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Abstract

Motivation: Integrative analysis of large-scale single cell data collected from diverse cell populations

promises an improved understanding of complex biological systems. While several algorithms have been

developed for single cell RNA-sequencing data integration, many lack scalability to handle large numbers

of datasets and/or millions of cells due to their memory and run time requirements. The few tools which can

handle large data do so by reducing the computational burden through strategies such as subsampling

of the data or selecting a reference dataset, to improve computational efficiency and scalability. Such

shortcuts however hamper accuracy of downstream analyses, especially those requiring quantitative gene

expression information.

Results: We present SCEMENT, a SCalablE and Memory-Efficient iNTegration method to overcome these

limitations. Our new parallel algorithm builds upon and extends the linear regression model previously

applied in ComBat, to an unsupervised sparse matrix setting to enable accurate integration of diverse and

large collections of single cell RNA-sequencing data. Using tens to hundreds of real single cell RNA-seq

datasets, we show that SCEMENT outperforms ComBat as well as FastIntegration and Scanorama in

runtime (upto 214X faster) and memory usage (upto 17.5X less). It not only performs batch correction and

integration of millions of cells in under 25 minutes, but also facilitates discovery of new rare cell-types and

more robust reconstruction of gene regulatory networks with full quantitative gene expression information.

Availability and implementation: Source code freely available for download at https://github.com/

AluruLab/scement, implemented in C++ and supported on Linux.

Contact: aluru@cc.gatech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Several different methodologies have been developed for integrating

multiple single cell RNA-sequencing (scRNA-seq) datasets, with the

aim of eliminating batch effects inherent in samples spanning different

locations, labs, and conditions, while also conserving biological variation.

Currently available scRNA-seq integration methods can be classified into

three major categories: (i) Methods that output embedding onto a reduced

dimensional space such as PCA (Xu et al., 2021; Korsunsky et al., 2019),

(ii) Methods that output graphs such as a cell-cell k-nearest-neighbor

graph (Polański et al., 2020; Haghverdi et al., 2018), and (iii) Methods

that retain the gene-level quantitative information, i.e., their output is a

gene expression matrix containing gene expression profiles from input

cells (Zhang et al., 2019; Johnson et al., 2007). Although these methods

have been useful in integrating single cell datasets generated under a variety

of tissues and conditions, their applicability is constrained by limitations

on scale of data they could handle, and thus integration of large numbers

of cells and complex scRNA-seq datasets still remains a challenge.

A recent comprehensive survey of 16 different supervised and

unsupervised scRNA-seq integration methods showed that none of

these methods could successfully integrate 970K cells collected from

multiple samples of a mouse brain dataset due to runtime and memory

constraints (Luecken et al., 2022). To improve computational efficiency

and scalability, someA few tools designed for large data integration

perform one or more of the following: (i) partition the data at discrete

steps of the processing pipeline to solve data-specific problems (Li et al.,

2022a), (ii) operate on a reduced dimensional space of cells (Korsunsky

et al., 2019; Haghverdi et al., 2018), (iii) use only a representative subset

of datasets/genes (such as a reference dataset or a few highly variable

genes) (Dhapola et al., 2022; Hao et al., 2023), and (iv) use unscaled data
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2 Chockalingam et al.

Fig. 1. Overall workflow of SCEMENT. A detailed description of the integration methodology is provided in section 2.1.

instead of scaled data to avoid generating a dense matrix (Luecken et al.,

2022) However, such approaches limit applicability of the integrated data

for downstream processing steps such as for reconstruction of robust gene

regulatory and cell-cell interaction networks, as inclusion of only a subset

of genes and/or datasets for gene-gene and cell-cell inference leads to an

approximate network that may not be suitable for studying subtle and rare

interactions (Belcastro et al., 2011; Bansal et al., 2007; Bafna et al., 2023).

Our goal is to overcome limitations on numbers of genes or cells, while

simultaneously achieving data size scalability and adequate performance.

Here, we present a novel approach that uses a sparse implementation of

an empirical Bayes-based linear regression model to integrate scRNA-seq

data from a large number of datasets and expression profiles. While the

concept of applying linear regression model is well established in various

biological research areas (Pierson and Yau, 2015; Kerr, 2003; Dirmeier

et al., 2018), including in single cell research (Johnson et al., 2007)),

our method SCEMENT (SCalablE and Memory-Efficient iNTegration)

incorporates multiple algorithmic improvements for a faster and efficient

way to enable large-scale scRNA-seq data integration with millions of cells

and tens of thousands of genes.

In this paper, we demonstrate that by engineering sparsity during all

computations, even in cases where mathematical expressions involving

the input sparse matrix X could potentially lead to intermediate dense

matrices, and by designing an efficient order of computations, SCEMENT

outperforms ComBat (Johnson et al., 2007), FastIntegration (Li et al.,

2022a), and Scanorama (Hie et al., 2019) in run-time (upto 214X faster)

and memory usage (upto 17.5X less). It performs batch correction and

integration of 4 million cells collected from 121 samples with more than

38K genes in just 22 minutes. In addition, SCEMENT not only maintains

meaningful biological gene expression variations across cell-types even

when cells are clustered by their condition, but also facilitates downstream

processing of single cell data for better identification of rare cell-types and

more robust reconstruction of gene networks with full gene expression

information.

The paper is organized as follows: Section 2 describes key steps used in

the SCEMENT method for large-scale integration of single cell data, and

optimizations achieved in each step to make it faster and more memory-

efficient compared to other methods. Section 3 describes experimental

results to demonstrate improvements in quality and scalability, and also

SCEMENT’s utility for downstream applications: discovery of rare cell

types and more robust gene network reconstruction.

2 Methods

Linear regression models provide two key advantages for integration

of gene expression profiles from scRNA-seq data: 1) the ability to

accommodate various experimental conditions and parameters, and 2)

the ability to retain quantitative gene expression values after integration.

These methods are also more amenable to parallelization and optimization

when compared to the graph-based algorithms used in other scRNA-seq

integration methods such as Seurat and Scanorama Wang et al. (2021).

To account for technical and biological variations resulting from different

conditions, a linear model uses numerical and categorical type variables

to represent these variations. In this work, we assume that a given dataset

includes only categorical variables as is common with single-cell RNA-seq

datasets.

2.1 SCEMENT’s approach for large-scale integration

Similar to the model outlined in ComBat (Johnson et al., 2007), we

start with the following generative empirical Bayes-based linear regression

model:

X = ³+D´ + µ + ¶ϵ

where the gene expression data X of m cells and n genes is modeled as a

linear function of four terms:

• The average or overall gene expression, denoted by ³, is an m × n

matrix. Each row i in ³ corresponds to the gene expression profile of

the set of conditions the cell i belongs to.

• Linear combination of the independent variables, ´. It is the matrix of

regression coefficients (size c × n) with each column corresponding

to a specific variable. In case of integration, the independent variables

are the condition/batch variables. D is the design matrix, a binary

m× c matrix such that entry D[i, j] is 1 if input i is observed under

the condition j (Step 1 of Fig. 1).

• Additive batch effect denoted by µ (a matrix of size m× n).

• Multiplicative batch effect denoted by ¶ (a matrix of size m × n).

Furthermore, ϵ, a matrix of size n × n, is the error term, assumed to

follow a normal distribution with variance Ã, i.e, ϵ ∼ N (0, Ã2In).

SCEMENT employs an efficient algorithm to estimate the model

parameters: ³, ´, µ, ¶ and Ã. Complete details of the empirical Bayes

solution are provided in the supplementary text. In this section, we

present the key contributions underlying SCEMENT that enable large-

scale integration. As is common in statistics, we use ³̂, ˆ́, µ̂, ¶̂ and Ã̂ to

represent the estimated values of ³, ´, µ, ¶ and Ã. The overall approach

incorporated in the SCEMENT algorithm is illustrated in Figure 1.

2.1.1 SCEMENT’s strategy for computing the standardized matrix

Integration of gene expression data starts with the computation of the

standardized matrixZ (see Supplementary text S1.1.1 for howZ is defined

and computed) from the input data matrix X , since Z provides well-

behaved mean and variance characteristics for more robust analyses (Step

2 of Fig. 1). Computing Z requires computation of ³̂, ˆ́ and the variance

Ã̂, and these require matrix computation operations involving the data
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matrix and the design matrix. For microarray and bulk RNA-seq datasets,

where the number of observations are in the order of thousands, currently

available dense matrix multiplication routines are sufficient. However, for

single-cell RNA-seq datasets with hundreds of thousands to millions of

cells, computation of Z necessitates a memory-efficient approach.

Computing ³̂ and ˆ́: We propose a space and time efficient method to

accelerate the computation of ³̂, with the following optimization strategies

that enable scaling to millions of cells and tens of thousands of genes.

1. Current implementations use a 32-bit integer matrix to represent the

design matrixD. When all the´ variables are only categorical, entries

of D are binary i.e., either 1 or 0 and hence do not require 32-bit

representation. We use 8-bits for entries in D to improve space by a

factor of 4, which also leads to time efficient computation of DTD.

2. For computing ˆ́ = (DTD)−1DTX , the order of multiplying the

matrices can have significant effect on the runtime. For real datasets,

since the number of observations is an order of magnitude larger

than the number of genes, multiplication of (DTD)−1 with DTXT

is a better way to compute ˆ́ when compared to the product of

(DTD)−1DT and XT because the former takes O(c2) time while

the latter takes O(c2m) time when mk n.

Subsequent to computing ˆ́, ³̂ = 1
n
1m · (NT

c
ˆ́) is computed by using a

simple matrix vector multiplication routine.

Computing Ã̂ : Computing Ã̂2 = 1
m
(X − DT ´)»2 · 1m can lead to

explosion in the amount of memory usage even when X is sparse, because

realizing X − DT ´ in-memory creates a dense intermediate matrix of

size m× n.

Let R = DT ´. To avoid realizing this intermediate matrix X − R,

SCEMENT employs the algebraic expansion (X −R)»2 · 1m = X»2 ·

1m+R»2 ·1m−(2X»R) ·1m (similar to (a−b)2 = a2+b2−2ab).

By expanding (X − R)»2 into three terms, SCEMENT computes the

three terms efficiently as follows.

1. The first term X»2 ·1m is computed by squaring each entry in sparse

X summing it row-wise. Since X is a sparse matrix, this can be

computed using sparse matrix routines.

2. To compute the second term, we exploit the unique property of the

matrix R that R has as many unique rows as the number of unique

condition-profiles. A condition-profile is the set of unique conditions

a cell can belong to. Even in a large collection of datasets comprising

millions of cells, the number of unique condition-profiles is limited

to few dozens, guaranteeing sparsity.

For efficient computation, we exploit the fact that all the cells

that belong to the same condition-profile have the same row vector

in D and, therefore in R. In order to compute R2 · 1m efficiently,

SCEMENT first enumerates all the unique condition-profiles D and

then computes the product vector (D(i,·) · ˆ́) separately for each one of

them. We accomplish this with the aid of two auxillary data structures:

(a) A configuration matrix G, which contains set of condition-profile

vectors, and (b) A condition-profile lookup vector lD . R»2 · 1m can

be computed by adding these vectors as many times as the number of

cells in the corresponding condition-profiles.

3. The condition-profile lookup vector lD and the configuration matrix

G can also be used to compute the third term efficiently. SCEMENT

employs a series of multiplication of sparse-matrix and dense-vector,

one for each unique condition-profile.

With our efficient way of computing these three terms, the partial sums

corresponding to individual condition-profiles are added as soon as they

are computed, thus saving memory and time.

Finally, in order to maintain low memory footprint, we do not fully

realize Z as (X − ³̂T )/(Ã̂2 · 1n). We retain the left-hand side (X/(Ã̂2 ·

1n)) and the right-hand side (³̂T /(Ã̂2 · 1n)) of Z as matrices X′ and M ′

respectively (Step 3 of Fig. 1).

Each of the above steps to compute (X −R)»2 can be accomplished

efficiently in parallel as follows. For the first term X»2 · 1m, each of

the row sum of squares can be computed by a parallel reduction across

each each row X»2. In case of the second term, a coordinate sparse

(COO) representation of the matrixX along with the row-wise distribution

of configuration matrix G and the look-up vector lD , enables efficient

distribution of the row-wise computations in parallel. Similarly parallel

computation of the third term is accomplished by row-wise distribution of

the configuration matrix G.

Note that X′ is the same size as the input matrix and M ′ is of the

size c′ × n, where c′ is the number of unique configuration-profiles in

the dataset. In other words, M ′ has only one row only for each unique

configuration-profile and not for each cell. In the next sections, we show

how X′ and M ′ matrices can be used in the downstream computations

instead of the Z matrix.

2.1.2 SCEMENT’s approach for Batch Correction

Iterative µ̂i and ¶̂i update : Empirical Bayes method follows an iterative

algorithm to estimate µ̂i and ¶̂i. The primary challenge in the iterative

update of ¶̂
(k+1)
i at the k-th iteration is to evaluate the expression

(

Z − µ̂
(k+1)T

i · 1n

)»2

· 1n

without realizing the dense matrix Z in memory, where µ̂
(k+1)
i is the

update of µi at k-th interation (Step 4 of Fig. 1).

Similar to the computation of Ã̂2 discussed in section 2.1.1, the above

computation can be accomplished by expanding the expression into three

terms (i) Z»2 · 1 , (ii) µ̂
(k+1)T

i · 1, and (iii) Z » µ̂
(k+1)T

i · 1. As

mentioned earlier, in SCEMENT, Z is maintained as two matrices X′ and

M ′. Therefore, the first and the third terms expand to (X′ −M ′)»2 · 1

and (X′−M ′)» µ̂
(k+1)T

i · 1. Both these terms can be further expanded

and each of the individual terms can be computed without having to realize

the standardized Z matrix. Each term is successively added up to obtain

the update for ¶̂
(k+1)
i .

By not directly computing the Z matrix and using algebraic expansion

for the terms where Z appears, we retain sparsity of the computations,

and thereby efficiently compute each update. Also, parallel computation

of these terms is accomplished in a similar manner to the computations

described in section 2.1.1.

Batch Corrected Matrix : In the final step, we convert the sparse X

matrix to dense and update it as the batch corrected matrix Xb = ³̂ +

X ˆ́ + σ̂

δ̂
(Zi − µ̂i). Similar to computation of Z in section 2.1.1, it is

possible to retain the batch corrected matrix, Xb as two sparse matrices

– one each corresponding to the left-hand side and the right-hand side of

Z (Step 5 of Fig. 1). However, to facilitate downstream processing of the

integrated matrix such as for computing PCA, UMAP, t-SNE, clustering

and plotting, SCEMENT converts the sparse X to dense X (Step 6 of

Fig. 1).

2.2 SCEMENT’s Implementation

We implemented two versions of SCEMENT compatible with the AnnData

data structure used in Scanpy. One in the python programming language

(pySCEMENT) and the second is a faster parallel version in C++

(SCEMENT−CPP). Both versions use single precision floating point (32-

bit) values for the computations. The python version uses sparse matrix

libraries available in the scipy python package for representing the input

data andX′. Though the input data andX′ are stored in compressed sparse

array (CSR) representation, numpy library arrays are used to store all the

other matrices and vectors in the algorithm. For the construction of design

matrix D, we used the formulaic library, which allows for saving space

with the use of 8-bit integers.
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OpenMP is used for implementation of the parallel SCEMENT

algorithm in C++. In order to enable efficient computations, we use the

coordinate sparse (COO) representation to store the input data and X′.

Armadillo C++ libraries are used for representing all other dense vectors

and matrices. While parallel sparse computations are implemented as per

section 2.1 , ScaLAPACK library is used for computations involving dense

matrices and vectors.

It should be noted that in contrast to existing integration methods,

SCEMENT provides an optional pre-processing step (shown as Step P

of Fig. 1). This step allows for construction of an integrated data matrix

containing the union of genes across all batches. For each sample/batch,

we first identify genes missing in that particular sample/batch, but present

in any of the other batches. We then insert rows with zero entries

corresponding to the missing genes into each of the gene expression

matrices such that all of the input matrices have the same set of genes.

Subsequent merging of the modified matrices, thus generates an integrated

data matrix containing the union of genes.

2.3 Performance Assessment of SCEMENT

We performed two types of evaluation studies using real scRNA-seq

datasets from different tissues and organisms (Table S1). First, we

compared performance of four other previously published integration

methods–FastMNN, ComBat, Scanorama and Seurat (Table S1) in terms

of both integration quality and separation of clusters in UMAP plots using

scRNA-seq datasets from A. thaliana plant root (Jean-Baptiste et al.,

2019; Gala et al., 2021) and human aortic valve (Xu et al., 2020).

Results from these runs were subsequently used to compute quality control

metrics according to the scIB software package (Luecken et al., 2022).

We also visually compared clusters of aortic valve dataset generated using

SCEMENT, with the aforementioned four methods. Cell-type annotations

used in UMAP plots of human aortic valve cells were according to Xu

et al. (2020), and for Arabidopsis cells according to Jean-Baptiste et al.

(2019), and Gala et al. (2021).

Next, we evaluated scalability of the integration methods using two

different human peripheral blood mononuclear cell (PBMC) datasets: 1) a

COVID-19 dataset of about 1.23 million cells from 205 samples (Ren et al.,

2021) and, 2) a collection of 17 human PBMC datasets containing a total

of 794,170 cells obtained from the 10X Genomics web repository (Table

S2). We assessed runtime and memory usage of all the integration methods

with varying number of datasets/cells, and with integrated data consisting

of union as well as intersection of genes. All runs were conducted on a

machine equipped with a 72-core Intel® Xeon® E7-8870 CPU and main

memory of 1 TB shared between all the cores.

2.3.1 Construction and analysis of Gene Regulatory Networks

We used the pySCENIC workflow (Kumar et al., 2021) to construct gene

regulatory networks (GRNs) from integrated data matrices consisting of

union as well as intersection of genes. Here, we use human PBMC

datasets (Table S2) containing cells ranging from ≈ 20,000 to 166,000

cells. The quality and performance of the resulting networks were

assessed using standard statistical measures: recall (percentage of correct

edges predicted), precision (percentage of correct edges among all

edges inferred), the F-score defined as: F-score = (2 × precision ×

recall)/(precision + recall), and the area under the receiver operating

characteristic (AUROC) and the area under the precision-recall (AUPR)

curves plotted by comparing reconstructed network(s) against the reference

network. To evaluate biological relevance of networks generated from

different integrated matrices, we used known human transcriptional

regulatory reference networks from the TRRUSTv2 database (Han et al.,

2018), hTFtarget database (Zhang et al., 2020), and PBMC (Li et al.,

2022b) as ground truths. These networks were constructed by text-

mining of published literature and manual curation, and include a total of

1,642 non-redundant high confidence regulatory interactions between 168

Fig. 2. UMAP visualizations of cell-type clusters from the human aortic valve dataset after

batch correction and integration with ComBat, Scanorama, Seurat and FastMNN

transcription factors (TFs) and 842 target genes (Table S3). For the purpose

of computing statistical measures, all known TF-target interactions from

amongst the 1,642 interactions were considered as true positives (TPs)

whereas TF-target interactions not listed in the ground truth network were

considered as true negatives (TNs).

2.3.2 Cell-type Identification from Large-scale Integrated Data

We generated integrated data matrices with SCEMENT-CPP using varying

number of datasets and cells sampled from the≈ 1.2 million cell scRNA-

seq dataset (Ren et al., 2021), and subsequently applied the Azimuth

package (https://azimuth.hubmapconsortium.org/) on the integrated data

to automatically identify various human PBMC cell-type populations.

3 Results and Discussion

3.1 Linear regression model for scRNA-seq integration

SCEMENT is designed to be an unsupervised computational method

that makes large-scale batch correction and integration of scRNA-seq

datasets feasible, while retaining gene expression profiles of all available

genes from input cells in the integrated data matrix. A recent survey

of over 16 different supervised and unsupervised scRNA-seq integration

methods (Luecken et al., 2022) ranked four unsupervised methods −

FastMNN (Haghverdi et al., 2018), Seurat v3 (Butler et al., 2018),

Scanorama (Hie et al., 2019) and ComBat (Johnson et al., 2007), amongst

the top 10 best performing methods. These four methods also meet our

criteria of returning an integrated gene expression matrix of batch corrected

values as output. Therefore, we sought to further evaluate FastMNN,

Scanorama, Suerat and ComBat.

We used scRNA-seq datasets generated from two different organisms

containing varying sizes and complexity to assess the four integration

methods: wild-type A. thaliana plant root dataset (AtRD) with 14,427

cells collected from two separate studies and nine different batches (Jean-

Baptiste et al., 2019; Gala et al., 2021), and a human aortic valve dataset

(HAVD) containing 17,985 cells collected from four individuals; two

healthy and two diseased (Xu et al., 2020).

We employed 8 different evaluation metrics from the scIB

package (Luecken et al., 2022) in conjunction with UMAP visualizations to

make valid comparisons of the four integration methods. Our results show

that ComBat’s overall performance is slightly superior compared to the

other three methods for the AtRD datasets, and is similar to Scanorama

and FastMNN but inferior to Seurat with respect to the HAVD dataset

(Table 1). The UMAP visualizations however suggest that the ComBat

model is somewhat better at preserving biological variation within different

cell type/states compared to the other three methods (Figure 2; Figure S1).
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Table 1. Benchmarking ComBat, Scanorama, Seurat and FastMNN for scRNA-seq data integration using eight scIB metrics ( Luecken et al. (2022)). A brief description of the metrics is

given in Supplementary text. Numbers in bold represent the average of the 8 metrics for each method.

Aortic Valve Dataset Arabidopsis Dataset

ComBat Scanorama Seurat FastMNN ComBat Scanorama Seurat FastMNN

NMI_cluster/label 0.3694 0.3569 0.4807 0.3931 0.7384 0.7323 0.6981 0.5833

ARI_cluster/label 0.2013 0.2293 0.3753 0.3418 0.6299 0.6345 0.5655 0.4035

ASW_label 0.4974 0.5033 0.5327 0.5004 0.5568 0.5547 0.5542 0.5171

ASW_label/batch 0.8499 0.8892 0.9101 0.8907 0.9198 0.9044 0.8926 0.9083

Isolated F1 0.5191 0.4940 0.7298 0.4495 0.7496 0.8534 0.7470 0.7568

Isolated ASW 0.3942 0.4428 0.5640 0.4451 0.6278 0.6055 0.6297 0.5489

Graph Conn. 0.9404 0.9605 0.9882 0.9057 0.9486 0.9607 0.9613 0.9727

HVG Cons. 0.1340 0.0205 0.0340 0.0490 0.2697 0.0163 0.0654 0.0203

Average Score 0.4882 0.4871 0.5769 0.4969 0.6801 0.6577 0.6392 0.5889

Table 2. Runtime and memory usage of ComBat, Scanorama, Seurat and FastMNN for

scRNA-seq data integration. HAVD = Human aortic valve dataset and AtRD = Arabidopsis

root dataset.

Runtime (s) Memory (GB)

HAVD AtRD HAVD AtRD

ComBat 172.81 66.71 19.41 6.11

Scanorama 530.75 125.63 38.34 13.24

Seurat 3298.44 1792.36 84.53 42.63

FastMNN 187.22 136.12 5.01 4.66

Whereas cell-types such as lymphocytes, macrophages, endothelial cells

(VEC) and interstitial cells (VIC) are separated into well-defined clusters

by all four methods, UMAP visualizations show that Scanorama, Seurat

and FastMNN have a tendency to overmix cells, thus resulting in poor

representation of the transcriptional heterogeneity between healthy and

diseased cell states.

In this context, it should be noted that the Arabidopsis dataset consists

of cells from only wild-type root samples (normal) whereas the aortic valve

dataset consists of cells from healthy (normal) and diseased (abnormal)

individuals. We therefore speculate that the sub-optimal performance of

ComBat with the aortic valve dataset as observed in Table 1 is perhaps due

to the less aggressive cell mixing characteristics of the ComBat model,

which in turn facilitates a better separation of healthy from diseased cells,

even within the same cell-type. Moreover, ComBat requires significantly

less runtime and memory to integrate these scRNA-seq datasets when

compared to Seurat and Scanorama (Table 2). We, therefore decided to

use the linear regression model as a basis for developing a faster and more

efficient method for large-scale scRNA-seq integration.

As our new parallel algorithm SCEMENT is built upon and extends the

linear regression model previously applied in ComBat to an unsupervised

sparse matrix setting, we first evaluated its integration performance in

comparison to ComBat. As expected, our results show that there are

no significant qualitative differences between ComBat and SCEMENT

(Figure S2).

3.2 SCEMENT enables large-scale scRNA-seq integration

We assessed SCEMENT’s performance for large-scale integration of

scRNA-seq datasets by measuring its runtime and memory usage with

varying number of datasets/batches and cells. We used two sets of PBMC

derived scRNA-seq datasets – 205 samples from COVID-19 patients

(Table 3) and another from 17 different healthy individuals (Table S2).

We performed batch correction and integration using intersection (genes

common to all datasets) as well as the union of genes (all genes from all

datasets), for all of the 8 subsets ranging from 3 to 205 COVID-19 datasets,

and 7 subsets ranging from 2 to 17 healthy PBMC datasets. As expected,

Table 3 and Table S2 show that as the number of datasets increase, the

number of intersecting genes decrease. In contrast, this number increases

when we use the union of genes for constructing the integrated data.

We assessed runtime and memory consumption of both the python

(pySCEMENT) and the C++ (SCEMENT-CPP) versions of SCEMENT

and compared these with three other methods – ComBat, Scanorama and

FastIntegration (Table S1). ComBat uses the linear regression model for

scRNA-seq data integration (Johnson et al., 2007), and Scanorama (Hie

et al., 2019) and FastIntegration (Li et al., 2022a) have previously been

shown to scale to million(s) of cells. FastIntegration is also a fast and

high-capacity version of the Seurat integration tool. By default, currently

available integration methods, including ComBat, Scanorama, and

FastIntegration, generate an integrated data matrix containing cells with

either a set of highly variable genes or the intersecting set of genes from all

batches. However, in this study, we modified the ComBat workflow and

applied the same preprocessing step as in the SCEMENT workflow (step P

in Figure 1) to generate an integrated data matrix containing union of genes

using ComBat. Therefore, we include ComBat, but exclude FastIntegration

and Scanorama from our comparisons involving union of genes.

Our results show that SCEMENT-CPP outperforms all other methods

in runtime and memory usage for both union as well as the intersection

of genes (Figures 3 and 4; Figures S3 and S4; Tables S4–S7). It is

upto 214X faster than FastIntegration, 106X faster than Scanorama, and

20X faster than ComBat depending on the number of datasets/cells/genes

involved in the integration task. Moreover, SCEMENT-CPP uses upto

16X less memory than Scanorama and 10X less than ComBat, thus

enabling integration of more than a million cells and more than 26K

genes in just 16-17 minutes. Even for smaller integration tasks for

less than 200K cells where all other methods are able to complete the

integration task, SCEMENT is about 10X times faster than ComBat,

uses less than 20GB of memory, and thus can accomplish this

task on a modestly equipped workstation. Interestingly, ComBat and

pySCEMENT perform comparably with respect to runtime, even though

ComBat’s implementation is in parallel while pySCEMENT is sequential.

Table 3. COVID-19 datasets from Ren et al. (2021)

No. of

Datasets

No. of

Cells

No. of Genes

Intersection

No. of Genes

Union

3 11,540 16,601 21,956

5 25,090 16,693 24,176

8 53,276 15,291 24,588

24 150,142 13,337 25,482

60 351,954 12,222 26,180

80 502,001 12,915 26,139

115 701,072 11,666 26,427

205 1,226,553 11,437 26,817
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Fig. 3. Runtime and memory usage of various scRNA-seq data integration methods for

intersection of genes using 10X Genomics PBMC datasets.

Fig. 4. Runtime and memory usage of various scRNA-seq data integration methods for

union of genes using COVID-19 datasets (Ren et al., 2021).

pySCEMENT is also significantly more memory-efficient than ComBat.

In fact, ComBat could not scale beyond 700K cells for the union of genes

as it runs out of memory available on our benchmarking hardware. This

is because pySCEMENT uses a sparse matrix with 32-bit floating point

option while ComBat’s implementation uses the dense 64-bit matrix.

FastIntegration and Scanorama require significantly longer runtimes

and more memory usage respectively, when compared to SCEMENT and

also ComBat (Figures 3 and 4; Tables S4–S7). In our studies, Scanorama

could not successfully complete the runs beyond ≈800K cells for the

intersection of genes. In addition, we (this study) and others have shown

that FastIntegration can scale to millions of cells, however it accomplishes

large-scale integration by 1) splitting a large integration task into a number

of smaller integration tasks, which it then successively integrates to build

the final integrated matrix, 2) restricting the data integration process to

intersection of genes, and 3) requiring each individual dataset to be small

as it uses Seurat to process the datasets. Of the 17 different human PBMC

datasets (Table S2), one dataset contains a large number of cells (≈606,606

cells). In such a scenario, FastIntegration fails to complete the integration

task.

To further assess SCEMENT’s scalability beyond a million cells, we

applied it to a dataset of≈ 4 million cells and 38,481 genes collected from

121 samples (Cao et al., 2020). Pre-processing and filtering of the data

from 121 samples using Scanpy took about 78 minutes for pySCEMENT

and SCEMENT-CPP, and while both were able to successfully integrate

data from all samples, SCEMENT-CPP was signficantly faster than

pySCEMENT and completed the run in just 22 minutes (Table S8).

3.3 SCEMENT enables identification of rare cell types from

large-scale scRNA-seq data

Large-scale scRNA-seq data analysis has been shown to facilitate a deeper

understanding of the cellular heterogeneity and discovery of new rare cell-

types from complex tissues (Jindal et al., 2018; Qian et al., 2023). To

Fig. 5. Stacked bar plot showing percentage of cells of each cell-type in the 50K, 500K

and 1.2 million cell datasets. The CD8 and ASDC cell types are identifiable only in the 1.2

million dataset.

assess whether SCEMENT enables improved identification of rare cell-

types, we used scRNA-seq data from PBMCs (Ren et al., 2021), and

generated integrated matrices from 3 random subsets with cells ranging

from ≈ 50K to 1.2 million cells. The resulting matrices were subjected

to automated cell-type identification using the Azimuth package. It is

currently not feasible to run Azimuth on large data with full gene set.

Therefore, we restricted the number of genes in the integrated matrices to

only the top 1000 highly variable genes to make it feasible to perform cell-

type annotation on large-scale data. Even with such limitations, our results

show that the number of cell-types identified increase with increasing

number of cells (Figure 5; Table S9). Dendritic cells are the rarest cell-

types amongst the PBMCs (Patente et al., 2019). In our study, a minimum

of 500K cells were needed for discovery of cDC1 (conventional dendritic

Cell 1) cells and more than a million for ASDC (AXL+dendritic cell) cells.

It should be noted that such rare cell-type identification is feasible using

Table 4. Assessment of network quality. scRNA-seq data from 9 different human PBMC

datasets and cells totaling to ≈ 86K was used to generate six different integrated matrices

containing either the intersection or the union of genes. GRNs were then reconstructed from

each of these integrated matrices using the pySCENIC workflow.

Method Cells Genes Edges Prec. Recall AUROC AUPR

Intersection of genes

SCEMENT 86692 12337 17862 0.070 0.451 0.689 0.038

ComBat 86685 12337 17460 0.068 0.445 0.689 0.039

Scanorama 79528 12337 17131 0.070 0.374 0.657 0.034

FastIntegration 75159 12337 15474 0.074 0.414 0.670 0.036

Union of genes

SCEMENT 86692 25621 20067 0.072 0.496 0.709 0.042

ComBat 86692 25621 19787 0.074 0.500 0.711 0.043

Cells, Genes: Total No. of cells and genes used in network generation, respectively;

Edges: total number of gene-gene interactions in the inferred network;

Precision, Recall, AUROC and AUPR: as defined in section 2.3.1
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Fig. 6. AUROC and AUPR for GRNs generated using the pySCENIC workflow from

integrated PBMC 10X Genomics datasets with increasing number of cells. GRNs were

constructed with integrated matrices containing either the union or intersection of genes.

only SCEMENT-CPP. As shown in Figures 3 and 4, FastIntegration and

Scanorama either do not scale and/or require significantly longer runtimes

and more memory usage for large data integration, while COMBAT runs

out of memory for >700K cells, especially for the union of genes.

3.4 SCEMENT facilitates robust GRN reconstruction from

integrated scRNA-seq data

Reconstruction of GRNs from high-throughput gene expression (for

example, scRNA-seq) data requires quantitative gene expression

information from a large number of genes and observations for determining

accurate gene pair associations (Emmert-Streib et al., 2012). However,

scRNA-seq data suffers from data sparsity, with each individual dataset

containing gene expression profiles of a only a few thousand genes.

Large-scale integration of multiple datasets may help overcome such

limitations. It is currently not feasible to reconstruct GRNs from large-

scale scRNA-seq data with hundreds of thousands to millions of cells and

tens of thousands of genes, with existing GRN reconstruction methods.

Therefore, to show utility of the integrated matrices and construct GRNs

in a reasonable amount of time, we selected small-scale PBMC data with

cells ranging from 20K to 166K (Table S2), and≈ 2723genes representing

a non-redundant set of transcription factors (TFs) and target genes from

the TRRUSTv2 manually curated gene regulatory network (Table S3).

We then contructed GRNs from integrated data matrices containing the

intersection (SCEMENT-CPP, ComBat, Scanorama, and FastIntegration)

and the union set of genes (SCEMENT-CPP and ComBat) using the

pySCENIC workflow (Kumar et al., 2021).

Network quality evaluation measures (Table 4, Table S10) show that

SCEMENT and ComBat are comparable in their performance with respect

to recall, precision, and F-score values for the intersection of genes,

with Scanorama and FastIntegration showing a 16% and 6% lower recall,

respectively when compared to SCEMENT. The higher recall values in

GRNs constructed from SCEMENT and ComBat also suggest less number

of false positives in the network. More importantly, GRNs constructed

from matrices containing the union set of genes show a significant

improvement when compared to those containing intersection of genes –

a 13% higher recall when compared to SCEMENT-intersection of genes,

and more than 20-30% improvement over FastIntegration and Scanorama.

In addition, the union GRNs also show higher AUROC (4-8%) and AUPR

(11-25%) values with SCEMENT suggesting that integrated matrices with

union of genes result in more robust and accurate networks (Table S10).

In fact, our results show that the Recall, AUROC and AUPR values

increase with increasing number of cells and genes for networks containing

the union of genes, while these measures decrease for larger networks

reconstructed using the intersection of genes (Figure 6 and Table S11). In

this context, it should be noted that as the number of datasets increase,

the number of intersecting genes decrease (Table 3, Table S2), which in

turn reduces the number of genes available for GRN construction and

hence, GRN accuracy. Overall, these results suggest that by incorporating

gene expression profiles of all available genes from large number of input

datasets in the integrated data matrix, SCEMENT enables more robust and

accurate GRN reconstruction from single cell data, even for small-scale

GRNs.

4 Conclusions

Single cell transcriptome analyses are hampered by data sparsity,

and large-scale integration of scRNA-seq data can overcome these

limitations to provide a more comprehensive understanding of the cellular

heterogeneity. We have developed a fast, scalable, and memory efficient

method (SCEMENT) that enables accurate and large-scale integration of

homogeneous and heterogeneous scRNA-seq datasets, and demonstrated

its applicability on up to 4 million cells. SCEMENT is much faster and uses

much less memory compared to existing methods. In fact, with SCEMENT,

it is often not even necessary to have a high-memory system and an

integration task of up to 500K cells and 25K genes can easily be completed

on a laptop. We further demonstrate SCEMENT’s utility in the discovery of

new and rare cell-types, and for more accurate and robust recontruction of

large GRNs. Thus, SCEMENT is a simple but effective solution applicable

to large and genome-scale integration of multiple scRNA-seq datasets, and

opens new avenues for data-driven construction of atlas-scale cell maps.
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S1 Supplementary Text

S1.1 Empirical Bayes Model

The linear model for integration used in ComBat is represented by

X = ³+D´ + µ + ¶ϵ

where gene expression data is modeled as a function of the four terms.

• The average or overall gene expression, denoted by ³, is an m × n

matrix. Each row i in ³ corresponds to the gene expression profile of

the set of conditions the cell i belongs to.

• Linear combination of the independent variables, ´. It is the matrix of

regression coefficients (size c × n) with each column corresponding

to a specific variable. In case of integration, the independent variables

are the condition/batch variables. D is the design matrix, a binary

m× c matrix such that entry D[i, j] is 1 if input i is observed under

the condition j.

• Additive batch effect denoted by µ.

• Multiplicative batch effect denoted by ¶. Furthermore, ϵ is the error

term, assumed to follow a normal distribution with variance Ã, i.e,

ϵ ∼ N (0, Ã2In).

The Empirical Bayes based batch correction, as developed in

COMBAT Johnson et al. (2007), for the above linear model proceeds

with the following three steps:

1. Compute estimates ˆ́, ³̂ and standardize the input matrix.

2. Iteratively update to estimate batch effect ¶.

3. Compute the batch corrected matrix X′.

S1.1.1 Standardizing data

A standardized matrix is constructed first and used in all the subsequent

steps since it provides well-behaved mean and variance characteristics for

more robust downstream analyses.

A single sample-type can be observed simultaneously under multiple

conditions. For example, a plant leaf sample belonging to a specific

genotype can be observed under low and high stress conditions. Row i

in the D matrix corresponds to the set of conditions under which sample

i is observed. We call this row as the condition-profile of sample i. In

the case when a sample in X belongs to exactly one condition, the least

squares estimates for ˆ́ and ³̂ are

ˆ́ = (DTD)−1DTX and ³̂ =
1

n
1m · (N

T
c
ˆ́)

respectively, where Nc = [n1, . . . , nc]T is a vector with the number of

observations in each condition, and 1m is m-length vector of ones. The

estimate for the variance vector Ã̂2 is

Ã̂2 =
1

m
(X −DT ˆ́)»2 · 1m,

where the notation A»2 represents the Hadamard product of the matrix

A with itself, i.e., the entry A»2[i, j] is (A[i, j])2 and the dot product

A · 1m indicates the sum across the columns of A.

After estimating ³̂ and Ã̂, the standardized matrix Z is constructed as

Z =
X − ³̂T

Ã̂ · 1n

In the above equation, we use the division operation of two matrices of

same sizes to indicate an element-wise division of numerator matrix entry

to the denominator matrix entry.

In cases when a sample is subjected to multiple different conditions,

let Sc be the set of conditions that divides the dataset into b partitions,

i.e., |Sc| = b. In single-cell experiments, this can be the batch a sample

belongs to. We assume that the first b columns of D correspond to these b

conditions. In this case, the estimates of ˆ́ and Ã̂2 remain the same as the

first case, while ³̂ is computed as follows:

³̂ =

(

1

n
1m · (N

T
b
ˆ́
b)

)

+D−b
ˆ́,

where ˆ́
b is a b × m sub-matrix of ˆ́ such that ˆ́

b =
ˆ́[(1, . . . , b); (1, . . . , n)] and D−b is D with the entries corresponding

to the batch rows set to 0, i.e., D−b[(1, . . . ,m); (1, . . . , b)] = 0.

S1.1.2 Iterative Algorithm for Batch update

Given that the dataset X is merged from b batches, then Z, in this case,

is a standardized matrix that takes into account the batch weights. The

linear model assumes that, for a given batch i and gene g, the additive

and multiplicative effects µig and ¶ig are drawn from N (Xi, t
2
i ) and

Inverse Gamma(ai, bi) distributions respectively.

An empirical Bayes approach to estimate these parameters lends itself

to an iterative solution. In iteration k + 1, the estimates for each batch i

are updated based on the estimates of the previous iteration k (µ̂i
(k) and

¶̂i
(k)

) as follows Johnson et al. (2007). First, µ̂i
(k+1) is computed as

µ̂i
(k+1) ← (tinµ̂i

(k))/(tin+ ¶̂i
(k)

). Then, ¶̂i is updated as

¶̂
(k+1)
i ←

(2 + a− 1)

2n

(

b+

(

Z − µ̂
(k+1)T

i · 1

)»2

· 1

)

,

where the dot product with 1 indicates the row-wise summing operation.

The above steps are repeated until the percentage change of both µ̂ and ¶̂

is less than the required tolerance.

S1.1.3 Batch Corrected Matrix

After the ³, ´, ¶, and Ã values are computed, the final step is to update

the input gene expression matrix Xb.

Xb ← ³̂+X ˆ́ +
Ã̂

¶̂
(Zi − µ̂i)

S1.2 Metrics for Batch Integration

1. NMI and ARI compare the overlap of clustering with respect to the

cell-type labels, with 0 being bad overlap and 1 being perfect match.

2. ASW measures the separation of clusters where 1 denotes dense and

well-separated clusters, while 0 or -1 represents overlapping clusters.

3. Isolated scores were developed by Luecken et al. (2022) to evaluate

how well data integration methods handle cell-types that appear in

few batches.

4. Graph Conn. metric assesses how well the kNN graph constructed

from integrated data directly connects all the cells of the same cell-

type.

5. HVG Cons. score is a proxy for the preservation of highly variable

genes after integration.
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