
Aspis: Lightweight Neural Network Protection

Against Soft Errors

Anna Schmedding

William & Mary

akschmed@cs.wm.edu

Lishan Yang

George Mason University

lyang28@gmu.edu

Adwait Jog

University of Virginia

ajog@virginia.edu

Evgenia Smirni

William & Mary

esmirni@cs.wm.edu

Abstract—Convolutional neural networks (CNN) are incor-
porated into many image-based tasks across a variety of do-
mains. Some of these are safety critical tasks such as object
classification/detection and lane detection for self-driving cars.
These applications have strict safety requirements and must
guarantee the reliable operation of the neural networks in the
presence of soft errors (i.e., transient faults) in DRAM. Standard
safety mechanisms (e.g., triplication of data/computation) provide
high resilience, but introduce intolerable overhead. We perform
detailed characterization and propose an efficient methodology
for pinpointing critical weights by using an efficient proxy, the
Taylor criterion. Using this characterization, we design Aspis,
an efficient software protection scheme that does selective weight
hardening and offers a performance/reliability tradeoff. Aspis
provides higher resilience comparing to state-of-the-art methods
and is integrated into PyTorch as a fully-automated library.

Index Terms—Soft Errors, ML Classification Models, Software
Protection, Error Resilience

I. INTRODUCTION

Convolutional neural networks (CNNs) are ubiquitous, es-

pecially in image-based tasks such as image classification

and object detection. When used in safety critical applica-

tions, such as self-driving cars or adaptive driver assistance

systems, their reliability requirements are strict. Autonomous

vehicles typically process a continuous inflow of telemetry

from cameras, radar, and other sensors to accurately perceive

the environment surrounding the vehicle [1]. Consequently,

classification accuracy is critical as it affects system safety

requirements that are in place to avoid hazards and accidents.

Significant portions of CNNs typically reside in DRAM that

is susceptible to soft errors (i.e., transient hardware faults) due

to cosmic radiation [2], shrinking transistors, and operating

under low voltage [3]. With SEC-DEC error-correction coding

(ECC), single-bit faults are correctable and double-bit faults

are detectable. A double-bit fault is detected as DUE (Detected

Uncorrectable Error) and the program stops. This is not ad-

visable for safety critical applications. While past studies have

shown that double- and multi-bit faults are rare comparing to

the ubiquitous single-bit faults [4], multi-bit faults in recent

DRAM technologies (DDR4) are shown to be as ubiquitous

as single-bit ones [5] and can disrupt system operation [6].

Error correction codes such as Chipkill [7] can correct single-

and multi-bit faults but at prohibitive cost.

In the specific domain of image recognition using CNNs,

a triggered multi-bit fault in DRAM during inference can

OpenPilot [8] Apollo [9]

Convolution Layers 70 413

Weights 5,811,616 74,349,986

Single-Bit Fault Sites 185,971,712 2,379,199,552

Double-Bit Fault Sites 5,765,123,072 73,755,186,112

Triple-Bit Fault Sites 172,953,692,160 2,212,655,583,360

TABLE I: Fault space of the convolution layers in OpenPilot

and Apollo. Multiple neural networks are used in these systems

(e.g., 19 NNs in Apollo). These are the collective numbers.

be masked if the resulting classification is not altered, or

a well-trained network may give an unexpected erroneous

misclassification. In certain domains such as automotive or

healthcare applications, misclassifications can be catastrophic.

In this paper we shed light onto neural network resilience

during inference in the presence of bit flips (soft errors) on

the weights of the convolution layers of neural networks.

CNNs are ubiquitous in autonomous vehicle (AV) software

and are used for perception and control. Table I illustrates

the fault space of Openpilot, an adaptive driver assistance

system (ADAS) [8] and Baidu Apollo [9]. The table shows that

exhaustive exploration of the soft error space in AV software

is not feasible: the number of fault sites is beyond the order of

billions, requiring thousands of years of experiments. Clearly,

there is a need for an efficient approach to identify the location

of critical faults and understand their impact.

Here, we aim to solve a piece of this puzzle: since CNNs

are important parts of larger software, we aim to identify

their resilience to soft errors in the weights of filters in their

convolution layers. A broader analysis of the effect of soft

errors on other components such as input buffers and activation

layers is outside the scope of this work.

The first research question is to identify the relative impor-

tance of weights: are bit flips that occur in certain weights

more important for classification than others? Identification of

such weights even in stand-alone CNNs of smaller scale com-

paring to those of Table I is still very challenging. Consider

the VGG19 network [10] that has 16 convolution layers with a

total of 20+ million weights that are typically saved as 32-bit

floating point values. Exhaustive analysis of such a vast fault

to evaluate the effect of a single-bit flip requires 640 million

experiments, this number grows to more than 19 billion for

multi-bit flips, see Table II.

Since pinpointing vulnerable weights via exhaustive search

is infeasible, we evaluate the relation of “weight impor-

248

2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSRE62328.2024.00036

2
0
2
4

 I
E

E
E

 3
5
th

 I
n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 S

o
ft

w
ar

e
R

el
ia

b
il

it
y
 E

n
g
in

ee
ri

n
g
 (

IS
S

R
E

)
| 9

7
9
-8

-3
5
0
3
-5

3
8
8
-4

/2
4
/$

3
1
.0

0
 ©

2
0
2
4
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

S
S

R
E

6
2
3
2
8
.2

0
2
4
.0

0
0
3
6

Authorized licensed use limited to: William & Mary. Downloaded on May 21,2025 at 17:13:33 UTC from IEEE Xplore. Restrictions apply.

criticality, such as NISP [12] which determines importance by

how values propagate through the neural network. Pruning

methods may use the norm of the filters to assess their

relative importance for the sake of model compression [13]

and may also incorporate other information, such as the

mean, standard deviation, activation function values [14], and

kernel patterns [30]. The Taylor expansion of a component’s

contribution to model accuracy, in particular, may be used for

assessing filter importance for neural network pruning [11].

The importance of neurons is studied through ablation in [41],

however this technique cannot be applied at weight-level

granularity due to the number of experiments needed (one per

weight). The importance of pixels to the output class is studied

in [42, 43, 44]. In particular, [43, 44] focus on determining test

data set adequacy. Differently from these works, we consider

importance scores at a weight-level for reliability instead of

model compression, pruning, and test data set adequacy.

Resilience estimation and protection in neural networks. Li

et al [31] use fault injection to study error propagation behav-

iors in DNNs and present insights for DNN design. Ibrahim

et al. [45] study the impact of soft errors on Deep Residual

Networks (ResNets) which are used for object recognition

and classification. DeepXplore [46] and DeepTest [47] focus

on the robustness and reliability testing of deep learning and

autonomous driving systems as well as finding corner cases

and vulnerable contexts, but not on protection solutions.

[48] performs analysis of CNNs under rowhammer attacks

causing single bit-flips. Fault injections are performed using

key heuristics that include sampling the validation set for faster

evaluation, flipping the exponent bit only for a big perturbation

impact, and sampling weights uniformly at random. Aspis

uses the importance score in order to ensure that all weights

are investigated for potential protection and to ensure that

no classification bias is introduced from sampling from the

validation set instead of using it in its entirety. Here, we

consider random flips at any bit position, to capture the effect

of bit flips that can happen in the wild. In summary, the

heuristics used in [48] are useful for evaluating rowhammer

attacks, but cannot be applied directly in our use case.

Protection efforts on NNs primarily focus on protecting

the neural network in a coarse-grained fashion, e.g., kernel-

level [49], layer-level [50], or feature-map-level protection

[16, 49, 51]. Structural coding [25] protects DNNs through a

syndrome-based error correction strategy utilizing checksums.

RADAR [34] also provides error correction using checksums.

MILR [35] corrects errors using the mathematical relation-

ship between inputs, outputs, and weights. Algorithm-based

fault tolerance (ABFT) can increase the reliability of object

detection [52]. Adam et al. use intensive fault injection exper-

iments to identify vulnerabilities in DenseNet201 and perform

selective protection [53]. FILR [51] combines feature map

duplication with full inference reruns on selected vulnerable

inferences to achieve high coverage without full duplication,

i.e., it estimates the vulnerability of feature maps and du-

plicates computation of selected feature maps by performing

selective protection. Our work differs from the above because:

1) rather than adding redundant computation to detect faults,

we apply selective data redundancy in candidate weights in

order to correct faults with low time- and space-wise overhead,

and 2) we focus on finer granularity before a feature map is

computed. Because of this finer granularity, we maintain low

overheads.

None of the existing work provides an automatic protec-

tion framework for low-overhead CNN protection for general

platforms. To our best knowledge, Aspis is the first end-to-

end automatic framework that enables software developers to

apply low-overhead protection on CNNs with minimal software

engineering efforts.

VII. CONCLUSIONS

We show that CNNs are vulnerable to faults and need to

be protected given their wide applicability in safety-critical

applications. Standard software protection mechanisms like

TMR either consume too much memory or increase CNN

runtime significantly. To address the above, we illustrated that

some weights are more important than others for reliability

and that protecting weights of higher importance can strike a

performance-reliability tradeoff. Pinpointing these most vul-

nerable weights, especially in complex software toolchains,

is not trivial. Aspis automates these procedures, and can

be used by practitioners to make their own NN software

resilient and efficient, striking a balance between reliability

and performance.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation

(NSF) grants (#2402940 and #2402942) and the Common-

wealth Cyber Initiative (CCI) grant (#HC-3Q24-047). Jog

contributed primarily while he was with William & Mary.

REFERENCES

[1] S. Jha, S. S. Banerjee, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T.
Kalbarczyk, S. W. Keckler, and R. K. Iyer, “Ml-based fault injection
for autonomous vehicles: A case for bayesian fault injection,” in 49th

IEEE/IFIP International Conference on Dependable Systems and Net-

works, DSN 2019, Portland, OR, USA, June 24-27, 2019. IEEE, 2019,
pp. 112–124.

[2] V. Fratin, D. A. G. de Oliveira, C. B. Lunardi, F. Santos, G. Rodrigues,
and P. Rech, “Code-dependent and architecture-dependent reliability
behaviors,” in DSN, 2018, pp. 13–26.

[3] N. Chandramoorthy, K. Swaminathan, M. Cochet, A. Paidimarri, S. El-
dridge, R. V. Joshi, M. M. Ziegler, A. Buyuktosunoglu, and P. Bose,
“Resilient low voltage accelerators for high energy efficiency,” in Pro-

ceedings of HPCA’19. IEEE, 2019, pp. 147–158.
[4] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-scale

study of soft-errors on gpus in the field,” in Proceedings of HPCA’16,

Barcelona, Spain, March 12-16, 2016, pp. 519–530.
[5] M. V. Beigi, Y. Cao, S. Gurumurthi, C. Recchia, A. C. Walton, and

V. Sridharan, “A systematic study of DDR4 DRAM faults in the field,”
in Proceedings of HPCA’23, Montreal, QC, Canada, February 25 -

March 1, 2023, pp. 991–1002.
[6] V. Oles, A. Schmedding, G. Ostrouchov, W. Shin, E. Smirni, and

C. Engelmann, “Understanding GPU memory corruption at extreme
scale: The Summit case study,” in Proceedings of the 38th ACM

International Conference on Supercomputing, ICS 2024, pp. 188–200.
[7] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC

server main memory,” in IBM Microelectronics division, Vol. 11. 1–23,
1997.

[8] “OpenPilot.” [Online]. Available: https://github.com/commaai/openpilot

258

Authorized licensed use limited to: William & Mary. Downloaded on May 21,2025 at 17:13:33 UTC from IEEE Xplore. Restrictions apply.

[9] “Baidu Apollo,” https://developer.apollo.auto.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[11] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019.

[12] R. Yu, A. Li, C. Chen, J. Lai, V. I. Morariu, X. Han, M. Gao, C. Lin, and
L. S. Davis, “NISP: Pruning networks using neuron importance score
propagation,” in Proceedings of CVPR’18, 2018, pp. 9194–9203.

[13] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” CoRR, vol. abs/1608.08710, 2016.

[14] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,”
CoRR, vol. abs/1611.06440, 2016.

[15] A. Schmedding, P. Schowitz, X. Zhou, Y. Lu, L. Yang, H. Alemzadeh,
and E. Smirni, “Strategic resilience evaluation of neural networks within
autonomous vehicle software,” in 43rd International Conference on

Computer Safety, Reliability, and Security, SAFECOMP 2024.

[16] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for deep
neural networks through range restriction,” in 51st Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, DSN

2021, Taipei, Taiwan, June 21-24, 2021, pp. 1–13.

[17] A. Schmedding, L. Yang, A. Jog, and E. Smirni, “Aspis.” [Online].
Available: https://doi.org/10.6084/m9.figshare.24757071.v1

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint arXiv:1512.03385, 2015.

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of

CVPR’16, 2016, p. 2818–2826.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in NeurIPS, 2019.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR, 2009.

[22] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-
ages,” in Computer Science Department, U. of Toronto, 2009.

[23] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip
errors,” in 2017 47th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). IEEE, 2017, pp. 97–108.

[24] L. Yang, B. Nie, A. Jog, and E. Smirni, “Practical resilience analysis
of GPGPU applications in the presence of single- and multi-bit faults,”
IEEE Trans. Computers, vol. 70, no. 1, pp. 30–44, 2021.

[25] A. A. Khoshouyeh, F. Geissler, S. Qutub, M. Paulitsch, P. Nair, and
K. Pattabiraman, “Structural coding: A low-cost scheme to protect cnns
from large-granularity memory faults,” in Proceedings of SC 2023,

Denver, CO, USA, November 12-17, 2023.

[26] B. Nie, L. Yang, A. Jog, and E. Smirni, “Fault site pruning for
practical reliability analysis of GPGPU applications,” in Proceedings

of MICRO’18, Fukuoka, Japan, October 20-24, 2018, pp. 749–761.

[27] L. Yang, B. Nie, A. Jog, and E. Smirni, “SUGAR: speeding up GPGPU
application resilience estimation with input sizing,” Proc. ACM Meas.

Anal. Comput. Syst., vol. 5, no. 1, pp. 01:1–01:29, 2021.

[28] A. Milluzzi and A. George, “Exploration of TMR fault masking with
persistent threads on tegra gpu socs,” in 2017 IEEE Aerospace Confer-

ence. IEEE, 2017, pp. 1–7.

[29] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine

learning, 2013, pp. 1310–1318.

[30] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“Patdnn: Achieving real-time DNN execution on mobile devices with
pattern-based weight pruning,” CoRR, vol. abs/2001.00138, 2020.

[31] G. Li, S. K. S. Hari, M. B. Sullivan, T. Tsai, K. Pattabiraman, J. S. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (DNN) accelerators and applications,” in Proceedings of

SC’17, Denver, CO, USA, November 12 - 17, 2017.

[32] G. Kadam, E. Smirni, and A. Jog, “Data-centric reliability management
in gpus,” in 2021 51st Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). IEEE, 2021, pp. 271–283.

[33] L. Yang, B. Nie, A. Jog, and E. Smirni, “Enabling software resilience
in gpgpu applications via partial thread protection,” in Proceedings of

ICSE’21, 2021, pp. 1248–1259.

[34] J. Li, A. S. Rakin, Z. He, D. Fan, and C. Chakrabarti, “RADAR:
run-time adversarial weight attack detection and accuracy recovery,” in
Proceedings of DATE’21, Grenoble, France, February 1-5, 2021, pp.
790–795.

[35] J. Ponader, K. Thomas, S. Kundu, and Y. Solihin, “MILR: mathemati-
cally induced layer recovery for plaintext space error correction of cnns,”
in 51st IEEE/IFIP International Conference on Dependable Systems and

Networks, DSN 2021, Taipei, Taiwan, June 21-24, 2021, pp. 75–87.
[36] D. H. Yoon and M. Erez, “Virtualized and flexible ECC for main

memory,” in Proceedings of ASPLOS 2010, Pittsburgh, Pennsylvania,

USA, March 13-17, 2010, pp. 397–408.
[37] J. Kim, M. B. Sullivan, and M. Erez, “Bamboo ECC: strong, safe,

and flexible codes for reliable computer memory,” in Proceedings of

HPCA’15, Burlingame, CA, USA, February 7-11, 2015, pp. 101–112.
[38] S. Jha, S. Cui, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T. Kalbarczyk,

S. W. Keckler, and R. K. Iyer, “Exploiting temporal data diversity for
detecting safety-critical faults in AV compute systems,” in 52nd IEEE/I-

FIP International Conference on Dependable Systems and Networks,

DSN 2022, Baltimore, MD, USA, June 27-30, 2022, pp. 88–100.
[39] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun,

“CARLA: an open urban driving simulator,” in 1st Annual Conference on

Robot Learning, CoRL 2017, Mountain View, California, USA, Novem-

ber 13-15, 2017, Proceedings, ser. Proceedings of Machine Learning
Research, vol. 78, pp. 1–16.

[40] H. Schafer, E. Santana, A. Haden, and R. Biasini, “A commute in data:
The comma2k19 dataset,” 2018.

[41] B. Zhou, Y. Sun, D. Bau, and A. Torralba, “Revisiting the importance
of individual units in cnns via ablation,” CoRR, vol. abs/1806.02891,
2018.

[42] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On pixel-wise explanations for non-linear classifier deci-
sions by layer-wise relevance propagation,” PLOS ONE, vol. 10, pp.
1–46, 07 2015.

[43] X. Xie, T. Li, J. Wang, L. Ma, Q. Guo, F. Juefei-Xu, and Y. Liu, “NPC:
neuron path coverage via characterizing decision logic of deep neural
networks,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 3, pp. 47:1–
47:27, 2022.

[44] S. Gerasimou, H. F. Eniser, A. Sen, and A. Çakan, “Importance-driven
deep learning system testing,” in ICSE ’20, pp. 322–323.

[45] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft error resilience of deep residual networks for object recognition,”
IEEE Access, vol. 8, pp. 19 490–19 503, 2020.

[46] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” Commun. ACM, vol. 62, no. 11, p.
137–145, oct 2019.

[47] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of

ICSE’18, 2018, p. 303–314.
[48] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal

brain damage: Exposing the graceless degradation in deep neural net-
works under hardware fault attacks,” in USENIX Security 2019, Santa

Clara, CA, USA, August 14-16, 2019, N. Heninger and P. Traynor, Eds.,
pp. 497–514.

[49] F. F. dos Santos, L. Carro, and P. Rech, “Kernel and layer vulnerability
factor to evaluate object detection reliability in gpus,” IET Computers

& Digital Techniques, vol. 13, no. 3, pp. 178–186, 2018.
[50] C. Bolchini, L. Cassano, A. Miele, and A. Nazzari, “Selective hard-

ening of cnns based on layer vulnerability estimation,” in 2022 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT). IEEE, 2022, pp. 1–6.
[51] A. Mahmoud, S. K. Sastry Hari, C. W. Fletcher, S. V. Adve, C. Sakr,

N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Optimizing selective protection for cnn resilience,” in 2021 IEEE 32nd

International Symposium on Software Reliability Engineering (ISSRE),
2021, pp. 127–138.

[52] F. F. dos Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2018.

[53] K. Adam, I. I. Mohamed, and Y. Ibrahim, “A selective mitigation
technique of soft errors for dnn models used in healthcare applications:
Densenet201 case study,” IEEE Access, vol. 9, pp. 65 803–65 823, 2021.

259

Authorized licensed use limited to: William & Mary. Downloaded on May 21,2025 at 17:13:33 UTC from IEEE Xplore. Restrictions apply.

