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1. Introduction

One of the basic facts on 2-connected graphs is their characterization by Whitney [5] from 1932:

Theorem 1 (Whitney [5]). A graph G with at least 3 vertices is 2-connected if and only if for any distinct u, v € V(G) there are
internally disjoint u, v-paths.

Given paths P and P’ with the common origin in a graph, we say P’ is aligned with P if for all u,v € V(P) NV (P’) if u
appears before v in P, then u also appears before v in P’.
In his thesis [1] and classical paper [2], Dirac refined (the main part of) Theorem 1 as follows.

Lemma 2 (Dirac, Lemma 2 in [2]). If x and y are two distinct vertices of a graph without cut vertices, and if W is any given path
connecting x and y, then the graph contains two paths connecting x and y and having the following properties: (i) they are internally
disjoint; (ii) each of them is aligned with W.

He also says that this lemma can be further refined as follows.

Corollary 3 (Dirac, Corollary on p.73 in [2]). If x is adjacent to a vertex z of W, then the graph contains two paths connecting x and y
such that they have the properties (i) and (ii), and one of them goes through z.

Dirac used this corollary to prove the following famous theorem:
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Fig. 1. A 5-connected construction.
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Fig. 2. Construction Hs.

Theorem 4 (Dirac, Theorem 4 in [2]). Let n > k > 2. Each 2-connected n-vertex graph with minimum degree at least k has a cycle of
length at least min{n, 2k}.

Pésa [4] used Lemma 2 to derive an extension of Theorem 4. In this note, we refine Corollary 3 (with an almost the
same proof) as follows.

Lemma 5. Let P be an x, y-path in a 2-connected graph G, and let z € V (G). Then there exists an x, z-path P and an x, y-path P,
such that
(a) Py and P, are internally disjoint, and (b) each of P1 and P is aligned with P.

We then use this lemma to give a somewhat shorter and logically simpler proof of Theorem 4.

Remark 1. The authors [3] used Lemma 5 to prove an analog of Theorem 4 for Berge cycles in r-uniform 2-connected
hypergraphs.

Remark 2. Douglas West pointed out how to easily derive Lemma 5 from Lemma 2. We still present the full proof in order
to show a shorter proof from scratch for Theorem 4.

Remark 3. The straightforward generalization of Lemma 5 or Lemma 2 to k-connected graphs is not true. In fact, for each
positive integer k, there exists a k-connected graph G and an x, y-path P such that G has no 3 x, y-paths aligned with P.

Set A={ay,...,ax_1} and B=1{bq,...,br_1}, and let G, be the graph with vertex set AU B U {x, y} such that Gx[A U B]
induces a clique, N(x) = AU {b1} and N(y) = B U {a;}. Define the path P =x, by, b2, ...,bx_1,0k_1,0k_2,...,0a1,y. Observe
that Gy is k-connected and any x, y-path aligned in P in G must use edge xb; or edge a;y. Hence G, has at most 2
internally disjoint paths aligned with P. Fig. 1 displays the construction for k = 5.

Remark 4. Let x and y be distinct vertices in a graph G. If G is 2-connected, then Lemma 2 provides two internally disjoint
X, y-paths aligned with any fixed x, y-path P in G. If G is k-connected for some k > 3, then Menger’s Theorem guarantees k
internally disjoint x, y-paths. A natural question is: Given k > 3, a k-connected graph G and an x, y-path P in G, how many
of the k paths in Menger’s Theorem always can be chosen to be aligned with P?

Somewhat surprisingly, the answer is “zero”. We construct an example H3 for k = 3 is as follows (see Fig. 2). For
1<i<6, let W;={vj1,vi2,vi3}). Let V(H3)={x,y}U U?:1 Wi. For 1 <j<3,let Pj=X,vqj,V2j,...,Vs,j,y. The edge
set of H3 contains the edges of these three paths plus H3[W;] = K3 for all 1 <i < 6. By construction, Hs is 3-connected, and
the only triple of internally disjoint x, y-paths in Hs is {P1, P, P3}. But none of these paths is aligned with the x, y-path

Po=x,v1,1,V2,1, V22, V1,2, V13, V23, V33, V43, V41, V31, V32, V42, V52, V62, V63, V53, V51, V61, ¥:

the edge v4,1v3,1 in Po is opposite to an edge in Py, the edge v, 2v12 is opposite to an edge in P, and the edge ve3vs 3
is opposite to an edge in Ps.
The examples for k > 4 are very similar.

Remark 5. In the statement of Lemma 5, we cannot replace an x, y-path P, with an x, z/-path for an arbitrary z’: If n > 5,
G is an n-cycle v1,va,..., vy, vy and P =v1q,Vva,..., vy, then G has no two vy, v3-paths both aligned with P.

2



A. Kostochka, R. Luo and G. McCourt Discrete Mathematics 347 (2024) 114153

U1

Ug+1
Ve = U1

Fig. 3. A lollipop (C, P).

Remark 6. After the proof of Theorem 4, Dirac [2] thanks a referee for simplifying his original proof. Bjarne Toft> suggests
that this referee possibly was Harold A. Stone.

2. Proofs

We view paths as having one of the two possible orientations. For a path P and u, v, w € V(P), let P[u, v] denote the
subpath of P from u to v, and let P™(w) denote the part of P starting from w.

2.1. Proof of Lemma 5

We induct on |V (P)|. The base case P =x, y follows from the fact that the connected graph G — xy has an x, y-path Py,
so we can take P, = P.

Induction step: Let the lemma hold for all paths with fewer than s vertices and let P = vq, vy,..., vs with x=v1 and
y = vs. By the induction hypothesis, the lemma holds for P’ = v, vs, ..., vs with X =v; and y’ = vs. Let P} and P/, be the
corresponding v;, z-path and v;, vs-path, respectively.

Case 1. vq € P{ for some i € {1, 2}. Then let P; = (P;)+(V1), and let P3_; be obtained P;_; by adding edge vyv; at the
start.

Case 2. vy ¢ P for i =1,2. Since G is 2-connected, G — v has a path from v; to P U P} U P). Let Q be a shortest such
path and u be the end of Q distinct from v1.

If u € P/, then replace P} with Q, (P})*(u), and then extend P}_; by adding vv,. Suppose now that u € P — P{ — P},
say u = vj. Choose the minimum j’ > j such that vy € P} U Pj. It exists, since vs € P2, say vy € P/. In this case, let
Pi=Q,P[vj,vjl,(P)T(vj), and P3s_j=vy, vy, P;_,. This proves the lemma.

2.2. Proof of Theorem 4

Suppose graph G is a counter-example to the theorem and its minimum degree, 5(G), is k. Since G is 2-connected, k > 2.

A lollipop in G is a pair (C, P) where C is a cycle and P is a path such that V(C) N V(P) is one vertex that is an end of
P (see Fig. 3). A lollipop (C, P) is better than a lollipop (C’, P") if |V (C)| > |V(C")| or |V(C)| = |V (C)| and |V (P)| > |V (P)].

Let (C, P) be a best lollipop in G. For definiteness, let C = vq,va,..., V¢, vy and P = uq,uy, ..., usq1, where uq = ve.
Since G is a counterexample, ¢ < n. So, since G is 2-connected, ¢ > 1.

By the maximality of £, N(ugy+1) € V(P)U V(0).

Case 1: There is v; € N(ugy1). If 1 <i < ¢, then the cycle v, Viy1,..., V¢, U2, U3, ..., Ugs1, Vi iS longer than C, a con-
tradiction. Thus i > ¢ + 1. Symmetrically, i < c — ¢ — 1. On the other hand, if N(uyy+1) N V(C) contains two consecutive
vertices v; and v;41, then replacing edge v;v;+1 in C with the path v;, ugy1, vi+1, we again get a cycle longer than C. Since
IN(ug41) NV (P)| < £, we get

c—1-2¢ c—1
ksd(um):IN(um)ﬂV(P)|+|N(ue+1)ﬂV(C)—vclSEJ{ > —‘:[ 5 —‘<k,

a contradiction.

Case 2: N(ug41) € V(P). Let N(ugy1) =f{uj,, ..., uj} with j1 <j2 <...,<us Let P'=vq, vy, ..., Ve, U, ..., Upgq, X =
V1, Y =ugyq and z=uj,. By Lemma 5 for these P’,x,y and z, there exists an x, z-path Py and an x, y-path P, that are
internally disjoint and aligned with P’.

For h € {1, 2}, let a, be the last vertex of Py in C and by be the first vertex of Pp in Y = {uj,, uj,41,..., ugs1). Since Pq
is aligned with P’, by =uj,.

If ay = aq, then since P1 and P, are internally disjoint, ay = a; = v1, and one of P; and P,, say Pp, does not contain
ve(=uq) and first intersects P at some vertex u; with i > 2. Then deleting from C edge vqv. and adding instead paths
Pplv1,u;] and Pluq, u;], we get a longer cycle, a contradiction. Thus, P1[a1, b1] and Py[a3, b,] are disjoint.
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Let Q be the longer of the two subpaths of C connecting a; with az. Then [V (Q)| >1+ |—§'| Let by =uj. Since Py and
P, are internally disjoint, j > ji. Let j’ be the largest index in {ji, ..., js} that is less than j. Since j > ji, j’ is well defined
and j' > ji.

Consider the closed walk

C'=a3,Q, a1, Pilay, uj ], uj Uj 41, ..., Uj, Ugg1, Ug, ..., Uj(=b2), Pa[b2, az], az.

Since Pi[ai,uj,] and Py[by,ay] are disjoint and both are internally disjoint from V(C)UY, C’ is a cycle. It has at least
V@) =1+[5]=1+c—|§] vertices in C and at least 1+d(ues1) > 1+ k vertices in P. Since |V (C) N V(P)| =1, we
have
c
V@)= 04— |5 h+a+h-1>c
This contradiction with the maximality of C proves the theorem.
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