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We refine a property of 2-connected graphs described in the classical paper of Dirac from 
1952 and use the refined property to somewhat shorten Dirac’s proof of the fact that each 
2-connected n-vertex graph with minimum degree at least k has a cycle of length at least 
min{n, 2k}.
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1. Introduction

One of the basic facts on 2-connected graphs is their characterization by Whitney [5] from 1932:

Theorem 1 (Whitney [5]). A graph G with at least 3 vertices is 2-connected if and only if for any distinct u, v ∈ V (G) there are 
internally disjoint u, v-paths.

Given paths P and P ′ with the common origin in a graph, we say P ′ is aligned with P if for all u, v ∈ V (P ) ∩ V (P ′) if u
appears before v in P , then u also appears before v in P ′ .

In his thesis [1] and classical paper [2], Dirac refined (the main part of) Theorem 1 as follows.

Lemma 2 (Dirac, Lemma 2 in [2]). If x and y are two distinct vertices of a graph without cut vertices, and if W is any given path 
connecting x and y, then the graph contains two paths connecting x and y and having the following properties: (i) they are internally 
disjoint; (ii) each of them is aligned with W.

He also says that this lemma can be further refined as follows.

Corollary 3 (Dirac, Corollary on p.73 in [2]). If x is adjacent to a vertex z of W , then the graph contains two paths connecting x and y
such that they have the properties (i) and (ii), and one of them goes through z.

Dirac used this corollary to prove the following famous theorem:
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Fig. 1. A 5-connected construction.

Fig. 2. Construction H3.

Theorem 4 (Dirac, Theorem 4 in [2]). Let n > k ≥ 2. Each 2-connected n-vertex graph with minimum degree at least k has a cycle of 
length at least min{n, 2k}.

Pósa [4] used Lemma 2 to derive an extension of Theorem 4. In this note, we refine Corollary 3 (with an almost the 
same proof) as follows.

Lemma 5. Let P be an x, y-path in a 2-connected graph G, and let z ∈ V (G). Then there exists an x, z-path P1 and an x, y-path P2
such that

(a) P1 and P2 are internally disjoint, and (b) each of P1 and P2 is aligned with P .

We then use this lemma to give a somewhat shorter and logically simpler proof of Theorem 4.

Remark 1. The authors [3] used Lemma 5 to prove an analog of Theorem 4 for Berge cycles in r-uniform 2-connected 
hypergraphs.

Remark 2. Douglas West pointed out how to easily derive Lemma 5 from Lemma 2. We still present the full proof in order 
to show a shorter proof from scratch for Theorem 4.

Remark 3. The straightforward generalization of Lemma 5 or Lemma 2 to k-connected graphs is not true. In fact, for each
positive integer k, there exists a k-connected graph G and an x, y-path P such that G has no 3 x, y-paths aligned with P .

Set A = {a1, . . . , ak−1} and B = {b1, . . . , bk−1}, and let Gk be the graph with vertex set A ∪ B ∪ {x, y} such that Gk[A ∪ B]
induces a clique, N(x) = A ∪ {b1} and N(y) = B ∪ {a1}. Define the path P = x, b1, b2, . . . , bk−1, ak−1, ak−2, . . . , a1, y. Observe 
that Gk is k-connected and any x, y-path aligned in P in G must use edge xb1 or edge a1 y. Hence Gk has at most 2
internally disjoint paths aligned with P . Fig. 1 displays the construction for k = 5.

Remark 4. Let x and y be distinct vertices in a graph G . If G is 2-connected, then Lemma 2 provides two internally disjoint 
x, y-paths aligned with any fixed x, y-path P in G . If G is k-connected for some k ≥ 3, then Menger’s Theorem guarantees k
internally disjoint x, y-paths. A natural question is: Given k ≥ 3, a k-connected graph G and an x, y-path P in G , how many 
of the k paths in Menger’s Theorem always can be chosen to be aligned with P?

Somewhat surprisingly, the answer is “zero”. We construct an example H3 for k = 3 is as follows (see Fig. 2). For 
1 ≤ i ≤ 6, let Wi = {vi,1, vi,2, vi,3}. Let V (H3) = {x, y} ∪ ⋃6

i=1 Wi . For 1 ≤ j ≤ 3, let P j = x, v1, j, v2, j, . . . , v6, j, y. The edge 
set of H3 contains the edges of these three paths plus H3[Wi] = K3 for all 1 ≤ i ≤ 6. By construction, H3 is 3-connected, and 
the only triple of internally disjoint x, y-paths in H3 is {P1, P2, P3}. But none of these paths is aligned with the x, y-path

P0 = x, v1,1, v2,1, v2,2, v1,2, v1,3, v2,3, v3,3, v4,3, v4,1, v3,1, v3,2, v4,2, v5,2, v6,2, v6,3, v5,3, v5,1, v6,1, y :
the edge v4,1v3,1 in P0 is opposite to an edge in P1, the edge v2,2v1,2 is opposite to an edge in P2 and the edge v6,3v5,3
is opposite to an edge in P3.

The examples for k ≥ 4 are very similar.

Remark 5. In the statement of Lemma 5, we cannot replace an x, y-path P2 with an x, z′-path for an arbitrary z′: If n ≥ 5, 
G is an n-cycle v1, v2, . . . , vn, v1 and P = v1, v2, . . . , vn , then G has no two v1, v3-paths both aligned with P .
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Fig. 3. A lollipop (C, P ).

Remark 6. After the proof of Theorem 4, Dirac [2] thanks a referee for simplifying his original proof. Bjarne Toft3 suggests 
that this referee possibly was Harold A. Stone.

2. Proofs

We view paths as having one of the two possible orientations. For a path P and u, v, w ∈ V (P ), let P [u, v] denote the 
subpath of P from u to v , and let P+(w) denote the part of P starting from w .

2.1. Proof of Lemma 5

We induct on |V (P )|. The base case P = x, y follows from the fact that the connected graph G − xy has an x, y-path P1, 
so we can take P2 = P .

Induction step: Let the lemma hold for all paths with fewer than s vertices and let P = v1, v2, . . . , vs with x = v1 and 
y = vs . By the induction hypothesis, the lemma holds for P ′ = v2, v3, . . . , vs with x′ = v2 and y′ = vs . Let P ′

1 and P ′
2 be the 

corresponding v2, z-path and v2, vs-path, respectively.
Case 1. v1 ∈ P ′

i for some i ∈ {1, 2}. Then let Pi = (P ′
i)

+(v1), and let P3−i be obtained P ′
3−i by adding edge v1v2 at the 

start.
Case 2. v1 /∈ P ′

i for i = 1, 2. Since G is 2-connected, G − v2 has a path from v1 to P ∪ P ′
1 ∪ P ′

2. Let Q be a shortest such 
path and u be the end of Q distinct from v1.

If u ∈ P ′
i , then replace P ′

i with Q , (P ′
i)

+(u), and then extend P ′
3−i by adding v1v2. Suppose now that u ∈ P − P ′

1 − P ′
2, 

say u = v j . Choose the minimum j′ ≥ j such that v j′ ∈ P ′
1 ∪ P ′

2. It exists, since vs ∈ P2, say v j′ ∈ P ′
i . In this case, let 

Pi = Q , P [v j, v j′ ], (P ′
i)

+(v j′ ), and P3−i = v1, v2, P ′
3−i . This proves the lemma.

2.2. Proof of Theorem 4

Suppose graph G is a counter-example to the theorem and its minimum degree, δ(G), is k. Since G is 2-connected, k ≥ 2.
A lollipop in G is a pair (C, P ) where C is a cycle and P is a path such that V (C) ∩ V (P ) is one vertex that is an end of 

P (see Fig. 3). A lollipop (C, P ) is better than a lollipop (C ′, P ′) if |V (C)| > |V (C ′)| or |V (C)| = |V (C ′)| and |V (P )| > |V (P ′)|.
Let (C, P ) be a best lollipop in G . For definiteness, let C = v1, v2, . . . , vc, v1 and P = u1, u2, . . . , u�+1, where u1 = vc . 

Since G is a counterexample, c < n. So, since G is 2-connected, � ≥ 1.
By the maximality of �, N(u�+1) ⊆ V (P ) ∪ V (C).

Case 1: There is vi ∈ N(u�+1). If 1 ≤ i ≤ �, then the cycle vi, vi+1, . . . , vc, u2, u3, . . . , u�+1, vi is longer than C , a con-
tradiction. Thus i ≥ � + 1. Symmetrically, i ≤ c − � − 1. On the other hand, if N(u�+1) ∩ V (C) contains two consecutive 
vertices vi and vi+1, then replacing edge vi vi+1 in C with the path vi, u�+1, vi+1, we again get a cycle longer than C . Since 
|N(u�+1) ∩ V (P )| ≤ �, we get

k ≤ d(u�+1) = |N(u�+1) ∩ V (P )| + |N(u�+1) ∩ V (C) − vc| ≤ � +
⌈
c − 1− 2�

2

⌉
=

⌈
c − 1

2

⌉
< k,

a contradiction.

Case 2: N(u�+1) ⊆ V (P ). Let N(u�+1) = {u j1 , . . . , u js } with j1 < j2 < . . . , < us . Let P ′ = v1, v2, . . . , vc, u2, . . . , u�+1, x =
v1, y = u�+1 and z = u j1 . By Lemma 5 for these P ′, x, y and z, there exists an x, z-path P1 and an x, y-path P2 that are 
internally disjoint and aligned with P ′ .

For h ∈ {1, 2}, let ah be the last vertex of Ph in C and bh be the first vertex of Ph in Y = {u j1 , u j1+1, . . . , u�+1}. Since P1
is aligned with P ′ , b1 = u j1 .

If a2 = a1, then since P1 and P2 are internally disjoint, a2 = a1 = v1, and one of P1 and P2, say Ph , does not contain 
vc(= u1) and first intersects P at some vertex ui with i ≥ 2. Then deleting from C edge v1vc and adding instead paths 
Ph[v1, ui] and P [u1, ui], we get a longer cycle, a contradiction. Thus, P1[a1, b1] and P2[a2, b2] are disjoint.

3 Private communication.
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Let Q be the longer of the two subpaths of C connecting a1 with a2. Then |V (Q )| ≥ 1 + ⌈ c
2

⌉
. Let b2 = u j . Since P1 and 

P2 are internally disjoint, j > j1. Let j′ be the largest index in { j1, . . . , js} that is less than j. Since j > j1, j′ is well defined 
and j′ ≥ j1.

Consider the closed walk

C ′ = a2, Q ,a1, P1[a1,u j1 ],u j1 ,u j1+1, . . . ,u j′ ,u�+1,u�, . . . ,u j(= b2), P2[b2,a2],a2.
Since P1[a1, u j1 ] and P2[b2, a2] are disjoint and both are internally disjoint from V (C) ∪ Y , C ′ is a cycle. It has at least 
|V (Q )| ≥ 1 + ⌈ c

2

⌉ = 1 + c − ⌊ c
2

⌋
vertices in C and at least 1 + d(u�+1) ≥ 1 + k vertices in P . Since |V (C) ∩ V (P )| = 1, we 

have

|V (C ′)| ≥ (1+ c −
⌊ c

2

⌋
) + (1 + k) − 1 > c.

This contradiction with the maximality of C proves the theorem.
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