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Abstract—Convolutional neural networks (CNN) are incor-
porated into many image-based tasks across a variety of do-
mains. Some of these are safety critical tasks such as object
classification/detection and lane detection for self-driving cars.
These applications have strict safety requirements and must
guarantee the reliable operation of the neural networks in the
presence of soft errors (i.e., transient faults) in DRAM. Standard
safety mechanisms (e.g., triplication of data/computation) provide
high resilience, but introduce intolerable overhead. We perform
detailed characterization and propose an efficient methodology
for pinpointing critical weights by using an efficient proxy, the
Taylor criterion. Using this characterization, we design Aspis,
an efficient software protection scheme that does selective weight
hardening and offers a performance/reliability tradeoff. Aspis
provides higher resilience comparing to state-of-the-art methods
and is integrated into PyTorch as a fully-automated library.

Index Terms—Soft Errors, ML Classification Models, Software
Protection, Error Resilience

I. INTRODUCTION

Convolutional neural networks (CNNs) are ubiquitous, es-

pecially in image-based tasks such as image classification

and object detection. When used in safety critical applica-

tions, such as self-driving cars or adaptive driver assistance

systems, their reliability requirements are strict. Autonomous

vehicles typically process a continuous inflow of telemetry

from cameras, radar, and other sensors to accurately perceive

the environment surrounding the vehicle [1]. Consequently,

classification accuracy is critical as it affects system safety

requirements that are in place to avoid hazards and accidents.

Significant portions of CNNs typically reside in DRAM that

is susceptible to soft errors (i.e., transient hardware faults) due

to cosmic radiation [2], shrinking transistors, and operating

under low voltage [3]. With SEC-DEC error-correction coding

(ECC), single-bit faults are correctable and double-bit faults

are detectable. A double-bit fault is detected as DUE (Detected

Uncorrectable Error) and the program stops. This is not ad-

visable for safety critical applications. While past studies have

shown that double- and multi-bit faults are rare comparing to

the ubiquitous single-bit faults [4], multi-bit faults in recent

DRAM technologies (DDR4) are shown to be as ubiquitous

as single-bit ones [5] and can disrupt system operation [6].

Error correction codes such as Chipkill [7] can correct single-

and multi-bit faults but at prohibitive cost.

In the specific domain of image recognition using CNNs,

a triggered multi-bit fault in DRAM during inference can

OpenPilot [8] Apollo [9]

# Convolution Layers 70 413

# Weights 5,811,616 74,349,986

# Single-Bit Fault Sites 185,971,712 2,379,199,552

# Double-Bit Fault Sites 5,765,123,072 73,755,186,112

# Triple-Bit Fault Sites 172,953,692,160 2,212,655,583,360

TABLE I: Fault space of the convolution layers in OpenPilot

and Apollo. Multiple neural networks are used in these systems

(e.g., 19 NNs in Apollo). These are the collective numbers.

be masked if the resulting classification is not altered, or

a well-trained network may give an unexpected erroneous

misclassification. In certain domains such as automotive or

healthcare applications, misclassifications can be catastrophic.

In this paper we shed light onto neural network resilience

during inference in the presence of bit flips (soft errors) on

the weights of the convolution layers of neural networks.

CNNs are ubiquitous in autonomous vehicle (AV) software

and are used for perception and control. Table I illustrates

the fault space of Openpilot, an adaptive driver assistance

system (ADAS) [8] and Baidu Apollo [9]. The table shows that

exhaustive exploration of the soft error space in AV software

is not feasible: the number of fault sites is beyond the order of

billions, requiring thousands of years of experiments. Clearly,

there is a need for an efficient approach to identify the location

of critical faults and understand their impact.

Here, we aim to solve a piece of this puzzle: since CNNs

are important parts of larger software, we aim to identify

their resilience to soft errors in the weights of filters in their

convolution layers. A broader analysis of the effect of soft

errors on other components such as input buffers and activation

layers is outside the scope of this work.

The first research question is to identify the relative impor-

tance of weights: are bit flips that occur in certain weights

more important for classification than others? Identification of

such weights even in stand-alone CNNs of smaller scale com-

paring to those of Table I is still very challenging. Consider

the VGG19 network [10] that has 16 convolution layers with a

total of 20+ million weights that are typically saved as 32-bit

floating point values. Exhaustive analysis of such a vast fault

to evaluate the effect of a single-bit flip requires 640 million

experiments, this number grows to more than 19 billion for

multi-bit flips, see Table II.

Since pinpointing vulnerable weights via exhaustive search

is infeasible, we evaluate the relation of “weight impor-
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criticality, such as NISP [12] which determines importance by

how values propagate through the neural network. Pruning

methods may use the norm of the filters to assess their

relative importance for the sake of model compression [13]

and may also incorporate other information, such as the

mean, standard deviation, activation function values [14], and

kernel patterns [30]. The Taylor expansion of a component’s

contribution to model accuracy, in particular, may be used for

assessing filter importance for neural network pruning [11].

The importance of neurons is studied through ablation in [41],

however this technique cannot be applied at weight-level

granularity due to the number of experiments needed (one per

weight). The importance of pixels to the output class is studied

in [42, 43, 44]. In particular, [43, 44] focus on determining test

data set adequacy. Differently from these works, we consider

importance scores at a weight-level for reliability instead of

model compression, pruning, and test data set adequacy.

Resilience estimation and protection in neural networks. Li

et al [31] use fault injection to study error propagation behav-

iors in DNNs and present insights for DNN design. Ibrahim

et al. [45] study the impact of soft errors on Deep Residual

Networks (ResNets) which are used for object recognition

and classification. DeepXplore [46] and DeepTest [47] focus

on the robustness and reliability testing of deep learning and

autonomous driving systems as well as finding corner cases

and vulnerable contexts, but not on protection solutions.

[48] performs analysis of CNNs under rowhammer attacks

causing single bit-flips. Fault injections are performed using

key heuristics that include sampling the validation set for faster

evaluation, flipping the exponent bit only for a big perturbation

impact, and sampling weights uniformly at random. Aspis

uses the importance score in order to ensure that all weights

are investigated for potential protection and to ensure that

no classification bias is introduced from sampling from the

validation set instead of using it in its entirety. Here, we

consider random flips at any bit position, to capture the effect

of bit flips that can happen in the wild. In summary, the

heuristics used in [48] are useful for evaluating rowhammer

attacks, but cannot be applied directly in our use case.

Protection efforts on NNs primarily focus on protecting

the neural network in a coarse-grained fashion, e.g., kernel-

level [49], layer-level [50], or feature-map-level protection

[16, 49, 51]. Structural coding [25] protects DNNs through a

syndrome-based error correction strategy utilizing checksums.

RADAR [34] also provides error correction using checksums.

MILR [35] corrects errors using the mathematical relation-

ship between inputs, outputs, and weights. Algorithm-based

fault tolerance (ABFT) can increase the reliability of object

detection [52]. Adam et al. use intensive fault injection exper-

iments to identify vulnerabilities in DenseNet201 and perform

selective protection [53]. FILR [51] combines feature map

duplication with full inference reruns on selected vulnerable

inferences to achieve high coverage without full duplication,

i.e., it estimates the vulnerability of feature maps and du-

plicates computation of selected feature maps by performing

selective protection. Our work differs from the above because:

1) rather than adding redundant computation to detect faults,

we apply selective data redundancy in candidate weights in

order to correct faults with low time- and space-wise overhead,

and 2) we focus on finer granularity before a feature map is

computed. Because of this finer granularity, we maintain low

overheads.

None of the existing work provides an automatic protec-

tion framework for low-overhead CNN protection for general

platforms. To our best knowledge, Aspis is the first end-to-

end automatic framework that enables software developers to

apply low-overhead protection on CNNs with minimal software

engineering efforts.

VII. CONCLUSIONS

We show that CNNs are vulnerable to faults and need to

be protected given their wide applicability in safety-critical

applications. Standard software protection mechanisms like

TMR either consume too much memory or increase CNN

runtime significantly. To address the above, we illustrated that

some weights are more important than others for reliability

and that protecting weights of higher importance can strike a

performance-reliability tradeoff. Pinpointing these most vul-

nerable weights, especially in complex software toolchains,

is not trivial. Aspis automates these procedures, and can

be used by practitioners to make their own NN software

resilient and efficient, striking a balance between reliability

and performance.
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