can also be viewed as a cycle in /g with the
same sequence of vertices.

Using the notion of the incidence graph, we also define connectivity in hypergraphs.
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Definition 1.3 A hypergraph H is k-connected if its incidence graph Iy is a k-
connected graph.

Theorem 3 of Jackson applied to /i of a2-connected r-graph H yields the following
approximation of an analog of Theorem 2 fork <r — 1:

Corollary 6 Let n, k, r be positive integers with2 < k < r — 1. If H is an n-vertex
2-connected r-graph H with §(H) > k + 1, then H contains a Berge cycle of length
at least min{2k, n, |E(H)|}.

On the other hand, for all 3 < k < r, there are 2-connected r-graphs
Hy with 6(Hy) > k — 2 that do not have Berge cycle of length at least
min{2k, |V (Hy)|, |E(Hy)|}. A series of such examples is as follows. For m > 2,
let V(Hy) = At U...UA, U{x,y} where A; = {a;1,...,a;,—1} forl <i <m,
and let E(Hy) = E1U...UE, whereforeachl <i <mand1 < j <k —1,
E; ={ei1,....eix-1}and ¢; j = (A; —a; j) U {x, y}. Each Berge cycle in Hy can
contain edges from at most two E;s, and |E;| =k — 1 forall 1 <i <m.

1.3 Our Results and Structure of the Paper

Our main result is the following.

Theorem 7 Let n, k, r be positive integers with3 <r <k —2 <n—2.If H isan
n-vertex 2-connected r-graph with

k—1
5(H)Z< >+1, (D
r—1

then H contains a Berge cycle of length at least min{2k, n}.

We point out that for 2-connected hypergraphs, the minimum degree required to
guarantee a Berge cycle of length at least 2k is roughly of the order 2" ~! times smaller
than the sharp bound guaranteed in Theorem 5(b). Furthermore, the bound §(H) =

(fj ) + 1 is best possible as demonstrated by the following constructions.

Construction 1.1 Let g > 2 be an integer and 4 < r +1 < k < n/2. Forn =
q(k—2)+2, let Hy = Hi(k) bethe r-graphwith V (Hy) = {x, y}UV1UV,U.. .UV,
where forall 1 <i < gq, |Vi| =k —2and V; U {x, y} induces a clique. Any Berge
cycle in Hy has length at most 2(k — 2) + 2 = 2k — 2.

Construction1.2 Let4 <r + 1 < k < n/2. Let Hy = Hy(k) be the r-graph with
V(Hy) = XUY where | X| =k —1,|Y| =n— (k— 1), and E(H) is the set of all
hyperedges containing at most one vertexin'Y. No Berge cycle can contain consecutive
vertices in Y, so any Berge cycle has length at most 2k — 2.

Observe that both H; and H> have minimum degree (’:j) Moreover, Hj is (k—1)-
connected and can be defined for all n > k. Therefore, the bound in Theorem 7 cannot
be further decreased by requiring higher connectivity.
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Remark 1 Problems on conditions for the existence of long Berge paths and cycles
(in particular, Turdn-type analogs of the Erdés-Gallai Theorem) attracted recently
considerable attention, see e.g., [6, 9-13] and references in them. These results yield
some Dirac-type bounds, but the implied bounds are significantly weaker than the
bound in Theorem 7.

Remark 2 The extremal hypergraph of the Turan-type problem in [10] (the maximum
number of edges among all r-uniform, 2-connected hypergraphs with no Berge cycle
of length at least min{2k, n}) contains H; as a subhypergraph. But the extremal hyper-
graph Hj has fewer edges.

We also present a bound for k = 2 that is better than given by Corollary 6:

Proposition8 Let 3 < r < n be positive integers. Then every n-vertex 2-connected
r-graph H contains a Berge cycle of length at least min{4, |E(H)|}.

A sharpness example is an r-graph H3 = H3(r, s) with vertex set {v, vg}UUf-=1 U;
where |U;| = r—1forl <i < sandedgesetis Ule {ei,1.ei2} wheree; ; = U;U{v;}
for1 <i <sand1 < j <2.This r-graph is 2-connected for s > 2 and has no Berge
cycles of length more than 4.

A related notion is the codiameter of a hypergraph H which is the maximum integer
k such that for every two vertices u, v € V(H), H contains a Berge u, v-path of length
at least k. (Recall that the length of a Berge path is the number of its edges.)

In graphs, having codiameter k is equivalent to the property that for any two vertices
X, y, graph G + xy has a cycle of length at least k + 1 passing through edge xy. This
property is well studied, see [5, 7, 8]. It was proved recently in [16] that the bound
S(H) > (Lf 1 21J) + 1 guarantees the largest possible codiameter, n — 1.

As an application of our main theorem, we prove the following Dirac-type bound.

Corollary 9 Let n, k, r be positive integers withn/2 >k >r +2andr > 3. If H is
an r-uniform, n-vertex, 2-connected hypergraph with

8<H>z<k_1)+1,
r—1

then the codiameter of H is at least k.

For n = q(k — 2) + 2, the construction Hj (k) shows that Corollary 9 is sharp: the
longest Berge path from x to y contains £ — 1 edges. We also note that 2-connectivity

is necessary: for large n divisible by r, we may take r copies of K r(lr/r and a single edge

intersecting each clique in one vertex. This hypergraph has minimum degree ("fr__ll)

(which does not depend on k) but there are pairs of vertices that are connected only
by a one-edge Berge path.

1.4 Outline of the Paper

The structure of the paper is as follows. In Sect. 2 we present a simple proof of
Proposition 8 and derive Corollary 9 from Theorem 7. In Sect. 3 we set up the proof
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of our main result, Theorem 7. We introduce notation and define so called lollipops.
Each lollipop is roughly speaking a pair of a Berge cycle C and a Berge path (or a
partial Berge path, defined in the next section) P such that P starts in C and extends
outward. In particular, we define criteria for which we will choose an optimal lollipop
(C, P).

In the subsequent five sections we consider all possible cases of best lollipops
(C, P) and find a contradiction in each of them. In particular, in Sect. 4, we show that
in an optimal lollipop, P has a positive length. In Sect. 5, inspired by Dirac’s proof
of Theorem 2, we show that the end vertex of the P cannot have too many neighbors
in P. One of the key ingredients of the proof is a modification of a Dirac’s lemma on
paths in 2-connected graphs (Lemma 5.7). In Sects. 6 and 7, we show that P must be
a Berge path and cannot be too long. Finally in Sect. 8, using the structure of (C, P)
established in previous sections, we analyze how the neighborhoods of two vertices
in P can interact and conclude that we must be able to construct a longer cycle than
C.

We note that if k > n/2 then by Theorem 5, 8(H) > (*~1) +1 = (" 1/*) +1
implies that H contains a Berge cycle of length n. Thus when proving Theorem 7 we
will assume

k < n/2and min{2k, n} = 2k. 2)

2 Short Proofs

In this section, we present a proof of Proposition 8 and show how to derive Corollary 9
from our main result.

2.1 Proof of Proposition 8

Proof Suppose H is a counter-example to the proposition, i.e. for some 3 < r < n,
H is n-vertex 2-connected r-graph and each Berge cycle in H has length at most
min{3, |E(H)|— 1}. Since H is 2-connected, by Corollary 6, §(H) < 2,s06(H) = 2.

Assume first, a pair {u;, vi} of vertices in H is not in any edge. Since the
incidence graph /gy of H is 2-connected, by Menger’s Theorem it has a cycle
C =uy, e, uz,e,...,uUs, €5, 01, f1,02,..., Vs, fr, u1 containing u; and v;. Since
no edge contains both u#; and vy, the four edges ey, e, f1, f; of H are distinct. Then
C corresponds to a cycle in H of length at least 4, a contradiction. Thus,

for each pair{u, v} C V(H) there is an edgee,, containing u and v. 3)

Since §(H) = 2,letu € V(H) with dy(#) = 2 and e, e, be the edges containing
u.Let Ag = e; Ney, A1 = ez\e; and Ay = ep\es.
By (3), e1 Uex = V(H). We claim that

some edge eqy of H contains A1 U A». )
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Indeed, let x; € Az and x» € Aj. By (3), there is an edge e3 containing x; and
xp. If e3 omits some y; € Ay and some y, € Aj, then again by (3), there is an
edge e4 containing y; and y,, and so H has 4-cycle x1, e, y1, e4, ¥2, €2, X2, €3, X1,
a contradiction. Thus we may assume e3 D Aj and y; € As\e3. Since |Az| = |Aq],
there is y, € A; — x». Again by (3), there is an edge e4 containing y; and y,, and so
H has 4-cycle x1, ey, y1, ea, y2, €2, X2, €3, x1. This proves (4).

So, for 0 < i < 2,¢; D V(H)\A;. Since |E(H)| > 4, there is an edge g ¢
{eo, e1, e2}. If some two vertices of g are in the same A;, say u, v € g N Ag, then
H has 4-cycle u, g, v, e1, x1, €g, X2, €2, u, where x; € A and xo € Aj. Otherwise,
r = 3 and g has a vertex in each of Ag, A1, A;. Since |V(H)| > 4, some A; has at
least two vertices, say |[A1| > 2.For0 <i < 2,letu; € gNA;.Letv € A —u;.Then
H has 4-cycle ug, g, u1, €2, v, e, Uz, e, ug. This contradiction finishes the proof. O

2.2 Proof of Corollary 9 on Codiameters

Proof Suppose
nf2>k>r+2>5, Q)

and H is an r-uniform, n-vertex, 2-connected hypergraph with §(H) > (];:}) + 1.
Then by Theorem 7, H contains a cycle C = vy, ey, ..., U, €., v1 With ¢ > 2k. Fix
u,v € V(H). If u,v € V(C) then there exists a segment in C from u to v with at
least [(c + 2)/271 = k + 1 vertices. This is a path of length at least k.

Otherwise, consider the incidence graph Iy which is 2-connected. There exist
shortest disjoint (graph) paths P; and P, in Iy from V(C) U E(C) to {u, v}, say
u € Pi,ve Pp.If u e V(C), then we have P = u and similar for v. In H, P;
and P, correspond to either Berge paths or partial Berge paths that end with u and v
respectively. Let ay, a» be the first elements of P; and P respectively, and let Q be
the longer of the two ap, az-segments along C. If the two aj, ax-segments along C
have equal length, we choose one arbitrarily.

If without loss of generality, u € V(C), then |V(Q)| > [(c + 1)/2] = k + 1.
Appending P, to the end of Q gives a path of length at least k + 1 from u to v. Finally,
ifu,v ¢ V(C), then |V(Q)| > [c/2] > k,so P1 U QU P; is a u, v-path with at least
k + 2 vertices. O

3 Setup and Simple Properties of Best Lollipops

In this section we present some hypergraph notation and define lollipops. We also
derive a series of useful properties of optimal lollipops.

3.1 Notation and Setup

For a hypergraph H, and a vertex v € V(H),

Ny () = {u € V(H) : there exists e € E(H) such that {u, v} C e}
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Fig.1 An o-lollipop and a p-lollipop

is the H-neighborhood of v. The closed H-neighborhood of v is the set Ny[v] =
Ny (v) U {v}.

When G is a subhypergraph of a hypergraph H and u, v € V(H), we say that u
and v are G-neighbors if there exists an edge e € E(G) containing both # and v.

When we speak of an x, y-(Berge) path P and a, b € V(P), then Pla, b] denotes
the unique segment of P from a to b.

Let r > 3. We consider a counter-example H. Taking into account (2), k < n/2
and H is a 2-connected n-vertex r-uniform hypergraph satisfying (1) such that

H does not contain a Berge cycle of length at least 2k. (6)

A lollipop (C, P) is a pair where C is a Berge cycle and P is a Berge path or a
partial Berge path that satisfies one of the following:

— P is a Berge path starting with a vertex in C, |V(C) N V(P)| = 1, and [E(C) N
E(P)| = 0. We call such a pair (C, P) an ordinary lollipop (or o-lollipop for
short). See Fig. 1 (left).

— P is a partial Berge path starting with an edge in C, |[V(C) N V(P)| = 0, and
|[E(C) N E(P)| = 1. We call such a pair (C, P) a partial lollipop (or p-lollipop
for short). See Fig. 1 (right).

A lollipop (C, P) is better than a lollipop (C’, P') if

(@) V(O] > [V(C))|, or

(b) Rule (a) does not distinguish (C, P) from (C’, P’), and |E(P)| > |E(P)|; or

(c) Rules (a) and (b) do not distinguish (C, P) from (C’, P’), and the total number of
vertices of V (P) — V(C) contained in the edges of C counted with multiplicities
is larger than the total number of vertices of V(P’) — V(C’) contained in the
edges of C’; or

(d) Rules (a)—(c) do not distinguish (C, P) from (C’, P’), and (C, P) is an o-lollipop
while (C’, P’) is a p-lollipop; or

(e) Rules (a)-(d) do not distinguish (C, P) from (C’, P’), and the number of edges
in E(P) — E(C) fully contained in V(P) — V(C) is larger than the number of
edges in E(P’) — E(C’) fully contained in V(P') — V(C’).

The criteria (a)—(e) define a partial ordering on the (finite) set of lollipops, and hence
we can choose a best lollipop (C, P). Say C = vy, eq, ..., Ve, e, v1. If (C, P)isa
o-lollipop then let P = uy, f1, ..., fe, ues+1, where uy = v.. If (C, P) is a p-lollipop
then let P = f1,uz, fa, ..., fe, ue+1 where fi = e.. With this notation, we have
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|[E(P)| = ¢, |V(P)] = £+ 1if P is a Berge path, and |V (P)| = £ if P is a partial
Berge path. Assume ¢ < 2k = min{2k, n}.
Denote by H’ the subhypergraph of H with V(H') = V(H)and E(H') = E(H) —
E(C) — E(P). Define
H— { H' when (C, P) is a p-lollipop, o
“ | H U{f1} when (C, P) is a o-lollipop.

Since we consider mostly Berge paths and cycles, from now on we will refer to
them simply as paths and cycles. We will differentiate graph paths and cycles when
needed.

3.2 Simple Properties of Best Lollipops

In this subsection we consider best lollipops (C, P) and prove some basic claims to be
used throughout the rest of the paper. The following claim immediately follows from
the assumption (6) and ¢ < 2k.

Claim 3.1 (a) Ifa; = e; and by = ej for some i, j € [c], then the longer of the two
subpaths of C connecting {v;, vi+1} with {v;, vjy+1} and using neither of ¢; and e;
has at least [c/2] vertices. In particular, this path omits at most k — 1 vertices in
C.

(b) If a1 = e; and by = v; for some i, j € [c], then the longer of the two subpaths of
C connecting {v;, viy1} with v; and not using e; has at least [(c + 1) /2] vertices.
In particular, this path omits at most k — 1 vertices in C.

(¢) Ifay = v; and by = v for some i, j € [c], then the longer of the two subpaths of
C connecting v; with v; has at least [(c + 2) /2] vertices. In particular, this path
omits at most k — 2 vertices in C.

We call a path satisfying Claim 3.1 a long ay, by1-segment of C.

Claim 3.2 Let (C, P) be a best lollipop. Foreach 1 <i <cand2 <m <€+ 1, if
some edge g ¢ E(C) contains {u,,, v;}, then

(a) neither e;_\ nor e; intersect V(P) — uy, and
(b) no edge in H" intersects both V(P) —uy and {v;_, vi 11} (indices count modulo

c).

In particular, the set Ng»(V(P) — uy) N V(C) does not contain two consecutive
vertices of C.

Proof Let ¢ ¢ E(C) contain {u,,, v;} such that if g € E(P), say g = f, then
W€ may assume u,, = Ugy1. Suppose ¢;—1 contains u; for some 2 < j < £ + 1.
If either j > m or g # fu—1, then we may replace the segment v;_1, ¢;_1, v; in
C with vi_1,ej_1,uj, Pluj, upnl, up, g, v;. Otherwise we replace the segment with
Vi1, ei—1,uj, Pluj,upu—1], um—1, g, v;. We obtain a longer cycle, contradicting the
choice of C. The case with u; € e; is symmetric. This proves (a).
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Suppose now some ¢ € E(H") contains {u;, vj_1} for some 2 < j < £ + 1
(the case when e D {uj, v;y1} is symmetric). If e # g, then similarly to before we
may replace the segment v;_1, ¢;—1, v; in C withv; 1, e, uj, Pluj, uy], up, g, v; or
vi—1,e,uj, Pluj, uy—1], upm—1, g to get a longer cycle.

If e = g, then by (a), ¢;_1 N (V(P) — u;) = ¥. Note that in this case g € E(H").
Let C’ be obtained from C by replacing the edge ¢;_1 with g. If g # f1, then we let
P’ = P, otherwise, by the definition (7) of H”, P is a path, and we define partial
path P’ = fi,us, fa,...,u¢s1. Then (C’, P’) is better than (C, P) by Rule (¢) in the
definition of better lollipops. O

Call a lollipop (C’, P’) good if |E(C")| = ¢ and |E(P’)| = £. In particular, each
best lollipop is a good lollipop.

Claim 3.3 Suppose (C, P) is a good lollipop. Let H be the subhypergraph of H with
E(H) = E(H) — E(C) — E(P).
Then all H-neighbors of ug+1 are in V(C) U V (P), and moreover

(1) if (C, P) is an o-lollipop, then uy4+1 has no ﬁ-neighbors in {vy,va,...,ve} U

{ve—1, ve—2, ..., Ve—¢}, and upyq is not in any edge in the set{ey, ez, ..., ep—1}U
{ec,ec—1, ..., ec—¢}, _

(2) if (C, P) is a p-lollipop, then u¢+1 has no H-neighbors in {vy, va, ..., v¢} U
{Ves Ver1y + ooy Ve—pt1), and ug4q is not in any edge in the set {ey, ...,ep—1} U
fec—1, ..., ec——n}

Proof Lete € E(ﬁ) contain ug 1. Suppose first thereisavertex y € V(H)—(V(C)U
V(P)) suchthaty € e.Let P’ be the path obtained from P by adding edge ¢ and vertex
y to the end of P. Then (C, P') is a lollipop with |V (P")| > |V (P)|, a contradiction.

Now suppose e contains v; forsomei € {1, ..., £}. Then we canreplace the segment
V¢, €¢, V1, ..., U from v, to v; in C with the path v, e, Plec, up+1], ue+1, e, v; to
obtain a cycle of length at least ¢ — (¢ — 1) 4+ £ > c¢, contradicting the choice of C.

The proof fori € {c,...,c — €} ori € {c,...,c — £ + 1} is very similar, but
when (C, P) is a p-lollipop, we replace the segment vy, e, v, . .., €;, v; instead with
v, ec, Plec, ugt1], ue+1, e, v;.

Finally suppose (C, P) is an o-lollipop and for some 1 < i < £, ug41 € ej—1
(modulo c¢). The cycle obtained by replacing the segment from v, to v; with the path
Ve, Pougy1, ei—1, v; has length at least ¢ + 1, contradicting the choice of C. The
argument for e._; and the argument in the case (C, P) is a p-lollipop and e;_; # e
are similar. O

Claim 3.4 Let (C, P) be a best lollipop.

(A) Ifugsy € fm for some 1 <m < £ — 1 and P’ is obtained from P by replacing
the subpath uy,, fm, Um+1, - - ., Ues1 With the subpath uy,, fin, wes1, fo, ue, ...,
Um+1, then (C, P') also is a best lollipop.

(B) Ifsome edge g € E(H") contains V(P) — V (C) oris contained in V(P) — V (C)
and contains {ugy1, uy) for some 1 < m < € — 1, and if P’ is obtained
from P by replacing the subpath uu, fm,Um+1, ..., Ue+1 With the subpath
Up,y & Ugsts fosUpy ..., Umyl, then (C, P') also is a best lollipop.
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Proof Let us check the definition of a best lollipop. Part (A) holds because the vertex
set and edge set of P’ — V(C) are the same as those of P — V (C).

In Part (B), V(P') — V(C) = V(P) — V(C), and E(P’) is obtained from E(P)
by deleting f;, and adding g. But since g contains V(P) — V(C) or is contained in
V(P) — V(C), (C, P) cannot be better than (C, P’). O

Claim3.5 For2 <qg <flandl <i, j < ¢, the following hold:

(D) Ifug €cejandugyy €ejthenj=ior|j—il>{U+1)—g+1

(2) Ifthere exists an edge e € E(H'") such that {v;, ug) Ce andifugy € ej, then
either j >iand j—i > {+1)—qg+1,0ori > jandi—j > {U+1)—qg+2.

(3) Ifthere existdistinct edges e, f € E(H") suchthat {v;, us} C eand{vj,ug41} C
fiothen j=ior|j—i|l>U+1)—qg+2.

Proof We will prove (1). If j # i, then we can replace the segment of C from e;
to e; containing |j — i| vertices with e, ugy1, Plugy1, uql, ugy, e; which contains
(£ 4+ 1) — g + 1 vertices. The new cycle cannot be longer than C. The proofs for (2)
and (3) are similar so we omit them. O

4 Nontrivial Paths in Best Lollipops

In this section, we show that the path or partial path P has length at least 2. In
particular, since H is connected, and |C| < n, there is an edge intersecting both V (C)
and V(H) — V(C). Thus £ > 1. Below we show in fact £ > 2 using the notion of
expanding sets that can be used to modify C into a longer cycle.

Suppose ¢ = 1 and u5 is the unique vertex in V (P)\V (C). Say thataset W € V(C)
is us-expanding if for every distinct vj, vy € W, there is a v;, vjy-path Q(v;, v;7)
whose all internal vertices are notin V (C)U{u»} and all edges are in E(H)\ E(C).One
example of aus-expanding setis V (C)Ng where gisany edgein E(H)\ E(C). Another
useful example is a set of the form Ny (w)NV (C) foravertex w € V(H)—V (C)—us.

Suppose W is a up-expanding set and v;, vy € W where j < j'. Ifup e ej Nejr,
then the cycle

v, e, 02, .. €1, V), QUL v, Vi ey, Vit e, Vs €,

u29ej/7 vj,+1vej/+la ~ees€c—1, Ve, €c, V]

is longer than C, a contradiction. A symmetric longer cycle can be found if uy €
eji—1Nej_1. Thus

up is contained in at most one edge of {e; : v; € W}

and in at most one edge of {e; 1 : vj € W} 8)
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Therefore,

if the vertices of W form on C exactly gq inter-

vals  of  consecutive  vertices and B is the  set

of edges in C containing up, then |B| < ¢ — |W|+1—-q + 1. (9
Moreover, if ¢ = 1, say W = {vj,vj41,...,Vj,+|w|—1} and
|Bl=c— |W|+1, then B=E(C)\{ej,ej+1,.-.,€j+|w|-2}-

Now we are ready to prove that £ > 2.

Lemma 4.1 Suppose n/2 > k > r +2 > 5 and H is a 2-connected r-graph satisfy-
ing (1). Let (C, P) be a best lollipop. If c < 2k, then £ = |E(P)| > 2.

Proof Suppose £ = 1. If there exists e € E(H) — E(C) containing at least 2 vertices
u,u’ ¢ V(C), then let P’ be a shortest path or partial path from V(C) U E(C) to
{u, u’} which avoids e. Such a P’ exists because H is 2-connected. Without loss of
generality, P’ ends with u. Then (C, (P’, e, u’)) is better than (C, P). It follows that

foreache € E(H) — E(C),lenV(C)| =r — 1. (10)

Case1: Pisapath,say P = v, f1, up.Recallthat H” = H'U{f1}. Sincedy (uz) > 2
and every edge containing u» intersects C, by the maximality of £, Ny (uz) € V(C).
Let A= Nyv(uz),a = |A|, B={e; € E(C) : up € ¢;} and b = |B|. By Claim 3.2,
A does not intersect the set |_J cicB {vi, vi4+1} and no two vertices of A are consecutive
on C. Therefore,

2k —1>c¢>2a+b. (11)

It follows that

1+ <dg(up) < +b < +c—2a. (12)
r—1 r—1 r—1

Case 1.1: dyy»(u2) > 2. Then a > r. Since the RHS of (12) is monotonically increas-
ingwitha whena > r — 1> 2,ifa <k —2,then 1+ (*7}) < (*77) +c — 2k +4
and hence

k—2
< 2)56—(%—3)52,

r —

a contradiction.

Suppose now a = k — 1. Then (12) yields b > 1, (11) yields b < 1, and in order
to have equality, c = 2k — 1 and all r-tuples of vertices containing u» and contained
in AU {u;} are edges of H”.

It is convenient in this case to rename the vertices in C so that B = {ep;_1} and
A ={vo,vg,...,0k—2}.Sincek =a+1>r+1,forevery 1l < j <k —1wecan
choose an edge g»; € E(H "y containing uy and v; j so that all g>; are distinct. Since
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r < k — 2, some vertex in V(C) — A is not in exx_1, say vaj+1 ¢ ezx—1 for some
1<i<k-2.

Suppose vz 11 € e for some j € [2k — 2] — {2i, 2i + 1}. By symmetry, we may
assume j > 2i + 1. If j is even then the cycle

C] = v2l+lve]7 U]+],e]+], v]JrZa ceey V24, g215u27 gj5 vjaejfla v]*]a ceey v2l+1

is longer than C. If j is odd then by the choice of v; 41, j # 2k — 1, and the cycle

/
Ci =v2it1,€j,Vj,€j_1,Vj1,..., 0242, §2i+2, U2, §j+1,

XVj41, €41, Vj42, -+ vy V2541

is longer than C, a contradiction.

Similarly, if for some odd j # 2i +1thereisanedgeh; € E(H ") containing vp; 11
andv;, then we may assume j > 2i+1,and the cycle C’/ obtained from C’; by replacing
e; with & is longer than C. Recalling that A is the set of vertices with even indices in
C we obtain Ny —{ey; 541} (12i4+1) NV (C) C A. Since |A| = k — 1 and dy (v2i+1) >
(fj) + 1, some edge h € E(H") U {ea;, e2;+1} containing vp; ] contains also a
vertex w ¢ V(C). Since vp;j11 ¢ A U ex—1, w 7# up. Consider the lollipop (Cy, Py)
where C is obtained from C by replacing the subpath vy;, €2, vV2i+1, €2i+1, V2i+2 With
the subpath vy;, g2i, U2, g2i+2, V2i42, and Py = wv2;, €2i, V2i+1, h, w. This lollipop
satisfies [V (C1)| = |V (C)|but |E(Py)| > | E(P)|, contradicting the choice of (C, P).

Case 1.2: dyr(up) = 1. Thendy(uz) = 1+b, A = fiNV(C)anda =r — 1.
By (11),dy(u3) =14+b <14 ¢ —2a = c — 2r + 3. In particular,

k—1 k—1
1+< ) )51+( 1)§dH(u2)5(2k—1)—2r+3§2k—4, (13)
L

and thus k2 — 7k +12 < 0. Fork > r +2 > 5, this is impossible.

Case 2: P is a partial path, say P = e., uy. If there is an edge h € E(H’) containing
us, then by (10), i contains some v; € V(C). So, the lollipop. (C, P’) where P' =
vj, h, uy also is better than (C, P) by Rule (d), a contradiction. So, dy(uz) = b,
where B = {e¢; € E(C) : us € ¢j} and b = |B|.

Suppose there exists w € V(H) — (V(C) U {u>}). Let us show that

dpg'(w) < 1. (14)

Indeed, suppose g1, g2 € E(H') and w € g1 N go. Let W = V(C) N (g1 U g2). As
observed before, this W is us-expanding. Since g» # g1, by (10), |W| > r. Also, by
Claim 3.2, vertices in g could not be next to vertices in g; on C. Thus if |W| = r,
then |g1 N g2| = r — 1, and hence no two vertices of W are consecutive on C. In this
case, by (9),b <c— |W|+1—¢q + 1 where g = |W| = r. So, similarly to (13) we
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get
k—1
1+ ) <dg(up) <c—2r+2 <2k -5,

which yields kK2 —7k+14 <0, an impossibility. Thus |W| > r + 1. But still since
vertices in g could not be next to vertices in g1 on C, g > 2. So, we again get

k—1
1+( 5 >SdH(uz)fc—(r+1)+1—2+l§2k—5,

and come to a contradiction. This proves (14).
Ifn=c+xand|E(H)| =c+ y, then

kc+x)=k-n< ZUGV(H)dH(v) =r(c+y). (15)
If r > n/2, then by Theorem 4, H has a Hamiltonian cycle; thus n > 2r. So, we
conclude from (15) that

y> r+2)(c+x) _C=2(c+x)+x

2n
=—+x>4+x.
r r r

Since dy/(uz) = 0 and by (14), at most x — 1 edges in H’ contain a vertex outside
of V(C). It follows that at least 6 edges of H’ are contained in V (C). If at least one
of these edges is not an interval of consecutive vertices on C, (9) yields b < ¢ —r.
Also if all of these edges form intervals on C, then the “Moreover” part of (9) yields
b < c¢ —r. Hence,

k—1
1—|—< 5 )Sdﬂ(u2)=b§c—r§2k—4,

and thus k2 — 7k +12 < 0. Fork > r +2 > 5, this is impossible. O

5 Vertex uy+1 has Few Neighbors in P

In this section we show that ug4| cannot have too many H'-neighbors in P or be
contained in too many edges in P. In particular, we will prove that it has at most k — 2
such neighbors, and is in at most & — 1 such edges. The proof is a modification of
Dirac’s proof of Theorem 2 for 2-connected graphs. The interested reader may look
at the relevant sections in [4] or [17] to see the proof idea in the simpler setting of
graphs.

Let S1 = (Ngr(ue+1) NV(P)) Ulue}, S2 = {um € V(P) : ugt1 € frn and uyy, ¢
Sitand S = S U S,.

We will prove a series of claims. In each claim, we construct a cycle containing
almost all of S; U S» and at least half the vertices in C. Thus if 1 U S or S is too
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large (in particular, if [S1 U S2| > k or |S1| > k — 1), we obtain a cycle that is longer
than C.

We use /' (a, b) to denote an edge in H' containing a and b if we know such an
edge exists. By definition, if u,, € S, then there is no edge in H’ containing u,, and
u¢+1. In this case, ' (uy,, ug+1) denotes fiy,.

If the smallest index i with u; € S} U S is such that u; € S» then we denote this
index by i1 — 1, otherwise if u; € S; then we denote it by 7. Let the other indices i

such that u; € S beis, ..., iy in increasing order.

Index the vertices of S1 by ji, j2, ..., jg in increasing order.

If (C, P) is an o-lollipop, then let X = V(C) — v, otherwise let X = V(C).
Set Y = {uj; 41, uiy42, ..., ues1} and Z = {uj 41, uj 42, ..., ues1}. Observe that
ZCY.

Claim 5.1 If|S1 U S3| > k — 1 then no edge in H' intersects both X and Y .

Proof Suppose (C, P) is a lollipop and an edge in E(H') intersects both X and Y.
Among such edges, choose e containing u; with the maximum possible i. Let i’ be
the largest index less than i such that u; € S U S5.

By the definition of Y, i > i; and hence i’ > i| — 1. Suppose a vertex in X N e is
v;. Let O be along v, v;-segment of C guaranteed by Claim 3.1.If i = £ + 1, then
consider the cycle

Co=ve, Q,vj,e,upq1, feo,ue, ..., f1, Ve.

If (C, P) is an o-lollipop, then Cy has at least ¢ — (k — 2) vertices in C and at least
k vertices in S1 U S U {uy+1}, at most one of which is in C (namely v, = uj). So
|Col = ¢ — (k—2)+ (k— 1) > c, a contradiction. If (C, P) is a p-lollipop, then
Cy is guaranteed only ¢ — (k — 1) vertices in C, but none of the at least k vertices in
S1U S U{ugyr}isin C.So |Col = ¢ — (k—1) + k > ¢, again.

Thus, suppose i < £. Then i’ (u;/, ug11) # e and hence

C(’) = V¢, vijvea Ui, ﬁa cee, Uy, fZ,Mé—Q—lah,(”l-}—la”i’), ‘fi/—l’~--aflav(,‘

isacycle. Similarly to Cy, it has at least c — (k —2) + (k — 1) > ¢ vertices when (C, P)
is an o-lollipop, and at least ¢ — (k — 1) + k vertices when (C, P) is a p-lollipop, a
contradiction. O

Claim 5.2 If|S; U Sy| > k then no f,, with m > iy intersects X, and if |S1| > k — 1,
then no f,, withm > jp intersects X.

Proof Suppose m > ij and f,, contains some v; € V(C). By symmetry, we may
assume that j < ¢/2 when (C, P) is an o-lollipop and j < (¢ + 1)/2 when (C, P) is
a p-lollipop. Let Q be the path v, ec—1, Ve—1, ..., €}, vj.

Suppose first that | S1 U S>| > k. If m = i; and the smallestindex i withu; € S1US>
is such that u; € Si, then let i’ = m; otherwise, let i be the largest index less than m
such that u;; € S U S. Then

(/)/ = V¢, Q5 vj’ fm’ um+17 fm+17 ceey, U, fﬁy”€+],h/(“€+l’ul/), f‘ﬂ*l? "'flv Ve
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is a cycle. It contains all vertices in Sy U S» U {ug11} apart from u,,. If (S U S2) N
V(C) # @, then (C, P) must be an o-lollipop and u; € S; U S>. Hence C(’)’ has at
leastc — (j— 1)+ ((k+1)—2 > (c —c/2) +k > c vertices, a contradiction.
Otherwise, if (S1U S2) NV (C) = @, then C(/)/ hasatleastc—(j— D+ k+1)—1>
(c—=(c+1)/2) + k+ 1 > c vertices.

Now suppose |S;| > k — 1. In this case, let i’ be the largest index that is at
most m such that u;; € Si. Then the same cycle C{j as above contains all vertices
in §1 U {ugy1}. Similarly, we get either |C(| > ¢ — (c/2 —=1)+k —1 > cor
ICil>c—((c+D/2-1D)+k>c. O

Claim 5.3 Suppose |S1 U S2| > k. If (C, P) is an o-lollipop, then no e; € E(C)
intersects Y. If (C, P) is a p-lollipop then no ej € E(C) with j # c intersects Y.

Proof Suppose e; € V(C) contains some u; € Y where j # ¢ when (C, P)
is a p-lollipop. By symmetry, we may assume that j < c¢/2. Let Q be the path
Ucs €c—15 Ve—15 -+ -5 €j+1, Vj41.

Let i’ be the largest index less than i such that u;s € S; U S,. Consider the cycle

/
Ci=ve, Q,vjy1,ej,ui, Pluj, ugp1], ugpr, M (ueyr, uir), uyr, Pluy, vel, ve.

It contains at least ¢ — ¢/2 vertices in C and all vertices in S1 U S U {uy41}. Hence
ICil=c/24+(k+1)—1>c. O

Claim 5.4 Suppose |S1| = k — 1 and some edge e; € E(C) contains some u; € Z.
Then either (C, P) is an o-lollipop, c =2k — 1, ¢j = ex—1, |S1|l =k —1and j1 =1,
or (C, P) is a p-lollipop and j = c.

Proof Suppose e¢; € V(C) contains some u; € Z where j # c when (C, P)
is a p-lollipop. As in the proof of Claim 5.3, we may assume that j < c¢/2,
and if ¢ is an o-lollipop, we may assume j < (c — 1)/2. Let Q be the path
Ve, €e—1, Ve—1, ...,€j+1,Uj+].

Let i’ be the largest index less than i such that u;» € S;. Consider

C] = V¢, Q? Uj+], eja ui, P[uia uf-i—l]’ Ug+1, h/(ue-‘r]’ ui/)’ M;, P[”;v vc]a Uc.
If (C, P) is a o-lollipop, then

2%k —c—1
|V(C1)|zc—j+k—lzc—(c—l)/2+k—l=c++zc (16)

with equality only ifc =2k — 1, j =k — 1, u; € S1,and |S1| =k — 1.
If (C, P)isap-lollipop, then SNV (C) = @, soinstead of |[V(C)| > c—j+k—1
as in (16) we have |V (C1)| > ¢ — j + k and conclude that |V (C7)| > c. O

Claims 5.1-5.4 together can be summarized as the following two corollaries.
Corollary 5.5 Suppose |S1US>| > k. Then the only edges in H that may intersect both
XandY are f1, ..., fi—1-
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Corollary 5.6 Suppose |S1| > k — 1 and an edge g € E(H) intersects X and Z.
Then either g € {f1,..., fj;—1} or (C, P) is an o-lollipop, g = ex—1, ¢ = 2k — 1,
|S1| =k —1,and j = 1.

Finally we will show that | S| and |S; U S2| cannot be too large. For this, we use
the notion of aligned paths in graphs introduced in [4] and apply Lemma 5.7 below to
the incidence bigraph Iy of H.

Let P and P’ be paths in a graph starting from the same vertex. We say P’ is aligned
with P if forall u, v € V(P) NV (P"), if u appears before v in P then u also appears
before v in P’.

Lemma 5.7 (Lemma 5 in [17]). Let P be an x, y-path in a 2-connected graph G, and
let 7 € V(P). Then there exists an x, z-path P and an x, y-path P, such that
(a) V(P1) NV (Py) = {x} and (b) each of P, and P is aligned with P.

Lemma5.8 (A)|S;USy| <k — 1, and (B) |S1| <k — 2.

Proof Recall that by Lemma 4.1, £ > 2. We first prove (A). Suppose towards contra-
diction that |S; U S| > k.

Case 1. The smallest index i with u; € S1 U S satisfies u; € S,. By the definition
of S> and i1, i = i1 — 1, and i is the unique index less than i1 such that u,y1 € f;.
In particular, i1 > 2 and moreover if (C, P) is a p-lollipop, since the first vertex of
V(P)isup, it —1>2.

Consider the 2-connected incidence bipartite graph /5 of H and the (graph) path

P =vi,e1,v2, ... U, floeeos foo Uit

in /. We apply Lemma 5.7 to P’ with z = u;, to obtain two (graph) paths P; and P,
satisfying (a) and (b) in 7.

We modify P; as follows: if P; = wy, wa, ..., wj;, let g; be the last index such that
wy, € X' := {v1,e1,..., 0, e} and let p; be the first index such that w), € Y’ :=
{uiy, firs iy+1s - -s foo Ueg1)-

If wy,, = u, for some s, then set Pl.’ = Pilwg,, wpy;]. If wp, = fs for some s, then
set P/ = Pi[wg,, wp, ], tst1.

Observe that P| and P, are Berge paths or partial Berge paths in H. Moreover, P|
ends with vertex z = u;, and contains no other elements of ¥’ since it is aligned with
P’ Itis possible that f;, _j isin Pj.

If both P| and P, begin with vy, then some P/ avoids f and first intersects the set
{u2, f2,...,ueq1} in Iy at some vertex w;. Then replacing the segment vy, e, v¢ in
C with the longer segment v, Pl.’[vl, w;l,w;, Plwj, fil, f1, ve yields a cycle in H
that is longer than C, a contradiction. Therefore we may assume that P{ and P, are
vertex-disjoint and edge-disjoint in H.

Next we show that

no edge in H' containing u¢y is in P or Pj. (17)
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Indeed, suppose 7 € E(H') contains ug1j. Then by the maximality of ¢ and
Claim 5.1, h C V(P). Therefore, by the definition of iy, ...,ig, A < {u;, ..., u;,}.
But such edges are not in E (Pl’ YUE (P2’) by construction. This proves (17).

Observe that for m > iy, if f, is in P}, then by the definition of P;, it must be the
last edge of P;.

Let a; and by be the first elements of P and Pj respectively. Let Q be a long
b1, a1-segment of C guaranteed by Claim 3.1 (recall that if Pl’ is a path, then a is the
first vertex of Pl’ and if Pl’ is a partial path, then it is the first edge, and similar for b1).

Next we show

fii—1 & E(Py). (18)

Suppose fi,—1 € E(Py). Since P; is aligned with P’, the segment P;[by, fi,—1]
does not intersect P[u;,, u¢+1]. Then

b1, Q, a1, P{,ui,, Plui,, ue1), uest, fir—1, Pal fiy—1, b1, b

contains at least c — (k — 1) vertices in C and all vertices in S1 U So U {up41} — {ui -1},
i.e., ithasatleastc — (k — 1) +k 4+ 1 — 1 > c vertices. This proves (18).
Let u, be the last vertex of P;.

Case 1.1. f, 1 isthelastedge of Pz/. Sinceu, € Y, g—1 > i;. Hence by Corollary 5.5,
fe—1 does not intersect X. Then P; has at least two edges and at least one internal
vertex, say z. By the definition of P; and the fact that f,_| # e,z ¢ X UY U {u;,}.

Let g’ be the largest index less than ¢ — 1 such that uy € S1 U S5, If ¢” # iy — 1
(so g’ > iy), consider

Cl = bl’ Q’ a, Pl/’ Uiy, P[ui| 5 Mg/], Mg/, h/(l/{g/, u€+1), Ug+1, P[I/l[+1, ug]’ uga Pz/a bl
This cycle has at least ¢ — (k — 1) vertices in C and z ¢ X U Y. The cycle C; also

may miss at most two vertices in S1 U S, (namely u;, 1 and u,_1), and since we are
in Case 1,

(S1 US> U fugr1} — {ug—1,uiy—1}) N V(C) = 0.
Therefore C; contains at least

V(O +V(Py) — (VC)UV(P)|+ 81 US2 U {ugyr} — {ug—1, ujy—1}
>c—k—-—D+14+k+1-2>c¢

vertices, a contradiction.

If g =iy — 1, then by (18), fr ¢ E(P;). First suppose by # v.. We let Q" be a
long b1, v.-segment of C if (C, P) is an o-lollipop or a long by, e.-segment of C if
(C, P) is a p-lollipop (without loss of generality, this path ends with v.), and take the
cycle

C2 = bl’ Q/a UC(Z u1)5 "'7ui171’ fi1717u£+17 P[u£+l7ug],uga Pévb]
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which again omits only u,_; from S; U S» (which is possibly in V (C)) and satisfies
|C2l =>c—G—-—D+1+k+1-2>c.
Suppose now that by = v.. If fi; 1 € E(P)), let

/ /
C3 = Ve, Q7a17 Pl[ala ‘fl'|71]a f‘l‘]*la Up+1, P[M@+], Mg], ug’ P25 Vc.

Recall that Pz’ has an internal vertex z ¢ X U Y U {u;,}. Also, all vertices in S U
S> U {ugy1} — {ui -1, ug—1} are in C3 and none of them belongs to C. Therefore
IC3|>c—(k—-—D+1+*k+1)—2>c.

Lastly, if fi;—1 ¢ E(P}), then the cycle

/ /
C4 = V¢, Qv a, Plv Ui, fi|*19 ug+1, P[M(H»la ug]: P2a Ve

contains at leastc — (k — 1) + kK + 1 — 1 > ¢ vertices.

Case 1.2. The last edge of P, isnot f_1. Then we let g’ be the largest index less than
g such that uy € S1 U Sp. In this case, the cycle C; from the previous subcase can
miss only u;,—1 in S; U S, and contains at least k — 1 vertices in S1 U Sy — {u;,—1}
which are disjoint from V (C). We get

ICil = IV DI+ 1S1U S — {uiy -1}l + Huggi} Ze =Gk =D+, -D+1>c.

This finishes Case 1.

Case 2. The smallest i with u; € S1 U S is such that u; € S;. Recall that in this case
i =1

and the other indices of the vertices in S; U S, are is, .. ., iy in increasing order.

Now, define P/, Pl/ , PZ’ and Q as in Case 1. Then we can repeat the final part of the
proof of Case 1 with the simplification that the cycle Cy omits at most the vertex ug
in §1 U S, and this occurs only if f,_1 is the last edge of P2’. As in Case 1.1, since
fe—1 # ecand g — 1 > iy, P, contains at least one vertex outside of V(C)UY U {u;,}.
Note also that it may be the case u;, = u; € V(C).

If no vertices of S; U S are omitted from Cy, then

[C1l = VDI +IS1U S| — Hui H + Huer1}l =c— (k=D +k—1+1>c
Otherwise, if ug 1 € S1 U S was omitted from Cy, then

IC1l = V(4181 U Sa| = 1 = [{ui 3 + Huer1} + 1V (Py)
—V(C)UY U{u;}| > c.

This proves Part (A).
Now we prove (B). Recall that uj,, ..., u;, are the H'-neighbors of ¢4 and
suppose B > k — 1. Corollary 5.6 asserts that apart from fi, ..., f;;—1 only ex_1 may

intersect both X and Z. First part of our proof is to show that e;_1 does not intersect Z.
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Claim5.9 f; C V(P) forallu; € Ny (uey1).

Proof By Claim5.2,ifu € f; — V(P),thenu ¢ V(C)UV (P).If P is a path, then we
can replace it with the longer path w1, Puy, u;1, ui, h' (u;i, ues1), wer1, Pluesrt, fil,
fi, u. Otherwise we replace P with the partial path f, P[f1, u;], ui, h'(u;, ugs1),
ues1, Plugs, fil, fisu. mi

Claim5.10 ¢ > k.

Proof Suppose ¢ < k — 1. Since |S1| = k — 1, £ = k — 1 and each vertex in
V(P) — {u¢41} including u is in Sj.

If ug ¢ Nyr(ueyr), then [Ngr(uep1)| < € —1 =k —2, Ng(ugq1) = V(P) —
{ue, ug4+1}, andby Claims 5.4 and 5.9, the only edges containing 1 and not contained
in V(P) could be ¢;_; and fg

We get dpy(uer1) < (1) + 1E(P) +1 < (77) + k. When r > 4, this is less

than (r 1) + 1 = §(H). If r = 3, then each edge f; with i < £ containing u
satisfies f; = {u;, ujy1,ues1}. Thus for i < € — 2, such an edge f; is a subset of
Ny [uey1]andis accounted for in the (‘NH/(“‘“)') termofd (ugy1). Hence dy (uesq) <

(1; %)+|{fl 1 fo, ext)] <(r 1)+k 2<( ) a contradiction.

If uy € Ng/(u¢+1), then by Claim 5.9, dy— E(C)(Mé—i-l) < (r 1) and the only
edge containing u,41 not contained in V (P) could be e;_1. Then in order to satisfy
d(ugs+1) = 8(H), we need that uy41 € ex—1 and every r-tuple contained in V (P) and
containing ugy1 is an edge in H.

Hence we can reorder the vertices in V (P) —u to make any vertex apart from u | the
last vertex. The resulting path together with C is also a best lollipop. By Claims 5.1-5.9
and the above, either d (u;) < (1; :i) + 1 < §(H) for some i leading to a contradiction,
oreachu; € V(P)iscontained in ¢;_1. In the latter case, r = |ex—1| > 2+ =k+1,
a contradiction. O

Claim5.11 ugyg € ex—1.
Proof Suppose ugyi € ex—1. By Corollary 5.6, this is possible only if (C, P) is an
o-lollipop and ¢ = 2k — 1. By Claim 5.10, £ > k and so the cycle

CO = vcveL'71’ cey Uk,e, ul+1’ fﬁv M@, LN} flv UC

has at least k + k = 2k vertices, a contradiction. O
Claim 5.12 If (C, P) is an o-lollipop, then ex—1 N Z = (.

Proof Suppose u; € ex—1 N Z. By Corollary 5.6, this is possible only if ¢ = 2k — 1,
|Sil=k—1and j; = 1.
By Claim 5.11, i < £ + 1. Let i’ be the largest number less than i such that
uyr € Ny(ugyp).Denote It = {i’ +1,i'+2,...,i—1}and L = {1,...,{"}U{i,i +
., £}. By the choice of i/, I} N S| = @.
Consider the cycle

/
Cl = V¢, €c—1y -+, Uk, €k—1, Ui, fi,~~,u€, fé,u€+l,h (u€+17u1/)7 ﬁ/715"'7u1'
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We have |Cy| > k+|S1 — {u1}| + {ue+1}) = k+k—24+1 = 2k — 1 with equality
only if S = {u; : i € b} and |S|| = |I2] = k — 1. In particular, this means that the
indices of the vertices in §; form two intervals, {1, ...,i’} and {i,i + 1, ..., ¢}, and
the second of these intervals starts from i. This yields e N V(P) = {u;}.

Since we proved |S; U $2| < k — 1 = |S1[, we must have

foreachm € Iy, up+1 ¢ fin- (19)

By Claim 5.9, for each u,,, € Ny (u¢+1), fm S V(P). Suppose now that for some
me L —{i"Y,and i’ <i” < i,upsy,u;» € f, and H' has an edge g containing
{tm, um+1}. In this case, if m > i, then the cycle

C2 = UC9 ec‘flv MR Uk,ekfl,ui, ﬁ: '~"un% gs um+1, fm+1, AR
ug, ffs ueg+1, fmv ur, ﬁ”_l, e, U

is longer than C, and if 1 < m < i/, then the cycle

C3 = vCaeC71’ "'7vk76k717ul‘5 ,fia -"7’/[67 f€7ue+17 fm,ui”’ f‘i”*]y‘-'5

fm+lv Un+1,8s Umy - - -, U]
is longer than C. Therefore,

Ifme i’ <i” <iand{ugyy,upn} C fi, then no edge in H' contains {uy,, uy41}.
(20)
For 1 < m < ¢, call the edge f, fitting if ugy1 € f, and f,, S Ng/[ue4+1] and
non-fitting if ug41 € fin and fr, € Nplugsi1]. Let R denote the set of fitting edges
and R’ denote the set of non-fitting edges. By (19), if f,, € R, then m € I,. By the
definition of I»,if m; € I, — {i’, £}, thenm; + 1 € I,.
Case 1. uy € Ny/(ugy1). By Claim 5.11, all edges containing u,; must either be
contained in S U {u¢41} or be non-fitting edges. Since §(H) > 1+ (1;:}), this implies
R’ # (. Moreover, if there is a non-fitting edge f,,, & {fi, f¢}, then by Claim 5.2
and (20),

k—3
the ( 3)r-tuples in the set Np/[ug41] containing {u,,,, Up,+1, Ue+1}

are not edges of H'. (21)

The existence of such non-fitting fy,, ¢ {fi, fe} is not possible if r = 3 because in
this case fi, = {te+1, Wmys Um+1} S Npgr[ugs1]. So we may suppose r > 4. By (21)
we have

dwe) < ()Y (T s m < (N - (F ) 1iry
= r—1 r—3 “\r—1 r—3 ’
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k—1
r—1

Thus to have d(ug+1) = 1+ (
edges f,, form € I.

Since by the case, (20) and Claim 5.9, f; has no vertex outside of Ny[u¢+1] and
hence is fitting, for each of the k —2 > r — 1 > 3 values of m € I, — {¢}, f;,;, must be
non-fitting. But then at least 1 + (]::2) > k — 2 of the r-tuples contained in Ng'[ugy1]
and containing u | are notedges of H.Sod (up41) < (f:}) —(k=2)+(k=2) < §(H).

Hence in order to have d (ugy1) > (’;: i) + 1 we may assume that the only non-fitting
edge is fir and moreover every r-subset of Ny/[ue11] containing ug41 is an edge of
H'. In particular, there is an edge g € E(H’) containing w41, u; and u;41. Then

), we need at least 1 + (lr{j) > k — 2 non-fitting

C4— = vC’eL‘7]5 "'7vkaek7]5ui7 ﬁ*lv"'5ul’/+l7 ‘fi/’u€+la
fl7-~-sui+lagvui’s f‘i’*lv'~-7fl’vc

is longer than C.

Case 2. uy ¢ Ny (ue41). Then [Ny (ue+1)| < k — 2, and by Claim 5.11,

IRl + |R'| = dp(ues1) = dp(uesr) — dpr(ues1)
-1 k—1 k—2 R
=1+ (1) = [(0) - e

k—2
:1+< )+|R|. (22)
r—2

So,ifr > 4,thenk > r+2 > 6,and |R'| > 1+ (;?) = 1 &2 > 4 3ED,
But (19) yields dp(u¢+1) < |I2| = k — 1, a contradiction. On the other hand, if r = 3,
then similarly to Case 1, R" C {fy, fi}, and hence (22) yields

k—2
22|R/|Zl+< 2>:k—12r+1:4,
,_

a contradiction. O

We now complete the proof of (B). As in the proof of (A), we apply Lemma 5.7 to
the same path

/
P =wvi,e1,v2, ..., 00, f1, ..., fo, test

in Iy with z = u ;. We obtain paths P and P, and modify them to P| and P, with
the same rules as in (A) but with Z" = {u,, fj,, uj,+1, ..., ugs1} in place of Y’
We again get that P| and P; are vertex-disjoint and edge-disjoint and (17) holds.
Let Q be a long segment of C connecting P{ and P, with at least ¢ — (k — 1) vertices.
Suppose the endpoints of Q are the vertices a; and b;.
Let u; be the last vertex of PZ/, and let i’ be the smallest index less than i such that
u; € S1. Consider the cycle

C'=ai, Q,b1, Py, uj, Pluj, ugsr], wepr, B (uogr, wir), wr Plur, uj), ujy, Pl a
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which contains all £ vertices in S1 U {u¢+1}. If none of these vertices is in C, then
IC'| > ¢ — (k— 1)+ k > c, a contradiction. If there is such a vertex, it could be
only up, in which case (C, P) is an o-lollipop and j; = 1. Then by Corollary 5.6
and Claim 5.12, PZ/ contains at least one vertex outside of V(C U P). It follows that
|IC'l>c—(k—1)+k—1+1 > ¢, acontradiction again. m|

6 Partial Berge Paths in Best p-Lollipops are Long

In this section we concentrate on p-lollipops and show that the partial path P in them
must be long (namely, £ > k). We do this by showing that u¢ has no H’-neighbors
inside of C, and hence P must be sufficiently long to contain all H'-neighbors of u¢ .
The main lemma of this section is the following.

Lemma 6.1 If (C, P) is a p-lollipop then |V (P)| = £ > k.

Proof In Section 4 we showed that £ > 2. Suppose towards contradiction that 2 <
¢ <k — 1. We will first show that

all H'-neighbors of 1y | are contained in V (P). (23)

By Claim 3.3, all H'-neighbors of ug41 arein V(C)UV(P). Ifuyy; € e € E(H')
and v; € e for some v; € V(C), we let P/ = v;, e, ugy, Plugyy, uz], up. Observe
that V(P') — V(C) = V(P) — V(C), and (C, P’) is better than (C, P) by Rule (d).
This proves (23).

Next we show that

ug+1 is contained in at least k edges in E(C) U E(P). 24)

By (23), INg(u¢+1)| < |V(P) — {ug+1}] < k — 2. Then the number of edges in
E(C) U E(P) containing uy41 must be at least

- <|Nh:(_uz1+1)|) N (k: D e (k:?) S

with equality only if r = 3, [Ny (u¢y1)| =k — 2 (and so V(P) = Ny/[ues1]), we+1
is contained in all (lr‘:%) possible H’-edges, and no edge of E(C) U E(P) containing
ug+ is a subset of Ny/[ugy1]. If this is the case, then e = {up, u3, us+1} € E(H'),
and we swap f> with e to get a partial path that is better than P by Rule (e). This
proves (24).

Say |V(P)| =€ =k —awhere2 <k —a < k—1.Since |[E(P)| =k —a,
by (24), u¢41 is contained in at least a edges in E(C) — e.. By Claim 3.3(2), none of
these edgesisinthe set{ej, ..., eq—1}U{ec—1, ..., ec—w—1)}. Thus, g1 is contained
in at least a edges in {ex—q, €k—a+1, - - -, €c—(k—a)}. Moreover, uyy; is contained in
exactly a such edges if and only if it is contained in all k — a edges of P (in particular,

Ugt1 € ec).
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Let ¢; contain ugi; for some i # c¢. Consider the partial path P/ =
ei, gy, fe,...,up. Then V(P') = V(P) and E(P') — E(C) = E(P) — E(C).
Thus (C, P’) also is a best lollipop. So, as above we get that all H'-neighbors of u;
are in V (P), uy is contained in at least k edges of E(P")UE(C) = E(P)UE(C), and
at least a edges of E(C) — {e;} with equality only if u2 € ¢; by Claim 3.3. Moreover,
each of these edges is of distance at least k — a from e;.

Let B; be the set of edges of E(C) containing u; for i € {2,¢ + 1}. Observe
that |B;| > a + 1. Lett = |By N Bey1|. If t = 0, let ey, eg, e, be edges such that
a < B < y (modulo ¢), ey, e, € Byy1, and eg € By. Then the segment from ¢, to
e, in C contains at least 2(k — a — 1) edges not in By U By by Claim 3.5. We get

2k =1 =[EO)] = [B2| + [Beg1| + 2tk —a—1) = 2(a + 1) + 2(k —a — 1) = 2k,

a contradiction.

Now suppose 1 <t < |B|. Then surrounding each edge in By N By4 there are
two intervals of 2(k — a — 1) edges that are disjoint from By U By1. Moreover if
there exists e, € By — Byy1 and eg € Byy1 — B, then each pair of vertices in
(B2 N Byy1) U {eq, eg} has distance at least k — a. In this case, there are at least ¢ + 2
intervals of (k —a — 1) edges not in By U By 1. Therefore

2k—=1>|EO)| =2 |B2UBgp1|l + @t +2)k—a—-1)>2(a+1) -1t
+(t+2)k—a—1) =tk —a —2) + 2k > 2k,

acontradiction. If By C By or vice versa, then we have t > |B,| > a+ 1. As before,
for any eg € Byy1 — Bz, each pair of edges in (B> N By41) U {eg} has distance at least
k — a. So instead we get

2% —1>|Biy1 —Bal+t+G+Dk—a—1)>1+1¢
+t+Dk—a—1) =+ Dk —a)> (@+2)k—a).

But this does not hold whena > 1,k > 3,and k — a > 2.

The last case is By = By+1. If t > a+2,then2k — 1 >tk —a—1)+1t >
(a 4+ 2)(k — a), a contradiction again. So we consider the case where t = |B;| =
|Be+1] = a + 1. Because By41 must contain a edges within the at most 2a edges of
{ex—a, ..., ec—(k—a)} we must have £ = k — a = 2 by Claim 3.5. Without loss of
generality, we may assume that By = By11 = {ec, €2, ea, ..., e2x—4}. We also have
r=lec| = [{ve, v1, uz, ug1}| = 4.

Suppose the edge f> € E(P) contains a vertex v; € V(C). By Claim 3.2, ¢;_1, ¢;
cannot contain ug41. So we must have that c = 2k — 1 and i = 2k — 2. Therefore f>
contains at least r — 1 vertices outside of V(C). As £ =2, [(/2NV(P))—V(C)| <2.
So, since r = |e.| > 4, there exists u € f, withu ¢ V(C)U V(P).

By Claim 3.5, u cannot belong to e; ife;_; € By ore; 4| € B>. Hence {¢; € E(C) :
u € ej} € B.If an edge ¢; € B; contains all vertices in f, — V(C), then |e;| >
24 |fal — 1 =r + 1, a contradiction. Therefore some u € f5 is contained in at most
(|B2|—1)4+1 =k—1edgesof E(C)UE(P),andhencedy (u) > §(H)—(k—1) > 1.
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Sayu € e € E(H’). If there exists w ¢ V(C) in e, then either (C, e, uz, f2,u, e, w)
or (C,ec,us, fr,u,e, w) is a better lollipop. than (C, P). So e must contain » — 1
vertices in V (C). Without loss of generality, v; € e and e¢; € B;. Then replacing the
segment v;, ¢;, vi+1 in C with v, e, u, f2, uz, e;, vi4+1 yields a cycle longer than C. O

By applying Claim 3.3 and using that £ > k, ¢ < 2k, we obtain the following
corollary.

Corollary 6.2 If (C, P) is a p-lollipop, then the only edge of C that may contain ug4
is ec.

7 The Paths in Lollipops are Short

In this section we show that P cannot be too long (namely, £ < k — 2). Our first
step will be to show that if uyy; has H'-neighbors in C and P is long, then we can
find a better cycle than C. Then we apply Lemma 5.8 to analyze the case where all
H'-neighbors of ugy) are in P. As a result of Lemma 6.1 and the lemma below, we
obtain that (C, P) is an o-lollipop.

Lemma7.1 Ifk>r+2>5,thent <k —2.

Proof Suppose ¢ > k — 1 and recall that by Lemma 6.1 we have equality only if
(C, P) is an o-lollipop.

Case 1. Some 1 € E(H') contains uy,| and some v; € V(C) — v.. By symmetry we
may assume i < ¢/2 when (C, P) is an o-lollipop and i < (¢ + 1)/2 when (C, P) is
a p-lollipop. Consider the cycle

Cl =1, C[Uis Uc]v Ve, Ps ug+1, h, V;.

If (C, P) is an o-lollipop, then C; has at least (c — (¢ —2)/2) +k —1 = ¢ +
w > c vertices, a contradiction. If (C, P) is a p-lollipop, then C; has at least
c=(—-1D/2)+k=c+ %_TCH > ¢ vertices, a contradiction again. This finishes
Case 1.
For2 <m < {+1,let By, ={ej € E(C) : up € ej}and by, = |By,|. By Claim 3.3

and Corollary 6.2,

if bey1 > 0, then eitherl =k — 1, (C, P)is an o — lollipop and

Bo+1 = {ex—1}, or(C, P)is a p — lollipop and By+1 = {e.}. (25)

Let F = {f, € E(P) — {ec} : tg41 € fn}. By Lemma 5.8(A), |[F| < k — 1.

Case 2. Ny (ug+1) C V(P).
By (25), Lemma 5.8(B) and the fact that |F| < k — 1,

k—1 Ny k—2
1+( )sd(ums (' H(W+1)|>+|F|+be+1 s( >+(k—1)+1.

r—1 r—1 r—1
26)
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For r > 4, regrouping, we get

k_1>(k_2)>(k_2)zw,
=\r-2/=\ 2 2

yielding k> — 7k 4+ 8 < 0, which is not true for k > 6.

This settles the case r > 4.

So suppose r = 3. In particular, if (C, P) is a p-lollipop, then uy;41 ¢ e, =
{ve, v1, uz}. Thus bgy 1 > 0 only if (C, P) is an o-lollipop. If |[Ngy/ (uey1)| < k — 3,

then
& ) < k—3 k= k—3 n k—3 13— k—2
=\ A | A
43 < k—2 n k—2 B k—1
—\ 2 1) \ 2 )
a contradiction.

Hence by Lemma 5.8(B), |Ny/ (u¢+1)| =k —2,up € Ny (ug+1), and |S1 U Sp| <
k— 1. If |[F| 4+ bgy1 < k — 2, then the RHS of (26) is at most (lr‘j), SO suppose
[FI+bey1 = k— 1.

By Claim 3.4(A), for every f,, € F \ {f¢} the lollipop (C, P,) where P, is
obtained from P by replacing the subpath u,, fu, Um+1, - - ., ue+1 With the subpath
Ums fm,Uot1, fo, Ue, ..., Un+1 also is a best lollipop. Since |F| > k — 1 — bpy1 >
(r +2) — 1 — 1 = 3 and ¢;_| may contain only one vertex of P, for some f,, € F,
Um+1 ¢ ex—1 and hence by (25) u,,11 does not belong to any edge of C. So we may
assume that by = 0. Then in view of (26), if d(ue41) > 1+ (kgl), then

|F| =k —1, each f;, € F is not contained in Ny/[uey1], and any two
vertices in Ny (ugs1) form an edge of H' together with ugy;. 27

So, since uy € Ny{ugs1l, fv € Nplugsi], but there is g € E(H’) such that
{ug, u¢+1} C g. Moreover, since [Ny (u¢+1)] = k —2 > r = 3, we can choose
g € Np/(ugy1) — {ur} and

each vertex in Ny'(ugy1) belongs to at least two edges of H'. (28)

Then for P’ obtained from P by replacing f, with g, the pair (C, P’) also is a best
lollipop.

Suppose fo = {ug, ugy1,u}. By 27), u ¢ Ng/[ues+1]. Ifu € V(C) — V(P), then
we have Case 1 for (C, P’), a contradiction. If u ¢ V(C)U V (P), then we can extend
P’ by adding edge f¢ and vertex u. So, u € V(P) — Ng[ug+1]. But then in view
of (28), the size of Ny (ug1) corresponding to (C, P’) will be k — 1 because of the
new vertex u, a contradiction. O

Lemma 7.1 together with Lemma 6.1 yield
Corollary 7.2 (C, P) is an o-lollipop.
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8 Finishing Proof of Theorem 7

In this section we complete the proof of Theorem 7. One notable part of this section
is that we construct another optimal lollipop in which the vertex u; plays the role of
u¢+1. We consider the H’-neighborhoods of both 1, and u, 1 as well as the edges in
C containing these vertices, and we analyze how these sets can interact. We conclude
that u, and uy11 cannot both have degree more than (lr‘j) without creating a cycle
longer than C.

By Lemmas 4.1 and 7.1, 2 < £ < k — 2. Corollary 7.2 gives that (C, P) is an

o-lollipop. The following lemma will be useful for bounding the size of Ny (ugy1).

Lemma8.1 Lets+1>b > 0. Let Q = vp, v1, ..., Vs+1 be a graph path, and I be a
non-empty independent subset of {vy, ..., vs}. If B is a set of b edges of Q such that
no edge in B contains any vertex in I, then |I| < {%].

Moreover if s — b is odd and |I| = #, then for every 1 <i < s, v; € I, or
ei € B,orej_1 € B, or {vi_1,vi+1} C I.

Proof The claim is trivial if » = 0 so assume b > 0. Iteratively contract all b edges

of B,say Q' = v6, v/l, R v;+1—b is the new path obtained. Observe that since I was
disjoint from the edges in B, after contraction I is still an independent set in Q’ such
that I € {v|, ..., v,_,}. Therefore |I| < f%].

Now suppose s — b is odd, |I| = (%], and for some i, ¢;, ¢;—1 ¢ B. If without
loss of generality v;1+ ¢ I, then we contract the edge v;v;+; and apply the result to
the new path, 7, and B to obtain / < (#1 < (%1. O

Fori € {2, €+ 1},let A; = Ng»(u;) N V(C) and B; be the set of edges in E(C)
containing u;. Also, leta; = |A;| and b; = |B;|. Let F = {f;; : u¢e1 € fm}. We will
heavily use the fact that

k—1
1+ (r B 1) <dy(uey1) = bog1 + |Fl +dp(uesr). (29)

Claim 8.2 If ¢ > 2, then some edge e € E(H") containing uy | intersects C.

Proof 1If the claim fails, then |Ng»(ugy1)] < |[V(P) — V(C)|=4£€—1and f] ¢ F.
Hence using Claim 3.3,

k—1 Np -1
1+< 1) < dy(ugsr) < <| " (””1)')+(c—25)+£—1 < < 1>+c—e—1.
r— r—

r—1
(30)
Since £ < k — 2 and the function A (£) := (f:i) + ¢ — £ — 1 does not decrease for
integers £ > r — 1, intheranger — 1 < £ < k — 2, (30) gives

1+(k_1>5<(k_2)_1>+(2k—1)—(k—2)—1=(k_3>+k,
r—1 r—1 r—1

which is not true fork > r +2 > 5.

@ Springer



876 Combinatorica (2024) 44:849-880

Fig.2 An o-lollipop (C, P)
with edge f( containing uy |

Jii v Jo

® °
U9 Up4-1

Otherwise (*~}) = 0, so (30) yields 1 + (*') < (2k — 1) — 2 — 1, which is not
true for k > 5. |

Fix an edge fy € E(H") containing ugy; and some v; € V(C) pro-
vided by Claim 8.2 (see Fig. 2). Possibly, fo = fi. Consider path P’ =
vj, fo, uest, fo, ..., f2,u2. Since V(P) — V(C) V(P') — V(C) and fi gz
V(P) — V(C), (C, P’) is also a best lollipop. Thus many arguments we apply to
ug¢+1 will also apply symmetrically to u5.

Let F/ = {f, :m €{0,2,3,...,L}anduy € fn,}. If r = 3, then for £ > 3, not all
of f1, f> and f3 contain {u3, u¢41}. So, we may assume

ifr =3,then|F| < max{2, ¢ — 1}. (31

Claim 8.3 A,y = A».

Proof Suppose Ag+1 # As. By symmetry, we may assume Az — Ag4+1 # ¢. We may
rename the vertices in C and edges in H” so that v, € A, — Agy; and f] contains
v and uy. This new lollipop (we still call it (C, P)) remains a best lollipop. So by
Claim 3.3, Ng/(ue+1) € {ves1, Vo2, ooy Ve—p—1} U {ve}. By Claim 3.3, By C
{ee, €41, ..., €c—e—1}. By Claim 3.2, if ¢; € Byy1, then v;, vit+1 ¢ Ny (ue4+1), and
Ny (ue+1) N V(C) does not contain two consecutive vertices of C. Hence, remem-
bering that v, ¢ A+, we apply Lemma 8.1 to the (graph) path Q' = vy, ..., ve—g¢,
I = Ay and B’ = By, and get

(32)

Since ugr1 ¢ f1, [F| < € — 1. Since Npr(ugy1) S A1 U V(P) — {uey1} and
[V(P) = V(C) —ugy1|l = £ — 1, |Ngr(ug1)| < agy1 + £ — 1. Combining this
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with (32) and (29), we get
1+<k_1>Sbe+1+(5—1)+<k_2_LbH]/ZJ). (33)
r—1 r—1

For fixed k, r, £ satisfying the theorem, the maximum of the sum b, 1 + (k_z_rLfel“ 2] )
over nonnegative b4 such that k —2 — |by41/2] > r — 1 is achieved at by = 1.
Hence (33) yields 1 + (“_1) < 1 4 (¢ = 1) + (*23), which in turn gives (*~2) <
¢ —1 <k — 3, acontradiction. O

In view of this claim, let A = Ayy1 = A and a = |A|. Since v, € A, instead
of (32) we have

a< 1+{(C_2€ _21) _b“ﬂ - 1+(—C_12_b“ﬂ—z < k-e-[l%J. (34)

Claim8.4 |Ny/(ug+1)|=a+4€—1,i.e, Ngluegr1] = Aes1 U V(P).

Proof If |[Ny:(u¢+1)| < a + € — 2, then by (29) and (34),

k—1 N (u E—2 b 5
1+(r_1>§bz+1+|F|+<| Hr(_£1+1)|)§b[+l+|F|+< r—Lf+l/ J).

(35)

For fixed k, r, €, | F| satisfying the theorem, the maximum of the RHS of (35) over
suitable by is achieved at by = 1. Hence (35) yields 1+ (“=1) < 14 |F|+ (*73),
ie. (*73) < |F|.Since ¢ < k—2,forr = 3by (31), this gives (*]?) < max(2, £—1} <

k — 3, an impossibility, and for r > 4 this yields (*;?) < £ < k — 2, which is not true
fork >r+2>6. O

Claim8.5 Forallvj,vj € A, either j' = jor|j — j| > £ (modulo c).

Proof Suppose the claim fails. By symmetry, we may assume v¢, v; € Aand 1 < j <
L.

By Claim 3.5(3), if there exists e, f € E(H") such that {v.,u;} C e and
{vj,ue+1} C f, then f = e. Thus the only edge of H” containing v, or v; and

wer is f1. Hence dpy(ugs1) < 14 (Vi “ct0172) Therefore, by (34) instead of (33)
we get
k—1 k—3— by1/2
1+<r_1>§bz+1+€+1+( r_Lf“/ J). (36)

For fixed k, r, € satisfying the theorem, the maximum of the sum (k_3_rLf‘1+' /2] ) +bei
over suitable by is achieved at by 1 = 1. Hence (36) together with £ < k — 2 yields
1+ (kil) <14+¢+1+ (lr‘j) <k+ (lr‘j), which is not true when k > r +2 > 5.

r—1
O

Claim 8.6 Each f; € F is contained in Ny/[ug41].
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Proof Assume there exists f; not contained in Ny/[ugy(]. Since A, 2 f1 NV (C),
Ay # (. So, by Claims 8.3 and 8.4, dy/(u¢+1) > 0. Let w € fi — Ngr[ues1]-
Also by Claim 8.4, u; € Np/(ugq1). Suppose first i = 1. Let v; € Agyq. By
Claim 8.4, there is an edge 7 € E(H') containing {u¢41, vj}. Then path Py =
vj, h,ugyr, fe,ue, ..., uz, f1, w is longer than P, a contradiction.

Suppose now i > 2. Let g € E(H’) contain {u¢41, u;}. Let Py = uy, f1,...,u;,
g upst, fesug, ..., ujgr1.Since V(P)) —V(C) = V(P)—V(C)and f; ¢ V(P), the
lollipop (C, Py) is a best lollipop. If w ¢ V(C), then by appending to P; edge f; and
vertex w we get a better lollipop, a contradiction. So, w € V(C) — A, say w = v;.
Let P, = vj, fi,uiv1, fit1, -5 Ues1, & Uiy fim1, ..., u2. Again, (C, P) is a best
lollipop. Define Hj to be the hypergraph with E(H)) = E(H) — E(C) — E(P2),
and Hy = Hj + f;. Note that H} and H, play the role of H" and H" respectively
for the best lollipop (C, P»). Moreover, define A, = NHz” (u2) NV(C) (A plays the
role of A¢4+1). Then many of the claims we proved for (C, P) also apply to (C, P>).
Namely, NHz/[uz] = A,UV(Py) = A, UV (P) by Claim 8.4. Since v; € fj, we have
v; € A}, s0v; € NHzr(uz) and there exists some edge in E(H) — E(C) — E(P>)
containing both 3 and v;. Since E(H) — E(C) — E(P2) C E(H"), This implies that
v; € Ay = A, a contradiction. O

By Claim 8.6, instead of (29) we have

Ny (u a+4{—1
d(ue+1)§<| h;(_?])')-l—bwrlf( .1 )+bz+1

—1- 2
< (k r_“’f*‘/ J) +by. (37)

Claim 8.7 by = land [Ny (ue41)| =k — 1.

Proof If byy1 = 0, then by (37), d(ue+1) < (*7]) < 8(H). On the other hand, if
b¢4+1 > 2 then the maximum of the RHS of (37) is achieved at by = 3, and so is at
most (k_l_l) +3< (k—z) +k —2 < 5(H). This proves byt = 1. In view of this, if

r—1 r—1

INgr(ues)] < k — 2, then d(uerr) < (C23) +1 < 8(H). O

By Claims 8.4 and 8.7, we must have

a—1=|A—V(P)|=k—1—E=’7 5

=’7M—‘_g.
2

(2k—1)—1—bz+1-‘ ¢

We apply Lemma 8.1 to the (graph) path vy, va, ..., ve—1, With I = A — V(P),
B = By+1,and ¢ — 1 = 2k — 2. In particular since the numerator 2k — 3 is odd, the
“equality" part of Lemma 8.1 holds. That is,
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foreveryl <i <c—1,v; € A—V(P), ore; € By4+1, Orej_|
€ Beyr or {vi—1,vit1} € A= V(P). (38)

We now complete the proof of Theorem 7 by showing that for some i, (38) does not
hold.

Since |V(P) — {u¢+1}l =€ <k —2 and [Ny (u¢y+1)| = k — 1, A contains some
vj € V(C) —{v}. ByClaim 3.3, j e {{ + 1, ..., c — £ — 1}. By symmetry, we may
assume j <c—¥€ — 1.

We now show that (38) does not hold fori = j + 1. By Claim 8.5, v;41 and v; 42
are notin A — V(P). By Claim 3.2(a), ¢j, ¢j+1 ¢ By+1. Thus (38) fails, completing
the proof of Theorem 7.
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