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Abstract
Dirac proved that each n-vertex 2-connected graph with minimum degree at least k
contains a cycle of length at least min{2k, n}. We consider a hypergraph version of
this result. A Berge cycle in a hypergraph is an alternating sequence of distinct vertices
and edges v1, e2, v2, . . . , ec, v1 such that {vi , vi+1} ⊆ ei for all i (with indices taken
modulo c). We prove that for n ≥ k ≥ r + 2 ≥ 5, every 2-connected r -uniform
n-vertex hypergraph with minimum degree at least

(k−1
r−1

) + 1 has a Berge cycle of
length at least min{2k, n}. The bound is exact for all k ≥ r + 2 ≥ 5.
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1 Introduction and Results

1.1 Terminology and Known Results for Graphs

A hypergraph H is a family of subsets of a ground set. We refer to these subsets as
the edges of H and the elements of the ground set as the vertices of H . We use E(H)

and V (H) to denote the set of edges and the set of vertices of H respectively. We
say H is r -uniform (r -graph, for short) if every edge of H contains exactly r vertices.
A graph is a 2-graph. For a hypergraph H and A ⊆ V (H), by H [A] we denote the
subhypergraph of H induced by A.

The degree dH (v) of a vertex v in a hypergraph H is the number of edges containing
v. When there is no ambiguity, we may drop the subscript H and simply use d(v).
The minimum degree, δ(H), is the minimum over degrees of all vertices of H .

A hamiltonian cycle in a graph is a cycle which visits every vertex. Sufficient
conditions for existence of hamiltonian cycles in graphs have been well-studied. In
particular, a famous result of Dirac from 1952 is:

Theorem 1 (Dirac [4]). Let n ≥ 3. If G is an n-vertex graph with minimum degree
δ(G) ≥ n/2, then G has a hamiltonian cycle.

Dirac also proved that every graph G with minimum degree k ≥ 2 contains a cycle
of length at least k + 1, and that this bound can be significantly strengthened when G
is 2-connected.

Theorem 2 (Dirac [4]). Let n ≥ k ≥ 2. If G is an n-vertex, 2-connected graph with
minimum degree δ(G) ≥ k, then G has a cycle of length at least min{2k, n}.

This theorem is sharp by the following examples. First, for k ≥ 3, let V (G1) =
X1 ∪ X2 ∪ . . . ∪ Xt where |Xi | = k and G1[Xi ] = Kk for all 1 ≤ i ≤ t , and there are
vertices u, v such that Xi ∩ X j = {u,v} for all i �= j . Since k ≥ 3, δ(G1) = k − 1,
and each cycle in G1 intersects at most 2 sets Xi \ {u, v}, thus having length at most
k+k−2 = 2k−2. Another example is the graph G2 obtained by joining every vertex
of the clique Kk−1 to every vertex of an independent set with n − (k − 1) vertices.
Again, δ(G2) = k − 1, and each cycle in G2 has length at most 2(k − 1) = 2k − 2.
Moreover, G2 is (k − 1)-connected. So for k large, one cannot improve the bound in
Theorem 2 by requiring higher connectivity.

A refinement of Theorem 2 for bipartite graphs was obtained by Voss and Zulu-
aga [20], which was further refined by Jackson [14] as follows.

Theorem 3 (Jackson [14]). Let G be a 2-connected bipartite graph with bipartition
(A, B), where |A| ≥ |B|. If each vertex of A has degree at least a and each vertex
of B has degree at least b, then G has a cycle of length at least 2min{|B|, a + b −
1, 2a − 2}. Moreover, if a = b and |A| = |B|, then G has a cycle of length at least
2min{|B|, 2a − 1}.

A sharpness example for Theorem 3 is a graph G3 = G3(a, b, a′, b′) for a′ ≥ b′ ≥
a + b − 1 obtained from disjoint complete bipartite graphs Ka′−b,a and Kb,b′−a by
joining each vertex in the a part of Ka′−b,a to each vertex in the b part of Kb,b′−a .
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1.2 Terminology and Known Results for Uniform Hypergraphs

We consider the notion of Berge cycles.

Definition 1.1 A Berge cycle of length c in a hypergraph is an alternating list of c
distinct vertices and c distinct edges C = v1, e1, v2, . . . , ec−1, vc, ec, v1 such that
{vi , vi+1} ⊆ ei for all 1 ≤ i ≤ c (we always take indices of cycles of length c
modulo c). We call vertices v1, . . . , vc the defining vertices of C and write V (C) =
{v1, . . . , vc}, E(C) = {e1, . . . , ec}.

Notation for Berge paths is similar. In addition, a partial Berge path is an alter-
nating sequence of distinct edges and vertices beginning with an edge and ending
with a vertex e0, v1, e1, v2, . . . , ek, vk+1 such that v1 ∈ e0 and for all 1 ≤ i ≤ k,
{vi , vi+1} ⊆ ei .

A series of approximations and analogs of Theorem 1 for Berge cycles in a number
of classes of r -uniform hypergraphs (r -graphs, for short) were obtained by Bermond,
Germa, Heydemann and Sotteau [1], Clemens, Ehrenmüller and Person [2], Coulson
and Perarnau [3] and Ma, Hou, and Gao [18].

Exact bounds for all values of 3 ≤ r < n were obtained in [15].

Theorem 4 (Theorem 1.7 in [15]). Let t = t(n) = 
 n−1
2 �, and suppose 3 ≤ r < n.

Let H be an r-graph. If (a) r ≤ t and δ(H) ≥ ( t
r−1

)+1 or (b) r ≥ n/2 and δ(H) ≥ r ,
then H contains a hamiltonian Berge cycle.

Salia [19] proved an exact result of Pósa type extending Theorem 4 for n > 2r
to hypergraphs with “few” vertices of small degree. In [15], some bounds on the
circumference of r -graphs with given minimum degree were obtained:

Theorem 5 ([15]). Let n, k, and r be positive integers such that n ≥ k and 
(n −
1)/2� ≥ r ≥ 3. Let H be an n-vertex, r-uniform hypergraph. If

(a) k ≤ r + 1 and δ(H) ≥ k − 1, or
(b) r + 2 ≤ k < 
(n − 1)/2� + 2 and δ(H) ≥ (k−2

r−1

) + 1, or

(c) k ≥ 
(n − 1)/2� + 2 and δ(H) ≥ (
(n−1)/2�
r−1

) + 1,

then H contains a Berge cycle of length k or longer.

For an analog of Theorem 2, we define connectivity of a hypergraph with the help
of its incidence bipartite graph:

Definition 1.2 Let H be a hypergraph. The incidence graph IH of H is the bipartite
graph with V (IH ) = X ∪ Y such that X = V (H),Y = E(H) and for x ∈ X , y ∈ Y ,
xy ∈ E(IH ) if and only if the vertex x belongs to the edge y in H .

It is easy to see that if H is an r -graph with minimum degree δ(H), then each x ∈ X
and each y ∈ Y satisfy dIH (x) ≥ δ(H), dIH (y) = r . Moreover, there is a bijection
between the set of Berge cycles of length c in H and the set of cycles of length 2c in
IH : a Berge cycle v1, e1, . . . , vc, ec, v1 can also be viewed as a cycle in IH with the
same sequence of vertices.

Using the notion of the incidence graph, we also define connectivity in hypergraphs.
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Definition 1.3 A hypergraph H is k-connected if its incidence graph IH is a k-
connected graph.

Theorem3of Jackson applied to IH of a 2-connected r -graph H yields the following
approximation of an analog of Theorem 2 for k ≤ r − 1:

Corollary 6 Let n, k, r be positive integers with 2 ≤ k ≤ r − 1. If H is an n-vertex
2-connected r-graph H with δ(H) ≥ k + 1, then H contains a Berge cycle of length
at least min{2k, n, |E(H)|}.

On the other hand, for all 3 ≤ k ≤ r , there are 2-connected r -graphs
Hk with δ(Hk) ≥ k − 2 that do not have Berge cycle of length at least
min{2k, |V (Hk)|, |E(Hk)|}. A series of such examples is as follows. For m ≥ 2,
let V (Hk) = A1 ∪ . . . ∪ Am ∪ {x, y} where Ai = {ai,1, . . . , ai,r−1} for 1 ≤ i ≤ m,
and let E(Hk) = E1 ∪ . . . ∪ Em where for each 1 ≤ i ≤ m and 1 ≤ j ≤ k − 1,
Ei = {ei,1, . . . , ei,k−1} and ei, j = (Ai − ai, j ) ∪ {x, y}. Each Berge cycle in Hk can
contain edges from at most two Ei s, and |Ei | = k − 1 for all 1 ≤ i ≤ m.

1.3 Our Results and Structure of the Paper

Our main result is the following.

Theorem 7 Let n, k, r be positive integers with 3 ≤ r ≤ k − 2 ≤ n − 2. If H is an
n-vertex 2-connected r-graph with

δ(H) ≥
(
k − 1

r − 1

)
+ 1, (1)

then H contains a Berge cycle of length at least min{2k, n}.
We point out that for 2-connected hypergraphs, the minimum degree required to

guarantee a Berge cycle of length at least 2k is roughly of the order 2r−1 times smaller
than the sharp bound guaranteed in Theorem 5(b). Furthermore, the bound δ(H) =(k−1
r−1

) + 1 is best possible as demonstrated by the following constructions.

Construction 1.1 Let q ≥ 2 be an integer and 4 ≤ r + 1 ≤ k ≤ n/2. For n =
q(k−2)+2, let H1 = H1(k) be the r-graph with V (H1) = {x, y}∪V1∪V2∪ . . .∪Vq
where for all 1 ≤ i ≤ q, |Vi | = k − 2 and Vi ∪ {x, y} induces a clique. Any Berge
cycle in H1 has length at most 2(k − 2) + 2 = 2k − 2.

Construction 1.2 Let 4 ≤ r + 1 ≤ k ≤ n/2. Let H2 = H2(k) be the r-graph with
V (H2) = X ∪ Y where |X | = k − 1, |Y | = n − (k − 1), and E(H2) is the set of all
hyperedges containing at most one vertex in Y . NoBerge cycle can contain consecutive
vertices in Y , so any Berge cycle has length at most 2k − 2.

Observe that both H1 and H2 have minimum degree
(k−1
r−1

)
. Moreover, H2 is (k−1)-

connected and can be defined for all n ≥ k. Therefore, the bound in Theorem 7 cannot
be further decreased by requiring higher connectivity.
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Remark 1 Problems on conditions for the existence of long Berge paths and cycles
(in particular, Turán-type analogs of the Erdős-Gallai Theorem) attracted recently
considerable attention, see e.g., [6, 9–13] and references in them. These results yield
some Dirac-type bounds, but the implied bounds are significantly weaker than the
bound in Theorem 7.

Remark 2 The extremal hypergraph of the Turán-type problem in [10] (the maximum
number of edges among all r -uniform, 2-connected hypergraphs with no Berge cycle
of length at least min{2k, n}) contains H2 as a subhypergraph. But the extremal hyper-
graph H1 has fewer edges.

We also present a bound for k = 2 that is better than given by Corollary 6:

Proposition 8 Let 3 ≤ r < n be positive integers. Then every n-vertex 2-connected
r-graph H contains a Berge cycle of length at least min{4, |E(H)|}.

Asharpness example is an r -graph H3 = H3(r , s)with vertex set {v1, v2}∪⋃s
i=1Ui

where |Ui | = r−1 for 1 ≤ i ≤ s and edge set is
⋃s

i=1{ei,1, ei,2}where ei, j = Ui∪{v j }
for 1 ≤ i ≤ s and 1 ≤ j ≤ 2. This r -graph is 2-connected for s ≥ 2 and has no Berge
cycles of length more than 4.

A related notion is the codiameter of a hypergraph H which is themaximum integer
k such that for every two vertices u, v ∈ V (H), H contains a Berge u, v-path of length
at least k. (Recall that the length of a Berge path is the number of its edges.)

In graphs, having codiameter k is equivalent to the property that for any two vertices
x, y, graph G + xy has a cycle of length at least k + 1 passing through edge xy. This
property is well studied, see [5, 7, 8]. It was proved recently in [16] that the bound
δ(H) ≥ (
n/2�

r−1

) + 1 guarantees the largest possible codiameter, n − 1.
As an application of our main theorem, we prove the following Dirac-type bound.

Corollary 9 Let n, k, r be positive integers with n/2 ≥ k ≥ r + 2 and r ≥ 3. If H is
an r-uniform, n-vertex, 2-connected hypergraph with

δ(H) ≥
(
k − 1

r − 1

)
+ 1,

then the codiameter of H is at least k.

For n = q(k − 2) + 2, the construction H1(k) shows that Corollary 9 is sharp: the
longest Berge path from x to y contains k − 1 edges. We also note that 2-connectivity
is necessary: for large n divisible by r , we may take r copies of K (r)

n/r and a single edge

intersecting each clique in one vertex. This hypergraph has minimum degree
(n/r−1

r−1

)

(which does not depend on k) but there are pairs of vertices that are connected only
by a one-edge Berge path.

1.4 Outline of the Paper

The structure of the paper is as follows. In Sect. 2 we present a simple proof of
Proposition 8 and derive Corollary 9 from Theorem 7. In Sect. 3 we set up the proof
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of our main result, Theorem 7. We introduce notation and define so called lollipops.
Each lollipop is roughly speaking a pair of a Berge cycle C and a Berge path (or a
partial Berge path, defined in the next section) P such that P starts in C and extends
outward. In particular, we define criteria for which we will choose an optimal lollipop
(C, P).

In the subsequent five sections we consider all possible cases of best lollipops
(C, P) and find a contradiction in each of them. In particular, in Sect. 4, we show that
in an optimal lollipop, P has a positive length. In Sect. 5, inspired by Dirac’s proof
of Theorem 2, we show that the end vertex of the P cannot have too many neighbors
in P . One of the key ingredients of the proof is a modification of a Dirac’s lemma on
paths in 2-connected graphs (Lemma 5.7). In Sects. 6 and 7, we show that P must be
a Berge path and cannot be too long. Finally in Sect. 8, using the structure of (C, P)

established in previous sections, we analyze how the neighborhoods of two vertices
in P can interact and conclude that we must be able to construct a longer cycle than
C .

We note that if k ≥ n/2 then by Theorem 5, δ(H) ≥ (k−1
r−1

) + 1 ≥ (
(n−1)/2�
r−1

) + 1
implies that H contains a Berge cycle of length n. Thus when proving Theorem 7 we
will assume

k < n/2 and min{2k, n} = 2k. (2)

2 Short Proofs

In this section, we present a proof of Proposition 8 and show how to derive Corollary 9
from our main result.

2.1 Proof of Proposition 8

Proof Suppose H is a counter-example to the proposition, i.e. for some 3 ≤ r < n,
H is n-vertex 2-connected r -graph and each Berge cycle in H has length at most
min{3, |E(H)|−1}. Since H is 2-connected, by Corollary 6, δ(H) ≤ 2, so δ(H) = 2.

Assume first, a pair {u1, v1} of vertices in H is not in any edge. Since the
incidence graph IH of H is 2-connected, by Menger’s Theorem it has a cycle
C = u1, e1, u2, e2, . . . , us, es, v1, f1, v2, . . . , vt , ft , u1 containing u1 and v1. Since
no edge contains both u1 and v1, the four edges e1, es, f1, ft of H are distinct. Then
C corresponds to a cycle in H of length at least 4, a contradiction. Thus,

for each pair{u, v} ⊂ V (H) there is an edgeeuv containing u and v. (3)

Since δ(H) = 2, let u ∈ V (H) with dH (u) = 2 and e1, e2 be the edges containing
u. Let A0 = e1 ∩ e2, A1 = e2\e1 and A2 = e1\e2.

By (3), e1 ∪ e2 = V (H). We claim that

some edge e0 of H contains A1 ∪ A2. (4)
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Indeed, let x1 ∈ A2 and x2 ∈ A1. By (3), there is an edge e3 containing x1 and
x2. If e3 omits some y1 ∈ A2 and some y2 ∈ A1, then again by (3), there is an
edge e4 containing y1 and y2, and so H has 4-cycle x1, e1, y1, e4, y2, e2, x2, e3, x1,
a contradiction. Thus we may assume e3 ⊃ A1 and y1 ∈ A2\e3. Since |A2| = |A1|,
there is y2 ∈ A1 − x2. Again by (3), there is an edge e4 containing y1 and y2, and so
H has 4-cycle x1, e1, y1, e4, y2, e2, x2, e3, x1. This proves (4).

So, for 0 ≤ i ≤ 2, ei ⊇ V (H)\Ai . Since |E(H)| ≥ 4, there is an edge g /∈
{e0, e1, e2}. If some two vertices of g are in the same Ai , say u, v ∈ g ∩ A0, then
H has 4-cycle u, g, v, e1, x1, e0, x2, e2, u, where x1 ∈ A2 and x2 ∈ A1. Otherwise,
r = 3 and g has a vertex in each of A0, A1, A2. Since |V (H)| ≥ 4, some Ai has at
least two vertices, say |A1| ≥ 2. For 0 ≤ i ≤ 2, let ui ∈ g∩ Ai . Let v ∈ A1−u1. Then
H has 4-cycle u0, g, u1, e2, v, e0, u2, e1, u0. This contradiction finishes the proof. ��

2.2 Proof of Corollary 9 on Codiameters

Proof Suppose
n/2 ≥ k ≥ r + 2 ≥ 5, (5)

and H is an r -uniform, n-vertex, 2-connected hypergraph with δ(H) ≥ (k−1
r−1

) + 1.
Then by Theorem 7, H contains a cycle C = v1, e1, . . . , vc, ec, v1 with c ≥ 2k. Fix
u, v ∈ V (H). If u, v ∈ V (C) then there exists a segment in C from u to v with at
least �(c + 2)/2� ≥ k + 1 vertices. This is a path of length at least k.

Otherwise, consider the incidence graph IH which is 2-connected. There exist
shortest disjoint (graph) paths P1 and P2 in IH from V (C) ∪ E(C) to {u, v}, say
u ∈ P1, v ∈ P2. If u ∈ V (C), then we have P1 = u and similar for v. In H , P1
and P2 correspond to either Berge paths or partial Berge paths that end with u and v

respectively. Let a1, a2 be the first elements of P1 and P2 respectively, and let Q be
the longer of the two a1, a2-segments along C . If the two a1, a2-segments along C
have equal length, we choose one arbitrarily.

If without loss of generality, u ∈ V (C), then |V (Q)| ≥ �(c + 1)/2� ≥ k + 1.
Appending P2 to the end of Q gives a path of length at least k+1 from u to v. Finally,
if u, v /∈ V (C), then |V (Q)| ≥ �c/2� ≥ k, so P1 ∪ Q ∪ P2 is a u, v-path with at least
k + 2 vertices. ��

3 Setup and Simple Properties of Best Lollipops

In this section we present some hypergraph notation and define lollipops. We also
derive a series of useful properties of optimal lollipops.

3.1 Notation and Setup

For a hypergraph H , and a vertex v ∈ V (H),

NH (v) = {u ∈ V (H) : there exists e ∈ E(H) such that {u, v} ⊂ e}
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Fig. 1 An o-lollipop and a p-lollipop

is the H -neighborhood of v. The closed H -neighborhood of v is the set NH [v] =
NH (v) ∪ {v}.

When G is a subhypergraph of a hypergraph H and u, v ∈ V (H), we say that u
and v are G-neighbors if there exists an edge e ∈ E(G) containing both u and v.

When we speak of an x, y-(Berge) path P and a, b ∈ V (P), then P[a, b] denotes
the unique segment of P from a to b.

Let r ≥ 3. We consider a counter-example H . Taking into account (2), k < n/2
and H is a 2-connected n-vertex r -uniform hypergraph satisfying (1) such that

H does not contain a Berge cycle of length at least 2k. (6)

A lollipop (C, P) is a pair where C is a Berge cycle and P is a Berge path or a
partial Berge path that satisfies one of the following:

– P is a Berge path starting with a vertex in C , |V (C) ∩ V (P)| = 1, and |E(C) ∩
E(P)| = 0. We call such a pair (C, P) an ordinary lollipop (or o-lollipop for
short). See Fig. 1 (left).

– P is a partial Berge path starting with an edge in C , |V (C) ∩ V (P)| = 0, and
|E(C) ∩ E(P)| = 1. We call such a pair (C, P) a partial lollipop (or p-lollipop
for short). See Fig. 1 (right).

A lollipop (C, P) is better than a lollipop (C ′, P ′) if

(a) |V (C)| > |V (C ′)|, or
(b) Rule (a) does not distinguish (C, P) from (C ′, P ′), and |E(P)| > |E(P ′)|; or
(c) Rules (a) and (b) do not distinguish (C, P) from (C ′, P ′), and the total number of

vertices of V (P)− V (C) contained in the edges of C counted with multiplicities
is larger than the total number of vertices of V (P ′) − V (C ′) contained in the
edges of C ′; or

(d) Rules (a)–(c) do not distinguish (C, P) from (C ′, P ′), and (C, P) is an o-lollipop
while (C ′, P ′) is a p-lollipop; or

(e) Rules (a)–(d) do not distinguish (C, P) from (C ′, P ′), and the number of edges
in E(P) − E(C) fully contained in V (P) − V (C) is larger than the number of
edges in E(P ′) − E(C ′) fully contained in V (P ′) − V (C ′).

The criteria (a)–(e) define a partial ordering on the (finite) set of lollipops, and hence
we can choose a best lollipop (C, P). Say C = v1, e1, . . . , vc, ec, v1. If (C, P) is a
o-lollipop then let P = u1, f1, . . . , f�, u�+1, where u1 = vc. If (C, P) is a p-lollipop
then let P = f1, u2, f2, . . . , f�, u�+1 where f1 = ec. With this notation, we have
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|E(P)| = �, |V (P)| = � + 1 if P is a Berge path, and |V (P)| = � if P is a partial
Berge path. Assume c < 2k = min{2k, n}.

Denote by H ′ the subhypergraph of H with V (H ′) = V (H) and E(H ′) = E(H)−
E(C) − E(P). Define

H ′′ =
{
H ′ when (C, P) is a p-lollipop,
H ′ ∪ { f1} when (C, P) is a o-lollipop.

(7)

Since we consider mostly Berge paths and cycles, from now on we will refer to
them simply as paths and cycles. We will differentiate graph paths and cycles when
needed.

3.2 Simple Properties of Best Lollipops

In this subsection we consider best lollipops (C, P) and prove some basic claims to be
used throughout the rest of the paper. The following claim immediately follows from
the assumption (6) and c < 2k.

Claim 3.1 (a) If a1 = ei and b1 = e j for some i, j ∈ [c], then the longer of the two
subpaths of C connecting {vi , vi+1} with {v j , v j+1} and using neither of ei and e j
has at least �c/2� vertices. In particular, this path omits at most k − 1 vertices in
C.

(b) If a1 = ei and b1 = v j for some i, j ∈ [c], then the longer of the two subpaths of
C connecting {vi , vi+1} with v j and not using ei has at least �(c+ 1)/2� vertices.
In particular, this path omits at most k − 1 vertices in C.

(c) If a1 = vi and b1 = v j for some i, j ∈ [c], then the longer of the two subpaths of
C connecting vi with v j has at least �(c + 2)/2� vertices. In particular, this path
omits at most k − 2 vertices in C.

We call a path satisfying Claim 3.1 a long a1, b1-segment of C .

Claim 3.2 Let (C, P) be a best lollipop. For each 1 ≤ i ≤ c and 2 ≤ m ≤ � + 1, if
some edge g /∈ E(C) contains {um, vi }, then
(a) neither ei−1 nor ei intersect V (P) − u1, and
(b) no edge in H ′′ intersects both V (P)−u1 and {vi−1, vi+1} (indices count modulo

c).

In particular, the set NH ′′(V (P) − u1) ∩ V (C) does not contain two consecutive
vertices of C.

Proof Let g /∈ E(C) contain {um, vi } such that if g ∈ E(P), say g = fq , then
we may assume um = uq+1. Suppose ei−1 contains u j for some 2 ≤ j ≤ � + 1.
If either j ≥ m or g �= fm−1, then we may replace the segment vi−1, ei−1, vi in
C with vi−1, ei−1, u j , P[u j , um], um, g, vi . Otherwise we replace the segment with
vi−1, ei−1, u j , P[u j , um−1], um−1, g, vi . We obtain a longer cycle, contradicting the
choice of C . The case with u j ∈ ei is symmetric. This proves (a).
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Suppose now some e ∈ E(H ′′) contains {u j , vi−1} for some 2 ≤ j ≤ � + 1
(the case when e ⊃ {u j , vi+1} is symmetric). If e �= g, then similarly to before we
may replace the segment vi−1, ei−1, vi in C with vi−1, e, u j , P[u j , um], um, g, vi or
vi−1, e, u j , P[u j , um−1], um−1, g to get a longer cycle.

If e = g, then by (a), ei−1 ∩ (V (P) − u1) = ∅. Note that in this case g ∈ E(H ′′).
Let C ′ be obtained from C by replacing the edge ei−1 with g. If g �= f1, then we let
P ′ = P , otherwise, by the definition (7) of H ′′, P is a path, and we define partial
path P ′ = f1, u2, f2, . . . , u�+1. Then (C ′, P ′) is better than (C, P) by Rule (c) in the
definition of better lollipops. ��

Call a lollipop (C ′, P ′) good if |E(C ′)| = c and |E(P ′)| = �. In particular, each
best lollipop is a good lollipop.

Claim 3.3 Suppose (C, P) is a good lollipop. Let H̃ be the subhypergraph of H with
E(H̃) = E(H) − E(C) − E(P).

Then all H̃ -neighbors of u�+1 are in V (C) ∪ V (P), and moreover

(1) if (C, P) is an o-lollipop, then u�+1 has no H̃-neighbors in {v1, v2, . . . , v�} ∪
{vc−1, vc−2, . . . , vc−�}, and u�+1 is not in any edge in the set {e1, e2, . . . , e�−1}∪
{ec, ec−1, . . . , ec−�},

(2) if (C, P) is a p-lollipop, then u�+1 has no H̃-neighbors in {v1, v2, . . . , v�} ∪
{vc, vc−1, . . . , vc−�+1}, and u�+1 is not in any edge in the set {e1, . . . , e�−1} ∪
{ec−1, . . . , ec−(�−1)}.

Proof Let e ∈ E(H̃) contain u�+1. Suppose first there is a vertex y ∈ V (H)−(V (C)∪
V (P)) such that y ∈ e. Let P ′ be the path obtained from P by adding edge e and vertex
y to the end of P . Then (C, P ′) is a lollipop with |V (P ′)| > |V (P)|, a contradiction.

Nowsuppose e containsvi for some i ∈ {1, . . . , �}. Thenwecan replace the segment
vc, ec, v1, . . . , vi from vc to vi in C with the path vc, ec, P[ec, u�+1], u�+1, e, vi to
obtain a cycle of length at least c − (� − 1) + � > c, contradicting the choice of C .

The proof for i ∈ {c, . . . , c − �} or i ∈ {c, . . . , c − � + 1} is very similar, but
when (C, P) is a p-lollipop, we replace the segment v1, ec, vc, . . . , ei , vi instead with
v1, ec, P[ec, u�+1], u�+1, e, vi .

Finally suppose (C, P) is an o-lollipop and for some 1 ≤ i ≤ �, u�+1 ∈ ei−1
(modulo c). The cycle obtained by replacing the segment from vc to vi with the path
vc, P, u�+1, ei−1, vi has length at least c + 1, contradicting the choice of C . The
argument for ec−i and the argument in the case (C, P) is a p-lollipop and ei−1 �= ec
are similar. ��
Claim 3.4 Let (C, P) be a best lollipop.

(A) If u�+1 ∈ fm for some 1 ≤ m ≤ � − 1 and P ′ is obtained from P by replacing
the subpath um, fm, um+1, . . . , u�+1 with the subpath um, fm, u�+1, f�, u�, . . . ,

um+1, then (C, P ′) also is a best lollipop.
(B) If some edge g ∈ E(H ′) contains V (P)−V (C) or is contained in V (P)−V (C)

and contains {u�+1, um} for some 1 ≤ m ≤ � − 1, and if P ′ is obtained
from P by replacing the subpath um, fm, um+1, . . . , u�+1 with the subpath
um, g, u�+1, f�, u�, . . . , um+1, then (C, P ′) also is a best lollipop.
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Proof Let us check the definition of a best lollipop. Part (A) holds because the vertex
set and edge set of P ′ − V (C) are the same as those of P − V (C).

In Part (B), V (P ′) − V (C) = V (P) − V (C), and E(P ′) is obtained from E(P)

by deleting fm and adding g. But since g contains V (P) − V (C) or is contained in
V (P) − V (C), (C, P) cannot be better than (C, P ′). ��

Claim 3.5 For 2 ≤ q ≤ � and 1 ≤ i, j ≤ c, the following hold:

(1) If uq ∈ ei and u�+1 ∈ e j then j = i or | j − i | ≥ (� + 1) − q + 1.
(2) If there exists an edge e ∈ E(H ′′) such that {vi , uq} ⊂ e, and if u�+1 ∈ e j , then

either j > i and j − i ≥ (� + 1) − q + 1, or i > j and i − j ≥ (� + 1) − q + 2.
(3) If there exist distinct edges e, f ∈ E(H ′′) such that {vi , uq} ⊂ e and {v j , u�+1} ⊂

f , then j = i or | j − i | ≥ (� + 1) − q + 2.

Proof We will prove (1). If j �= i , then we can replace the segment of C from ei
to e j containing | j − i | vertices with e j , u�+1, P[u�+1, uq ], uq , ei which contains
(� + 1) − q + 1 vertices. The new cycle cannot be longer than C . The proofs for (2)
and (3) are similar so we omit them. ��

4 Nontrivial Paths in Best Lollipops

In this section, we show that the path or partial path P has length at least 2. In
particular, since H is connected, and |C | < n, there is an edge intersecting both V (C)

and V (H) − V (C). Thus � ≥ 1. Below we show in fact � ≥ 2 using the notion of
expanding sets that can be used to modify C into a longer cycle.

Suppose � = 1 and u2 is the unique vertex in V (P)\V (C). Say that a setW ⊆ V (C)

is u2-expanding if for every distinct v j , v j ′ ∈ W , there is a v j , v j ′ -path Q(v j , v j ′)
whose all internal vertices are not in V (C)∪{u2} and all edges are in E(H)\E(C). One
example of au2-expanding set isV (C)∩gwhere g is any edge in E(H)\E(C).Another
useful example is a set of the form NH ′(w)∩V (C) for a vertexw ∈ V (H)−V (C)−u2.

Suppose W is a u2-expanding set and v j , v j ′ ∈ W where j < j ′. If u2 ∈ e j ∩ e j ′ ,
then the cycle

v1, e1, v2, . . . , e j−1, v j , Q(v j , v j ′), v j ′ , e j ′−1, v j ′−1, . . . , v j+1, e j ,

u2, e j ′ , v j ′+1, e j ′+1, . . . , ec−1, vc, ec, v1

is longer than C , a contradiction. A symmetric longer cycle can be found if u2 ∈
e j−1 ∩ e j ′−1. Thus

u2 is contained in at most one edge of {e j : v j ∈ W }
and in at most one edge of {e j−1 : v j ∈ W }. (8)
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Therefore,

if the vertices of W form on C exactly q inter-
vals of consecutive vertices and B is the set
of edges in C containing u2, then |B| ≤ c − |W | + 1 − q + 1.
Moreover, if q = 1, say W = {v j1, v j1+1, . . . , v j1+|W |−1} and
|B| = c − |W | + 1, then B = E(C) \ {e j1 , e j1+1, . . . , e j1+|W |−2}.

(9)

Now we are ready to prove that � ≥ 2.

Lemma 4.1 Suppose n/2 ≥ k ≥ r + 2 ≥ 5 and H is a 2-connected r-graph satisfy-
ing (1). Let (C, P) be a best lollipop. If c < 2k, then � = |E(P)| ≥ 2.

Proof Suppose � = 1. If there exists e ∈ E(H) − E(C) containing at least 2 vertices
u, u′ /∈ V (C), then let P ′ be a shortest path or partial path from V (C) ∪ E(C) to
{u, u′} which avoids e. Such a P ′ exists because H is 2-connected. Without loss of
generality, P ′ ends with u. Then (C, (P ′, e, u′)) is better than (C, P). It follows that

for each e ∈ E(H) − E(C), |e ∩ V (C)| ≥ r − 1. (10)

Case 1: P is a path, say P = vc, f1, u2. Recall that H ′′ = H ′∪{ f1}. Since dH (u2) ≥ 2
and every edge containing u2 intersects C , by the maximality of �, NH ′′(u2) ⊆ V (C).
Let A = NH ′′(u2), a = |A|, B = {ei ∈ E(C) : u2 ∈ ei } and b = |B|. By Claim 3.2,
A does not intersect the set

⋃
ei∈B{vi , vi+1} and no two vertices of A are consecutive

on C . Therefore,
2k − 1 ≥ c ≥ 2a + b. (11)

It follows that

1 +
(
k − 1

r − 1

)
≤ dH (u2) ≤

(
a

r − 1

)
+ b ≤

(
a

r − 1

)
+ c − 2a. (12)

Case 1.1: dH ′′(u2) ≥ 2. Then a ≥ r . Since the RHS of (12) is monotonically increas-
ing with a when a ≥ r − 1 ≥ 2, if a ≤ k − 2, then 1 + (k−1

r−1

) ≤ (k−2
r−1

) + c − 2k + 4
and hence

(
k − 2

r − 2

)
≤ c − (2k − 3) ≤ 2,

a contradiction.
Suppose now a = k − 1. Then (12) yields b ≥ 1, (11) yields b ≤ 1, and in order

to have equality, c = 2k − 1 and all r -tuples of vertices containing u2 and contained
in A ∪ {u2} are edges of H ′′.

It is convenient in this case to rename the vertices in C so that B = {e2k−1} and
A = {v2, v4, . . . , v2k−2}. Since k = a + 1 ≥ r + 1, for every 1 ≤ j ≤ k − 1 we can
choose an edge g2 j ∈ E(H ′′) containing u2 and v2 j so that all g2 j are distinct. Since
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r ≤ k − 2, some vertex in V (C) − A is not in e2k−1, say v2i+1 /∈ e2k−1 for some
1 ≤ i ≤ k − 2.

Suppose v2i+1 ∈ e j for some j ∈ [2k − 2] − {2i, 2i + 1}. By symmetry, we may
assume j > 2i + 1. If j is even then the cycle

C j = v2i+1, e j , v j+1, e j+1, v j+2, . . . , v2i , g2i , u2, g j , v j , e j−1, v j−1, . . . , v2i+1

is longer than C . If j is odd then by the choice of v2i+1, j �= 2k − 1, and the cycle

C ′
j = v2i+1, e j , v j , e j−1, v j−1, . . . , v2i+2, g2i+2, u2, g j+1,

×v j+1, e j+1, v j+2, . . . , v2i+1

is longer than C , a contradiction.
Similarly, if for some odd j �= 2i+1 there is an edge h j ∈ E(H ′′) containing v2i+1

andv j , thenwemayassume j > 2i+1, and the cycleC ′′
j obtained fromC ′

j by replacing
e j with h j is longer than C . Recalling that A is the set of vertices with even indices in
C we obtain NH−{e2i ,e2i+1}(v2i+1) ∩ V (C) ⊆ A. Since |A| = k − 1 and dH (v2i+1) ≥(k−1
r−1

) + 1, some edge h ∈ E(H ′′) ∪ {e2i , e2i+1} containing v2i+1 contains also a
vertex w /∈ V (C). Since v2i+1 /∈ A ∪ e2k−1, w �= u2. Consider the lollipop (C1, P1)
whereC1 is obtained fromC by replacing the subpath v2i , e2i , v2i+1, e2i+1, v2i+2 with
the subpath v2i , g2i , u2, g2i+2, v2i+2, and P1 = v2i , e2i , v2i+1, h, w. This lollipop
satisfies |V (C1)| = |V (C)| but |E(P1)| > |E(P)|, contradicting the choice of (C, P).

Case 1.2: dH ′′(u2) = 1. Then dH (u2) = 1 + b, A = f1 ∩ V (C) and a = r − 1.
By (11), dH (u2) = 1 + b ≤ 1 + c − 2a = c − 2r + 3. In particular,

1 +
(
k − 1

2

)
≤ 1 +

(
k − 1

r − 1

)
≤ dH (u2) ≤ (2k − 1) − 2r + 3 ≤ 2k − 4, (13)

and thus k2 − 7k + 12 ≤ 0. For k ≥ r + 2 ≥ 5, this is impossible.

Case 2: P is a partial path, say P = ec, u2. If there is an edge h ∈ E(H ′) containing
u2, then by (10), h contains some v j ∈ V (C). So, the lollipop. (C, P ′) where P ′ =
v j , h, u2 also is better than (C, P) by Rule (d), a contradiction. So, dH (u2) = b,
where B = {ei ∈ E(C) : u2 ∈ ei } and b = |B|.

Suppose there exists w ∈ V (H) − (V (C) ∪ {u2}). Let us show that

dH ′(w) ≤ 1. (14)

Indeed, suppose g1, g2 ∈ E(H ′) and w ∈ g1 ∩ g2. Let W = V (C) ∩ (g1 ∪ g2). As
observed before, this W is u2-expanding. Since g2 �= g1, by (10), |W | ≥ r . Also, by
Claim 3.2, vertices in g2 could not be next to vertices in g1 on C . Thus if |W | = r ,
then |g1 ∩ g2| = r − 1, and hence no two vertices of W are consecutive on C . In this
case, by (9), b ≤ c − |W | + 1 − q + 1 where q = |W | = r . So, similarly to (13) we
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get

1 +
(
k − 1

2

)
≤ dH (u2) ≤ c − 2r + 2 ≤ 2k − 5,

which yields k2 − 7k + 14 ≤ 0, an impossibility. Thus |W | ≥ r + 1. But still since
vertices in g2 could not be next to vertices in g1 on C , q ≥ 2. So, we again get

1 +
(
k − 1

2

)
≤ dH (u2) ≤ c − (r + 1) + 1 − 2 + 1 ≤ 2k − 5,

and come to a contradiction. This proves (14).
If n = c + x and |E(H)| = c + y, then

k(c + x) = k · n ≤
∑

v∈V (H)
dH (v) = r(c + y). (15)

If r ≥ n/2, then by Theorem 4, H has a Hamiltonian cycle; thus n > 2r . So, we
conclude from (15) that

y ≥ (r + 2)(c + x)

r
− c = 2(c + x)

r
+ x = 2n

r
+ x > 4 + x .

Since dH ′(u2) = 0 and by (14), at most x − 1 edges in H ′ contain a vertex outside
of V (C). It follows that at least 6 edges of H ′ are contained in V (C). If at least one
of these edges is not an interval of consecutive vertices on C , (9) yields b ≤ c − r .
Also if all of these edges form intervals on C , then the “Moreover” part of (9) yields
b ≤ c − r . Hence,

1 +
(
k − 1

2

)
≤ dH (u2) = b ≤ c − r ≤ 2k − 4,

and thus k2 − 7k + 12 ≤ 0. For k ≥ r + 2 ≥ 5, this is impossible. ��

5 Vertex u�+1 has Few Neighbors in P

In this section we show that u�+1 cannot have too many H ′-neighbors in P or be
contained in too many edges in P . In particular, we will prove that it has at most k −2
such neighbors, and is in at most k − 1 such edges. The proof is a modification of
Dirac’s proof of Theorem 2 for 2-connected graphs. The interested reader may look
at the relevant sections in [4] or [17] to see the proof idea in the simpler setting of
graphs.

Let S1 = (NH ′(u�+1) ∩ V (P)) ∪ {u�}, S2 = {um ∈ V (P) : u�+1 ∈ fm and um /∈
S1} and S = S1 ∪ S2.

We will prove a series of claims. In each claim, we construct a cycle containing
almost all of S1 ∪ S2 and at least half the vertices in C . Thus if S1 ∪ S2 or S1 is too
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large (in particular, if |S1 ∪ S2| ≥ k or |S1| ≥ k − 1), we obtain a cycle that is longer
than C .

We use h′(a, b) to denote an edge in H ′ containing a and b if we know such an
edge exists. By definition, if um ∈ S2 then there is no edge in H ′ containing um and
u�+1. In this case, h′(um, u�+1) denotes fm .

If the smallest index i with ui ∈ S1 ∪ S2 is such that ui ∈ S2 then we denote this
index by i1 − 1, otherwise if ui ∈ S1 then we denote it by i1. Let the other indices i
such that ui ∈ S be i2, . . . , iα in increasing order.

Index the vertices of S1 by j1, j2, . . . , jβ in increasing order.
If (C, P) is an o-lollipop, then let X = V (C) − vc, otherwise let X = V (C).

Set Y = {ui1+1, ui1+2, . . . , u�+1} and Z = {u j1+1, u j1+2, . . . , u�+1}. Observe that
Z ⊆ Y .

Claim 5.1 If |S1 ∪ S2| ≥ k − 1 then no edge in H ′ intersects both X and Y .

Proof Suppose (C, P) is a lollipop and an edge in E(H ′) intersects both X and Y .
Among such edges, choose e containing ui with the maximum possible i . Let i ′ be
the largest index less than i such that ui ′ ∈ S1 ∪ S2.

By the definition of Y , i > i1 and hence i ′ ≥ i1 − 1. Suppose a vertex in X ∩ e is
v j . Let Q be a long vc, v j -segment of C guaranteed by Claim 3.1. If i = � + 1, then
consider the cycle

C0 = vc, Q, v j , e, u�+1, f�, u�, . . . , f1, vc.

If (C, P) is an o-lollipop, then C0 has at least c − (k − 2) vertices in C and at least
k vertices in S1 ∪ S2 ∪ {u�+1}, at most one of which is in C (namely vc = u1). So
|C0| ≥ c − (k − 2) + (k − 1) > c, a contradiction. If (C, P) is a p-lollipop, then
C0 is guaranteed only c − (k − 1) vertices in C , but none of the at least k vertices in
S1 ∪ S2 ∪ {u�+1} is in C . So |C0| ≥ c − (k − 1) + k > c, again.

Thus, suppose i ≤ �. Then h′(ui ′ , u�+1) �= e and hence

C ′
0 = vc, Q, v j , e, ui , fi , . . . , u�, f�, u�+1, h

′(u�+1, ui ′), fi ′−1, . . . , f1, vc

is a cycle. Similarly toC0, it has at least c−(k−2)+(k−1) > c vertices when (C, P)

is an o-lollipop, and at least c − (k − 1) + k vertices when (C, P) is a p-lollipop, a
contradiction. ��
Claim 5.2 If |S1 ∪ S2| ≥ k then no fm with m ≥ i1 intersects X, and if |S1| ≥ k − 1,
then no fm with m ≥ j1 intersects X.

Proof Suppose m ≥ i1 and fm contains some v j ∈ V (C). By symmetry, we may
assume that j ≤ c/2 when (C, P) is an o-lollipop and j ≤ (c + 1)/2 when (C, P) is
a p-lollipop. Let Q be the path vc, ec−1, vc−1, . . . , e j , v j .

Suppose first that |S1∪S2| ≥ k. Ifm = i1 and the smallest index i with ui ∈ S1∪S2
is such that ui ∈ S1, then let i ′ = m; otherwise, let i be the largest index less than m
such that ui ′ ∈ S1 ∪ S2. Then

C ′′
0 = vc, Q, v j , fm, um+1, fm+1, . . . , u�, f�, u�+1, h

′(u�+1, ui ′), fi ′−1, . . . f1, vc

123



864 Combinatorica (2024) 44:849–880

is a cycle. It contains all vertices in S1 ∪ S2 ∪ {u�+1} apart from um . If (S1 ∪ S2) ∩
V (C) �= ∅, then (C, P) must be an o-lollipop and u1 ∈ S1 ∪ S2. Hence C ′′

0 has at
least c − ( j − 1) + (k + 1) − 2 ≥ (c − c/2) + k > c vertices, a contradiction.
Otherwise, if (S1 ∪ S2) ∩ V (C) = ∅, then C ′′

0 has at least c− ( j − 1) + (k + 1) − 1 ≥
(c − (c + 1)/2) + k + 1 > c vertices.

Now suppose |S1| ≥ k − 1. In this case, let i ′ be the largest index that is at
most m such that ui ′ ∈ S1. Then the same cycle C ′′

0 as above contains all vertices
in S1 ∪ {u�+1}. Similarly, we get either |C ′′

0 | > c − (c/2 − 1) + k − 1 > c or
|C ′′

0 | > c − ((c + 1)/2 − 1) + k > c. ��
Claim 5.3 Suppose |S1 ∪ S2| ≥ k. If (C, P) is an o-lollipop, then no e j ∈ E(C)

intersects Y . If (C, P) is a p-lollipop then no e j ∈ E(C) with j �= c intersects Y .

Proof Suppose e j ∈ V (C) contains some ui ∈ Y where j �= c when (C, P)

is a p-lollipop. By symmetry, we may assume that j ≤ c/2. Let Q be the path
vc, ec−1, vc−1, . . . , e j+1, v j+1.

Let i ′ be the largest index less than i such that ui ′ ∈ S1 ∪ S2. Consider the cycle

C1 = vc, Q, v j+1, e j , ui , P[ui , u�+1], u�+1, h
′(u�+1, ui ′), ui ′ , P[ui ′ , vc], vc.

It contains at least c− c/2 vertices in C and all vertices in S1 ∪ S2 ∪ {u�+1}. Hence
|C1| ≥ c/2 + (k + 1) − 1 > c. ��
Claim 5.4 Suppose |S1| ≥ k − 1 and some edge e j ∈ E(C) contains some ui ∈ Z.
Then either (C, P) is an o-lollipop, c = 2k − 1, e j = ek−1, |S1| = k − 1 and j1 = 1,
or (C, P) is a p-lollipop and j = c.

Proof Suppose e j ∈ V (C) contains some ui ∈ Z where j �= c when (C, P)

is a p-lollipop. As in the proof of Claim 5.3, we may assume that j ≤ c/2,
and if c is an o-lollipop, we may assume j ≤ (c − 1)/2. Let Q be the path
vc, ec−1, vc−1, . . . , e j+1, v j+1.

Let i ′ be the largest index less than i such that ui ′ ∈ S1. Consider

C1 = vc, Q, v j+1, e j , ui , P[ui , u�+1], u�+1, h
′(u�+1, ui ′), u

′
i , P[u′

i , vc], vc.

If (C, P) is a o-lollipop, then

|V (C1)| ≥ c − j + k − 1 ≥ c − (c − 1)/2 + k − 1 = c + 2k − c − 1

2
≥ c (16)

with equality only if c = 2k − 1, j = k − 1, u1 ∈ S1, and |S1| = k − 1.
If (C, P) is a p-lollipop, then S1∩V (C) = ∅, so instead of |V (C1)| ≥ c− j+k−1

as in (16) we have |V (C1)| ≥ c − j + k and conclude that |V (C1)| > c. ��
Claims 5.1–5.4 together can be summarized as the following two corollaries.

Corollary 5.5 Suppose |S1∪ S2| ≥ k. Then the only edges in H that may intersect both
X and Y are f1, . . . , fi1−1.

123



Combinatorica (2024) 44:849–880 865

Corollary 5.6 Suppose |S1| ≥ k − 1 and an edge g ∈ E(H) intersects X and Z.
Then either g ∈ { f1, . . . , f j1−1} or (C, P) is an o-lollipop, g = ek−1, c = 2k − 1,
|S1| = k − 1, and j1 = 1.

Finally we will show that |S1| and |S1 ∪ S2| cannot be too large. For this, we use
the notion of aligned paths in graphs introduced in [4] and apply Lemma 5.7 below to
the incidence bigraph IH of H .

Let P and P ′ be paths in a graph starting from the same vertex.We say P ′ is aligned
with P if for all u, v ∈ V (P) ∩ V (P ′), if u appears before v in P then u also appears
before v in P ′.

Lemma 5.7 (Lemma 5 in [17]). Let P be an x, y-path in a 2-connected graph G, and
let z ∈ V (P). Then there exists an x, z-path P1 and an x, y-path P2 such that
(a) V (P1) ∩ V (P2) = {x} and (b) each of P1 and P2 is aligned with P.

Lemma 5.8 (A) |S1 ∪ S2| ≤ k − 1, and (B) |S1| ≤ k − 2.

Proof Recall that by Lemma 4.1, � ≥ 2. We first prove (A). Suppose towards contra-
diction that |S1 ∪ S2| ≥ k.

Case 1. The smallest index i with ui ∈ S1 ∪ S2 satisfies ui ∈ S2. By the definition
of S2 and i1, i = i1 − 1, and i is the unique index less than i1 such that u�+1 ∈ fi .
In particular, i1 ≥ 2 and moreover if (C, P) is a p-lollipop, since the first vertex of
V (P) is u2, i1 − 1 ≥ 2.

Consider the 2-connected incidence bipartite graph IH of H and the (graph) path

P ′ = v1, e1, v2, . . . , vc, f1, . . . , f�, u�+1

in IH . We apply Lemma 5.7 to P ′ with z = ui1 to obtain two (graph) paths P1 and P2
satisfying (a) and (b) in IH .

We modify Pi as follows: if Pi = w1, w2, . . . , w ji , let qi be the last index such that
wqi ∈ X ′ := {v1, e1, . . . , vc, ec} and let pi be the first index such that wpi ∈ Y ′ :=
{ui1, fi1 , ui1+1, . . . , f�, u�+1}.

If wpi = us for some s, then set P ′
i = Pi [wqi , wpi ]. If wpi = fs for some s, then

set P ′
i = Pi [wqi , wpi ], us+1.

Observe that P ′
1 and P ′

2 are Berge paths or partial Berge paths in H . Moreover, P ′
1

ends with vertex z = ui1 and contains no other elements of Y ′ since it is aligned with
P ′. It is possible that fi1−1 is in P ′

1.
If both P ′

1 and P ′
2 begin with v1, then some P ′

i avoids f1 and first intersects the set
{u2, f2, . . . , u�+1} in IH at some vertex w j . Then replacing the segment v1, ec, vc in
C with the longer segment v1, P ′

i [v1, w j ], w j , P[w j , f1], f1, vc yields a cycle in H
that is longer than C , a contradiction. Therefore we may assume that P ′

1 and P ′
2 are

vertex-disjoint and edge-disjoint in H .
Next we show that

no edge in H ′ containing u�+1 is in P ′
1 or P ′

2. (17)
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Indeed, suppose h ∈ E(H ′) contains u�+1. Then by the maximality of � and
Claim 5.1, h ⊂ V (P). Therefore, by the definition of i1, . . . , iα , h ⊆ {ui1 , . . . , uiα }.
But such edges are not in E(P ′

1) ∪ E(P ′
2) by construction. This proves (17).

Observe that for m ≥ i1, if fm is in P ′
2, then by the definition of P ′

2, it must be the
last edge of P ′

2.
Let a1 and b1 be the first elements of P ′

1 and P ′
2 respectively. Let Q be a long

b1, a1-segment of C guaranteed by Claim 3.1 (recall that if P ′
1 is a path, then a1 is the

first vertex of P ′
1 and if P

′
1 is a partial path, then it is the first edge, and similar for b1).

Next we show
fi1−1 /∈ E(P ′

2). (18)

Suppose fi1−1 ∈ E(P ′
2). Since P2 is aligned with P ′, the segment P ′

2[b1, fi1−1]
does not intersect P[ui1 , u�+1]. Then

b1, Q, a1, P
′
1, ui1 , P[ui1 , u�+1], u�+1, fi1−1, P

′
2[ fi1−1, b1], b1

contains at least c− (k−1) vertices inC and all vertices in S1∪ S2∪{u�+1}−{ui1−1},
i.e., it has at least c − (k − 1) + k + 1 − 1 > c vertices. This proves (18).

Let ug be the last vertex of P ′
2.

Case 1.1. fg−1 is the last edge of P ′
2. Since ug ∈ Y , g−1 ≥ i1. Hence byCorollary 5.5,

fg−1 does not intersect X . Then P ′
2 has at least two edges and at least one internal

vertex, say z. By the definition of P ′
2 and the fact that fg−1 �= ec, z /∈ X ∪ Y ∪ {ui1}.

Let g′ be the largest index less than g − 1 such that ug′ ∈ S1 ∪ S2. If g′ �= i1 − 1
(so g′ ≥ i1), consider

C1 = b1, Q, a1, P
′
1, ui1 , P[ui1 , ug′ ], ug′ , h′(ug′ , u�+1), u�+1, P[u�+1, ug], ug, P ′

2, b1.

This cycle has at least c − (k − 1) vertices in C and z /∈ X ∪ Y . The cycle C1 also
may miss at most two vertices in S1 ∪ S2 (namely ui1−1 and ug−1), and since we are
in Case 1,

(
S1 ∪ S2 ∪ {u�+1} − {ug−1, ui1−1}

) ∩ V (C) = ∅.

Therefore C1 contains at least

|V (Q)| + |V (P ′
2) − (V (C) ∪ V (P))| + |S1 ∪ S2 ∪ {u�+1} − {ug−1, ui1−1}|

≥ c − (k − 1) + 1 + k + 1 − 2 > c

vertices, a contradiction.
If g′ = i1 − 1, then by (18), fg′ /∈ E(P ′

2). First suppose b1 �= vc. We let Q′ be a
long b1, vc-segment of C if (C, P) is an o-lollipop or a long b1, ec-segment of C if
(C, P) is a p-lollipop (without loss of generality, this path ends with vc), and take the
cycle

C2 = b1, Q
′, vc(= u1), . . . , ui1−1, fi1−1, u�+1, P[u�+1, ug], ug, P ′

2, b1
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which again omits only ug−1 from S1 ∪ S2 (which is possibly in V (C)) and satisfies

|C2| ≥ c − (k − 1) + 1 + k + 1 − 2 > c.

Suppose now that b1 = vc. If fi1−1 ∈ E(P ′
1), let

C3 = vc, Q, a1, P
′
1[a1, fi1−1], fi1−1, u�+1, P[u�+1, ug], ug, P ′

2, vc.

Recall that P ′
2 has an internal vertex z /∈ X ∪ Y ∪ {ui1}. Also, all vertices in S1 ∪

S2 ∪ {u�+1} − {ui1−1, ug−1} are in C3 and none of them belongs to C . Therefore
|C3| ≥ c − (k − 1) + 1 + (k + 1) − 2 > c.

Lastly, if fi1−1 /∈ E(P ′
1), then the cycle

C4 = vc, Q, a1, P
′
1, ui1 , fi1−1, u�+1, P[u�+1, ug], P ′

2, vc

contains at least c − (k − 1) + k + 1 − 1 > c vertices.

Case 1.2. The last edge of P ′
2 is not fg−1. Then we let g′ be the largest index less than

g such that ug′ ∈ S1 ∪ S2. In this case, the cycle C1 from the previous subcase can
miss only ui1−1 in S1 ∪ S2 and contains at least k − 1 vertices in S1 ∪ S2 − {ui1−1}
which are disjoint from V (C). We get

|C1| ≥ |V (Q)| + |S1 ∪ S2 − {ui1−1}| + |{u�+1}| ≥ c − (k − 1) + (k − 1) + 1 > c.

This finishes Case 1.

Case 2. The smallest i with ui ∈ S1 ∪ S2 is such that ui ∈ S1. Recall that in this case
i = i1

and the other indices of the vertices in S1 ∪ S2 are i2, . . . , iα in increasing order.
Now, define P ′, P ′

1, P
′
2 and Q as in Case 1. Then we can repeat the final part of the

proof of Case 1 with the simplification that the cycle C1 omits at most the vertex ug−1
in S1 ∪ S2 and this occurs only if fg−1 is the last edge of P ′

2. As in Case 1.1, since
fg−1 �= ec and g−1 ≥ i1, P ′

2 contains at least one vertex outside of V (C)∪Y ∪{ui1}.
Note also that it may be the case ui1 = u1 ∈ V (C).

If no vertices of S1 ∪ S2 are omitted from C1, then

|C1| ≥ |V (Q)| + |S1 ∪ S2| − |{ui1}| + |{u�+1}| ≥ c − (k − 1) + k − 1 + 1 > c.

Otherwise, if ug−1 ∈ S1 ∪ S2 was omitted from C1, then

|C1| ≥ |V (Q)| + |S1 ∪ S2| − 1 − |{ui1}| + |{u�+1}| + |V (P ′
2)

−V (C) ∪ Y ∪ {ui1}| > c.

This proves Part (A).
Now we prove (B). Recall that u j1 , . . . , u jβ are the H ′-neighbors of u�+1 and

suppose β ≥ k − 1. Corollary 5.6 asserts that apart from f1, . . . , fi1−1 only ek−1 may
intersect both X and Z . First part of our proof is to show that ek−1 does not intersect Z .
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Claim 5.9 fi ⊆ V (P) for all ui ∈ NH ′(u�+1).

Proof By Claim 5.2, if u ∈ fi −V (P), then u /∈ V (C)∪V (P). If P is a path, then we
can replace it with the longer path u1, P[u1, ui ], ui , h′(ui , u�+1), u�+1, P[u�+1, fi ],
fi , u. Otherwise we replace P with the partial path f1, P[ f1, ui ], ui , h′(ui , u�+1),
u�+1, P[u�+1, fi ], fi , u. ��
Claim 5.10 � ≥ k.

Proof Suppose � ≤ k − 1. Since |S1| ≥ k − 1, � = k − 1 and each vertex in
V (P) − {u�+1} including u1 is in S1.

If u� /∈ NH ′(u�+1), then |NH ′(u�+1)| ≤ � − 1 = k − 2, NH ′(u�+1) = V (P) −
{u�, u�+1}, andbyClaims5.4 and5.9, the only edges containingu�+1 andnot contained
in V (P) could be ek−1 and f�.

We get dH (u�+1) ≤ (k−2
r−1

) + |E(P)| + 1 ≤ (k−2
r−1

) + k. When r ≥ 4, this is less

than
(k−1
r−1

) + 1 = δ(H). If r = 3, then each edge fi with i < � containing u�+1
satisfies fi = {ui , ui+1, u�+1}. Thus for i ≤ � − 2, such an edge fi is a subset of
NH ′ [u�+1] and is accounted for in the

(|NH ′ (u�+1)|
r−1

)
termof d(u�+1). Hence dH (u�+1) ≤

(k−2
r−1

) + |{ f�−1, f�, ek−1}| ≤ (k−2
r−1

) + k − 2 ≤ (k−1
r−1

)
, a contradiction.

If u� ∈ NH ′(u�+1), then by Claim 5.9, dH−E(C)(u�+1) ≤ (k−1
r−1

)
, and the only

edge containing u�+1 not contained in V (P) could be ek−1. Then in order to satisfy
d(u�+1) ≥ δ(H), we need that u�+1 ∈ ek−1 and every r -tuple contained in V (P) and
containing u�+1 is an edge in H .

Hencewe can reorder the vertices in V (P)−u1 tomake any vertex apart from u1 the
last vertex. The resulting path togetherwithC is also a best lollipop. ByClaims 5.1–5.9
and the above, either d(ui ) <

(k−1
r−1

)+1 ≤ δ(H) for some i leading to a contradiction,
or each ui ∈ V (P) is contained in ek−1. In the latter case, r = |ek−1| ≥ 2+� = k+1,
a contradiction. ��
Claim 5.11 u�+1 /∈ ek−1.

Proof Suppose u�+1 ∈ ek−1. By Corollary 5.6, this is possible only if (C, P) is an
o-lollipop and c = 2k − 1. By Claim 5.10, � ≥ k and so the cycle

C0 = vc, ec−1, . . . , vk, e, u�+1, f�, u�, . . . , f1, vc

has at least k + k = 2k vertices, a contradiction. ��
Claim 5.12 If (C, P) is an o-lollipop, then ek−1 ∩ Z = ∅.
Proof Suppose ui ∈ ek−1 ∩ Z . By Corollary 5.6, this is possible only if c = 2k − 1,
|S1| = k − 1 and j1 = 1.

By Claim 5.11, i < � + 1. Let i ′ be the largest number less than i such that
ui ′ ∈ NH ′(u�+1). Denote I1 = {i ′ +1, i ′ +2, . . . , i −1} and I2 = {1, . . . , i ′}∪ {i, i +
1, . . . , �}. By the choice of i ′, I1 ∩ S1 = ∅.

Consider the cycle

C1 = vc, ec−1, . . . , vk, ek−1, ui , fi , . . . , u�, f�, u�+1, h
′(u�+1, ui ′), fi ′−1, . . . , u1.
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We have |C1| ≥ k+|S1 −{u1}|+ |{u�+1}| ≥ k+ k−2+1 = 2k−1 with equality
only if S1 = {ui : i ∈ I2} and |S1| = |I2| = k − 1. In particular, this means that the
indices of the vertices in S1 form two intervals, {1, . . . , i ′} and {i, i + 1, . . . , �}, and
the second of these intervals starts from i . This yields e ∩ V (P) = {ui }.

Since we proved |S1 ∪ S2| ≤ k − 1 = |S1|, we must have

f or each m ∈ I1, u�+1 /∈ fm . (19)

By Claim 5.9, for each um ∈ NH ′(u�+1), fm ⊆ V (P). Suppose now that for some
m ∈ I2 − {i ′}, and i ′ < i ′′ < i , u�+1, ui ′′ ∈ fm and H ′ has an edge g containing
{um, um+1}. In this case, if m ≥ i , then the cycle

C2 = vc, ec−1, . . . , vk, ek−1, ui , fi , . . . , um, g, um+1, fm+1, . . . ,

u�, f�, u�+1, fm, ui ′′ , fi ′′−1, . . . , u1

is longer than C , and if 1 ≤ m ≤ i ′, then the cycle

C3 = vc, ec−1, . . . , vk, ek−1, ui , fi , . . . , u�, f�, u�+1, fm, ui ′′ , fi ′′−1, . . . ,

fm+1, um+1, g, um, . . . , u1

is longer than C . Therefore,

If m ∈ I2, i ′ < i ′′ < i and {u�+1, ui ′′ } ⊂ fm, then no edge in H ′ contains {um, um+1}.
(20)

For 1 ≤ m ≤ �, call the edge fm fitting if u�+1 ∈ fm and fm ⊆ NH ′ [u�+1] and
non-fitting if u�+1 ∈ fm and fm � NH ′ [u�+1]. Let R denote the set of fitting edges
and R′ denote the set of non-fitting edges. By (19), if fm ∈ R, then m ∈ I2. By the
definition of I2, if m1 ∈ I2 − {i ′, �}, then m1 + 1 ∈ I2.

Case 1. u� ∈ NH ′(u�+1). By Claim 5.11, all edges containing u�+1 must either be
contained in S1 ∪{u�+1} or be non-fitting edges. Since δ(H) ≥ 1+ (k−1

r−1

)
, this implies

R′ �= ∅. Moreover, if there is a non-fitting edge fm1 /∈ { fi ′ , f�}, then by Claim 5.2
and (20),

the

(
k − 3

r − 3

)
r -tuples in the set NH ′ [u�+1] containing {um1 , um1+1, u�+1}

are not edges of H ′. (21)

The existence of such non-fitting fm1 /∈ { fi ′ , f�} is not possible if r = 3 because in
this case fm1 = {u�+1, um1 , um1+1} ⊆ NH ′ [u�+1]. So wemay suppose r ≥ 4. By (21)
we have

d(u�+1) ≤
( |S1|
r − 1

)
−

(
k − 3

r − 3

)
+ |R′| ≤

(
k − 1

r − 1

)
−

(
k − 3

r − 3

)
+ |R′|.
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Thus to have d(u�+1) ≥ 1 + (k−1
r−1

)
, we need at least 1 + (k−3

r−3

) ≥ k − 2 non-fitting
edges fm for m ∈ I2.

Since by the case, (20) and Claim 5.9, f� has no vertex outside of NH ′ [u�+1] and
hence is fitting, for each of the k − 2 ≥ r − 1 ≥ 3 values of m ∈ I2 − {�}, fm must be
non-fitting. But then at least 1+ (k−3

r−3

) ≥ k−2 of the r -tuples contained in NH ′ [u�+1]
and containingu�+1 are not edges of H . Sod(u�+1) ≤ (k−1

r−1

)−(k−2)+(k−2) < δ(H).

Hence in order to have d(u�+1) ≥ (k−1
r−1

)+1wemay assume that the only non-fitting
edge is fi ′ and moreover every r -subset of NH ′ [u�+1] containing u�+1 is an edge of
H ′. In particular, there is an edge g ∈ E(H ′) containing u�+1, ui ′ and ui+1. Then

C4 = vc, ec−1, . . . , vk, ek−1, ui , fi−1, . . . , ui ′+1, fi ′ , u�+1,

f�, . . . , ui+1, g, ui ′ , fi ′−1, . . . , f1, vc

is longer than C .

Case 2. u� /∈ NH ′(u�+1). Then |NH ′(u�+1)| ≤ k − 2, and by Claim 5.11,

|R| + |R′| = dP (u�+1) = dH (u�+1) − dH ′(u�+1)

≥ 1 +
(
k − 1

r − 1

)
−

[(
k − 2

r − 1

)
− |R|

]

= 1 +
(
k − 2

r − 2

)
+ |R|. (22)

So, if r ≥ 4, then k ≥ r +2 ≥ 6, and |R′| ≥ 1+ (k−2
2

) = 1+ (k−2)(k−3)
2 ≥ 1+ 3(k−2)

2 .
But (19) yields dP (u�+1) ≤ |I2| = k−1, a contradiction. On the other hand, if r = 3,
then similarly to Case 1, R′ ⊆ { f�, fi ′ }, and hence (22) yields

2 ≥ |R′| ≥ 1 +
(
k − 2

r − 2

)
= k − 1 ≥ r + 1 = 4,

a contradiction. ��
We now complete the proof of (B). As in the proof of (A), we apply Lemma 5.7 to

the same path

P ′ = v1, e1, v2, . . . , vc, f1, . . . , f�, u�+1

in IH with z = u j1 . We obtain paths P1 and P2 and modify them to P ′
1 and P ′

2 with
the same rules as in (A) but with Z ′ = {u j1, f j1 , u j1+1, . . . , u�+1} in place of Y ′.

We again get that P ′
1 and P ′

2 are vertex-disjoint and edge-disjoint and (17) holds.
Let Q be a long segment of C connecting P ′

1 and P ′
2 with at least c− (k − 1) vertices.

Suppose the endpoints of Q are the vertices a1 and b1.
Let ui be the last vertex of P ′

2, and let i
′ be the smallest index less than i such that

ui ′ ∈ S1. Consider the cycle

C ′ = a1, Q, b1, P
′
2, ui , P[ui , u�+1], u�+1, h

′(u�+1, ui ′), ui ′ P[ui ′ , u j1 ], u j1 , P
′
1, a1
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which contains all k vertices in S1 ∪ {u�+1}. If none of these vertices is in C , then
|C ′| ≥ c − (k − 1) + k > c, a contradiction. If there is such a vertex, it could be
only u1, in which case (C, P) is an o-lollipop and j1 = 1. Then by Corollary 5.6
and Claim 5.12, P ′

2 contains at least one vertex outside of V (C ∪ P). It follows that
|C ′| ≥ c − (k − 1) + k − 1 + 1 > c, a contradiction again. ��

6 Partial Berge Paths in Best p-Lollipops are Long

In this section we concentrate on p-lollipops and show that the partial path P in them
must be long (namely, � ≥ k). We do this by showing that u�+1 has no H ′-neighbors
inside ofC , and hence P must be sufficiently long to contain all H ′-neighbors of u�+1.
The main lemma of this section is the following.

Lemma 6.1 If (C, P) is a p-lollipop then |V (P)| = � ≥ k.

Proof In Section 4 we showed that � ≥ 2. Suppose towards contradiction that 2 ≤
� ≤ k − 1. We will first show that

all H ′-neighbors of u�+1 are contained in V (P). (23)

By Claim 3.3, all H ′-neighbors of u�+1 are in V (C)∪ V (P). If u�+1 ∈ e ∈ E(H ′)
and vi ∈ e for some vi ∈ V (C), we let P ′ = vi , e, u�+1, P[u�+1, u2], u2. Observe
that V (P ′) − V (C) = V (P) − V (C), and (C, P ′) is better than (C, P) by Rule (d).
This proves (23).

Next we show that

u�+1 is contained in at least k edges in E(C) ∪ E(P). (24)

By (23), |NH ′(u�+1)| ≤ |V (P) − {u�+1}| ≤ k − 2. Then the number of edges in
E(C) ∪ E(P) containing u�+1 must be at least

δ(H) −
(|NH ′(u�+1)|

r − 1

)
≥

(
k − 1

r − 1

)
+ 1 −

(
k − 2

r − 1

)
≥ k − 1,

with equality only if r = 3, |NH ′(u�+1)| = k − 2 (and so V (P) = NH ′ [u�+1]), u�+1
is contained in all

(k−2
r−1

)
possible H ′-edges, and no edge of E(C) ∪ E(P) containing

u�+1 is a subset of NH ′ [u�+1]. If this is the case, then e = {u2, u3, u�+1} ∈ E(H ′),
and we swap f2 with e to get a partial path that is better than P by Rule (e). This
proves (24).

Say |V (P)| = � = k − a where 2 ≤ k − a ≤ k − 1. Since |E(P)| = k − a,
by (24), u�+1 is contained in at least a edges in E(C) − ec. By Claim 3.3(2), none of
these edges is in the set {e1, . . . , e�−1}∪{ec−1, . . . , ec−(�−1)}. Thus, u�+1 is contained
in at least a edges in {ek−a, ek−a+1, . . . , ec−(k−a)}. Moreover, u�+1 is contained in
exactly a such edges if and only if it is contained in all k−a edges of P (in particular,
u�+1 ∈ ec).
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Let ei contain u�+1 for some i �= c. Consider the partial path P ′ =
ei , u�+1, f�, . . . , u2. Then V (P ′) = V (P) and E(P ′) − E(C) = E(P) − E(C).
Thus (C, P ′) also is a best lollipop. So, as above we get that all H ′-neighbors of u2
are in V (P), u2 is contained in at least k edges of E(P ′)∪ E(C) = E(P)∪ E(C), and
at least a edges of E(C) − {ei } with equality only if u2 ∈ ei by Claim 3.3. Moreover,
each of these edges is of distance at least k − a from ei .

Let Bi be the set of edges of E(C) containing ui for i ∈ {2, � + 1}. Observe
that |Bi | ≥ a + 1. Let t = |B2 ∩ B�+1|. If t = 0, let eα, eβ, eγ be edges such that
α < β < γ (modulo c), eα, eγ ∈ B�+1, and eβ ∈ B2. Then the segment from eα to
eγ in C contains at least 2(k − a − 1) edges not in B2 ∪ B�+1 by Claim 3.5. We get

2k − 1 ≥ |E(C)| ≥ |B2| + |B�+1| + 2(k − a − 1) ≥ 2(a + 1) + 2(k − a − 1) = 2k,

a contradiction.
Now suppose 1 ≤ t ≤ |B2|. Then surrounding each edge in B2 ∩ B�+1 there are

two intervals of 2(k − a − 1) edges that are disjoint from B2 ∪ B�+1. Moreover if
there exists eα ∈ B2 − B�+1 and eβ ∈ B�+1 − B2, then each pair of vertices in
(B2 ∩ B�+1) ∪ {eα, eβ} has distance at least k − a. In this case, there are at least t + 2
intervals of (k − a − 1) edges not in B2 ∪ B�+1. Therefore

2k − 1 ≥ |E(C)| ≥ |B2 ∪ B�+1| + (t + 2)(k − a − 1) ≥ 2(a + 1) − t

+(t + 2)(k − a − 1) = t(k − a − 2) + 2k ≥ 2k,

a contradiction. If B2 � B�+1 or vice versa, then we have t ≥ |B2| ≥ a+1. As before,
for any eβ ∈ B�+1 − B2, each pair of edges in (B2 ∩ B�+1)∪{eβ} has distance at least
k − a. So instead we get

2k − 1 ≥ |B�+1 − B2| + t + (t + 1)(k − a − 1) ≥ 1 + t

+(t + 1)(k − a − 1) = (t + 1)(k − a) ≥ (a + 2)(k − a).

But this does not hold when a ≥ 1, k ≥ 3, and k − a ≥ 2.
The last case is B2 = B�+1. If t ≥ a + 2, then 2k − 1 ≥ t(k − a − 1) + t ≥

(a + 2)(k − a), a contradiction again. So we consider the case where t = |B2| =
|B�+1| = a + 1. Because B�+1 must contain a edges within the at most 2a edges of
{ek−a, . . . , ec−(k−a)} we must have � = k − a = 2 by Claim 3.5. Without loss of
generality, we may assume that B2 = B�+1 = {ec, e2, e4, . . . , e2k−4}. We also have
r = |ec| ≥ |{vc, v1, u2, u�+1}| = 4.

Suppose the edge f2 ∈ E(P) contains a vertex vi ∈ V (C). By Claim 3.2, ei−1, ei
cannot contain u�+1. So we must have that c = 2k − 1 and i = 2k − 2. Therefore f2
contains at least r −1 vertices outside of V (C). As � = 2, |( f2 ∩V (P))−V (C)| ≤ 2.
So, since r = |ec| ≥ 4, there exists u ∈ f2 with u /∈ V (C) ∪ V (P).

By Claim 3.5, u cannot belong to ei if ei−1 ∈ B2 or ei+1 ∈ B2. Hence {ei ∈ E(C) :
u ∈ ei } ⊆ B2. If an edge ei ∈ B2 contains all vertices in f2 − V (C), then |ei | ≥
2 + | f2| − 1 = r + 1, a contradiction. Therefore some u ∈ f2 is contained in at most
(|B2|−1)+1 = k−1 edges of E(C)∪E(P), and hence dH ′(u) ≥ δ(H)−(k−1) ≥ 1.
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Say u ∈ e ∈ E(H ′). If there exists w /∈ V (C) in e, then either (C, ec, u2, f2, u, e, w)

or (C, ec, u3, f2, u, e, w) is a better lollipop. than (C, P). So e must contain r − 1
vertices in V (C). Without loss of generality, vi ∈ e and ei ∈ B2. Then replacing the
segment vi , ei , vi+1 in C with vi , e, u, f2, u2, ei , vi+1 yields a cycle longer than C . ��

By applying Claim 3.3 and using that � ≥ k, c < 2k, we obtain the following
corollary.

Corollary 6.2 If (C, P) is a p-lollipop, then the only edge of C that may contain u�+1
is ec.

7 The Paths in Lollipops are Short

In this section we show that P cannot be too long (namely, � ≤ k − 2). Our first
step will be to show that if u�+1 has H ′-neighbors in C and P is long, then we can
find a better cycle than C . Then we apply Lemma 5.8 to analyze the case where all
H ′-neighbors of u�+1 are in P . As a result of Lemma 6.1 and the lemma below, we
obtain that (C, P) is an o-lollipop.

Lemma 7.1 If k ≥ r + 2 ≥ 5, then � ≤ k − 2.

Proof Suppose � ≥ k − 1 and recall that by Lemma 6.1 we have equality only if
(C, P) is an o-lollipop.

Case 1. Some h ∈ E(H ′) contains u�+1 and some vi ∈ V (C) − vc. By symmetry we
may assume i ≤ c/2 when (C, P) is an o-lollipop and i ≤ (c + 1)/2 when (C, P) is
a p-lollipop. Consider the cycle

C1 = vi ,C[vi , vc], vc, P, u�+1, h, vi .

If (C, P) is an o-lollipop, then C1 has at least (c − (c − 2)/2) + k − 1 = c +
2k−2−c+2

2 > c vertices, a contradiction. If (C, P) is a p-lollipop, then C1 has at least
(c − (c − 1)/2) + k = c + 2k−c+1

2 > c vertices, a contradiction again. This finishes
Case 1.

For 2 ≤ m ≤ �+1, let Bm = {e j ∈ E(C) : um ∈ e j } and bm = |Bm |. By Claim 3.3
and Corollary 6.2,

if b�+1 > 0, then either� = k − 1, (C, P)is an o − lollipop and

B�+1 = {ek−1}, or(C, P)is a p − lollipop and B�+1 = {ec}. (25)

Let F = { fm ∈ E(P) − {ec} : u�+1 ∈ fm}. By Lemma 5.8(A), |F | ≤ k − 1.

Case 2. NH ′(u�+1) ⊂ V (P).
By (25), Lemma 5.8(B) and the fact that |F | ≤ k − 1,

1+
(
k − 1

r − 1

)
≤ d(u�+1) ≤

(|NH ′(u�+1)|
r − 1

)
+ |F | + b�+1 ≤

(
k − 2

r − 1

)
+ (k − 1) + 1.

(26)
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For r ≥ 4, regrouping, we get

k − 1 ≥
(
k − 2

r − 2

)
≥

(
k − 2

2

)
= (k − 2)(k − 3)

2
,

yielding k2 − 7k + 8 ≤ 0, which is not true for k ≥ 6.
This settles the case r ≥ 4.
So suppose r = 3. In particular, if (C, P) is a p-lollipop, then u�+1 /∈ ec =

{vc, v1, u2}. Thus b�+1 > 0 only if (C, P) is an o-lollipop. If |NH ′(u�+1)| ≤ k − 3,
then

d(u�+1) ≤
(
k − 3

2

)
+ k =

(
k − 3

2

)
+

(
k − 3

1

)
+ 3 =

(
k − 2

2

)

+3 ≤
(
k − 2

2

)
+

(
k − 2

1

)
=

(
k − 1

2

)
,

a contradiction.
Hence by Lemma 5.8(B), |NH ′(u�+1)| = k − 2, u� ∈ NH ′(u�+1), and |S1 ∪ S2| ≤

k − 1. If |F | + b�+1 ≤ k − 2, then the RHS of (26) is at most
(k−1
r−1

)
; so suppose

|F | + b�+1 ≥ k − 1.
By Claim 3.4(A), for every fm ∈ F \ { f�} the lollipop (C, Pm) where Pm is

obtained from P by replacing the subpath um, fm, um+1, . . . , u�+1 with the subpath
um, fm, u�+1, f�, u�, . . . , um+1 also is a best lollipop. Since |F | ≥ k − 1 − b�+1 ≥
(r + 2) − 1 − 1 = 3 and ek−1 may contain only one vertex of P , for some fm ∈ F ,
um+1 /∈ ek−1 and hence by (25) um+1 does not belong to any edge of C . So we may
assume that b�+1 = 0. Then in view of (26), if d(u�+1) ≥ 1 + (k−1

2

)
, then

|F | = k − 1, each fm ∈ F is not contained in NH ′ [u�+1], and any two

vertices in NH ′(u�+1) f orm an edge of H ′ together wi th u�+1. (27)

So, since u� ∈ NH ′ [u�+1], f� �⊂ NH ′ [u�+1], but there is g ∈ E(H ′) such that
{u�, u�+1} ⊂ g. Moreover, since |NH ′(u�+1)| = k − 2 ≥ r = 3, we can choose
g ⊆ NH ′(u�+1) − {u1} and

each vertex in NH ′(u�+1) belongs to at least two edges of H ′. (28)

Then for P ′ obtained from P by replacing f� with g, the pair (C, P ′) also is a best
lollipop.

Suppose f� = {u�, u�+1, u}. By (27), u /∈ NH ′ [u�+1]. If u ∈ V (C) − V (P), then
we have Case 1 for (C, P ′), a contradiction. If u /∈ V (C)∪V (P), then we can extend
P ′ by adding edge f� and vertex u. So, u ∈ V (P) − NH ′ [u�+1]. But then in view
of (28), the size of NH ′(u�+1) corresponding to (C, P ′) will be k − 1 because of the
new vertex u, a contradiction. ��

Lemma 7.1 together with Lemma 6.1 yield

Corollary 7.2 (C, P) is an o-lollipop.
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8 Finishing Proof of Theorem 7

In this section we complete the proof of Theorem 7. One notable part of this section
is that we construct another optimal lollipop in which the vertex u2 plays the role of
u�+1. We consider the H ′-neighborhoods of both u2 and u�+1 as well as the edges in
C containing these vertices, and we analyze how these sets can interact. We conclude
that u2 and u�+1 cannot both have degree more than

(k−1
r−1

)
without creating a cycle

longer than C .
By Lemmas 4.1 and 7.1, 2 ≤ � ≤ k − 2. Corollary 7.2 gives that (C, P) is an

o-lollipop. The following lemma will be useful for bounding the size of NH ′(u�+1).

Lemma 8.1 Let s + 1 ≥ b ≥ 0. Let Q = v0, v1, . . . , vs+1 be a graph path, and I be a
non-empty independent subset of {v1, . . . , vs}. If B is a set of b edges of Q such that
no edge in B contains any vertex in I , then |I | ≤ � s−b

2 �.
Moreover if s − b is odd and |I | = s−b+1

2 , then for every 1 ≤ i ≤ s, vi ∈ I , or
ei ∈ B, or ei−1 ∈ B, or {vi−1, vi+1} ⊆ I .

Proof The claim is trivial if b = 0 so assume b > 0. Iteratively contract all b edges
of B, say Q′ = v′

0, v
′
1, . . . , v

′
s+1−b is the new path obtained. Observe that since I was

disjoint from the edges in B, after contraction I is still an independent set in Q′ such
that I ⊆ {v′

1, . . . , v
′
s−b}. Therefore |I | ≤ � s−b

2 �.
Now suppose s − b is odd, |I | = � s−b

2 �, and for some i , ei , ei−1 /∈ B. If without
loss of generality vi+1 /∈ I , then we contract the edge vivi+1 and apply the result to
the new path, I , and B to obtain I ≤ � s−1−b

2 � < � s−b
2 �. ��

For i ∈ {2, � + 1}, let Ai = NH ′′(ui ) ∩ V (C) and Bi be the set of edges in E(C)

containing ui . Also, let ai = |Ai | and bi = |Bi |. Let F = { fm : u�+1 ∈ fm}. We will
heavily use the fact that

1 +
(
k − 1

r − 1

)
≤ dH (u�+1) = b�+1 + |F | + dH ′(u�+1). (29)

Claim 8.2 If � ≥ 2, then some edge e ∈ E(H ′′) containing u�+1 intersects C.

Proof If the claim fails, then |NH ′′(u�+1)| ≤ |V (P) − V (C)| = � − 1 and f1 /∈ F .
Hence using Claim 3.3,

1+
(
k − 1

r − 1

)
≤ dH (u�+1) ≤

(|NH ′(u�+1)|
r − 1

)
+(c−2�)+�−1 ≤

(
� − 1

r − 1

)
+c−�−1.

(30)
Since � ≤ k − 2 and the function h(�) := (

�−1
r−1

) + c − � − 1 does not decrease for
integers � ≥ r − 1, in the range r − 1 ≤ � ≤ k − 2, (30) gives

1 +
(
k − 1

r − 1

)
≤

(
(k − 2) − 1

r − 1

)
+ (2k − 1) − (k − 2) − 1 =

(
k − 3

r − 1

)
+ k,

which is not true for k ≥ r + 2 ≥ 5.
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Fig. 2 An o-lollipop (C, P)

with edge f0 containing u�+1

Otherwise
(
�−1
r−1

) = 0, so (30) yields 1 + (k−1
2

) ≤ (2k − 1) − 2 − 1, which is not
true for k ≥ 5. ��

Fix an edge f0 ∈ E(H ′′) containing u�+1 and some v j ∈ V (C) pro-
vided by Claim 8.2 (see Fig. 2). Possibly, f0 = f1. Consider path P ′ =
v j , f0, u�+1, f�, . . . , f2, u2. Since V (P) − V (C) = V (P ′) − V (C) and f1 �
V (P) − V (C), (C, P ′) is also a best lollipop. Thus many arguments we apply to
u�+1 will also apply symmetrically to u2.

Let F ′ = { fm : m ∈ {0, 2, 3, . . . , �}andu2 ∈ fm}. If r = 3, then for � ≥ 3, not all
of f1, f2 and f3 contain {u2, u�+1}. So, we may assume

i f r = 3, then|F | ≤ max{2, � − 1}. (31)

Claim 8.3 A�+1 = A2.

Proof Suppose A�+1 �= A2. By symmetry, we may assume A2 − A�+1 �= ∅. We may
rename the vertices in C and edges in H ′′ so that vc ∈ A2 − A�+1 and f1 contains
vc and u2. This new lollipop (we still call it (C, P)) remains a best lollipop. So by
Claim 3.3, NH ′(u�+1) ⊆ {v�+1, v�+2, . . . , vc−�−1} ∪ {vc}. By Claim 3.3, B�+1 ⊆
{e�, e�+1, . . . , ec−�−1}. By Claim 3.2, if ei ∈ B�+1, then vi , vi+1 /∈ NH ′(u�+1), and
NH ′(u�+1) ∩ V (C) does not contain two consecutive vertices of C . Hence, remem-
bering that vc /∈ A�+1, we apply Lemma 8.1 to the (graph) path Q′ = v�, . . . , vc−�,
I = A�+1 and B ′ = B�+1, and get

a�+1 ≤
⌈ (c − 2� − 1) − b�+1

2

⌉
=

⌈c − 1 − b�+1

2

⌉
− � ≤ k − 1 − � −

⌊b�+1

2

⌋
.

(32)

Since u�+1 /∈ f1, |F | ≤ � − 1. Since NH ′(u�+1) ⊆ A�+1 ∪ V (P) − {u�+1} and
|V (P) − V (C) − u�+1| = � − 1, |NH ′(u�+1)| ≤ a�+1 + � − 1. Combining this
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with (32) and (29), we get

1 +
(
k − 1

r − 1

)
≤ b�+1 + (� − 1) +

(
k − 2 − 
b�+1/2�

r − 1

)
. (33)

For fixed k, r , � satisfying the theorem, themaximumof the sum b�+1+
(k−2−
b�+1/2�

r−1

)

over nonnegative b�+1 such that k − 2 − 
b�+1/2� ≥ r − 1 is achieved at b�+1 = 1.
Hence (33) yields 1 + (k−1

r−1

) ≤ 1 + (� − 1) + (k−2
r−1

)
, which in turn gives

(k−2
r−2

) ≤
� − 1 ≤ k − 3, a contradiction. ��

In view of this claim, let A = A�+1 = A2 and a = |A|. Since vc ∈ A, instead
of (32) we have

a ≤ 1+
⌈ (c − 2� − 1) − b�+1

2

⌉
= 1+

⌈c − 1 − b�+1

2

⌉
−� ≤ k−�−

⌊b�+1

2

⌋
. (34)

Claim 8.4 |NH ′(u�+1)| = a + � − 1, i.e., NH ′ [u�+1] = A�+1 ∪ V (P).

Proof If |NH ′(u�+1)| ≤ a + � − 2, then by (29) and (34),

1 +
(
k − 1

r − 1

)
≤ b�+1 + |F | +

(|NH ′(u�+1)|
r − 1

)
≤ b�+1 + |F | +

(
k − 2 − 
b�+1/2�

r − 1

)
.

(35)

For fixed k, r , �, |F | satisfying the theorem, the maximum of the RHS of (35) over
suitable b�+1 is achieved at b�+1 = 1. Hence (35) yields 1+ (k−1

r−1

) ≤ 1+|F |+ (k−2
r−1

)
,

i.e.
(k−2
r−2

) ≤ |F |. Since � ≤ k−2, for r = 3 by (31), this gives
(k−2

1

) ≤ max{2, �−1} ≤
k − 3, an impossibility, and for r ≥ 4 this yields

(k−2
2

) ≤ � ≤ k − 2, which is not true
for k ≥ r + 2 ≥ 6. ��
Claim 8.5 For all v j , v j ′ ∈ A, either j ′ = j or | j ′ − j | > � (modulo c).

Proof Suppose the claim fails. By symmetry, we may assume vc, v j ∈ A and 1 ≤ j ≤
�.

By Claim 3.5(3), if there exists e, f ∈ E(H ′′) such that {vc, u2} ⊂ e and
{v j , u�+1} ⊂ f , then f = e. Thus the only edge of H ′′ containing vc or v j and

u�+1 is f1. Hence dH ′(u�+1) ≤ 1+ (|NH ′ (u�+1)|−2
r−1

)
. Therefore, by (34) instead of (33)

we get

1 +
(
k − 1

r − 1

)
≤ b�+1 + � + 1 +

(
k − 3 − 
b�+1/2�

r − 1

)
. (36)

For fixed k, r , � satisfying the theorem, themaximumof the sum
(k−3−
b�+1/2�

r−1

)+b�+1
over suitable b�+1 is achieved at b�+1 = 1. Hence (36) together with � ≤ k − 2 yields
1+ (k−1

r−1

) ≤ 1+ (� + 1) + (k−3
r−1

) ≤ k + (k−3
r−1

)
, which is not true when k ≥ r + 2 ≥ 5.

��
Claim 8.6 Each fi ∈ F is contained in NH ′ [u�+1].
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Proof Assume there exists fi not contained in NH ′ [u�+1]. Since A2 ⊇ f1 ∩ V (C),
A2 �= ∅. So, by Claims 8.3 and 8.4, dH ′(u�+1) > 0. Let w ∈ fi − NH ′ [u�+1].
Also by Claim 8.4, ui ∈ NH ′(u�+1). Suppose first i = 1. Let v j ∈ A�+1. By
Claim 8.4, there is an edge h ∈ E(H ′) containing {u�+1, v j }. Then path P0 =
v j , h, u�+1, f�, u�, . . . , u2, f1, w is longer than P , a contradiction.

Suppose now i ≥ 2. Let g ∈ E(H ′) contain {u�+1, ui }. Let P1 = u1, f1, . . . , ui ,
g, u�+1, f�, u�, . . . , ui+1. Since V (P1)−V (C) = V (P)−V (C) and fi �⊂ V (P), the
lollipop (C, P1) is a best lollipop. If w /∈ V (C), then by appending to P1 edge fi and
vertex w we get a better lollipop, a contradiction. So, w ∈ V (C) − A, say w = v j .
Let P2 = v j , fi , ui+1, fi+1, . . . , u�+1, g, ui , fi−1, . . . , u2. Again, (C, P2) is a best
lollipop. Define H ′

2 to be the hypergraph with E(H ′
2) = E(H) − E(C) − E(P2),

and H ′′
2 = H ′

2 + fi . Note that H ′
2 and H ′′

2 play the role of H ′ and H ′′ respectively
for the best lollipop (C, P2). Moreover, define A′

2 = NH ′′
2
(u2) ∩ V (C) (A′

2 plays the
role of A�+1). Then many of the claims we proved for (C, P) also apply to (C, P2).
Namely, NH ′

2
[u2] = A′

2 ∪ V (P2) = A′
2 ∪ V (P) by Claim 8.4. Since v j ∈ fi , we have

v j ∈ A′
2, so v j ∈ NH ′

2
(u2) and there exists some edge in E(H) − E(C) − E(P2)

containing both u2 and v j . Since E(H)− E(C)− E(P2) ⊆ E(H ′′), This implies that
v j ∈ A2 = A, a contradiction. ��
By Claim 8.6, instead of (29) we have

d(u�+1) ≤
(|NH ′(u�+1)|

r − 1

)
+ b�+1 ≤

(
a + � − 1

r − 1

)
+ b�+1

≤
(
k − 1 − 
b�+1/2�

r − 1

)
+ b�+1. (37)

Claim 8.7 b�+1 = 1 and |NH ′(u�+1)| = k − 1.

Proof If b�+1 = 0, then by (37), d(u�+1) ≤ (k−1
r−1

)
< δ(H). On the other hand, if

b�+1 ≥ 2 then the maximum of the RHS of (37) is achieved at b�+1 = 3, and so is at
most

(k−1−1
r−1

) + 3 ≤ (k−2
r−1

) + k − 2 < δ(H). This proves b�+1 = 1. In view of this, if

|NH ′(u�+1)| ≤ k − 2, then d(u�+1) ≤ (k−2
r−1

) + 1 < δ(H). ��
By Claims 8.4 and 8.7, we must have

a − 1 = |A − V (P)| = k − 1 − � =
⌈

(2k − 1) − 1 − b�+1

2

⌉
− �

=
⌈

(2k − 1) − 1 − 1

2

⌉
− �.

We apply Lemma 8.1 to the (graph) path v1, v2, . . . , vc−1, with I = A − V (P),
B = B�+1, and c − 1 = 2k − 2. In particular since the numerator 2k − 3 is odd, the
“equality" part of Lemma 8.1 holds. That is,
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for every 1 ≤ i ≤ c − 1, vi ∈ A − V (P), or ei ∈ B�+1, or ei−1

∈ B�+1 or {vi−1, vi+1} ∈ A − V (P). (38)

We now complete the proof of Theorem 7 by showing that for some i , (38) does not
hold.

Since |V (P) − {u�+1}| = � ≤ k − 2 and |NH ′(u�+1)| = k − 1, A contains some
v j ∈ V (C) − {vc}. By Claim 3.3, j ∈ {� + 1, . . . , c − � − 1}. By symmetry, we may
assume j < c − � − 1.

We now show that (38) does not hold for i = j + 1. By Claim 8.5, v j+1 and v j+2
are not in A − V (P). By Claim 3.2(a), e j , e j+1 /∈ B�+1. Thus (38) fails, completing
the proof of Theorem 7.
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