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Abstract

Motivation: Integrative analysis of large-scale single cell data collected from diverse cell populations
promises an improved understanding of complex biological systems. While several algorithms have been
developed for single cell RNA-sequencing data integration, many lack scalability to handle large numbers
of datasets and/or millions of cells due to their memory and run time requirements. The few tools which can
handle large data do so by reducing the computational burden through strategies such as subsampling
of the data or selecting a reference dataset, to improve computational efficiency and scalability. Such
shortcuts however hamper accuracy of downstream analyses, especially those requiring quantitative gene
expression information.

Results: We present SCEMENT, a SCalablE and Memory-Efficient iNTegration method to overcome these
limitations. Our new parallel algorithm builds upon and extends the linear regression model previously
applied in ComBat, to an unsupervised sparse matrix setting to enable accurate integration of diverse and
large collections of single cell RNA-sequencing data. Using tens to hundreds of real single cell RNA-seq
datasets, we show that SCEMENT outperforms ComBat as well as Fastintegration and Scanorama in
runtime (upto 214X faster) and memory usage (upto 17.5X less). It not only performs batch correction and
integration of millions of cells in under 25 minutes, but also facilitates discovery of new rare cell-types and
more robust reconstruction of gene regulatory networks with full quantitative gene expression information.
Availability and implementation: Source code freely available for download at https: //github.com/
Alurulab/scement, implemented in C++ and supported on Linux.

Contact: aluru@cc.gatech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction have been useful in integrating single cell datasets generated under a variety
of tissues and conditions, their applicability is constrained by limitations
on scale of data they could handle, and thus integration of large numbers
of cells and complex scRNA-seq datasets still remains a challenge.

A recent comprehensive survey of 16 different supervised and
unsupervised scRNA-seq integration methods showed that none of

Several different methodologies have been developed for integrating
multiple single cell RNA-sequencing (scRNA-seq) datasets, with the
aim of eliminating batch effects inherent in samples spanning different
locations, labs, and conditions, while also conserving biological variation.
Currently available scRNA-seq integration methods can be classified into
three major categories: (i) Methods that output embedding onto a reduced
dimensional space such as PCA (Xu et al., 2021; Korsunsky et al., 2019),
(ii) Methods that output graphs such as a cell-cell k-nearest-neighbor
graph (Polariski et al., 2020; Haghverdi et al., 2018), and (iii) Methods
that retain the gene-level quantitative information, i.e., their output is a
gene expression matrix containing gene expression profiles from input
cells (Zhang et al., 2019; Johnson et al., 2007). Although these methods

these methods could successfully integrate 970K cells collected from
multiple samples of a mouse brain dataset due to runtime and memory
constraints (Luecken et al., 2022). To improve computational efficiency
and scalability, someA few tools designed for large data integration
perform one or more of the following: (i) partition the data at discrete
steps of the processing pipeline to solve data-specific problems (Li ef al.,
2022a), (ii) operate on a reduced dimensional space of cells (Korsunsky
et al., 2019; Haghverdi er al., 2018), (iii) use only a representative subset
of datasets/genes (such as a reference dataset or a few highly variable
genes) (Dhapola et al., 2022; Hao et al., 2023), and (iv) use unscaled data
© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Fig. 1. Overall workflow of SCEMENT. A detailed description of the integration methodology is provided in section 2.1.

instead of scaled data to avoid generating a dense matrix (Luecken et al.,
2022) However, such approaches limit applicability of the integrated data
for downstream processing steps such as for reconstruction of robust gene
regulatory and cell-cell interaction networks, as inclusion of only a subset
of genes and/or datasets for gene-gene and cell-cell inference leads to an
approximate network that may not be suitable for studying subtle and rare
interactions (Belcastro et al., 2011; Bansal et al., 2007; Bafna et al., 2023).
Our goal is to overcome limitations on numbers of genes or cells, while
simultaneously achieving data size scalability and adequate performance.
Here, we present a novel approach that uses a sparse implementation of
an empirical Bayes-based linear regression model to integrate sSCRNA-seq
data from a large number of datasets and expression profiles. While the
concept of applying linear regression model is well established in various
biological research areas (Pierson and Yau, 2015; Kerr, 2003; Dirmeier
et al., 2018), including in single cell research (Johnson et al., 2007)),
our method SCEMENT (SCalablE and Memory-Efficient iNTegration)
incorporates multiple algorithmic improvements for a faster and efficient
way to enable large-scale scRNA-seq data integration with millions of cells
and tens of thousands of genes.

In this paper, we demonstrate that by engineering sparsity during all
computations, even in cases where mathematical expressions involving
the input sparse matrix X could potentially lead to intermediate dense
matrices, and by designing an efficient order of computations, SCEMENT
outperforms ComBat (Johnson et al., 2007), FastIntegration (Li et al.,
2022a), and Scanorama (Hie et al., 2019) in run-time (upto 214X faster)
and memory usage (upto 17.5X less). It performs batch correction and
integration of 4 million cells collected from 121 samples with more than
38K genes in just 22 minutes. In addition, SCEMENT not only maintains
meaningful biological gene expression variations across cell-types even
when cells are clustered by their condition, but also facilitates downstream
processing of single cell data for better identification of rare cell-types and
more robust reconstruction of gene networks with full gene expression
information.

The paper is organized as follows: Section 2 describes key steps used in
the SCEMENT method for large-scale integration of single cell data, and
optimizations achieved in each step to make it faster and more memory-
efficient compared to other methods. Section 3 describes experimental
results to demonstrate improvements in quality and scalability, and also
SCEMENT’s utility for downstream applications: discovery of rare cell
types and more robust gene network reconstruction.

2 Methods

Linear regression models provide two key advantages for integration
of gene expression profiles from scRNA-seq data: 1) the ability to
accommodate various experimental conditions and parameters, and 2)

the ability to retain quantitative gene expression values after integration.
These methods are also more amenable to parallelization and optimization
when compared to the graph-based algorithms used in other scRNA-seq
integration methods such as Seurat and Scanorama Wang et al. (2021).
To account for technical and biological variations resulting from different
conditions, a linear model uses numerical and categorical type variables
to represent these variations. In this work, we assume that a given dataset
includes only categorical variables as is common with single-cell RNA-seq
datasets.

2.1 SCEMENT’s approach for large-scale integration

Similar to the model outlined in ComBat (Johnson et al., 2007), we
start with the following generative empirical Bayes-based linear regression
model:

X =a+ DB+ v+ de

where the gene expression data X of m cells and n genes is modeled as a
linear function of four terms:

e The average or overall gene expression, denoted by «, is an m X n
matrix. Each row 7 in « corresponds to the gene expression profile of
the set of conditions the cell 7 belongs to.

e Linear combination of the independent variables, 3. It is the matrix of
regression coefficients (size ¢ X m) with each column corresponding
to a specific variable. In case of integration, the independent variables
are the condition/batch variables. D is the design matrix, a binary
m X ¢ matrix such that entry D[, 5] is 1 if input ¢ is observed under
the condition j (Step 1 of Fig. 1).

e Additive batch effect denoted by ~y (a matrix of size m X n).

e Multiplicative batch effect denoted by § (a matrix of size m X n).
Furthermore, €, a matrix of size n X n, is the error term, assumed to
follow a normal distribution with variance o, i.e, € ~ N(0, 021 n)-

SCEMENT employs an efficient algorithm to estimate the model
parameters: «, 3, v, 0 and o. Complete details of the empirical Bayes
solution are provided in the supplementary text. In this section, we
present the key contributions underlying SCEMENT that enable large-
scale integration. As is common in statistics, we use &, B, 3, §and 6 to
represent the estimated values of «, 3, 7, § and o. The overall approach
incorporated in the SCEMENT algorithm is illustrated in Figure 1.

2.1.1 SCEMENT’s strategy for computing the standardized matrix

Integration of gene expression data starts with the computation of the
standardized matrix Z (see Supplementary text S1.1.1 for how Z is defined
and computed) from the input data matrix X, since Z provides well-
behaved mean and variance characteristics for more robust analyses (Step
2 of Fig. 1). Computing Z requires computation of &, ,é’ and the variance
&, and these require matrix computation operations involving the data
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matrix and the design matrix. For microarray and bulk RNA-seq datasets,
where the number of observations are in the order of thousands, currently
available dense matrix multiplication routines are sufficient. However, for
single-cell RNA-seq datasets with hundreds of thousands to millions of
cells, computation of Z necessitates a memory-efficient approach.
Computing & and B: We propose a space and time efficient method to
accelerate the computation of &, with the following optimization strategies
that enable scaling to millions of cells and tens of thousands of genes.

1. Current implementations use a 32-bit integer matrix to represent the
design matrix D. When all the 3 variables are only categorical, entries
of D are binary i.e., either 1 or O and hence do not require 32-bit
representation. We use 8-bits for entries in D to improve space by a
factor of 4, which also leads to time efficient computation of DTD.

2. For computing 3 = (DT D)~1DT X, the order of multiplying the
matrices can have significant effect on the runtime. For real datasets,
since the number of observations is an order of magnitude larger
than the number of genes, multiplication of (DT D)~! with DT X T
is a better way to compute B when compared to the product of
(DTD)~'DT and X7 because the former takes O(c?) time while
the latter takes O(c?m) time when m > n.

Subsequent to computing B, &= %]lm . (NCTB) is computed by using a
simple matrix vector multiplication routine.

Computing & : Computing 62 = %(X — DTB)®2 . 1,, can lead to
explosion in the amount of memory usage even when X is sparse, because
realizing X — D7 3 in-memory creates a dense intermediate matrix of
size m X n.

Let R = DT 3. To avoid realizing this intermediate matrix X — R,
SCEMENT employs the algebraic expansion (X — R)®2 - 1, = X©2.
I +RO2 1, — (2X O R) - 1y, (similar to (a —b)2 = a2 + b2 — 2ab).
By expanding (X — R)©? into three terms, SCEMENT computes the
three terms efficiently as follows.

1. The firstterm X ©2 .1, is computed by squaring each entry in sparse
X summing it row-wise. Since X is a sparse matrix, this can be
computed using sparse matrix routines.

2. To compute the second term, we exploit the unique property of the
matrix R that R has as many unique rows as the number of unique
condition-profiles. A condition-profile is the set of unique conditions
a cell can belong to. Even in a large collection of datasets comprising
millions of cells, the number of unique condition-profiles is limited
to few dozens, guaranteeing sparsity.

For efficient computation, we exploit the fact that all the cells
that belong to the same condition-profile have the same row vector
in D and, therefore in R. In order to compute R?2 - 1,, efficiently,
SCEMENT first enumerates all the unique condition-profiles D and
then computes the product vector (D 5.y B) separately for each one of
them. We accomplish this with the aid of two auxillary data structures:
(a) A configuration matrix G, which contains set of condition-profile
vectors, and (b) A condition-profile lookup vector I . R©2.1,, can
be computed by adding these vectors as many times as the number of
cells in the corresponding condition-profiles.

3. The condition-profile lookup vector [ 5 and the configuration matrix
G can also be used to compute the third term efficiently. SCEMENT
employs a series of multiplication of sparse-matrix and dense-vector,
one for each unique condition-profile.

With our efficient way of computing these three terms, the partial sums
corresponding to individual condition-profiles are added as soon as they
are computed, thus saving memory and time.

Finally, in order to maintain low memory footprint, we do not fully
realize Z as (X — &7) /(62 - 1,,). We retain the left-hand side (X/(62 -
15,)) and the right-hand side (&7 /(62 - 1,,)) of Z as matrices X’ and M’
respectively (Step 3 of Fig. 1).

Each of the above steps to compute (X — R)©?2 can be accomplished
efficiently in parallel as follows. For the first term X ©2.1,,, each of
the row sum of squares can be computed by a parallel reduction across
each each row X©2. In case of the second term, a coordinate sparse
(COO) representation of the matrix X along with the row-wise distribution
of configuration matrix G and the look-up vector [, enables efficient
distribution of the row-wise computations in parallel. Similarly parallel
computation of the third term is accomplished by row-wise distribution of
the configuration matrix G.

Note that X’ is the same size as the input matrix and M’ is of the
size ¢/ X n, where ¢’ is the number of unique configuration-profiles in
the dataset. In other words, M’ has only one row only for each unique
configuration-profile and not for each cell. In the next sections, we show
how X’ and M’ matrices can be used in the downstream computations
instead of the Z matrix.

2.1.2 SCEMENT’s approach for Batch Correction
Iterative v; and b update : Empirical Bayes method follows an iterative
algorithm to estimate ; and 5;. The primary challenge in the iterative

(k+1)

update of 5 at the k-th iteration is to evaluate the expression

(Zw(’“+1> -u) 1,

without realizing the dense matrix Z in memory, where ’ygk-H) is the
update of ~y; at k-th interation (Step 4 of Fig. 1).

Similar to the computation of 52 discussed in section 2.1.1, the above
computation can be accomplished by expanding the expression into three
N 62 oy (kDT (k)T
terms (i) Z -1, (i) 4 -1, and (iii)) Z © ¥; - 1. As
mentioned earlier, in SCEMENT, Z is maintained as two matrices X’ and

M. Therefore, the first and the third terms expand to (X' — M")®2 - 1

and (X' —M")® &§k+1>T - 1. Both these terms can be further expanded
and each of the individual terms can be computed without having to realize
the standardized Z matrix. Each term is successively added up to obtain
the update for 3£k+1).

By not directly computing the Z matrix and using algebraic expansion
for the terms where Z appears, we retain sparsity of the computations,
and thereby efficiently compute each update. Also, parallel computation
of these terms is accomplished in a similar manner to the computations
described in section 2.1.1.

Batch Corrected Matrix : In the final step, we convert the sparse X
matrix to dense and update it as the batch corrected matrix X? = & +
XB+ %(Zi
possible to retain the batch corrected matrix, X as two sparse matrices
— one each corresponding to the left-hand side and the right-hand side of
Z (Step 5 of Fig. 1). However, to facilitate downstream processing of the

— 4;). Similar to computation of Z in section 2.1.1, it is

integrated matrix such as for computing PCA, UMAP, t-SNE, clustering
and plotting, SCEMENT converts the sparse X to dense X (Step 6 of
Fig. 1).

2.2 SCEMENT’s Implementation

‘We implemented two versions of SCEMENT compatible with the AnnData
data structure used in Scanpy. One in the python programming language
(pySCEMENT) and the second is a faster parallel version in C++
(SCEMENT—CPP). Both versions use single precision floating point (32-
bit) values for the computations. The python version uses sparse matrix
libraries available in the scipy python package for representing the input
dataand X'’. Though the input data and X" are stored in compressed sparse
array (CSR) representation, numpy library arrays are used to store all the
other matrices and vectors in the algorithm. For the construction of design
matrix D, we used the formulaic library, which allows for saving space
with the use of 8-bit integers.
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OpenMP is used for implementation of the parallel SCEMENT
algorithm in C++. In order to enable efficient computations, we use the
coordinate sparse (COO) representation to store the input data and X'.
Armadillo C++ libraries are used for representing all other dense vectors
and matrices. While parallel sparse computations are implemented as per
section 2.1, ScaLAPACK library is used for computations involving dense
matrices and vectors.

It should be noted that in contrast to existing integration methods,
SCEMENT provides an optional pre-processing step (shown as Step P
of Fig. 1). This step allows for construction of an integrated data matrix
containing the union of genes across all batches. For each sample/batch,
we first identify genes missing in that particular sample/batch, but present
in any of the other batches. We then insert rows with zero entries
corresponding to the missing genes into each of the gene expression
matrices such that all of the input matrices have the same set of genes.
Subsequent merging of the modified matrices, thus generates an integrated
data matrix containing the union of genes.

2.3 Performance Assessment of SCEMENT

We performed two types of evaluation studies using real scRNA-seq
datasets from different tissues and organisms (Table S1). First, we
compared performance of four other previously published integration
methods—FastMNN, ComBat, Scanorama and Seurat (Table S1) in terms
of both integration quality and separation of clusters in UMAP plots using
scRNA-seq datasets from A. thaliana plant root (Jean-Baptiste et al.,
2019; Gala et al., 2021) and human aortic valve (Xu et al., 2020).
Results from these runs were subsequently used to compute quality control
metrics according to the scIB software package (Luecken et al., 2022).
We also visually compared clusters of aortic valve dataset generated using
SCEMENT, with the aforementioned four methods. Cell-type annotations
used in UMAP plots of human aortic valve cells were according to Xu
et al. (2020), and for Arabidopsis cells according to Jean-Baptiste et al.
(2019), and Gala et al. (2021).

Next, we evaluated scalability of the integration methods using two
different human peripheral blood mononuclear cell (PBMC) datasets: 1) a
COVID-19 dataset of about 1.23 million cells from 205 samples (Ren et al.,
2021) and, 2) a collection of 17 human PBMC datasets containing a total
of 794,170 cells obtained from the 10X Genomics web repository (Table
S2). We assessed runtime and memory usage of all the integration methods
with varying number of datasets/cells, and with integrated data consisting
of union as well as intersection of genes. All runs were conducted on a
machine equipped with a 72-core Intel® Xeon® E7-8870 CPU and main
memory of 1 TB shared between all the cores.

2.3.1 Construction and analysis of Gene Regulatory Networks

We used the pySCENIC workflow (Kumar ef al., 2021) to construct gene
regulatory networks (GRNs) from integrated data matrices consisting of
union as well as intersection of genes. Here, we use human PBMC
datasets (Table S2) containing cells ranging from ~ 20,000 to 166,000
cells. The quality and performance of the resulting networks were
assessed using standard statistical measures: recall (percentage of correct
edges predicted), precision (percentage of correct edges among all
edges inferred), the F-score defined as: F-score = (2 X precision X
recall) /(precision + recall), and the area under the receiver operating
characteristic (AUROC) and the area under the precision-recall (AUPR)
curves plotted by comparing reconstructed network(s) against the reference
network. To evaluate biological relevance of networks generated from
different integrated matrices, we used known human transcriptional
regulatory reference networks from the TRRUSTV2 database (Han ez al.,
2018), hTFtarget database (Zhang et al., 2020), and PBMC (Li et al.,
2022b) as ground truths. These networks were constructed by text-
mining of published literature and manual curation, and include a total of
1,642 non-redundant high confidence regulatory interactions between 168
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Fig. 2. UMAP visualizations of cell-type clusters from the human aortic valve dataset after
batch correction and integration with ComBat, Scanorama, Seurat and FastMNN

transcription factors (TFs) and 842 target genes (Table S3). For the purpose
of computing statistical measures, all known TF-target interactions from
amongst the 1,642 interactions were considered as true positives (TPs)
whereas TF-target interactions not listed in the ground truth network were
considered as true negatives (TNs).

2.3.2 Cell-type Identification from Large-scale Integrated Data

We generated integrated data matrices with SCEMENT-CPP using varying
number of datasets and cells sampled from the = 1.2 million cell scRNA-
seq dataset (Ren et al., 2021), and subsequently applied the Azimuth
package (https://azimuth.hubmapconsortium.org/) on the integrated data
to automatically identify various human PBMC cell-type populations.

3 Results and Discussion
3.1 Linear regression model for scRNA-seq integration

SCEMENT is designed to be an unsupervised computational method
that makes large-scale batch correction and integration of scRNA-seq
datasets feasible, while retaining gene expression profiles of all available
genes from input cells in the integrated data matrix. A recent survey
of over 16 different supervised and unsupervised scRNA-seq integration
methods (Luecken et al., 2022) ranked four unsupervised methods —
FastMNN (Haghverdi et al.,, 2018), Seurat v3 (Butler et al., 2018),
Scanorama (Hie et al., 2019) and ComBat (Johnson et al., 2007), amongst
the top 10 best performing methods. These four methods also meet our
criteria of returning an integrated gene expression matrix of batch corrected
values as output. Therefore, we sought to further evaluate FastMNN,
Scanorama, Suerat and ComBat.

We used scRNA-seq datasets generated from two different organisms
containing varying sizes and complexity to assess the four integration
methods: wild-type A. thaliana plant root dataset (AtRD) with 14,427
cells collected from two separate studies and nine different batches (Jean-
Baptiste et al., 2019; Gala et al., 2021), and a human aortic valve dataset
(HAVD) containing 17,985 cells collected from four individuals; two
healthy and two diseased (Xu et al., 2020).

We employed 8 different evaluation metrics from the scIB
package (Luecken et al.,2022) in conjunction with UMAP visualizations to
make valid comparisons of the four integration methods. Our results show
that ComBat’s overall performance is slightly superior compared to the
other three methods for the AtRD datasets, and is similar to Scanorama
and FastMNN but inferior to Seurat with respect to the HAVD dataset
(Table 1). The UMAP visualizations however suggest that the ComBat
model is somewhat better at preserving biological variation within different
cell type/states compared to the other three methods (Figure 2; Figure S1).
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Table 1. Benchmarking ComBat, Scanorama, Seurat and FastMNN for scRNA-seq data integration using eight scIB metrics ( Luecken et al. (2022)). A brief description of the metrics is

given in Supplementary text. Numbers in bold represent the average of the 8 metrics for each method.

Aortic Valve Dataset Arabidopsis Dataset
ComBat Scanorama Seurat FastMNN | ComBat Scanorama Seurat FastMNN
NMI_cluster/label | 0.3694  0.3569 0.4807 0.3931 0.7384  0.7323 0.6981 0.5833
ARI_cluster/label | 0.2013  0.2293 0.3753 0.3418 0.6299  0.6345 0.5655 0.4035
ASW_label 0.4974  0.5033 0.5327 0.5004 0.5568  0.5547 0.5542 0.5171
ASW _label/batch | 0.8499  0.8892 0.9101 0.8907 0.9198  0.9044 0.8926 0.9083
Isolated F1 0.5191  0.4940 0.7298 0.4495 0.7496  0.8534 0.7470 0.7568
Isolated ASW 0.3942  0.4428 0.5640 0.4451 0.6278  0.6055 0.6297 0.5489
Graph Conn. 0.9404  0.9605 0.9882 0.9057 0.9486  0.9607 0.9613 0.9727
HVG Cons. 0.1340  0.0205 0.0340 0.0490 0.2697  0.0163 0.0654 0.0203
Average Score 0.4882  0.4871 0.5769 0.4969 0.6801  0.6577 0.6392 0.5889

Table 2. Runtime and memory usage of ComBat, Scanorama, Seurat and FastMNN for
scRNA-seq data integration. HAVD = Human aortic valve dataset and AtRD = Arabidopsis
root dataset.

Runtime (s) Memory (GB)

HAVD  AtRD | HAVD AtRD

ComBat 172.81 66.71 | 19.41 6.11
Scanorama | 530.75 125.63 | 38.34 13.24
Seurat 3298.44 179236 | 84.53 42.63
FastMNN 187.22  136.12 5.01 4.66

Whereas cell-types such as lymphocytes, macrophages, endothelial cells
(VEC) and interstitial cells (VIC) are separated into well-defined clusters
by all four methods, UMAP visualizations show that Scanorama, Seurat
and FastMNN have a tendency to overmix cells, thus resulting in poor
representation of the transcriptional heterogeneity between healthy and
diseased cell states.

In this context, it should be noted that the Arabidopsis dataset consists
of cells from only wild-type root samples (normal) whereas the aortic valve
dataset consists of cells from healthy (normal) and diseased (abnormal)
individuals. We therefore speculate that the sub-optimal performance of
ComBat with the aortic valve dataset as observed in Table 1 is perhaps due
to the less aggressive cell mixing characteristics of the ComBat model,
which in turn facilitates a better separation of healthy from diseased cells,
even within the same cell-type. Moreover, ComBat requires significantly
less runtime and memory to integrate these scRNA-seq datasets when
compared to Seurat and Scanorama (Table 2). We, therefore decided to
use the linear regression model as a basis for developing a faster and more
efficient method for large-scale scRNA-seq integration.

As our new parallel algorithm SCEMENT is built upon and extends the
linear regression model previously applied in ComBat to an unsupervised
sparse matrix setting, we first evaluated its integration performance in
comparison to ComBat. As expected, our results show that there are
no significant qualitative differences between ComBat and SCEMENT
(Figure S2).

3.2 SCEMENT enables large-scale scRNA-seq integration

We assessed SCEMENT’s performance for large-scale integration of
scRNA-seq datasets by measuring its runtime and memory usage with
varying number of datasets/batches and cells. We used two sets of PBMC
derived scRNA-seq datasets — 205 samples from COVID-19 patients
(Table 3) and another from 17 different healthy individuals (Table S2).
We performed batch correction and integration using intersection (genes
common to all datasets) as well as the union of genes (all genes from all
datasets), for all of the 8 subsets ranging from 3 to 205 COVID-19 datasets,
and 7 subsets ranging from 2 to 17 healthy PBMC datasets. As expected,
Table 3 and Table S2 show that as the number of datasets increase, the
number of intersecting genes decrease. In contrast, this number increases

when we use the union of genes for constructing the integrated data.

We assessed runtime and memory consumption of both the python
(pySCEMENT) and the C++ (SCEMENT-CPP) versions of SCEMENT
and compared these with three other methods — ComBat, Scanorama and
FastIntegration (Table S1). ComBat uses the linear regression model for
scRNA-seq data integration (Johnson et al., 2007), and Scanorama (Hie
et al., 2019) and FastIntegration (Li et al., 2022a) have previously been
shown to scale to million(s) of cells. FastIntegration is also a fast and
high-capacity version of the Seurat integration tool. By default, currently
available integration methods, including ComBat, Scanorama, and
FastIntegration, generate an integrated data matrix containing cells with
either a set of highly variable genes or the intersecting set of genes from all
batches. However, in this study, we modified the ComBat workflow and
applied the same preprocessing step as in the SCEMENT workflow (step P
in Figure 1) to generate an integrated data matrix containing union of genes
using ComBat. Therefore, we include ComBat, but exclude FastIntegration
and Scanorama from our comparisons involving union of genes.

Our results show that SCEMENT-CPP outperforms all other methods
in runtime and memory usage for both union as well as the intersection
of genes (Figures 3 and 4; Figures S3 and S4; Tables S4-S7). It is
upto 214X faster than FastIntegration, 106X faster than Scanorama, and
20X faster than ComBat depending on the number of datasets/cells/genes
involved in the integration task. Moreover, SCEMENT-CPP uses upto
16X less memory than Scanorama and 10X less than ComBat, thus
enabling integration of more than a million cells and more than 26K
genes in just 16-17 minutes. Even for smaller integration tasks for
less than 200K cells where all other methods are able to complete the
integration task, SCEMENT is about 10X times faster than ComBat,
uses less than 20GB of memory, and thus can accomplish this
task on a modestly equipped workstation. Interestingly, ComBat and
pySCEMENT perform comparably with respect to runtime, even though
ComBat’s implementation is in parallel while pySCEMENT is sequential.

Table 3. COVID-19 datasets from Ren et al. (2021)

No. of No. of | No. of Genes | No. of Genes
Datasets Cells | Intersection Union

3 11,540 16,601 21,956

5 25,090 16,693 24,176

8 53,276 15,291 24,588

24 150,142 13,337 25,482

60 | 351,954 12,222 26,180

80| 502,001 12,915 26,139

115 | 701,072 11,666 26,427

205 | 1,226,553 11,437 26,817
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Fig. 4. Runtime and memory usage of various scRNA-seq data integration methods for
union of genes using COVID-19 datasets (Ren et al., 2021).

pySCEMENT is also significantly more memory-efficient than ComBat.
In fact, ComBat could not scale beyond 700K cells for the union of genes
as it runs out of memory available on our benchmarking hardware. This
is because pySCEMENT uses a sparse matrix with 32-bit floating point
option while ComBat’s implementation uses the dense 64-bit matrix.

FastIntegration and Scanorama require significantly longer runtimes
and more memory usage respectively, when compared to SCEMENT and
also ComBat (Figures 3 and 4; Tables S4-S7). In our studies, Scanorama
could not successfully complete the runs beyond ~800K cells for the
intersection of genes. In addition, we (this study) and others have shown
that FastIntegration can scale to millions of cells, however it accomplishes
large-scale integration by 1) splitting a large integration task into a number
of smaller integration tasks, which it then successively integrates to build
the final integrated matrix, 2) restricting the data integration process to
intersection of genes, and 3) requiring each individual dataset to be small
as it uses Seurat to process the datasets. Of the 17 different human PBMC
datasets (Table S2), one dataset contains a large number of cells (606,606
cells). In such a scenario, FastIntegration fails to complete the integration
task.

To further assess SCEMENT’s scalability beyond a million cells, we
applied it to a dataset of ~ 4 million cells and 38,481 genes collected from
121 samples (Cao et al., 2020). Pre-processing and filtering of the data
from 121 samples using Scanpy took about 78 minutes for pySCEMENT
and SCEMENT-CPP, and while both were able to successfully integrate
data from all samples, SCEMENT-CPP was signficantly faster than
pySCEMENT and completed the run in just 22 minutes (Table S8).

3.3 SCEMENT enables identification of rare cell types from
large-scale scRNA-seq data
Large-scale scRNA-seq data analysis has been shown to facilitate a deeper

understanding of the cellular heterogeneity and discovery of new rare cell-
types from complex tissues (Jindal et al., 2018; Qian et al., 2023). To

Fig. 5. Stacked bar plot showing percentage of cells of each cell-type in the 50K, 500K
and 1.2 million cell datasets. The CD8 and ASDC cell types are identifiable only in the 1.2
million dataset.

assess whether SCEMENT enables improved identification of rare cell-
types, we used scRNA-seq data from PBMCs (Ren et al., 2021), and
generated integrated matrices from 3 random subsets with cells ranging
from ~ 50K to 1.2 million cells. The resulting matrices were subjected
to automated cell-type identification using the Azimuth package. It is
currently not feasible to run Azimuth on large data with full gene set.
Therefore, we restricted the number of genes in the integrated matrices to
only the top 1000 highly variable genes to make it feasible to perform cell-
type annotation on large-scale data. Even with such limitations, our results
show that the number of cell-types identified increase with increasing
number of cells (Figure 5; Table S9). Dendritic cells are the rarest cell-
types amongst the PBMCs (Patente ez al., 2019). In our study, a minimum
of 500K cells were needed for discovery of cDC1 (conventional dendritic
Cell 1) cells and more than a million for ASDC (AXL+dendritic cell) cells.
It should be noted that such rare cell-type identification is feasible using

Table 4. Assessment of network quality. scRNA-seq data from 9 different human PBMC
datasets and cells totaling to =~ 86K was used to generate six different integrated matrices
containing either the intersection or the union of genes. GRNs were then reconstructed from

each of these integrated matrices using the pySCENIC workflow.

Method Cells Genes Edges Prec. Recall AUROC AUPR
Intersection of genes

SCEMENT 86692 12337 17862 0.070 0.451 0.689 0.038

ComBat 86685 12337 17460 0.068 0.445 0.689 0.039

Scanorama 79528 12337 17131 0.070 0.374 0.657 0.034

Fastntegration | 75159 12337 15474 0.074 0.414 0.670 0.036

Union of genes

SCEMENT
ComBat

86692 25621 20067 0.072 0.496 0.709 0.042
86692 25621 19787 0.074 0.500 0.711 0.043

Cells, Genes: Total No. of cells and genes used in network generation, respectively;

Edges: total number of gene-gene interactions in the inferred network;
Precision, Recall, AUROC and AUPR: as defined in section 2.3.1
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Fig. 6. AUROC and AUPR for GRNs generated using the pySCENIC workflow from
integrated PBMC 10X Genomics datasets with increasing number of cells. GRNs were

constructed with integrated matrices containing either the union or intersection of genes.

only SCEMENT-CPP. As shown in Figures 3 and 4, FastIntegration and
Scanorama either do not scale and/or require significantly longer runtimes
and more memory usage for large data integration, while COMBAT runs
out of memory for >700K cells, especially for the union of genes.

3.4 SCEMENT facilitates robust GRN reconstruction from
integrated scRNA-seq data
Reconstruction of GRNs from high-throughput gene expression (for

scRNA-seq) data requires quantitative gene expression
information from a large number of genes and observations for determining

example,

accurate gene pair associations (Emmert-Streib ef al., 2012). However,
scRNA-seq data suffers from data sparsity, with each individual dataset
containing gene expression profiles of a only a few thousand genes.
Large-scale integration of multiple datasets may help overcome such
limitations. It is currently not feasible to reconstruct GRNs from large-
scale scRNA-seq data with hundreds of thousands to millions of cells and
tens of thousands of genes, with existing GRN reconstruction methods.
Therefore, to show utility of the integrated matrices and construct GRNs
in a reasonable amount of time, we selected small-scale PBMC data with
cellsranging from 20K to 166K (Table S2), and &~ 2723 genes representing
a non-redundant set of transcription factors (TFs) and target genes from
the TRRUSTv2 manually curated gene regulatory network (Table S3).
We then contructed GRNs from integrated data matrices containing the
intersection (SCEMENT-CPP, ComBat, Scanorama, and FastIntegration)
and the union set of genes (SCEMENT-CPP and ComBat) using the
pySCENIC workflow (Kumar et al., 2021).

Network quality evaluation measures (Table 4, Table S10) show that
SCEMENT and ComBat are comparable in their performance with respect
to recall, precision, and F-score values for the intersection of genes,
with Scanorama and FastIntegration showing a 16% and 6% lower recall,
respectively when compared to SCEMENT. The higher recall values in
GRNss constructed from SCEMENT and ComBat also suggest less number
of false positives in the network. More importantly, GRNs constructed
from matrices containing the union set of genes show a significant
improvement when compared to those containing intersection of genes —
a 13% higher recall when compared to SCEMENT-intersection of genes,
and more than 20-30% improvement over FastIntegration and Scanorama.
In addition, the union GRNSs also show higher AUROC (4-8%) and AUPR
(11-25%) values with SCEMENT suggesting that integrated matrices with
union of genes result in more robust and accurate networks (Table S10).
In fact, our results show that the Recall, AUROC and AUPR values
increase with increasing number of cells and genes for networks containing
the union of genes, while these measures decrease for larger networks
reconstructed using the intersection of genes (Figure 6 and Table S11). In
this context, it should be noted that as the number of datasets increase,
the number of intersecting genes decrease (Table 3, Table S2), which in
turn reduces the number of genes available for GRN construction and

hence, GRN accuracy. Overall, these results suggest that by incorporating
gene expression profiles of all available genes from large number of input
datasets in the integrated data matrix, SCEMENT enables more robust and
accurate GRN reconstruction from single cell data, even for small-scale
GRNSs.

4 Conclusions

Single cell transcriptome analyses are hampered by data sparsity,
and large-scale integration of scRNA-seq data can overcome these
limitations to provide a more comprehensive understanding of the cellular
heterogeneity. We have developed a fast, scalable, and memory efficient
method (SCEMENT) that enables accurate and large-scale integration of
homogeneous and heterogeneous scRNA-seq datasets, and demonstrated
its applicability on up to 4 million cells. SCEMENT is much faster and uses
much less memory compared to existing methods. In fact, with SCEMENT,
it is often not even necessary to have a high-memory system and an
integration task of up to 500K cells and 25K genes can easily be completed
on alaptop. We further demonstrate SCEMENT’s utility in the discovery of
new and rare cell-types, and for more accurate and robust recontruction of
large GRNs. Thus, SCEMENT is a simple but effective solution applicable
to large and genome-scale integration of multiple scRNA-seq datasets, and
opens new avenues for data-driven construction of atlas-scale cell maps.
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S1 Supplementary Text
S1.1 Empirical Bayes Model

The linear model for integration used in ComBat is represented by
X =a+ DB+~ + de
where gene expression data is modeled as a function of the four terms.

e The average or overall gene expression, denoted by «, is an m X n
matrix. Each row 7 in o corresponds to the gene expression profile of
the set of conditions the cell ¢ belongs to.

e Linear combination of the independent variables, (3. It is the matrix of
regression coefficients (size ¢ X n) with each column corresponding
to a specific variable. In case of integration, the independent variables
are the condition/batch variables. D is the design matrix, a binary
m X c matrix such that entry D[, j] is 1 if input ¢ is observed under
the condition j.

e Additive batch effect denoted by .

e Multiplicative batch effect denoted by . Furthermore, € is the error
term, assumed to follow a normal distribution with variance o, i.e,
e~ N(0,0%1,).

The Empirical Bayes based batch correction, as developed in
COMBAT Johnson et al. (2007), for the above linear model proceeds
with the following three steps:

1. Compute estimates B, & and standardize the input matrix.
2. Tteratively update to estimate batch effect 4.
3. Compute the batch corrected matrix X’.

S1.1.1 Standardizing data

A standardized matrix is constructed first and used in all the subsequent
steps since it provides well-behaved mean and variance characteristics for
more robust downstream analyses.

A single sample-type can be observed simultaneously under multiple
conditions. For example, a plant leaf sample belonging to a specific
genotype can be observed under low and high stress conditions. Row
in the D matrix corresponds to the set of conditions under which sample
1 is observed. We call this row as the condition-profile of sample 7. In
the case when a sample in X belongs to exactly one condition, the least
squares estimates for /3’ and & are

~ 1 ~
8= (D'D)"'DTX and d:;lm-(NcTB)

respectively, where N. = [nq, ..., nc]T is a vector with the number of
observations in each condition, and 1, is m-length vector of ones. The

estimate for the variance vector 62 is
. 1 A
62 = —(X - DT3)®2% . 1,

where the notation A®2 represents the Hadamard product of the matrix
A with itself, i.e., the entry A©2[4, j] is (A[4,§]) and the dot product
A - 1,, indicates the sum across the columns of A.

After estimating & and &, the standardized matrix Z is constructed as

X —aT

G-1n

7 =

In the above equation, we use the division operation of two matrices of

same sizes to indicate an element-wise division of numerator matrix entry
to the denominator matrix entry.

In cases when a sample is subjected to multiple different conditions,
let S¢ be the set of conditions that divides the dataset into b partitions,
ie.,

Sc| = b. In single-cell experiments, this can be the batch a sample
belongs to. We assume that the first b columns of D correspond to these b
conditions. In this case, the estimates of B and &2 remain the same as the
first case, while & is computed as follows:

&= (%ﬂm : (NbTBb)) + D_y5,

where Bb is a b X m sub-matrix of 5‘ such that ,éb =
B[(l, ...,b); (1,...,n)] and D_j is D with the entries corresponding
to the batch rows set to 0, i.e., D_p[(1,...,m); (1,...,b)] = 0.

S$1.1.2 Iterative Algorithm for Batch update
Given that the dataset X is merged from b batches, then Z, in this case,
is a standardized matrix that takes into account the batch weights. The
linear model assumes that, for a given batch 4 and gene g, the additive
and multiplicative effects ;4 and d;4 are drawn from N(X;, tf) and
Inverse Gamma(a;, b;) distributions respectively.

An empirical Bayes approach to estimate these parameters lends itself
to an iterative solution. In iteration k + 1, the estimates for each batch 7
are updated based on the estimates of the previous iteration k (’91-““) and
5i(k>) as follows Johnson ef al. (2007). First, '?i(k+1> is computed as

'?i““*l) — (tin'}?i(k))/(tm + 5¢(k)). Then, §; is updated as

. _ ©2
5D (2“‘;;1) <b+ (Z B ,?i(k+l)T ']1) .]1> 7
mn

where the dot product with 1 indicates the row-wise summing operation.
The above steps are repeated until the percentage change of both 4 and §
is less than the required tolerance.

S$1.1.3 Batch Corrected Matrix
After the o, 8, , and o values are computed, the final step is to update
the input gene expression matrix Xp.

Xy a+ XB+ 2(Zi — i)

S5}

S1.2 Metrics for Batch Integration

1. NMI and ARI compare the overlap of clustering with respect to the
cell-type labels, with O being bad overlap and 1 being perfect match.

2. ASW measures the separation of clusters where 1 denotes dense and
well-separated clusters, while O or -1 represents overlapping clusters.

3. Isolated scores were developed by Luecken et al. (2022) to evaluate
how well data integration methods handle cell-types that appear in
few batches.

4. Graph Conn. metric assesses how well the kNN graph constructed
from integrated data directly connects all the cells of the same cell-
type.

5. HVG Cons. score is a proxy for the preservation of highly variable
genes after integration.
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