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We prove that the dévissage property holds for periodic cyclic homology for a
local complete intersection embedding into a smooth scheme. As a consequence,
we show that the complexified topological Chern character maps for the bounded
derived category and singularity category of a local complete intersection are
isomorphisms, proving new cases of the lattice conjecture in noncommutative
Hodge theory.
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1. Introduction

Given a closed embedding i : Z ω→ X of noetherian schemes, one has a pushforward
functor

i↑ : coh(Z) → cohZ (X)

from coherent sheaves on Z to coherent sheaves on X supported in Z . While this
functor is far from being an equivalence in general, it is a fundamental result of
Quillen [1973] that i↑ induces an isomorphism on G-theory; that is, G-theory has
the dévissage property. In more detail: writing G↑(Z) and G Z

↑ (X) for the algebraic
K -theory groups of coh(Z) and cohZ (X), the induced map i↑ : G↑(Z) → G Z

↑ (X) is
an isomorphism. One can recast this result in the language of differential graded (dg)
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categories in the following way: given appropriate dg-enhancements Db
dg(Z) and

Db,Z
dg (X) of the bounded derived categories of coh(Z) and cohZ (X), the induced

map i↑ : K↑(Db
dg(Z)) → K↑(Db,Z

dg (X)) on algebraic K -theory is an isomorphism.
Versions of the dévissage property are now known to be enjoyed by a host of

invariants. For instance, a result of Tabuada and Van den Bergh [2018, Theorem 1.8]
states that, given a closed immersion i : Z → X of smooth schemes over a field k
and any localizing !1-homotopy invariant E of dg-categories, the map

i↑ : E↑(Db
dg(Z)) → E↑(Db,Z

dg (X)) (1.1)

is an isomorphism. In particular, (1.1) is an isomorphism when E = HP , the
periodic cyclic homology functor.1 The main goal of this paper is to establish the
dévissage property for periodic cyclic homology in the case of an embedding of a
complete intersection into a smooth scheme, with a view toward proving new cases
of the lattice conjecture in noncommutative Hodge theory.

To state our result precisely, we make the following definition: a closed em-
bedding Z ω→ X of noetherian schemes is a local complete intersection, or lci, if
there is an affine open cover Ui = Spec(Qi ) of X such that each Ui ↓ Z is equal to
Spec(Qi/Ii ) for some ideal Ii ↔ Qi that is generated by a regular sequence. The
following is our main result:

Theorem 1.2. Let k be a field of characteristic 0, X a smooth scheme over k, and
i : Z ω→ X an lci closed embedding. The map i↑ : Db

dg(Z) → Db,Z
dg (X) induces a

quasiisomorphism on periodic cyclic complexes:

HP(Db
dg(Z)) ↗↘→ HP(Db,Z

dg (X)).

In fact, Theorem 1.2 can be extended slightly; see Corollary 4.7. The char(k) = 0
assumption is necessary to invoke a version of the Hochschild–Kostant–Rosenberg
theorem (see Theorem 2.17) and also Lemma 3.5. To prove Theorem 1.2, we use
a Mayer–Vietoris argument to reduce to the affine case. We then proceed via an
explicit calculation using versions of Koszul duality and the Hochschild–Kostant–
Rosenberg formula involving matrix factorization categories. While Theorem 1.2
extends the aforementioned result of Tabuada and Van den Bergh [2018, Theo-
rem 1.8], their argument does not adapt to our setting, and so our proof is completely
different from theirs; see Remark 4.5 for details.

Applications. As a first application, we apply Theorem 1.2 to prove new cases of
Blanc’s lattice conjecture.

1This special case admits a more elementary proof via the Hochschild–Kostant–Rosenberg formula;
see Remark 4.5.
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Conjecture 1.3 [Blanc 2016, Conjecture 1.7]. Given a smooth and proper "-linear
dg-category C, the topological Chern character map K top

↑ (C) ≃# " → HP↑(C) is
an isomorphism.

The motivation for the lattice conjecture is that topological K -theory is believed
to provide the rational lattice in the (conjectural) noncommutative Hodge structure
on the periodic cyclic homology of any smooth and proper dg-category, in the
framework of Katzarkov, Kontsevich and Pantev’s noncommutative Hodge theory
[Katzarkov et al. 2008]. While Conjecture 1.3 involves smooth and proper dg-
categories, it is known to hold in many cases beyond this purview. More precisely,
the lattice conjecture is known for the following dg-categories; in what follows,
Perfdg(↘) denotes the dg-category of perfect complexes on (↘):

(1) Perfdg(X), where X is a separated, finite type scheme over " [Blanc 2016]
(see also [Konovalov 2021, Theorem 1.1] for a generalization of this result to
derived schemes).

(2) Perfdg(X), for X a smooth Deligne–Mumford stack [Halpern-Leistner and
Pomerleano 2020, Corollary 2.19].

(3) A connected, proper dg-algebra A [Konovalov 2021, Theorem 1.1].

(4) A connected dg-algebra A such that H0(A) is a nilpotent extension of a com-
mutative "-algebra of finite type [Konovalov 2021, Theorem 1.1].

We prove the following:

Theorem 1.4. Let X be a noetherian "-scheme such that every point has an open
neighborhood that admits an lci closed embedding into a smooth "-scheme. The
lattice conjecture holds for both the dg-bounded derived category Db

dg(X) and the
dg-singularity category Dsing

dg (X) of X.

Theorem 1.4 opens the door to studying noncommutative Hodge structures (in the
sense of [Katzarkov et al. 2008]) of singularity categories of complete intersections,
building on the robust literature on Hodge-theoretic properties of such singularity
categories [Brown and Dyckerhoff 2020; Ballard et al. 2014a; 2014b; Brown and
Walker 2020a; 2020b; 2022; Căldăraru and Tu 2013; Dyckerhoff 2011; Efimov
2018; Halpern-Leistner and Pomerleano 2020; Kim and Polishchuk 2022; Kim and
Kim 2022; Polishchuk and Vaintrob 2012; Segal 2013; Shklyarov 2014; 2016]. We
will explore this in detail in the case of singularity categories of hypersurfaces in a
forthcoming paper.

As a second application, we use the direct calculations in our proof of Theorem 1.2
to explicitly compute the boundary map in a certain localization sequence on periodic
cyclic homology. In more detail: let Q be an essentially smooth k-algebra, f ⇐ Q
not a zero-divisor, and R = Q/ f . Since periodic cyclic homology is a localizing
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invariant of dg-categories, Theorem 1.2 implies that there is a long exact sequence

· · · → HPj (Db
dg(R)) → HPj (Q) → HPj (Q[1/ f ]) ε↘→ HPj↘1(Db

dg(R)) → · · · .

We give an explicit formula for the boundary map ε j in this sequence; see
Theorem 5.5. This formula plays a key role in our aforementioned forthcoming
work on noncommutative Hodge structures for singularity categories and was a
main source of motivation for the present paper.

Remark 1.5. It was brought to our attention by Adeel Khan after the first version
of this paper was posted that Theorem 1.2 may also be obtained as an application of
results of Preygel [2015]; see [Khan 2023, Appendix A]. In fact, Khan subsequently
used this idea to obtain a more general version of Theorem 1.2 involving algebraic
spaces and without the lci assumption [Khan 2023, Theorem A.2]. This also leads
to a more general version of Theorem 1.4; see [Khan 2023, Theorem B]. However,
the explicit calculations in our proof of Theorem 1.2 are still crucial, for instance,
to our proof of the formula for the boundary map in the long exact sequence above
(see Theorem 5.5); we do not see a direct way to compute this boundary map using
Preygel’s results.

2. Notation and background

2A. Notation. Let k be a characteristic 0 field. We index cohomologically unless
otherwise noted.

2A1. Dg-enhancements of derived categories. Given a noetherian k-scheme X ,
let Cohb

dg(X) denote the dg-category of bounded complexes of coherent sheaves
on X . (A technical set-theoretic point: we are implicitly considering all categories
of modules or sheaves — and complexes thereof — that arise in this paper in a fixed
Grothendieck universe, and all such categories are assumed to be small with respect
to a fixed larger Grothendieck universe; see [Thomason and Trobaugh 1990, 1.4].)
We let Db

dg(X) denote the dg-quotient of Cohb
dg(X) by the full subcategory of exact

complexes. This is a dg-category with the same objects as Cohb
dg(X) in which

a contracting homotopy for each exact complex has been formally adjoined; see
[Drinfeld 2004] for the precise definition. For any closed subset Z ↔ X , we let
Db,Z

dg (X) denote the dg-subcategory of Db
dg(X) given by complexes with support

in Z . The dg-category Db,Z
dg (X) is pretriangulated, and its associated homotopy

category, which we shall write as Db,Z (X), is isomorphic to the usual bounded
derived category of coherent sheaves on X supported on Z .

2A2. Mixed Hochschild complexes. We recall that a mixed complex of k-vector
spaces is a dg-module over the graded commutative k-algebra k⇒e⇑ = k[e]/(e2),
where |e| =↘1. Typically, a mixed complex is thought of as a triple M = (M, b, B),
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where (M, b) is a chain complex, and B denotes the action of e; so b2 = 0, B2 = 0,
and [b, B] = bB + Bb = 0. A morphism of mixed complexes refers to a morphism
of dg-k⇒e⇑-modules. Such a morphism is a quasiisomorphism if and only if it so
upon forgetting the action of B. One may associate to any dg-category C over k a
mixed complex MC(C), its mixed Hochschild complex. We refer the reader to e.g.,
[Brown and Walker 2020a, Section 3] for a detailed discussion of mixed Hochschild
complexes associated to dg-categories.

The periodic cyclic homology of a mixed complex M is given by the “Tate
construction”. In detail: the negative cyclic complex associated to M is HN (M) :=
$Homk⇒e⇑(k, M). Since HN (k) = k[u] for a degree two element u, HN (M) is
naturally a dg-k[u]-module, and the periodic cyclic complex of M is HP(M) :=
HN (M) ≃k[u] k[u, u↘1]. The periodic cyclic homology of M is defined to be
HP↑(M) := H↑(HP(M)). The periodic cyclic complex (resp. homology) of
a dg-category C over k is given by HP(C) := HP(MC(C)) (resp. HP↑(C) :=
HP↑(MC(C)). The assignment C ⇓→ HP(C) is covariantly functorial for dg-functors
and sends quasiequivalences of dg-categories to quasiisomorphisms; see [Brown
and Walker 2020a, Section 3.2] for more details.

2B. Mayer–Vietoris for the Hochschild mixed complex. In this subsection, we
recall some background on localizing invariants of dg-categories. The localiz-
ing invariants of interest in this paper are the various Hochschild invariants dis-
cussed in Section 2A2 (see Theorem 2.5, due to Keller) and topological K -theory
(see Theorem 2.6, due to Blanc). The main goal of this subsection is to prove
Corollary 2.14, a Mayer–Vietoris result for localizing invariants.

Let us fix a bit more notation/terminology. Given a dg-category C, we let [C]
denote its homotopy category. We say an object X in C is contractible if X is the
zero object in [C], or, equivalently, if the dga EndC(X) is exact. Let Cctr denote the
full dg-subcategory of C given by the contractible objects.

In this paper, a short exact sequence of dg-categories, written

A ϑ↘→ B F↘→ C,

consists of pretriangulated dg-categories A, B and C and a dg-functor F : B → C,
such that A is a full dg-subcategory of B (with ϑ denoting the inclusion functor),
F(A) ⇐ Cctr for all A ⇐ A, and the triangulated functor induced by F from the
Verdier quotient [B]/[A] to [C] is an equivalence.

We say a commutative square

X !!

""

Y

""

Z !! W
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of dg-modules over some dga is homotopy cartesian if the following equivalent
conditions hold: (1) its totalization is exact, (2) the induced map on the mapping
cones of its rows is a quasiisomorphism, or (3) the induced map on the mapping
cones of its columns is a quasiisomorphism.

We will make use of the following localization sequence of dg-categories, the
essence of which is due to a result of Gabriel [1962, Chapter V]:

Proposition 2.1. Let X be a noetherian scheme, Y and Z closed subschemes of X ,
and U = X \ Z. The sequence

Db,Y↓Z
dg (X) → Db,Y

dg (X) → Db,U↓Y
dg (U ), (2.2)

where the second functor is given by pullback along the open immersion U ω→ X ,
is a short exact sequence of dg-categories.

Proof. It suffices to show that the sequence

Db,Y↓Z (X) → Db,Y (X) → Db,U↓Y (U )

of triangulated categories exhibits Db,U↓Y (U ) as the Verdier quotient

Db,Y (X)/ Db,Y↓Z (X).

The proof in [Schlichting 2006, Section 2.3.8] that

cohZ (X) → coh(X) → coh(U )

is a short exact sequence of abelian categories extends verbatim to give a proof that

cohY↓Z (X) → cohY (X) → cohU↓Y (U )

is a short exact sequence of abelian categories. To complete the proof, apply [Krause
2022, Lemma 4.4.1]. ↭

The following is a slight modification of a notion found in, for example, [Tabuada
and Van den Bergh 2018, Definition 4.3]:

Definition 2.3. Let E be a functor from the category of small dg-categories over k
to the category of dg-modules over some fixed dga ϖ.2 We say E is localizing if
the following two conditions hold:

(1) If G : A → B is a dg-functor that is a Morita equivalence (e.g., a quasiequiva-
lence), then E(G) : E(A) → E(B) is a quasiisomorphism of dg-ϖ-modules.

2By “small”, we mean small with respect to our above choices of Grothendieck universes.



DÉVISSAGE FOR PERIODIC CYCLIC HOMOLOGY OF COMPLETE INTERSECTIONS 347

(2) If A ϑ↘→ B F↘→ C is a short exact sequence of pretriangulated dg-categories,
then the commutative square of dg-ϖ-modules

E(A) !!

""

E(B)

""

E(Cctr) !! E(C)

(2.4)

is homotopy cartesian.

Theorem 2.5 (Keller). The functors MC , HH , HN , and HP are localizing functors
in the sense of Definition 2.3, taking values in mixed complexes over k, complexes
over k, dg-k[u]-modules, and dg-k[u, u↘1]-modules, respectively.

Proof. The functor MC inverts Morita equivalences by [Keller 1999, Section 1.5].
Since the canonical map [C] → [C]/[Cctr] is a quasiequivalence, the theorem in
[loc. cit., Section 2.4] implies that the induced map from the cone of the top arrow
to the cone of the bottom arrow in (2.4) with E = MC is a quasiisomorphism.
This proves the result for MC . The result for the other three theories follows,
since each is obtained from MC by applying an additive functor that preserves
quasiisomorphisms. ↭

Theorem 2.6 (Blanc). The functor K top
" from dg-categories over " to chain com-

plexes over ", given by sending a dg-category to its complexified topological
K -theory, is localizing.

Proof. This essentially follows from [Blanc 2016, Proposition 4.15]. In more detail:
K top

" inverts Morita equivalences by [loc. cit., Proposition 4.15(b)]. Nonconnective
algebraic K -theory is a localizing invariant [Schlichting 2006, Theorem 9]; so it
suffices to observe, as in the proof of [Blanc 2016, Proposition 4.15(c)], that Blanc’s
topological realization functor |↘|%, inverting the Bott element, and tensoring with
" are all exact functors. ↭

The following three lemmas follow from straightforward diagram chases; we
include a proof of the third and omit proofs of the first two.

Lemma 2.7. If ϱ : E → E ⇔ is a natural transformation of localizing invariants
taking values in dg-ϖ-modules, then so is the fiber of ϱ, written fiber(ϱ) and defined
by

A ⇓→ cone(E(A)
ϱ(A)↘↘→ E ⇔(A))[↘1].

In particular, the fiber of the complexified topological Chern character map ch :
K top

" → HP is a localizing invariant.
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Lemma 2.8. If E is a localizing invariant taking values in dg-ϖ-modules, then for
every short exact sequence of pretriangulated dg-categories A ϑ↘→ B F↘→ C, there
is a distinguished triangle in D(ϖ), the derived category of dg-ϖ-modules, of the
form

E(A) → E(B) → E(C)
εA,F↘↘→ E(A)[1],

where the map εA,F is the composition

E(C)
can1↘↘→ cone(E(Cctr) → E(C))

ϱ↘1
↘→ cone(E(A) → E(B))

can2↘↘→ E(A)[1].

Here, ϱ↘1 is the inverse in D(ϖ) of the quasiisomorphism ϱ induced by (2.4), and
the maps can1 and can2 are the canonical maps to and from the mapping cone,
respectively.

Lemma 2.9. Suppose E is a localizing invariant (in the sense of Definition 2.3)
taking values in dg-ϖ-modules, and each row of the commutative diagram

A !!

""

B F
!!

""

C

""

A⇔ !! B⇔ F ⇔
!! C⇔

is a short exact sequence of pretriangulated dg-categories.

(1) The vertical maps induce a morphism of distinguished triangles in D(ϖ) of the
form

E(A) !!

""

E(B) !!

""

E(C)
εA,F

!!

""

E(A)[1]

""

E(A⇔) !! E(B⇔) !! E(C⇔)
εA⇔,F ⇔

!! E(A⇔)[1],

(2.10)

where the boundary maps are as defined in the statement of Lemma 2.8.

(2) If , in addition, the map E(A)
↖↘→ E(A⇔) is a quasiisomorphism, then the

commutative square of dg-ϖ-modules

E(B) !!

""

E(C)

""

E(B⇔) !! E(C⇔)

(2.11)

is homotopy cartesian.
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Proof. Both parts will involve the cube of dg-ϖ-modules

E(A⇔) !!

""

E(B⇔)

""

E(A) !!

""

##

E(B)

""

$$

E(Cctr) !!

%%

E(C)

&&

E(C⇔
ctr)

!! E(C⇔)

(2.12)

which is commutative due to the functoriality of E . Let us now prove (1). The left
two squares of (2.10) clearly commute; as for the right-most square in (2.10): from
the definition of the boundary map in Lemma 2.8, we see that it suffices to show

cone(E(A) → E(B))
ϱ
!!

""

cone(E(Cctr) → E(C))

""

cone(E(A⇔) → E(B⇔)) ϱ⇔
!! cone(E(C⇔

ctr) → E(C⇔))

commutes. This is a consequence of the commutativity of (2.12).
To prove (2), let I , O , L , and R denote the totalizations of the four commutative

squares of dg-ϖ-modules given by the inner square, the outer square, the left-hand
trapezoid, and the right-hand trapezoid of (2.12), respectively. The commutativity of
(2.12) gives induced maps I → O and L → R. Moreover, since both cone(I → O)

and cone(L → R) are isomorphic to the totalization of (2.12) regarded as a three-
dimensional complex of dg-ϖ-modules, there is an isomorphism cone(I → O) ↗=
cone(L → R). Both I and O are exact since E is localizing, and L is exact since
the top and bottom edges of the left-hand trapezoid are both quasiisomorphisms,
the top one by assumption and the bottom one since E(Cctr) and E(C⇔

ctr) are exact.
It follows that R is exact. ↭

Notation 2.13. Let E be any functor from small dg-categories over k to dg-modules
over some dga ϖ. For any noetherian k-scheme X and closed subscheme Y of X ,
we set

EY (X) := E(PerfY
dg(X)) and EY

coh(X) := E(Db,Y
dg (X)).
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Corollary 2.14 (Mayer–Vietoris). Let X be a noetherian k-scheme, and suppose
X =U ↙V , where U and V are open subschemes of X. Let Y be a closed subscheme
of X and E any localizing invariant taking values in dg-ϖ-modules. The square

EY
coh(X) !!

""

EU↓Y
coh (U )

""

E V ↓Y
coh (V ) !! EU↓V ↓Y

coh (U ↓ V ),

in which each map is induced by pullback along an open immersion, is homotopy
cartesian.

Proof. Set Z := X \ U and W := V \ (U ↓ V ). It follows from Proposition 2.1 that

Db,⊋
dg (X) → Db,Y↓Z

dg (X) → Db,W↓Y
dg (V )

is a short exact sequence of dg-categories; since Db,⊋
dg (X) has a trivial homotopy

category, we conclude that Db,Y↓Z
dg (X) → Db,W↓Y

dg (V ) is a quasiequivalence. Now
apply Lemma 2.9 to the commutative diagram:

Db,Y↓Z
dg (X) !!

""

Db,Y
dg (X) !!

""

Db,U↓Y
dg (U )

""

Db,W↓Y
dg (V ) !! Db,V ↓Y

dg (V ) !! Db,U↓V ↓Y
dg (U ↓ V )

↭

2C. Koszul duality. We recall in this section a Koszul duality statement that is
essentially due to Martin [2021, Theorem 5.1]; see also work of Burke and Stevenson
[2015, Theorem 7.5]. Let Q be an essentially smooth algebra over a field k
and f1, . . . , fc a (not necessarily regular) sequence of elements in Q. Let Q̃ =
Q[t1, . . . , tc], where |ti | = 2 for all i , and f̃ = f1t1 + · · · + fctc ⇐ Q̃.

Definition 2.15. A matrix factorization of f̃ is a projective, finitely generated,
#-graded Q̃-module P equipped with a degree 1 endomorphism dP such that
d2

P = f̃ · idP . Given two matrix factorizations P and P ⇔, we have a morphism
complex Hom(P, P ⇔) with underlying graded module given by the internal Hom
object HomQ̃(P, P ⇔) in the category of #-graded Q̃-modules and differential given
by ϱ ⇓→dP ⇔ϱ↘(↘1)|ϱ|ϱdP . Let m f (Q̃, f̃ ) denote the differential #-graded category
with objects given by matrix factorizations of f̃ and morphism complexes given as
above.

Matrix factorizations were introduced by Eisenbud [1980] in his study of the as-
ymptotic behavior of free resolutions over local hypersurface rings. Since their incep-
tion in commutative algebra, matrix factorizations have appeared in a wide variety of
branches of mathematics: for instance, homological mirror symmetry [Brunner et al.
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2006; He et al. 2023; Sheridan 2015], K -theory [Brown 2016; Brown et al. 2017;
Lurie 2015; Walker 2017], knot theory [Khovanov and Rozansky 2008a; 2008b;
Oblomkov 2019], and noncommutative Hodge theory [Halpern-Leistner and Pomer-
leano 2020; Katzarkov et al. 2008; Polishchuk and Vaintrob 2012], among others.

Let K denote the Koszul complex on f1, . . . , fc. The underlying Q-module
of K is

∧
Q(e1, . . . , ec), where each ei is an exterior variable of degree ↘1. Let

Db
dg(K ) be the dg-quotient of the dg-category of finitely generated dg-K -modules

by the subcategory of exact ones, as in 2A1; and let K be the dg-subcategory of
Db

dg(K ) on those dg-K -modules that are projective as Q-modules. Notice that the
inclusion K ω→ Db

dg(K ) is a quasiequivalence.
Recall that m f (Q̃, f̃ )ctr is the dg-subcategory of m f (Q̃, f̃ ) given by contractible

objects. Let ς : K → m f (Q̃, f̃ )/m f (Q̃, f̃ )ctr denote the dg-functor that sends an
object (P, d)⇐K to the matrix factorization (P[t1, . . . , tc], d+∑c

i=1 ei ti ); it follows
from (a slight reformulation of) a result of Martin [2021, Theorem 5.1] that ς is well-
defined and is a quasiequivalence. As observed in [loc. cit.], the functor ς is an in-
stance of Koszul duality. Indeed, when Q = k and each fi = 0, the equivalence ς re-
covers (a nonstandard-graded variant of) the classical Bernstein–Gel’fand–Gel’fand
correspondence between an exterior and polynomial algebra [Bern!teı̆n et al. 1978].

The following result, which plays a key role in the proof of Theorem 1.2, is now
immediate:

Proposition 2.16 [Martin 2021]. We have a commutative diagram of the form

Db
dg(K )

''

K↖
((

""

↖
ς

!! m f (Q̃, f̃ )/m f (Q̃, f̃ )ctr

))

m f (Q̃, f̃ )
↖
((

**Db,Z
dg (Q),

where each horizontal functor is a quasiequivalence. The left-most diagonal map
and vertical map are forgetful functors, and the two right-most diagonal maps are
given by setting each ti to 0. The left-most horizontal map is the inclusion, and the
right-most horizontal map is the canonical one.

2D. An HKR-type theorem. We have the following Hochschild–Kostant–Rosenberg
(HKR)-type formula due to the second author, building on results of [Căldăraru and
Tu 2013; Polishchuk and Positselski 2012; Segal 2013]:

Theorem 2.17. Let Q̃ and f̃ be as in Section 2C, and assume that char(k) = 0.
There is a natural HKR-type isomorphism

MC(m f (Q̃, f̃ ))
↖↘→ (ϕ•

Q̃/k, dQ̃ f̃ , dQ̃)

in the derived category of mixed complexes, where the map given by exterior
multiplication on the left by the element dQ̃ f̃ ⇐ ϕ1

Q̃/k is denoted by dQ̃ f̃ .
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Proof. It follows from a result of Efimov [2018, Proposition 3.14] that there is a
quasiisomorphism

MCI I (Q̃, ↘ f̃ )
↖↘→ (ϕ•

Q̃/k, dQ̃ f̃ , dQ̃),

where MCI I (Q̃, ↘ f̃ ) denotes the mixed Hochschild complex of the second kind
of the curved algebra (Q̃, ↘ f̃ ); see e.g., [Brown and Walker 2020a, Sections 2
and 3] for background on curved algebras and their Hochschild invariants of the
second kind. By work of Polishchuk and Positselski [2012], there is a canonical
isomorphism MCI I (Q̃, ↘ f̃ ) ↗= MCI I (m f (Q̃, f̃ )) in the derived category of mixed
complexes. See [Brown and Walker 2020a, Proposition 3.25] for an explicit formu-
lation of this result; note that the category Perf(Q̃, f̃ )op in that statement coincides
with m f (Q̃, ↘ f̃ )op ↗= m f (Q̃, f̃ ). Finally, by a result of Walker [∝ 2024], the
canonical map MC(m f (Q̃, f̃ )) → MCI I (m f (Q̃, f̃ )) is a quasiisomorphism. ↭

Combining Theorem 2.17 with the horizontal quasiequivalences in the diagram
in Proposition 2.16, one arrives at a formula for the mixed Hochschild complex of
Db

dg(K ).

3. Key technical result

We begin by fixing the following

Notation 3.1. Let S = ⊕
j∝0 S j be an &-graded k-algebra essentially of finite type

that is concentrated in even degrees (i.e., S j = 0 for j odd) and commutative. Given
a degree two element h ⇐ S2, we define

HN dR(S, h) := (ϕ•
S/k[u], dSh + udS),

HPdR(S, h) := HN dR(S, h) ≃k[u] k[u, u↘1] = (ϕ•
S/k[u, u↘1], dSh + udS),

where dS denotes the de Rham differential, u is a degree 2 variable, and the summand
dSh of the differential indicates exterior multiplication on the left by the element
dSh ⇐ ϕ1

S/k . In these complexes, the degree of an element a0da1 · · · da j ⇐ ϕ
j
S/k is

declared to be ↘ j + ∑
i |ai |; in particular, the operator dS has degree ↘1 and both

dSh and udS have degree 1.
The symbols HN dR and HPdR are meant to indicate that, under certain conditions,

these complexes are de Rham models of the negative cyclic and periodic cyclic
complexes of the matrix factorization category m f (S, h); see Theorem 2.17, and
also [Walker ∝ 2024].

Let A satisfy the assumption on S in 3.1, and assume also that A is essentially
smooth over k. Fix f ⇐ A0 and g ⇐ A2, and let t be a degree 2 variable. The goal
of this section is to prove the following key technical result, which plays a crucial
role in the proof of Theorem 1.2.
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Proposition 3.2. The square

HPdR(A[t], f t + g) !!

""

HPdR(A, g)

""

HPdR(A[1/ f, t], f t + g) !! HPdR(A[1/ f ], g)

(3.3)

in which the vertical maps are induced by inverting f and the horizontal maps are
induced by setting t = 0, is homotopy cartesian. Moreover, the bottom-left complex
HPdR(A[1/ f, t], f t + g) is k[u]-linearly contractible.

Before proving Proposition 3.2, we establish a series of intermediate technical
results. Define a complex

M = MA, f,g = (ϕ•
A/k[t, u], td f + dg + ud),

where d denotes the de Rham differential in ϕ•
A/k . Here, as above, the summands

td f and dg of the differential denote exterior multiplication on the left by the
elements td f and dg of ϕ1

A/k[t]. (To clarify, if g = g0 + g1t + · · · + gmtm , then
dg = dg0 + tdg1 + · · · + tmdgm .) Define

′ : M → M

to be the ϕ•
A/k[u]-linear chain endomorphism such that ′(t i ) = f t i + i t i↘1u; that

is, ′ = f + u ε
εt .

Lemma 3.4. There is an isomorphism

HN dR(A[t], f t + g) ↗= fiber(′)

of complexes of A[t, u]-modules, where the left-hand side is defined in Notation 3.1
using S = A[t] and h = f t + g, and fiber(′) := cone(′)[↘1].
Proof. The composition

ϕ•
A[t]/k[u] ↗= ϕ•

A/k[t, u] ∞ϕ•
A/k[t, u]dt ↗= ϕ•

A/k[t, u] ∞ (ϕ•
A/k[t, u])[↘1]

gives the desired chain isomorphism. ↭
Define an ϕ•

A/k[u]-linear map ↼ : M → HN dR(A[1/ f ], g) by ↼(t i ) = (↘1)i+1i !
f i+1 ui .

Lemma 3.5. The map ↼ has the following properties:

(1) ↼ is a chain map.

(2) ↼ ∈ ′ = 0.

(3) The sequence (0 → M[↘2] ′·t↘↘→ M ↼↘→ HN dR(A[1/ f ], g)) is exact.

(4) The sequence (0 → (M[u↘1])[↘2] ′·t↘↘→ M[u↘1] ↼↘→ HPdR(A[1/ f ], g)→ 0)

is exact.



354 MICHAEL K. BROWN AND MARK E. WALKER

Proof. Parts (1) and (2) are straightforward to check. Part (4) follows from (3),
using that ↼ becomes surjective upon inverting u. As for (3), one easily checks that
′ · t is injective. Suppose m ⇐ ker(↼). We construct forms ↽i, j ⇐ ϕ•

A/k such that

(′ · t)
( ∑

i∝0, j∝0

↽i, j t i u j
)

= m.

Write m = ∑
i, j∝0 ⇀i, j t i u j . We have

∑

i+ j=n

(↘1)i+1i !⇀i, j

f i+1 = 0 for all n ∝ 0.

In particular, f divides ⇀i,0 for all i ∝ 0. Set ↽0, j = ⇀0, j+1 and ↽i,0 = ⇀i+1,0/ f .
We define the forms ↽i, j for i, j ∝ 1 inductively, on i , via the formula

↽i, j = ⇀i, j+1 ↘ f↽i↘1, j+1

i + 1
.

Let

m̃ =
∑

i∝0, j∝0

↽i, j t i u j .

Directly applying the formula for ′ · t , we have:

(′ · t)(m̃)

=
(∑

i∝0

f↽i,0t i+1
)

+
(∑

j∝0

↽0, j u j+1
)

+
( ∑

i∝1, j∝1

( f↽i↘1, j + (i + 1)↽i, j↘1)t i u j
)

.

Now compare coefficients to check that (′ · t)(m̃) = m. ↭

Lemma 3.6. The complex HN dR(A[1/ f, t], f t + g) is k[u]-linearly contractible,
via the degree ↘1 k[u]-linear endomorphism h of HN dR(A[1/ f, t], f t + g) given
by

h(⇀1t i + ⇀2t j dt) = (↘1)|⇀2|
∑

⇁

(↘1)⇁
⇀2u⇁

f ⇁+1
ε⇁(t j )

εt⇁

for ⇀1, ⇀2 ⇐ ϕ•
A[1/ f ]. The complex HPdR(A[1/ f, t], f t + g) is k[u, u↘1]-linearly

contractible via a homotopy given by the same formula.

Proof. The second statement is immediate from the first, and the first follows from
a direct calculation. ↭
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Consider the commutative square

HN dR(A[t], f t + g) !!

can1

""

HN dR(A, g)

can2

""

HN dR(A[1/ f, t], f t + g) !! HN dR(A[1/ f ], g)

(3.7)

where can1 and can2 are the maps induced by inverting f , and the horizontal maps
are induced by setting t = 0. Note that the square in Proposition 3.2 is obtained
from (3.7) by inverting u. The contracting homotopy h of the bottom-left complex
of (3.7) arising from Lemma 3.6 induces the map σ in the diagram

fiber(can1) !!

""

fiber(can2)

""

HN dR(A[t], f t + g) !!

can1

""

σ
++

HN dR(A, g)

can2

""

HN dR(A[1/ f, t], f t + g) !! HN dR(A[1/ f ], g)

(3.8)

causing both triangles to commute.

Lemma 3.9. We have a commutative diagram

HN dR
A[t]/k(A[t], f t + g)

↗=
""

σ

,,

fiber(′)

""

!! fiber(can2)

""

0 !! M[↘2] t
!!

=
""

M

′
""

t=0
!! HN dR(A, g)

can2

""

!! 0

0 !! M[↘2] ′·t
!! M

↼
!! HN dR(A[1/ f ], g)

where the top-most vertical map is induced by Lemma 3.4, and the bottom two rows
are exact.

Proof. The exactness of the third row is clear, and the exactness of the fourth
row follows from Lemma 3.5(3). A direct calculation shows that the diagram
commutes. ↭
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Proof of Proposition 3.2. Lemma 3.6 gives us the statement concerning the con-
tractibility of HPdR(A[1/ f, t], f t +g). Inverting u in the diagram from Lemma 3.9
gives a commutative diagram:

HPdR
A[t]/k(A[t], f t + g)

↗=
""

σ

,,

fiber(′)

""

!! fiber(can2)

""

0 !! (M[u↘1])[↘2] t
!!

=
""

M[u↘1]
′
""

t=0
!! HPdR(A, g)

can2

""

!! 0

0 !! (M[u↘1])[↘2] ′·t
!! M[u↘1] ↼

!! HPdR(A[1/ f ], g) !! 0

Notice that the bottom row is now a short exact sequence, by Lemma 3.5(4). A
diagram chase shows that σ is a quasiisomorphism.

Finally, we consider the commutative diagram

fiber(can1)
↖

!!

↖
""

fiber(can2)

""

HPdR(A[t], f t + g) !!

can1

""

σ

↖

++

HPdR(A, g)

can2

""

HPdR(A[1/ f, t], f t + g) !! HPdR(A[1/ f ], g)

(3.10)

obtained from (3.8) by inverting u. Since HPdR(A[1/ f, t], f t + g) is contractible,
the upper-left vertical map is a quasiisomorphism as shown. We just proved that σ

is a quasiisomorphism, and thus so too is the top horizontal map. This implies that
the bottom square is homotopy cartesian. ↭

4. Proof of Theorem 1.2

We first address the affine case of Theorem 1.2. For convenience, we introduce the
following

Terminology 4.1. We say a dg-functor C → D is an HP-equivalence if it induces a
quasiisomorphism on periodic cyclic complexes.

Let k be a characteristic 0 field, Q an essentially smooth k-algebra, f1, . . . , fc ⇐
Q, and Z = V ( f1, . . . , fc) ↔ Spec(Q). Let K denote the Koszul complex on
f1, . . . , fc, and set R = Q/( f1, . . . , fc). Note that the canonical ring map Q ↫ R
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factors as Q ω→ K ↫ R; these maps induce dg-functors Db
dg(R) → Db

dg(K ) →
Db,Z

dg (Q) given by restriction of scalars.

Theorem 4.2. With the notation just introduced:

(1) The dg-functor Db
dg(K ) → Db,Z

dg (Q) is an HP-equivalence.

(2) The dg-functor Db
dg(R) → Db

dg(K ) is an HP-equivalence if and only if
Db

dg(R) → Db,Z
dg (Q) is such.

(3) If f1, . . . , fc form a regular sequence, then the dg functor Db
dg(R) → Db,Z

dg (Q)

is an HP-equivalence.

Proof. Part (2) follows immediately from (1). When f1, . . . , fc is a regular sequence,
the map K → R is a quasiisomorphism and thus (3) follows from (2).

Let us now prove (1). Let Q̃ and f̃ be as in Section 2C. To prove (1), we argue
by induction on c. Suppose c = 1, and write f1 as just f . We have a commutative
diagram:

HP(m f (Q[t], f t)) !!

""

HP(Db,Z
dg (Q)) !!

""

HP(Db
dg(Q))

""

HP(m f (Q[1/ f, t], f t)) !! HP(Db,Z
dg (Q[1/ f ])) !! HP(Db

dg(Q[1/ f ]))

(4.3)

Each map in (4.3) is induced by a dg-functor: the left-most horizontal maps are
induced by setting t = 0, the right-most horizontal maps are induced by inclusions,
and the vertical maps are induced by inverting f . By Proposition 2.16, it suffices
to show that the upper-left map is a quasiisomorphism.

We first observe that, by Theorem 2.17, the outer rectangle in (4.3) is quasiiso-
morphic to

HPdR(Q[t], f t) !!

""

HPdR(Q, 0)

""

HPdR(Q[1/ f t], f t) !! HPdR(Q[1/ f ], 0)

which is homotopy cartesian by Proposition 3.2 (take g = 0 in that statement). The
right-most square in (4.3) is homotopy cartesian by Proposition 2.1, Theorem 2.5,
and the observation that Db,Z

dg (Q[1/ f ]) is exactly the subcategory of contractible
objects in Db

dg(Q[1/ f ]). It follows that the left-most square in (4.3) is also ho-
motopy cartesian. The complex HP(Db,Z

dg (Q[1/ f ])) is exact since Db,Z
dg (Q[1/ f ])

is quasiequivalent to 0, and HP(m f (Q[1/ f, t], f t)) is exact by Lemma 3.6 and
Theorem 2.17. It follows that the top-left map in (4.3) is a quasiisomorphism; this
proves the c = 1 case.



358 MICHAEL K. BROWN AND MARK E. WALKER

Now suppose c > 1. For the same reasons as in the c = 1 case, the complexes
HP(m f (Q̃[1/ fc], f̃ )) and HP(Db,Z

dg (Q[1/ fc])) are contractible. It therefore suf-
fices, by Proposition 2.16, to show that the square

HP(m f (Q̃, f̃ )) !!

""

HP(Db,Z
dg (Q))

""

HP(m f (Q̃[1/ fc], f̃ )) !! HP(Db,Z
dg (Q[1/ fc]))

(4.4)

is homotopy cartesian. Let Q̃⇔ = Q[t1, . . . , tc↘1], f̃ ⇔ = f1t1 + · · ·+ fc↘1tc↘1 ⇐ Q̃⇔,
and Z ⇔ = V ( f1, . . . , fc↘1). We have the following commutative diagram:

HP(Db,Z
dg (Q)) HP(Db,Z ⇔

dg (Q))

HP(m f (Q̃, f̃ )) HP(m f (Q̃⇔, f̃ ⇔))

HP(m f (Q̃[1/ fc], f̃ )) HP(m f (Q̃⇔[1/ fc], f̃ ⇔))

HP(Db,Z
dg (Q[1/ fc])) HP(Db,Z ⇔

dg (Q[1/ fc]))

where the vertical maps are induced by inverting fc, the exterior horizontal maps
are induced by inclusion, and every other map is given by sending one or more of
the ti to 0. Observe that the square (4.4) is the left-most trapezoid in this diagram.
The diagonal arrows in the right-most trapezoid are quasiequivalences by induction
and Proposition 2.16; it follows that this trapezoid is homotopy cartesian. The
exterior square is homotopy cartesian by Proposition 2.1, Theorem 2.5, and the
observation that Db,Z

dg (Q[1/ fc]) is exactly the subcategory of contractible objects

in Db,Z ⇔
dg (Q[1/ fc]). The interior square is homotopy cartesian by Proposition 3.2

and Theorem 2.17. By a diagram chase similar to the argument in the proof of
Lemma 2.9(2), it follows that (4.4) is homotopy cartesian. This proves (1). ↭

Proof of Theorem 1.2. Since X is noetherian, we have X = Y1 ↙ · · ·↙ Yn with each
Yi an affine open subscheme of X such that Z ↓ Yi ω→ Yi is lci. Each Yi is smooth
since X is.

We proceed by induction on n; the case n = 1 is the content of Theorem 4.2(3).
For n ∝ 2, we have X = U ↙ V , where we set U := Y1 ↙ · · · ↙ Yn↘1 and V := Yn .
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This gives a commutative diagram

HP(Db,Z
dg (X)) !!

""

HP(Db,Z↓U
dg (U ))

""

HP(Db
dg(Z)) !!

""

--

HP(Db
dg(Z↓U ))

""

↖
..

HP(Db
dg(Z↓V ))

↖

//

!! HP(Db
dg(Z↓U↓V ))

↖

''

HP(Db,Z↓V
dg (V )) !! HP(Db,Z↓U↓V

dg (U↓V )).

in which the diagonal maps are induced by pushforward, and all other maps are in-
duced by pullback. By induction on n, the lower-left and upper-right diagonal maps
are quasiisomorphisms as indicated. Observe that U↓V =(Y1↓Yn)↙· · ·↙(Yn↘1↓Yn).
Since X is separated, each Yi ↓Yn is affine, and the inclusion Z ↓Yi ↓Yn ω→ Yi ↓Yn is
lci, for all i . This proves the lower-right diagonal map is also a quasiisomorphism as
indicated. Finally, by Corollary 2.14, the interior and exterior squares are homotopy
cartesian. It follows that HP(Db

dg(Z)) → HP(Db,Z
dg (X)) is a quasiisomorphism. ↭

Remark 4.5. When Z is smooth, Theorem 1.2 follows easily from the Hochschild–
Kostant–Rosenberg theorem and the Gysin long exact sequence in de Rham coho-
mology [Hartshorne 1975, Section 2, Theorem 3.3]; see also [Tabuada and Van den
Bergh 2018, Example 1.15]. Since the Gysin sequence is not available when Z is
not smooth, this approach does not work in our setting.

Similarly, the proof of Tabuada and Van den Bergh’s result [2018, Theorem 1.8],
which states that devissage holds for localizing !1-homotopy invariants in the
case of a closed embedding of a smooth scheme Z into a smooth scheme X , does
not extend to give a proof of Theorem 1.2. One reason for this is that [loc. cit.,
Theorem 6.8(ii)], which plays a key role in the proof of [loc. cit., Theorem 1.8],
does not extend to our setting. In more detail: [loc. cit., Theorem 6.8(ii)] states that,
if R → S is a surjective morphism of smooth k-algebras, then $ HomR(S, S) is a
formal dga. To adapt Tabuada and Van den Bergh’s argument to prove Theorem 1.2,
one would need a version of this result in the case where S is assumed only to be a
complete intersection. But this is simply false; for instance, when R = k[x] and
S = k[x]/(x2), it is straightforward to check that $ HomR(S, S) is not a formal dga.
Remark 4.6. Let Q, R, and K be as in Theorem 4.2. If we knew that the canonical
map HP(Db

dg(R)) → HP(Db
dg(K )) is a quasiisomorphism for any (not necessarily

regular) sequence f1, . . . , fc ⇐ Q, the above Mayer–Vietoris argument would give
a proof of Theorem 1.2 without the lci assumption (but still assuming X is smooth).
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Theorem 1.2 admits a slight generalization:

Corollary 4.7. Let Z ω→ X and X ω→ Y be closed embeddings. If dévissage
for periodic cyclic homology holds for the embeddings X ω→ Y , Z ω→ Y , and
X \ Z ω→ Y \ Z ; then it also holds for the embedding Z ω→ X. In particular, if
X ω→ Y is lci, Z ω→ Y is lci, and Y is smooth, then dévissage holds for Z ω→ X.

Proof. Consider the diagram

Db
dg(Z) !!

HP-eq

,,

Db,Z
dg (X) !!

""

Db,Z
dg (Y )

""

Db
dg(X)

HP-eq
!!

""

Db,X
dg (Y )

""

Db
dg(X \ Z)

HP-eq
!! Db,X\Z

dg (Y \ Z)

in which all horizontal maps are induced by pushforward, the two upper verti-
cal maps are inclusions, and the bottom vertical maps are induced by pullback.
The curved arrow and the bottom two horizontal arrows are HP-equivalences as
indicated, by assumption. Since the two columns are short exact sequences of
dg-categories by Proposition 2.1, it follows from Theorem 2.5 and Lemma 2.9
that the top-right horizontal arrow is also an HP-equivalence. It follows that
Db

dg(Z) → Db,Z
dg (X) is an HP-equivalence. The final assertion follows by using

Theorem 1.2. ↭
Example 4.8. Suppose X is a k-scheme that can be embedded via an lci closed
embedding into a scheme that is smooth over k. By Corollary 4.7, dévissage for
periodic cyclic homology holds for any closed embedding Z ω→ X provided Z is
smooth over k. (This follows from the Corollary since every closed embedding of
smooth schemes is lci.) For instance, dévissage holds for the inclusion of any point
into X .

5. The boundary map in a localization sequence on periodic cyclic homology

Let Q be an essentially smooth k-algebra, f ⇐ Q not a zero-divisor, and R = Q/ f .

5A. Computing the boundary map. Theorems 1.2 and 2.5 give a two-periodic
long exact sequence

· · ·→ HPj (Q)→ HPj (Q[1/ f ]) ε j↘→ HPj↘1(Db
dg(R))→ HPj↘1(Q)→ · · · . (5.1)
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The goal of this subsection is to give an explicit formula for the boundary map ε j .
To achieve this, we use the de Rham versions of these complexes provided by
Proposition 2.16 and Theorem 2.17, i.e., the isomorphisms

HP↑(Db
dg(R)) ↗= HPdR

↑ (Q[t], f t) and HP↑(Q[1/ f ]) ↗= HPdR
↑ (Q[1/ f ]), (5.2)

where the right-hand sides are defined as in Notation 3.1.

Lemma 5.3. With Q and f as above, every class in HPdR
j (Q[1/ f ]) is represented

by a sum of cycles of the form ϱ
f s ul for s, l ⇐ # with s ∝ 0 and ϱ ⇐ ϕ

2l+ j
Q satisfying

f dϱ = sd f ϱ.

Proof. We have HPdR(Q[1/ f ]) = ⊕
p,l ϕ

p
Q[1/ f ]/kul , with ϕ

p
Q[1/ f ]/kul in homolog-

ical degree p ↘ 2l, and differential ud . There is an isomorphism
⊕

m

H 2m+ j
dR (Q[1/ f ]) ↗= HPdR

j (Q[1/ f ]),

where H↑
dR(↘) refers to classical de Rham cohomology, that sends the class of a

closed form ⇀ ⇐ ϕ
2m+ j
Q[1/ f ] to the class of ⇀um . Using the identification ϕ↑

Q[1/ f ]
↗=

ϕ↑
Q[1/ f ], it follows that a cycle in HPdR(Q[1/ f ]) of homological degree j is a

finite sum of elements of the form ϱ
f s ul , with ϱ ⇐ ϕ

2l+ j
Q , each of which is a cycle

satisfying f dϱ = sd f ϱ. ↭
Remark 5.4. The condition f dϱ = sd f ϱ in Lemma 5.3 implies that f d f dϱ = 0,
and hence, since f is not a zero-divisor, that d f dϱ = 0.

Theorem 5.5. Under the isomorphisms in (5.2), the boundary map ε j in (5.1)
corresponds to the map εdR

j : HPdR
j (Q[1/ f ]) → HPdR

j↘1(Q[t], f t) that sends a
class ϱ

f s ul as in Lemma 5.3 to (↘1)s

s! d(ϱt s)ul+1↘s .

Proof. If s = 0, then this class lifts to an element of HPdR
j (Q) and hence is

mapped to zero via εdR; henceforth, assume s ∝ 1. The element γ = γ (s, ϱ) :=
(↘1)s

s! d(ϱt s)ul+1↘s has degree j ↘ 1; let us check that γ ⇐ HPdR(Q[t], f t) is a
cycle. We have f dϱ = sd f ϱ, and Remark 5.4 implies that d f dϱ = 0. We now
compute

(ud + d( f t))(dϱt s) = (↘1) j+1sdϱt s↘1dtu + d f dϱt s+1 + (↘1) j+1 f dϱt sdt

= (↘1) j+1(sdϱt s↘1dtu + sd f ϱt sdt).

Finally, to conclude that γ is a cycle, we observe that (ud + d( f t))(sϱt s↘1dt) =
sdϱt s↘1dtu + sd f ϱt sdt .

Consider diagram (3.10) with A = Q and g = 0. The complex fiber(can2)

in that diagram is the graded k[u, u↘1]-module HPdR(Q) ∞ HPdR(Q[1/ f ])[1]
equipped with the differential

[↘dHPdR(Q)

↘ can2

0
dHPdR(Q[1/ f ])

]
, and the boundary map ε j :
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HPdR
j (Q[1/ f ]) → Hj↘1(fiber(can2)) is induced by inclusion into the second sum-

mand. The map εdR
j is given by the composition Hj↘1(σ )↘1ε j , where σ is as in

diagram (3.10). It therefore suffices to show that Hj↘1(σ )(γ ) = ε j
(

ϱ
f s ul).

Let ( : HPdR(Q[t], f t) → HPdR(Q) be the map induced by setting t = 0.
The quasiisomorphism σ is induced by a contracting homotopy h̄ of can2 ∈( :
HPdR(Q[t], f t) → H dR(Q[1/ f ]); specifically, σ =

[
(

↘h̄

]
. The homotopy h̄ is

induced by the contracting homotopy h given in Lemma 3.6 and the bottom com-
mutative square in (3.10) and is thus given by

h̄(⇀1ta + ⇀2tbdt) = (↘1)|⇀2|+bb!⇀2ub

f b+1

for ⇀1, ⇀2 ⇐ ϕ•
Q and integers a, b ∝ 0. It follows that

Hj↘1(σ )(γ ) =
[

( (γ )

↘h̄(γ )

]

=
[

0
↘ (↘1)s

s! (↘1) j (↘1)2l+ j+s↘1(s ↘ 1)! sϱus↘1

f s ul+1↘s



= ε j

(
ϱ

f s ul
)

. ↭

5B. Relationship with Chern characters of matrix factorizations. In this subsec-
tion, we illustrate our explicit formula for the boundary map in (5.1) by showing it
is compatible with the Chern character map for K1. For simplicity, we assume Q
is local (and essentially smooth over k) throughout this subsection. We will use
Theorem 5.5 to directly check that the square

K1(Q[1/ f ]) ε1
!!

chHP
1

""

G0(Q/ f )

chHP
0

""

HP1(Q[1/ f ]) ε1
!! HP0(Db

dg(Q/ f ))

commutes, where chHP
↑ denotes the HP-Chern character map, and the horizon-

tal maps are the boundary maps in the canonical long exact sequences. Using
Proposition 2.16 and Theorem 2.17, we may identify this square with

K1(Q[1/ f ]) ε1
!!

chdR
1

""

G0(Q/ f )

chdR
0

""

HPdR
1 (Q[1/ f ])

εdR
1
!! HPdR

0 (Q[t], f t)

(5.6)
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where the maps chdR
↑ denote the de Rham versions of the Chern character maps

chHP
↑ . Let us recall the formulas for the maps in this square.
Since Q and Q[1/ f ] are regular, the long exact sequence in G-theory gives an

exact sequence

· · ·→ K1(Q)→ K1(Q[1/ f ]) ε1↘→G0(Q/ f )→ K0(Q)→ K0(Q[1/ f ])→0. (5.7)

The map K0(Q) → K0(Q[1/ f ]) is injective, since Q is local. Moreover, as K1(Q)

is isomorphic to the group of units Q∋ in Q, the boundary map induces an isomor-
phism K1(Q[1/ f ])/Q∋ ↗=↘→ G0(Q/ f ). The group G0(Q/ f ) is generated by the
classes of maximal Cohen–Macaulay Q/ f -modules. Given such a module M , it
has projective dimension 1 as a Q-module, and thus there exists an exact sequence
of the form

0 → Qn A↘→ Qn → M → 0

for some n ∋n matrix A with entries in Q. Since multiplication by f on M is zero,
there is a unique n ∋n matrix B with entries in Q such that AB = B A = f · In; that
is, (A, B) forms a matrix factorization of f . By [Weibel 2013, Theorem III.3.2],
we have ε1([A]) = [coker(A)] = [M]. In particular, we need only check that the
square (5.6) commutes on classes of the form [A] ⇐ K1(Q[1/ f ]), where (A, B) is
a matrix factorization of f .

For any essentially smooth k-algebra S, the Chern character map

chdR
1 : K1(S) → HP1(S) ↗= HPdR

1 (S)

is given by

chdR
1 (T ) :=

∑

s∝1

(↘1)s+1 2s!
(2s)! tr(T ↘1dT (dT ↘1dT )s↘1)us↘1

for any T ⇐GL(S) [Pekonen 1993, Section 1]; here, we use the relation (T ↘1dT )2 =
↘dT ↘1dT .3 Applying this formula when S = Q[1/ f ] and T = A, where (A, B) is
a matrix factorization of f ⇐ Q, and using [Brown and Walker 2020b, Lemma 5.7]
along with the relation d A↘1 = f ↘1d B ↘ f ↘2d f B, we obtain

chdR
1 (A) =

∑

s∝1

(↘1)s+1 2s!
(2s)! f ↘s tr(Bd A(d Bd A)s↘1)us↘1 ⇐ HPdR

1 (Q[1/ f ]).

(5.8)
A similar calculation shows

f tr((d Bd A)s) = s · d f △ tr(Bd A(d Bd A)s↘1)

3Our formula for ch1 differs from the one found in [Pekonen 1993, Section 1] by the constant
i3s↘2

(2))s .
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for each s. We now apply Theorem 5.5 to get

εdR
1 (ch1(A)) = ↘

∑

s∝1

2
(2s)! tr(d(Bd A(d Ad B)s↘1)t s),

which coincides with chdR
0 ([M]) by [Brown and Walker 2020a, Example 6.4]. This

shows that (5.6) commutes.

6. Proof of Theorem 1.4

Proposition 6.1. Let Z ω→ X be a closed embedding of "-schemes, where X is
smooth:

(1) The lattice conjecture (Conjecture 1.3) holds for Db,Z
dg (X).

(2) The following are equivalent:
(a) The map HP(Db

dg(Z)) → HP(Db,Z
dg (X)) induced by pushforward is a

quasiisomorphism.
(b) The lattice conjecture holds for the dg-bounded derived category Db

dg(Z).

(c) The lattice conjecture holds for the dg-singularity category Dsing
dg (Z).

Proof. Let E = fiber(ch : K top
" → HP), and note that the lattice conjecture holds

for a dg-category A if and only if E(A) is exact. Moreover, E is localizing by
Theorems 2.5 and 2.6, Lemma 2.7, and the naturality of ch [Blanc 2016, Theo-
rem 4.24]. In particular, the first assertion is equivalent to the assertion that E Z

coh(X)

is exact (see Notation 2.13). Since X and X \ Z are smooth, and E is localizing, the
canonical maps E(X)

↖↘→ Ecoh(X) and E(X \Z)
↖↘→ Ecoh(X \Z) are equivalences.

Since the lattice conjecture is known for perfect complexes of separated schemes of
finite type over ", we conclude that both Ecoh(X) and Ecoh(X \ Z) are exact. The
first assertion thus follows from Proposition 2.1 and Lemma 2.8.

As for (2), we recall that the map K top
" (Db

dg(Z)) → K top
" (Db,Z

dg (X)) induced by
pushforward along Z ω→ X is known to be an equivalence by [Halpern-Leistner
and Pomerleano 2020, Example 2.3]. Using the naturality of ch, it follows from (1)
that (a) and (b) are equivalent. By the definition of the dg-singularity category, we
have a short exact sequence Perfdg(Z) → Db

dg(Z) → Dsing
dg (Z) of pretriangulated

dg-categories. Since E(Z) is exact, the equivalence of (b) and (c) follows from
Lemma 2.8. ↭
Proof of Theorem 1.4. Let E be the fiber of the Chern character map as in the
proof of Proposition 6.1, so that the goal is to show E(Db

dg(X)) and E(Dsing
dg (X))

are exact. Since X is noetherian, the assumptions give a cover X = U1 ↙ · · ·↙ Un
of X by affine open subschemes such that each Ui admits an lci embedding into a
smooth "-scheme. By Theorem 1.2 and Proposition 6.1(2), Ecoh(Ui ) is exact for
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all i . Just as in the proof of Theorem 1.2, since E is localizing, by induction on
n we conclude that Ecoh(X) is exact. Using Proposition 6.1 again, we have that
E(Dsing

dg (X)) is also exact. ↭
Remark 6.2. As discussed in the introduction, Khan has subsequently generalized
Theorem 1.4; see [Khan 2023, Theorem B]. His result follows from a devissage
statement [loc. cit., Theorem A.2] by essentially the same argument as the one
we give here. Additional new cases of the lattice conjecture for bounded derived
categories and singularity categories of Gorenstein dg-algebras have also recently
been obtained by Brown and Sridhar [2023].
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