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ABSTRACT

Riippell’s vultures are critically endangered, primarily due to anthropogenic activities such as habitat degradation, climate
change, and intentional and unintentional poisoning, which have led to the loss of nesting and breeding sites. To aid in the con-
servation and protection of these species, habitat evaluation and niche mapping are crucial. Species distribution modeling (SDM)
is a valuable tool in conservation planning, providing insights into the ecological requirements of species under conservation
concerns. This study employed an ensembling modeling approach to assess the habitat suitability and distribution of Riippell's
vultures across Kenya. We utilized four algorithms; Gradient Boosting Machine, Generalized Linear Model, Generalized Additive
Model, and Random Forest. Data on Riippell's vultures were sourced from the Global Biodiversity Information Facility, while key
environmental variables influencing the species' distribution were obtained from WorldClim. The resultant species distribution
map was overlaid with a conservation area map to evaluate the overlap between suitable habitats and existing protected areas.
Our analysis identified suitable habitats in regions such as the Masai Mara Game Reserve, Mount Kenya National Park, Nairobi
National Park, Tsavo East National Park, and Hell's Gate National Park, with the majority of these habitats located outside pro-
tected areas, except those within Hell's Gate National Park. Precipitation and elevation emerged as the primary environmental
predictors of the distribution of Riippell's vultures. Based on these findings, we recommend establishing vulture sanctuaries in
suitable habitats and hotspots to enhance the conservation of Riippell's vultures outside the protected areas.

1 | Introduction et al. 2016; Ogada and Buij 2011) and has underscored the sig-
nificant reduction in vulture numbers. Vultures hold immense
ecological importance due to their rapid carrion consumption,

effective control of problematic scavenger species, and potential

Riippell's vultures are critically endangered primarily due to an-
thropogenic activities like habitat degradation, climate change,

and intentional and unintentional poisoning. The decline of
vulture populations particularly in Africa has been a matter
of great concern as evidenced by various studies (Buechley
and Sekercioglu 2016; Kriiger et al. 2014; Ogada, Keesing,
and Virani 2012; Ogada, Botha, and Shaw 2016; Ogada, Shaw,

for disease regulation (Ogada, Keesing, and Virani 2012). As a
consequence of the heightened vulnerability, conservation ef-
forts have distinctly prioritized their preservation (Buechley and
Sekercioglu 2016; Plaza, Blanco, and Lambertucci 2020). Within
the spectrum of vulture species, encompassing eight Gyps
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varieties globally, Kenya is host to two resident species (G. afri-
canus and G. rueppellii) while the remaining six are migratory
(G.bengalensis, G.fulvus, G.coprotheres, G.tenuirostris, G.in-
dicus, and G.himalayensis). These two resident Gyps vulture
species, G. africanus and G. rueppellii, are critically endangered
as a result of various threats including habitat transformation
into agro-pastoral systems, loss of wild ungulates leading to re-
duced availability of carrion, illicit trade, persecution, and de-
liberate poisoning (Ogada, Botha, and Shaw 2016; Ogada, Shaw,
et al. 2016).

Reports of regional reductions of vultures have also been
reported in West Africa (Thiollay 2006), southern Africa
(Bamford et al. 2007; Boshoff, Piper, and Michael 2009),
and East Africa (Ogada and Keesing 2010; Virani et al. 2011;
Ogada, Keesing, and Virani 2012). In Kenya, for instance,
some vulture species are now classified as “vulnerable”, while
others are listed as “near threatened”, due to ongoing popula-
tion declines (Khatri 2015). This continuous downward trajec-
tory in vulture numbers raises profound concerns about the
stability of these species and underscores the urgency for com-
prehensive conservation strategies to mitigate their declining
numbers.

The distribution of Riippell's vulture spans across the Sahel re-
gion and East Africa, occupying diverse habitats such as Acacia
woodlands, grasslands, and montane regions. Displaying a
gregarious nature, this species congregates at carrion sites,
engaging in collective soaring within flocks. Its breeding be-
havior predominantly takes place in colonies situated on cliff
faces and escarpments, encompassing a wide range of eleva-
tions. Notably, Riippell's vulture finds its breeding and nesting
havens among cliffs in both northern and southern Kenya, as
well as in Tanzania. These sites serve as focal points where sub-
stantial populations of Riippell's vultures congregate, engaging
in the nurturing of offspring and foraging activities within the
surrounding vicinity (Virani et al. 2012). In Kenya, significant
breeding locations for Riippell's vultures encompass Kichwa
Tembo, Soit Pus, Kwenia, Hell's Gate, Ololokwe, and Losai
(Virani et al. 2012). These sites play a pivotal role in the species’
reproductive and ecological dynamics, making them essential
focal points for conservation efforts aimed at safeguarding the
future of Riippell's vulture populations.

Understanding the distribution of species and the use of hab-
itat is critical for determining spatial conservation priorities.
Species distribution models (SDMs) are critical tools for fore-
casting climatic and anthropogenic effects on species and
identifying priority habitats (Aryal et al. 2016; Guisan and
Thuiller 2005). Species distribution models can assist in de-
termining conservation priorities when combined with data
on protected areas and current threats to species (De Barros
et al. 2012). By linking the occurrence of a species at a given
location to environmental features like topography (eleva-
tion, slope aspect, etc.) and bioclimatic factors like tempera-
ture and precipitation, a habitat suitability index (HSI) can
be developed to establish the species niche range (Guisan and
Thuiller 2005) to inform conservation planning. This study,
therefore, applied species distribution modeling (SDM) to ex-
amine the spatial distribution of Riippell's vulture in Kenya
and the relative effect of environmental predictors on their

habitat suitability. The findings are intended to raise aware-
ness of distribution and inform the planning and conservation
management of protected areas and suitable habitats for the
conservation of Riippell's vulture.

2 | Materials and Methods
2.1 | Study Area

The study focused on the distribution of Riippell's vulture
across Kenya's landmass, covering an area of 580,367 km?,
located between latitudes 5°40’N and 4°4’S and longitudes
33°60’ E and 41°45’ E. The atmospheric temperature in Kenya
ranges from 15°C to 35°C and has increased at an average rate
of 0.21°C per decade since 1960 and is projected to increase
by 1.6°C to 2.7°C by 2060s. The country has a tropical climate
ranging from hot and humid along the coast to mild inland
and exceptionally dry in the North and North-East. Long rains
start from April to June, while short rains start from October
to December. February and March are the hottest months,
while July and August are the coolest. Around 10% of Kenya's
land mass is designated as protected areas, including national
parks and reserves for wildlife conservation. The first of these
was Nairobi National Park, which opened in 1946. Other
National parks and reserves include; Masai Mara National
Reserves, Mount Kenya National Park and Reserve, Tsavo
East National Park, Hell's Gate National Park, and Amboseli
National Park.

2.2 | Data Preprocessing

A total of 96 occurrence records for Riippell's vultures were ob-
tained from the Global Biodiversity Information Facility (GBIF.
org, 11 April 2024, GBIF Occurrence Download https://doi.org/
10.15468/dl.wh4ee7). To ensure data accuracy and reliability,
we used the ‘clean_coordinates’ wrapper function from the co-
ordinate cleaner package in R (Zizka et al. 2018). This process
addressed several inconsistencies, such as incomplete or zero
coordinates, misaligned coordinates with the indicated country
information, outliers, coordinates associated with biodiversity
institutions, and those representing central points of countries
or provinces. Additionally, urban areas were identified and ex-
cluded from the analysis. Furthermore, we implemented strin-
gent criteria to ensure that only species-level records directly
relevant to the specific taxonomic group under investigation
were included.

To address spatial autocorrelation and sampling bias in the
occurrence data, we employed a spatial filtering technique.
This approach was crucial in preventing model overfitting
and improving the accuracy of our findings (Boria et al. 2014).
To mitigate oversampling in regions with extensive surveys,
we applied a spatial filter distance of 40km, based on previ-
ous research on falcons and other raptors (Sutton et al. 2020).
We used the “thin” algorithm function from the R package
SpThin, to identify and remove clustered occurrence points
(Aiello-Lammens et al. 2015). After data cleaning, 94 (2 re-
cords removed) records were used for species distribution
modeling.
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2.3 | Environmental Modeling Data

To perform ecological niche modeling to determine the geo-
graphic distribution of Riippell's vultures in Kenya, 24 variables
(raster layers) including bioclimatic and geographical variables
were tested (Table 1). Nineteen bioclimatic variables with a spa-
tial resolution of 30 arc-seconds (roughly 1km?) were down-
loaded from the World Climate Database (http://worldclim.
org/bioclim) (Fick and Hijmans 2017) for the average period of
1970-2000 for climatic data.

A multicollinearity test was performed using USDM version 1.1-
18 R package (Naimi et al. 2014), and variance inflation factor
(VIF <3) was used to get rid of highly correlated environmen-
tal predictors among the 24 variables (Ngila et al. 2023; Zuur,
Ieno, and Elphick 2010). This was to ensure that only environ-
mental variables with ecological relevance were used in the
model. When the environmental elements used to train the
model are significantly correlated, it might be difficult to inter-
pret the model's output (Ngila et al. 2023; Phillips, Anderson,
and Schapire 2006), particularly the relative significance of the
variables and their response curves. After removing collinear-
ity, 11 variables remained and were used to generate the model
(Table 1).

2.4 | Species Distribution Modeling

We utilized a combination of four robust models: General
boosted regression model (GBM), General additive model
(GAM), General linear model (GLM), and Random Forest (RF)
to analyze the impact of bioclimatic and geographical variables
on the occurrence of Riippell's Vultures in Kenya. These mod-
els were run using an ensemble approach using the “biomod2”
package in R (Ngila et al. 2023; Smeraldo et al. 2020). GLMs
were configured with a quadratic link function and a maxi-
mum interaction level set to one. GBMs were constructed with a
maximum of 5000 trees. GAMs employed a binomial link func-
tion, while RF models consisted of 750 trees, with half of the
available predictors sampled for splitting at each node (Thuiller
et al. 2009).

The occurrence dataset was split into two subsets: 70% for
model calibration and 30% for model evaluation (Smeraldo
et al. 2020). To compensate for the lack of absence data in our
dataset, we randomly generated 10,000 pseudoabsences. Given
the broad geographical scope of our study, encompassing all
of Kenya, this number was considered appropriate (Barbet-
Massin et al. 2012; Phillips, Anderson, and Schapire 2006).
The data-splitting process was repeated twice, and the evalu-
ation metrics were averaged across both iterations. In total, 40
species distribution models (SDMs) were generated, compris-
ing four algorithms run five times each, with two replicates
for model evaluation.

2.5 | Model Testing

The accuracy of the final models was measured using the area
under the Areas under the Receiver Operating Characteristic
(ROC) curve and True Skill Statistics (TSS) (Bosch et al. 2014;

Stockwell and Peters 1999). AUC values closer to 1 indicate
higher model accuracy, while values near 0.5 suggest the
model performs no better than chance (Bosch et al. 2014).
AUC values are categorized as follows: > 0.9 =excellent,
0.7-0.9=good, and 0.7=uninformative (Baldwin 2009;
Lv et al. 2012; Swets 1988). TSS values are classified as fol-
lows: <0.40=poor, 0.40-0.60=fair, 0.60-0.80=good, and
0.80-1.0 =excellent (Rew et al. 2020). Additionally, the im-
portance of variables for the species was determined from the
ensemble prediction. Model performance was evaluated using
four accuracy metrics: TSS, AUC, specificity, and sensitivity
(Bosch et al. 2014).

2.6 | Reclassification of the Species Distribution

The examined simulated ensemble outputs were able to fore-
cast habitat appropriateness as well as the geographic region
currently occupied by Riippell's Vultures. Using equal natural
breaks from 0 to 1, the habitat appropriateness was catego-
rized into five equally sized groups. They were arbitrarily re-
grouped as highly suitable (> 0.8) which is a land with optimal
conditions suitable for Riippell's Vultures, suitable (0.6-0.8)
which is lands with minor climatic limitations for optimal
Riippell's Vultures, moderately suitable (0.4-0.6) which is
lands with more minor climatic limitations for Riippell's
Vultures, marginally suitable (0.2-0.4) that is land with major
climatic limitations that may significantly reduce the number
of Riippell's Vultures, and Unsuitable (<0.2) Lands with se-
vere climatic limitations that are not favorable for the survival
of Riippell's Vultures.

2.7 | Overlap of Distribution of Riippell’s Vultures
With Conservation Areas in Kenya

A shapefile of the conservation areas in Kenya was obtained
from https://datasets.wri.org/dataset/protected-areas-in-kenya
and overlaid on the species distribution map of Riippell's
Vultures to establish the overlap between the niche range and
the geographical boundaries of the conservation areas.

3 | Results

3.1 | Suitability Zones for Riippell's Vulture
Survival

A habitat suitability map (Figure 1b) was developed to illus-
trate the regions currently occupied by the Riippell's Vultures
in Kenya. Of the available 580,367 km? area of Kenya, the
model predicted 94.19% as unsuitable (546,683.9 km?), 3.69%
as an area that is marginally suitable (21,390.3km?), 1.60%
as moderately suitable (9306.9km?), 0.48% as a suitable area
(2781.7km?) and 0.04% area as an area with high suitabil-
ity (204.1km?). Most of Kenya (94.19%) can be considered
not suitable for Riippell's vultures. Suitable habitats for the
Riippell's Vultures marked A, B, C, D, and E on the Map of
Kenya showing the niche distribution and habitat suitabil-
ity of Riippell's vultures (Figure 1b) were found to be next
to Masai Mara game reserve, Mount Kenya National Park,
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TABLE1 | The Bioclimatic variables used to make the current vulture habitat projection.

Variables Acronym Units Source
Isothermality BIO3 Percentage (%) http://worldclim.
org/bioclim
Annual temperature range BIO7 Degrees Celsius (°C) http://worldclim.
org/bioclim
Precipitation of the wettest month BIO13 Millimeters (mm) http://worldclim.
org/bioclim
Precipitation of the driest month BIO14 Millimeters (mm) http://worldclim.
org/bioclim
Precipitation of the warmest quarter BIO18 Millimeters (mm) http://worldclim.
org/bioclim
Precipitation of the coldest quarter BIO19 Millimeters (mm) http://worldclim.
org/bioclim
Geographical variables
Aspect Asp Degree (°) Digital Elevation
Model in Worldclim
Human influence index HII Human influence index https://sedac.ciesin.

columbia.edu/data/colle
ction/wildareas-v2

Normalized difference vegetation index NDVI Normalized difference vegetation index www.earthexplo
rer.usgs.gov
Elevation Ele Meters (m) Digital Elevation
Model in Worldclim
Slope Slp Degree (°) Digital Elevation
Model in Worldclim
Variables removed after the multicollinearity test
Annual mean temperature BIO1 Degrees Celsius (°C) http://worldclim.
org/bioclim
Annual mean diurnal range BIO2 Degrees Celsius (°C) http://worldclim.
org/bioclim
Temperature seasonality BIO4 Degrees Celsius (°C) http://worldclim.
org/bioclim
Max temperature of warmest month BIOS5 Degrees Celsius (°C) http://worldclim.
org/bioclim
Min temperature of coldest month BIO6 Degrees Celsius (°C) http://worldclim.
org/bioclim
Mean temperature of wettest quarter BIOS Degree Celsius (°C) http://worldclim.
org/bioclim
Mean temperature of driest quarter BIOY Degree Celsius (°C) http://worldclim.
org/bioclim
Mean temperature of warmest quarter BIO10 Degree Celsius (°C) http://worldclim.
org/bioclim
Mean temperature of coldest quarter BIO11 Degree Celsius (°C) http://worldclim.
org/bioclim
Annual precipitation BIO12 Millimeters (mm) http://worldclim.
org/bioclim
(Continues)
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TABLE1 | (Continued)

Variables Acronym Units Source
Precipitation seasonality BIO15 Millimeters (mm) http://worldclim.
org/bioclim
Precipitation of driest quarter BIO17 Millimeters (mm) http://worldclim.
org/bioclim

Nairobi National Park, Tsavo East National Park and within
Hell's Gate National Park (Figure 1c). Most suitable habitats
are outside the protected areas (Figure 1d).

3.2 | Model Evaluation

The ROC and TSS values were 0.965 and 0.808, respectively.
The sensitivity and specificity values of AUC were respectively
92.473 and 88.199, while for TSS our model showed values of
92.473 and 88.346.

3.3 | Variables Influencing Habitat Suitability
for Riippell's Vulture

Precipitation was established to be key in determining the suit-
ability of Riippell's vulture habitats. Precipitation of the wettest
month influenced the distribution of the vulture by 25.1%, and
in the warmest month by 18.1%. Precipitation and elevation were
the key environmental predictors of habitat suitability and the
niche distribution of the Riippell's vulture. Isothermality (2.4%),
Normalized Difference Vegetation (2.4), Aspect (2.2%), Annual
temperature range (2%), and precipitation of the driest month
(1%) had the least effect on the distribution model (Figure 2).

3.4 | Response Curves

The most important variables for Riippell's Vultures distribution
were precipitation of the wettest month (BIO13), precipitation
of the warmest month (BIO18), elevation, Human influence
index, Precipitation of the coldest quarter (BIO19). The ideal
precipitation for Riippell's Vultures during the driest month
is between 75 and 95mm, while the optimum precipitation of
Riippell's Vultures during the wettest month ranges between 0
and 200mm. The distribution of Riippell's Vultures during the
warmest quarter starts to decline when precipitation goes below
125mm and suitable elevation for the distribution of Riippell's
Vultures is between 1000 and 2500 m. Slope, Human Influence
Index, aspect, and isothermality contributed the least to the
model (Figure 3).

4 | Discussion

4.1 | Suitability Zones for Riippell's Vultures'
Survival

Most areas in Kenya are not suitable for Riippell's Vultures with a
small range of 5.81% being suitable. Areas near protected areas in-
cluding Masai Mara National Reserve, Hell's Gate National Park,

Mount Kenya National Park, Nairobi National Park, and Tsavo
East National Park were found to be highly suitable places for the
vultures for either scavenging for food or breeding. Given that the
Riippells vulture is a raptor that nests on cliffs, breeding substrate
availability around the protected areas is critical for the species’
habitat (Mihoub et al. 2014). Additionally, the Gyps vulture favors
open territory like in the case of the protected areas to scavenge
for food (Dobrev and Popgeorgiev 2021). Similar findings were
reported in Spain, where the Griffon vulture was established in
the finest rocky surroundings and locations with a lot of livestock
(Arkumarev, Dobrev, and Stamenov 2019; Donazar 1990). Highly
suitable areas provide favorable conditions for shelter, forage,
and water (Jha, Kanaujia, and Jha 2022). Vulture conservation
is reliant on safeguarding the colony, mature trees for nesting,
breeding, and nesting cliffs, as well as the surrounding habitat
in terms of food supply, such as carrions for appropriate foraging.
Therefore, it is, imperative to protect the niche areas close to these
protected areas to act as conservation buffers for the protection
of the species. Such areas, particularly one holding breeding or
nesting colonies, could be classified as a Riippell's Vulture sanctu-
ary, like the case of Hell's Gate National Park. Hell's Gate National
Park is the only protected area observed to be holding breeding
and nesting colonies for Riippell's Vultures in Kenya. Suitable
habitats of Riippell's Vultures mostly occurred outside but near
the protected areas. This could be the primary cause of vulture
reductions throughout Africa (Ogada 2014). Thus, knowing the
niche range of vultures necessitates an understanding of the hab-
itat selection process (Mateo-Tomdas and Olea 2011). Therefore,
practical conservation measures should be implemented in the
most suitable regions. Marginally suitable, moderately suitable,
suitable areas, and highly suitable areas should be prioritized in
ecosystem management to prevent disruption of nesting, breed-
ing, and territorial expansion activities (factors influencing the
presence of endangered species) (Dobrev and Popgeorgiev 2021).
By enabling spatially explicit conservation planning choices,
the model created in this work could inform the management
of breeding habitats in Kenya (Mateo-Tomas and Olea 2010).
However, to achieve a greater scale of conservation of Riippell's
Vultures across the Kenyan landscape, there is a need for conser-
vation actions with a wide geographic reach (Botha et al. 2017;
Santangeli et al. 2019), and to lessen hazards to vultures and other
species (Santangeli et al. 2019). To identify and manage regional
issues, such as conflicts with humans that may be contributing
to vulture population loss, it will also be crucial to work closely
with stakeholders around the protected areas (Botha et al. 2017;
Buechley et al. 2019). An accurate and thorough understanding
of a species’ geographic distribution is essential for species man-
agement and habitat rehabilitation (Kumar and Stohlgren 2009),
especially for critically endangered species of conservation impor-
tance (Qin et al. 2017). We created the first predicted habitat dis-
tribution map for the declining population of Riippell's vultures in
Kenya to inform conservation planning.
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FIGURE 1 | (a) Riippell's Vulture observed in Tanzania by Greg Lasley (licensed under http://creativecommons.org/licenses/by-nc/4.0/); (b)
Map of Kenya showing the niche distribution and habitat suitability of Riippell's’ vulture; (c) Riippell's Vulture occurrence and niche overlap with
protected areas in Kenya (A =Masai Mara National Reserve, B=Hell's Gate National Park, C=Mount Kenya National Park, D =Nairobi National
Park, and E =Tsavo East National Park); (d) Riippell's vulture occurrence density in association with the protected areas in Kenya.
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FIGURE2 | Relative importance of environmental factors to the distribution of Riippell's Vultures in Kenya.

4.2 | Climatic Variables Influencing Habitat
Suitability for Riippell's Vulture

The two bioclimatic variables including precipitation and eleva-
tion were found to have a greater influence on Riippell's Vulture
distribution. There is evidence that rainfall patterns impact
vulture breeding success (Bridgeford 2003; Virani et al. 2012).
Also, the annual temperature range had a significant effect.
Temperature fluctuation regulates vulture reproduction, which
directly strains the animal (Baldwin 2009; Phipps et al. 2017).
The preference for highly elevated areas could be attributed
to the ability to limit human impacts to improve nesting effi-
ciency and enhance predator visibility (Donazar, Hiraldo, and
Bustamante 1993; Yamac 2007). The average rainfall around
Masai Mara National Park is about 650mm in the southeast to
about 1300mm in the northwest (Bartzke et al. 2018), Nairobi
National Park's annual rainfall increases from 500mm in the
southeast to 800 mm in the northwest (Matiko 2014), and around
Mount Kenya National Park average annual rainfall amounts
from 1600 to 2000 mm, in Hell's Gate National Park, the average
annual rainfall is about 670 mm (Odongo et al. 2015; Willkomm,
Vierneisel, and Dannenberg 2016) which all fall within the pre-
cipitation suitability range for the vulture. According to Virani
et al. (2012), precipitation of 600-1600 mm is most suitable for
nesting and breeding of Riippell's Vulture. The annual rainfall
around Tsavo National Park to the western part is around 450
and 350mm to the east part (Tolvanen 2004), Elevation can also
alter how Riippell's Vulture is dispersed by changing the avail-
ability of their food supply (Virani et al. 2011).

4.3 | Modeling Limitations and Potential
Improvements

It is crucial to recognize that where Riippell's vultures live and
how well they adapt are affected by different environmental
factors, not just ecological conditions. The study's species dis-
tribution models only considered climatic variables, potentially
overlooking the intricate interaction of other important factors
that influence the distribution of Riippell's vultures. Our re-
search reveals that the modeling framework we have outlined
and applied to Riippell's vultures offers a versatile tool capa-
ble of leveraging the increasing volumes of citizen science data
available to produce valuable insights into species distributions.
Importantly, it identifies areas where additional survey efforts
are needed to enhance confidence in predictions. Originally,
citizen science data became popular as a way to study where
different species are found, especially when it is hard to use
standard ways of collecting samples (Mori et al. 2019; Van
Strien, Van Swaay, and Termaat 2013). But even though they
gather lots of data about where species are, citizen science
datasets often have errors and differences (Kelling et al. 2015).
Also, the data available online usually do not give all the de-
tails about where samples were taken, including places where
the species being studied is not found, and they do not say how
much effort was put into finding the species. Without this cru-
cial information, it is difficult to ascertain whether the species
is absent or went undetected due to inadequate search efforts
(Croft et al. 2019). While these issues make it tough to use citi-
zen science data for developing species distribution models, we
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believe there is still a lot of useful information in these datasets
that deserves careful study and reevaluation for integration in
future models.

Integrating all citizen science data related to Riippell's vulture
across major online biodiversity platforms like eBird and iNatu-
ralist, in addition to GBIF, holds significant potential for improv-
ing conservation efforts and ecological research. While GBIF
provides a valuable global repository, expanding data collection
to platforms like eBird and iNaturalist can greatly enhance the
coverage, accuracy, and resolution of vulture distribution data.
These platforms attract a diverse, engaged user base, leading to
more frequent and geographically widespread observations. By
consolidating data from multiple sources, researchers can gain a
more comprehensive understanding of vulture populations, mi-
gration patterns, and habitat use, which is critical for informed
conservation strategies.

Moreover, platforms like eBird and iNaturalist offer tools for
real-time data submission and validation, which can help
in quickly identifying and responding to emerging threats
to Riippell's vulture populations. According to Matutini
et al. (2021), integrating citizen science data from various plat-
forms can significantly improve the quality and utility of biodi-
versity data, making it more accessible for both researchers and
policymakers. Milanesi, Mori, and Menchetti (2020) also em-
phasize the importance of using diverse data sources to refine

species distribution models, particularly for wide-ranging and
threatened species like Riippell's vultures. Therefore, leveraging
the strengths of multiple citizen science platforms can lead to
more robust and actionable insights into the conservation needs
of these vital scavengers.

When modeling the distribution of Riippell's vultures, land
cover variables can present several limitations despite their
importance. Land cover data often comes in broad categories
and coarse resolutions, which may not accurately capture the
specific habitat features or microhabitats that these vultures
depend on. Additionally, there can be a temporal mismatch, as
land cover data might not reflect recent environmental changes,
leading to potential inaccuracies in the model. The availability
of food sources, which are crucial for vultures, is not directly
represented by land cover data and can vary greatly depend-
ing on other factors like livestock density or human activities.
Furthermore, land cover maps may not effectively capture edge
effects, landscape fragmentation, or the spatial configuration
of different land cover types, all of which can influence vulture
behavior.

Imperfect detection due to human observation processes can
complicate modeling the distribution of Riippell's vultures.
While site occupancy models address this issue by estimating
the probability of both occupancy and detection, they may not
be well-suited for Riippell's vultures. This species’ wide-ranging,
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low-density nature and variability in presence make it challeng-
ing to meet the assumptions of these models. Therefore, alter-
native approaches that better account for vultures' mobility and
observation variability might be more appropriate for accurate
distribution modeling.

5 | Conclusion

Riippell's vulture has a limited niche range in Kenya re-
stricted to the designated protected areas including Masai
Mara game reserve, Mount Kenya National Park, Nairobi
National Park, Tsavo East National Park, and within Hell's
Gate National Park. However, suitable habitats for Riippell's
vulture lie outside most of the protected areas except Hell's
Gate National Park.

Precipitation and elevation are important environmental predic-
tors of habitat suitability and niche distribution of the Riippell's
vulture. However, elevation at a local scale is most important for
their nesting success.

We recommend conservation policymakers and species protec-
tion working groups review conservation management plans to
designate Riippell's vulture suitable habitats in Masai Mara and
Hell's Gate National Park as sanctuaries and to map for protec-
tion the suitable habitats around Mount Kenya National Park,
Nairobi National Park, and Tsavo East National Park through
a conservation buffer program to enhance the conservation im-
portance of the protected areas to the critically endangered vul-
ture species.

5.1 | Recommendations

We recommend increased conservation programs to protect the
habitats where the niche of Riippell’s Vultures occurs near pro-
tected areas as sanctuaries to encourage enough conditions for
the utilization of the species. Hell's Gate National Park is the
only park where the niche occurs within the protected area, and
we propose the gazettement of the park as an area of conserva-
tion interest for the Critically Endangered Riippell's Vultures.
High-priority protection should be provided to the highly suit-
able regions around the protected areas as sanctuaries. Also,
monitoring and restoring dwindling populations of Riippell's
vultures in their native environment, mapping, and predicting
possibly appropriate habitats for vulnerable and critically en-
dangered Riippell's vultures are essential.
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